1
|
Li Y, Xu Y, Li R, Huang S, Wu Q, Yan J, Jiang Z, Wu X, Li F, Wang Y, Li Y, Fan X, Yuan W. Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Drosophila Development. Metabolites 2024; 14:680. [PMID: 39728461 DOI: 10.3390/metabo14120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background: General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in Drosophila. Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In Drosophila, Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development. However, the functional mechanisms of Gcn5 after the depletion of maternal deposits remain unclear. Methods: Our study employed the Gal4/UAS-RNAi system to achieve whole-body or heart-specific Gcn5 knockdown in Drosophila and selected 96-hour-old surviving larvae for transcriptomic and metabolomic analyses. Results: Omics results revealed that Gcn5 knockdown significantly impacts various metabolic pathways, as well as lysosomes, non-homologous end-joining, Toll and Imd signaling pathways, and circadian rhythms, among others. Furthermore, defects in chitin synthesis may be associated with impaired pupation. Additionally, heart-specific Gcn5 knockdown affected cardiac physiology but appeared to have a potential protective effect against age-related cardiac decline. Conclusions: These findings deepen our understanding of Gcn5's roles in Drosophila development and provide valuable insights for developing Gcn5-targeted therapies, particularly considering its involvement in various human diseases.
Collapse
Affiliation(s)
- Youfeng Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yue Xu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ruike Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Sirui Huang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Qiong Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jing Yan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhigang Jiang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Fang Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuequn Wang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yongqing Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiongwei Fan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wuzhou Yuan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Rabkin SW, Wong CN. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:2815. [PMID: 37893188 PMCID: PMC10604152 DOI: 10.3390/biomedicines11102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This review will focus on epigenetic modifications utilizing the DNA methylation mechanism, which is potentially involved in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis, myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative-nitrosative stress, mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial fibrillation will be examined from the perspective of DNA methylation.
Collapse
Affiliation(s)
- Simon W. Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chenille N. Wong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Zhang F, Deng S, Zhang J, Xu W, Xian D, Wang Y, Zhao Q, Liu Y, Zhu X, Peng M, Zhang L. Causality between heart failure and epigenetic age: a bidirectional Mendelian randomization study. ESC Heart Fail 2023; 10:2903-2913. [PMID: 37452462 PMCID: PMC10567637 DOI: 10.1002/ehf2.14446] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Heart failure (HF) is a prevalent age-related cardiovascular disease with poor prognosis in the elderly population. This study aimed to establish the causal relationship between ageing and HF by conducting a bidirectional Mendelian randomization (MR) analysis on epigenetic age (a marker of ageing) and HF. METHODS AND RESULTS Genome-wide association study data for epigenetic age (GrimAge, HorvathAge, HannumAge, and PhenoAge) and HF were collected and assessed for significant genetic variables. A bidirectional MR analysis was carried out using the random-effects inverse-variance weighted (IVW) method as the primary approach, while other methods (MR-Egger, weighted median, simple mode, and weighted mode) and multiple sensitivity analyses (heterogeneity analysis, leave-one-out sensitivity analysis, and horizontal pleiotropy analysis) were employed to evaluate the impact of epigenetic age on HF and vice versa. Bidirectional MR analysis of two samples revealed that the epigenetic PhenoAge clock increased the risk of HF [IVW odds ratio (OR) 1.015, 95% confidence interval (CI) 1.002-1.028, P = 0.028 and weighted median OR 1.020, 95% CI 1.001-1.038, P = 0.039]. Other results were not statistically significant. CONCLUSIONS The bidirectional MR analysis demonstrated a causal link between genetically predicted epigenetic age and HF in individuals of European descent. Further research into epigenetic age in other populations and additional genetic information related to HF is warranted.
Collapse
Affiliation(s)
- Fengjun Zhang
- College of Acupuncture and MassageShandong University of Traditional Chinese MedicineJinanChina
| | - Shanshan Deng
- Non‐Coding RNA and Drug Discovery Key Laboratory of Sichuan ProvinceChengdu Medical CollegeChengduChina
- School of Basic Medical SciencesChengdu Medical CollegeChengduChina
| | - Jing Zhang
- Department of PediatricsShandong Second Provincial General HospitalJinanChina
| | - Wenchang Xu
- College of Acupuncture and MassageShandong University of Traditional Chinese MedicineJinanChina
| | - Dexian Xian
- College of Acupuncture and MassageShandong University of Traditional Chinese MedicineJinanChina
| | - Yuxuan Wang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qiong Zhao
- Department of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yuan Liu
- Department of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiuli Zhu
- Department of Radiation Oncology and Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Min Peng
- Department of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lin Zhang
- Department of Clinical Pharmacy, Shaoxing People's Hospital, Shaoxing HospitalZhejiang University School of MedicineShaoxingChina
| |
Collapse
|
4
|
Magnuson JT, Leads RR, McGruer V, Qian L, Tanabe P, Roberts AP, Schlenk D. Transcriptomic profiling of miR-203a inhibitor and miR-34b-injected zebrafish (Danio rerio) validates oil-induced neurological, cardiovascular and eye toxicity response pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106356. [PMID: 36423467 DOI: 10.1016/j.aquatox.2022.106356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The global sequencing of microRNA (miRNA; miR) and integration to downstream mRNA expression profiles in early life stages (ELS) of fish following exposure to crude oil determined consistently dysregulated miRNAs regardless of the oil source or fish species. The overlay of differentially expressed miRNAs and mRNAs into in silico software determined that the key roles of these miRNAs were predicted to be involved in cardiovascular, neurological and visually-mediated pathways. Of these, altered expression of miRNAs, miR-203a and miR-34b were predicted to be primary targets of crude oil. To better characterize the effect of these miRNAs to downstream transcript changes, zebrafish embryos were microinjected at 1 h post fertilization (hpf) with either a miR-203a inhibitor or miR-34b. Since both miRs have been shown to be associated with aryl hydrocarbon receptor (AhR) function, benzo(a)pyrene (BaP), a potent AhR agonist, was used as a potential positive control. Transcriptomic profiling was conducted on injected and exposed larvae at 7 and 72 hpf, and eye morphology assessed following exposure at 72 hpf. The top predicted physiological system disease and functions between differentially expressed genes (DEGs) shared with miR-203a inhibitor-injected and miR-34b-injected embryos were involved in brain formation, and the development of the central nervous system and neurons. When DEGs of miR-203a inhibitor-injected embryos were compared with BaP-exposed DEGs, alterations in nervous system development and function, and abnormal morphology of the neurosensory retina, eye and nervous tissue were predicted, consistent with both AhR and non-AhR pathways. When assessed morphologically, the eye area of miR-203a inhibitor and miR-34b-injected and BaP-exposed embryos were significantly reduced. These results suggest that miR-203a inhibition and miR-34b overexpression contribute to neurological, cardiovascular and eye toxicity responses that are caused by oil and PAH exposure in ELS fish, and are likely mediated through both AhR and non-AhR pathways.
Collapse
Affiliation(s)
- Jason T Magnuson
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America.
| | - Rachel R Leads
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Victoria McGruer
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Le Qian
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Philip Tanabe
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Daniel Schlenk
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang, University, Hangzhou, China
| |
Collapse
|
5
|
Ngo V, Fleischmann BK, Jung M, Hein L, Lother A. Histone Deacetylase 6 Inhibitor JS28 Prevents Pathological Gene Expression in Cardiac Myocytes. J Am Heart Assoc 2022; 11:e025857. [PMID: 35699165 PMCID: PMC9238633 DOI: 10.1161/jaha.122.025857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Background Epigenetic modulators have been proposed as promising new drug targets to treat adverse remodeling in heart failure. Here, we evaluated the potential of 4 epigenetic drugs, including the recently developed histone deacetylase 6 (HDAC6) inhibitor JS28, to prevent endothelin-1 induced pathological gene expression in cardiac myocytes and analyzed the chromatin binding profile of the respective inhibitor targets. Methods and Results Cardiac myocytes were differentiated and puromycin-selected from mouse embryonic stem cells and treated with endothelin-1 to induce pathological gene expression (938 differentially expressed genes, q<0.05). Dysregulation of gene expression was at least in part prevented by epigenetic inhibitors, including the pan-BRD (bromodomain-containing protein) inhibitor bromosporine (290/938 genes), the BET (bromodomain and extraterminal) inhibitor JQ1 (288/938), the broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid (227/938), and the HDAC6 inhibitor JS28 (210/938). Although the 4 compounds were similarly effective toward pathological gene expression, JS28 demonstrated the least adverse effects on physiological gene expression. Genome-wide chromatin binding profiles revealed that HDAC6 binding sites were preferentially associated with promoters of genes involved in RNA processing. In contrast, BRD4 binding was associated with genes involved in core cardiac myocyte functions, for example, myocyte contractility, and showed enrichment at enhancers and intronic regions. These distinct chromatin binding profiles of HDAC6 and BRD4 might explain the different effects of their inhibitors on pathological versus physiological gene expression. Conclusions In summary, we demonstrated, that the HDAC6 inhibitor JS28 effectively prevented the adverse effects of endothelin-1 on gene expression with minor impact on physiological gene expression in cardiac myocytes. Selective HDAC6 inhibition by JS28 appears to be a promising strategy for future evaluation in vivo and potential translation into clinical application.
Collapse
Affiliation(s)
- Vivien Ngo
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical FacultyUniversity of BonnGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgGermany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgGermany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- Interdisciplinary Medical Intensive Care (IMIT), Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgGermany
| |
Collapse
|
6
|
Volani C, Pagliaro A, Rainer J, Paglia G, Porro B, Stadiotti I, Foco L, Cogliati E, Paolin A, Lagrasta C, Frati C, Corradini E, Falco A, Matzinger T, Picard A, Ermon B, Piazza S, De Bortoli M, Tondo C, Philippe R, Medici A, Lavdas AA, Blumer MJF, Pompilio G, Sommariva E, Pramstaller PP, Troppmair J, Meraviglia V, Rossini A. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J Cell Mol Med 2022; 26:3687-3701. [PMID: 35712781 PMCID: PMC9258704 DOI: 10.1111/jcmm.17396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro‐fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB‐3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB‐3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Pagliaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Benedetta Porro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Adolfo Paolin
- Fondazione Banca dei Tessuti di Treviso, Treviso, Italy
| | - Costanza Lagrasta
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Theresa Matzinger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Benedetta Ermon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Povo, TN, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Marzia De Bortoli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy.,Department of Clinical Electrophysiology&Cardiac Pacing, Università degli Studi di Milano, Milano, Italy
| | - Réginald Philippe
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrea Medici
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
7
|
Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord 2022; 22:182. [PMID: 35439934 PMCID: PMC9020036 DOI: 10.1186/s12872-022-02621-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heart disease is a major cause of mortality in developed countries. The associated pathology is mainly characterized by the loss of cardiomyocytes that contributes to heart failure (HF). This study aims to investigate the mechanism of euchromatic histone lysine methyltransferase 2 (EHMT2, also term G9a) in HF in rats. Methods Differentially expressed mRNAs in HF were screened using GEO database. Sera from subjects with or without HF were collected, and PCR was performed to detect the G9a expression. G9a was downregulated in cardiomyocytes exposed to oxygen–glucose deprivation (OGD), followed by CCK8, flow cytometry, colorimetric method, and western blot assays. Established HF rats were delivered with lentiviral vectors carrying sh-G9a, and TTC staining, HE staining, TUNEL, ELISA, and western blot were performed. The regulation of G9a on the downstream target BDNF was investigated by RT-qPCR, Western blot, and ChIP-qPCR. Finally, rescue experiments were carried out to substantiate the effect of G9a on cardiomyocyte apoptosis and injury via the BDNF/TrkB axis. Results G9a was overexpressed, whereas BDNF was downregulated in HF. Knockdown of G9a inhibited apoptosis and injury in OGD-treated cardiomyocytes and attenuated the extent of HF and myocardial injury in rats. Silencing of G9a promoted BDNF transcription by repressing H3K9me2 modification of the BDNF promoter. Further depletion of BDNF partially reversed the effect of sh-G9a in alleviating cardiomyocyte apoptosis and injury by inhibiting the TrkB signaling pathway. Conclusion G9a inhibits BDNF expression through H3K9me2 modification, thereby impairing the TrkB signaling pathway and exacerbating the development of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02621-w.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cardiac Surgery, Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China.,Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ziying Chen
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
8
|
DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022; 10:biomedicines10040866. [PMID: 35453616 PMCID: PMC9029641 DOI: 10.3390/biomedicines10040866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
A controversial understanding of the state of the DNA methylation machinery exists in ischaemic cardiomyopathy (ICM). Moreover, its relationship to other epigenetic alterations is incomplete. Therefore, we carried out an in-depth study of the DNA methylation process in human cardiac tissue. We showed a dysregulation of the DNA methylation machinery accordingly with the genome-wide hypomethylation that we observed: specifically, an overexpression of main genes involved in the elimination of methyl groups (TET1, SMUG1), and underexpression of molecules implicated in the maintenance of methylation (MBD2, UHRF1). By contrast, we found DNMT3B upregulation, a key molecule in the addition of methyl residues in DNA, and an underexpression of miR-133a-3p, an inhibitor of DNMT3B transcription. However, we found many relevant alterations that would counteract the upregulation observed, such as the overexpression of TRAF6, responsible for Dnmt3b degradation. Furthermore, we showed that molecules regulating Dnmts activity were altered; specifically, SAM/SAH ratio reduction. All these results are in concordance with the Dnmts normal function that we show. Our analysis revealed genome-wide hypomethylation along with dysregulation in the mechanisms of addition, elimination and maintenance of methyl groups in the DNA of ICM. We describe relevant alterations in the DNMT3B system, which promote a normal Dnmt3b function despite its upregulation.
Collapse
|
9
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
10
|
Välimäki MJ, Leigh RS, Kinnunen SM, March AR, de Sande AH, Kinnunen M, Varjosalo M, Heinäniemi M, Kaynak BL, Ruskoaho H. GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line. Stem Cell Res Ther 2021; 12:190. [PMID: 33736688 PMCID: PMC7977156 DOI: 10.1186/s13287-021-02259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. Methods Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. Results GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. Conclusions Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02259-z.
Collapse
Affiliation(s)
- Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Alexander R March
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Ana Hernández de Sande
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
11
|
Funamoto M, Sunagawa Y, Katanasaka Y, Shimizu K, Miyazaki Y, Sari N, Shimizu S, Mori K, Wada H, Hasegawa K, Morimoto T. Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats. Int J Mol Sci 2021; 22:1771. [PMID: 33578969 PMCID: PMC7916721 DOI: 10.3390/ijms22041771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation by epigenetic regulators has been shown to activate the transcription of hypertrophic response genes, which subsequently leads to the development and progression of heart failure. However, nothing is known about the acetylation of the histone tail and globular domains in left ventricular hypertrophy or in heart failure. The acetylation of H3K9 on the promoter of the hypertrophic response gene was significantly increased in the left ventricular hypertrophy stage, whereas the acetylation of H3K122 did not increase in the left ventricular hypertrophy stage but did significantly increase in the heart failure stage. Interestingly, the interaction between the chromatin remodeling factor BRG1 and p300 was significantly increased in the heart failure stage, but not in the left ventricular hypertrophy stage. This study demonstrates that stage-specific acetylation of the histone tail and globular domains occurs during the development and progression of heart failure, providing novel insights into the epigenetic regulatory mechanism governing transcriptional activity in these processes.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Kiyoshi Mori
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Hiromichi Wada
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| |
Collapse
|
12
|
Lin B, Zhao H, Li L, Zhang Z, Jiang N, Yang X, Zhang T, Lian B, Liu Y, Zhang C, Wang J, Wang F, Feng D, Xu J. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging (Albany NY) 2020; 13:14482-14498. [PMID: 33206628 PMCID: PMC8202895 DOI: 10.18632/aging.103640] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) affects over 26 million people worldwide, yet the pathologies of this complex syndrome have not been completely understood. Here, we investigated the involvement of deacetylase Sirtuin 1 (Sirt1) in HF and its downstream signaling pathways. A HF model was induced by the ligation of the left coronary artery in rats, where factors associated with left ventricular echocardiography, heart hemodynamics and ventricular mass indexes were recorded. Collagen volume fraction in heart tissues was determined by Masson's trichrome staining. Cell models of HF were also established (H2O2, 30 min) in cardiomyocytes harvested from suckling rats. HF rats presented with downregulated expressions of Sirt1, brain-derived neurotrophic factor (BDNF) and exhibited upregulated expressions of NF-κB p65 and miR-155. Repressed Sirt1 expression increased acetylation of NF-κB p65, resulting in the elevation of NF-κB p65 expression. NF-κB p65 silencing improved heart functions, decreased ventricular mass and reduced apoptosis in cardiomyocytes. MiR-155 inhibition upregulated its target gene BDNF, thereby reducing cardiomyocyte apoptosis. Sirt1 overexpression upregulated BDNF, improved heart function, and reduced apoptosis in cardiomyocytes. In conclusion, Sirt1 alleviates HF in rats through the NF-κB p65/miR-155/BDNF signaling cascade.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Hui Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Li Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Zhenzhen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Nan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xiaowei Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Tao Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Bowen Lian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Yaokai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Chi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jiaxiang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Feng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
13
|
Liu CF, Abnousi A, Bazeley P, Ni Y, Morley M, Moravec CS, Hu M, Tang WHW. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy. J Mol Cell Cardiol 2020; 145:30-42. [PMID: 32533974 DOI: 10.1016/j.yjmcc.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetylation and methylation of histones alter the chromatin structure and accessibility that affect transcriptional regulators binding to enhancers and promoters. The binding of transcriptional regulators enables the interaction between enhancers and promoters, thus affecting gene expression. However, our knowledge of these epigenetic alternations in patients with heart failure remains limited. METHODS AND RESULTS From the comprehensive analysis of major histone modifications, 3-dimensional chromatin interactions, and transcriptome in left ventricular (LV) tissues from dilated cardiomyopathy (DCM) patients and non-heart failure (NF) donors, differential active enhancer and promoter regions were identified between NF and DCM. Moreover, the genome-wide average promoter signal is significantly lower in DCM than in NF. Super-enhancer (SE) analysis revealed that fewer SEs were found in DCM LVs than in NF ones, and three unique SE-associated genes between NF and DCM were identified. Moreover, SEs are enriched within the genomic region associated with long-range chromatin interactions. The differential enhancer-promoter interactions were observed in the known heart failure gene loci and are correlated with the gene expression levels. Motif analysis identified known cardiac factors and possible novel players for DCM. CONCLUSIONS We have established the cistrome of four histone modifications and chromatin interactome for enhancers and promoters in NF and DCM tissues. Differential histone modifications and enhancer-promoter interactions were found in DCM, which were associated with gene expression levels of a subset of disease-associated genes in human heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Armen Abnousi
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Peter Bazeley
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Ying Ni
- Taussig Cancer Institute, Heart and Vascular Institute, Cleveland Clinic, OH, USA
| | | | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Ming Hu
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
14
|
Raveendran VV, Al-Haffar K, Kunhi M, Belhaj K, Al-Habeeb W, Al-Buraiki J, Eyjolsson A, Poizat C. Protein arginine methyltransferase 6 mediates cardiac hypertrophy by differential regulation of histone H3 arginine methylation. Heliyon 2020; 6:e03864. [PMID: 32420474 PMCID: PMC7218648 DOI: 10.1016/j.heliyon.2020.e03864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.
Collapse
Affiliation(s)
- Vineesh Vimala Raveendran
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kamar Al-Haffar
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammed Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karim Belhaj
- College of Medicine, Al Faisal University, PO Box 50927, Riyadh 11211, Saudi Arabia
| | | | | | - Atli Eyjolsson
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Masonic Medical Research Institute, Utica, NY 13501, USA
| |
Collapse
|
15
|
Crimi E, Cirri S, Benincasa G, Napoli C. Epigenetics Mechanisms in Multiorgan Dysfunction Syndrome. Anesth Analg 2020; 129:1422-1432. [PMID: 31397699 DOI: 10.1213/ane.0000000000004331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms including deoxyribonucleic acid (DNA) methylation, histone modifications (eg, histone acetylation), and microribonucleic acids (miRNAs) have gained much scientific interest in the last decade as regulators of genes expression and cellular function. Epigenetic control is involved in the modulation of inflammation and immunity, and its dysregulation can contribute to cell damage and organ dysfunction. There is growing evidence that epigenetic changes can contribute to the development of multiorgan dysfunction syndrome (MODS), a leading cause of mortality in the intensive care unit (ICU). DNA hypermethylation, histone deacetylation, and miRNA dysregulation can influence cytokine and immune cell expression and promote endothelial dysfunction, apoptosis, and end-organ injury, contributing to the development of MODS after a critical injury. Epigenetics processes, particularly miRNAs, are emerging as potential biomarkers of severity of disease, organ damage, and prognostic factors in critical illness. Targeting epigenetics modifications can represent a novel therapeutic approach in critical care. Inhibitors of histone deacetylases (HDCAIs) with anti-inflammatory and antiapoptotic activities represent the first class of drugs that reverse epigenetics modifications with human application. Further studies are required to acquire a complete knowledge of epigenetics processes, full understanding of their individual variability, to expand their use as accurate and reliable biomarkers and as safe target to prevent or attenuate MODS in critical disease.
Collapse
Affiliation(s)
- Ettore Crimi
- From the University of Central Florida, College of Medicine, Orlando, Florida.,Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, Florida
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation SDN, Naples, Italy
| |
Collapse
|
16
|
Liu J, Yang S, Wang W, Zhang Y, Wang Q, Sun X, Tan N, Du K, Wang Y, Zhao H. Use of Qishen granule for the treatment of heart failure: A systematic review and meta-analysis of animal studies. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020; 7:121-132. [DOI: 10.1016/j.jtcms.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
18
|
Basma H, Johanson AN, Dhar K, Anderson D, Qiu F, Rennard S, Lowes BD. TGF-β induces a heart failure phenotype via fibroblasts exosome signaling. Heliyon 2019; 5:e02633. [PMID: 31687497 PMCID: PMC6820308 DOI: 10.1016/j.heliyon.2019.e02633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose The mechanisms for persistent and progressive loss of myocardial function in advanced heart failure (HF) remain incompletely characterized. In the current study, we sought to determine the impact of TGF-β on fibroblasts transcriptional profiles and assess if exosomes from TGF-β treated fibroblasts could induce a heart failure phenotype in co-cultured cardiomyocytes. Method Normal heart fibroblasts were treated with TGF-β with a final conc. of 2.5 ng/ml in serum free media. HF fibroblasts were also obtained from patients undergoing implantation of left ventricular assist devices. Exosomes were collected using three-step ultracentrifugation. Cardiomyocytes were co-cultured with exosomes from TGF-β-treated, HF and control fibroblasts. RNA was extracted from the fibroblasts, exosomes, and the cardiomyocytes for a targeted panel of genes using Ion AmpliSeq. Fibroblast function was evaluated by collagen gel contraction. Results Fibroblasts treated with TGF-β differentially express 21 of the 140 genes in our targeted panel. These fibroblasts exhibit enhanced collagen gel contraction similar to HF fibroblasts. Fifty of these targeted genes were also differentially expressed in fibroblast exosomes. Pathway analysis of these transcriptional changes suggest hypertrophic signaling to cardiac muscle. Cardiomyocytes, co-cultured with exosomes from TGF- β treated fibroblasts or heart failure patients, differentially expressed 40 genes compared to controls. Cardiomyocytes co-cultured with exosomes of TGF-β treated fibroblasts induced a molecular phenotype similar to cardiomyocytes co-cultured with exosomes from HF fibroblasts. These changes involve contractile proteins, adrenergic receptors, calcium signaling, metabolism and cell renewal. Conclusion TGF-β induces broad transcriptional changes in fibroblasts as well as their exosomes. These exosomes induce a heart failure phenotype in cardiomyocytes. Exosome signaling from fibroblasts likely contributes to disease progression in heart failure.
Collapse
Affiliation(s)
| | | | | | | | - Fang Qiu
- University of Nebraska Medical Center, USA
| | - Stephen Rennard
- University of Nebraska Medical Center, USA.,Early Clinical Development, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
19
|
CaM kinase II regulates cardiac hemoglobin expression through histone phosphorylation upon sympathetic activation. Proc Natl Acad Sci U S A 2019; 116:22282-22287. [PMID: 31619570 DOI: 10.1073/pnas.1816521116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sympathetic activation of β-adrenoreceptors (β-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by β-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the β-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic β-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic β-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.
Collapse
|
20
|
Cresci S, Pereira NL, Ahmad F, Byku M, de las Fuentes L, Lanfear DE, Reilly CM, Owens AT, Wolf MJ. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:458-485. [PMID: 31510778 DOI: 10.1161/hcg.0000000000000058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of 5 people will develop heart failure over his or her lifetime. Early diagnosis and better understanding of the pathophysiology of this disease are critical to optimal treatment. The "omics"-genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and microbiomics- of heart failure represent rapidly expanding fields of science that have, to date, not been integrated into a single body of work. The goals of this statement are to provide a comprehensive overview of the current state of these omics as they relate to the development and progression of heart failure and to consider the current and potential future applications of these data for precision medicine with respect to prevention, diagnosis, and therapy.
Collapse
|
21
|
Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, Kamuf-Schenk V, Altmüller J, Tappu R, Busch M, Most P, Katus HA, Dieterich C, Völkers M. m 6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance 2019; 2:e201800233. [PMID: 30967445 PMCID: PMC6458851 DOI: 10.26508/lsa.201800233] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/25/2023] Open
Abstract
Conceptually similar to modifications of DNA, mRNAs undergo chemical modifications, which can affect their activity, localization, and stability. The most prevalent internal modification in mRNA is the methylation of adenosine at the N6-position (m6A). This returns mRNA to a role as a central hub of information within the cell, serving as an information carrier, modifier, and attenuator for many biological processes. Still, the precise role of internal mRNA modifications such as m6A in human and murine-dilated cardiac tissue remains unknown. Transcriptome-wide mapping of m6A in mRNA allowed us to catalog m6A targets in human and murine hearts. Increased m6A methylation was found in human cardiomyopathy. Knockdown and overexpression of the m6A writer enzyme Mettl3 affected cell size and cellular remodeling both in vitro and in vivo. Our data suggest that mRNA methylation is highly dynamic in cardiomyocytes undergoing stress and that changes in the mRNA methylome regulate translational efficiency by affecting transcript stability. Once elucidated, manipulations of methylation of specific m6A sites could be a powerful approach to prevent worsening of cardiac function.
Collapse
Affiliation(s)
- Vivien Kmietczyk
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Eva Riechert
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Laura Kalinski
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Etienne Boileau
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Section of Bioinformatics and Systems Cardiology, Department of Cardiology, Angiology, and Pneumology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Malovrh
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Brandon Malone
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Section of Bioinformatics and Systems Cardiology, Department of Cardiology, Angiology, and Pneumology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Agnieszka Gorska
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Hofmann
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Eshita Varma
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lonny Jürgensen
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Verena Kamuf-Schenk
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Martin Busch
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Section of Bioinformatics and Systems Cardiology, Department of Cardiology, Angiology, and Pneumology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
22
|
Xu EG, Khursigara AJ, Li S, Esbaugh AJ, Dasgupta S, Volz DC, Schlenk D. mRNA-miRNA-Seq Reveals Neuro-Cardio Mechanisms of Crude Oil Toxicity in Red Drum ( Sciaenops ocellatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3296-3305. [PMID: 30816040 DOI: 10.1021/acs.est.9b00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in crude oil can cause global gene dysregulation and developmental impairment in fish. However, the mechanisms that alter gene regulation are not well understood. In this study, larval red drum ( Sciaenops ocellatus) were exposed to water accommodated fractions of source oil (6.8, 13.7, and 35.9 μg/L total PAHs) and weathered slick oil (4.7, 8.1, and 18.0 μg/L total PAHs) from the Deepwater Horizon (DWH) oil spill. The global mRNA-microRNA functional networks associated with the toxicity of DWH oil were explored by next-generation sequencing and in-depth bioinformatics analyses. Both source and slick oil significantly altered the expression of miR-18a, miR-27b, and miR-203a across all exposure concentrations. Consistent with the observed concentration-dependent morphological changes, the target mRNAs of these microRNAs were predominantly involved in neuro-cardio system development processes and associated key signaling pathways such as axonal guidance signaling, cAMP-response-element-binding protein signaling in neurons, calcium signaling, and nuclear-factor-of-activated T cells signaling in cardiac hypertrophy. The results indicated that the developmental toxicity of crude oil may result from the abnormal expression of microRNAs and associated target genes, especially for the nervous system. Moreover, we provide a case study for systematic toxicity evaluation leveraging mRNA-microRNA-seq data using nonmodel species.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- Department of Chemical Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Alexis J Khursigara
- Marine Science Institute , University of Texas at Austin , Austin , Texas 78373 , United States
| | - Shuying Li
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Andrew J Esbaugh
- Marine Science Institute , University of Texas at Austin , Austin , Texas 78373 , United States
| | - Subham Dasgupta
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - David C Volz
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
23
|
Ahuja G, Bartsch D, Yao W, Geissen S, Frank S, Aguirre A, Russ N, Messling JE, Dodzian J, Lagerborg KA, Vargas NE, Muck JS, Brodesser S, Baldus S, Sachinidis A, Hescheler J, Dieterich C, Trifunovic A, Papantonis A, Petrascheck M, Klinke A, Jain M, Valenzano DR, Kurian L. Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Rep 2019; 20:embr.201847407. [PMID: 30886000 DOI: 10.15252/embr.201847407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.
Collapse
Affiliation(s)
- Gaurav Ahuja
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Deniz Bartsch
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Wenjie Yao
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Simon Geissen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Aitor Aguirre
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Nicole Russ
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Jan-Erik Messling
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Joanna Dodzian
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Kim A Lagerborg
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Natalia Emilse Vargas
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Joscha Sergej Muck
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Juergen Hescheler
- Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, University Hospital Heidelberg & German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Aleksandra Trifunovic
- CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Anna Klinke
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Mohit Jain
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany .,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Leo Kurian
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany .,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol 2018; 120:53-63. [DOI: 10.1016/j.yjmcc.2018.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023]
|
25
|
Ito E, Miyagawa S, Fukushima S, Yoshikawa Y, Saito S, Saito T, Harada A, Takeda M, Kashiyama N, Nakamura Y, Shiozaki M, Toda K, Sawa Y. Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Ann Thorac Surg 2017; 104:1531-1539. [DOI: 10.1016/j.athoracsur.2017.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
26
|
Renaud L, Silveira WAD, Hazard ES, Simpson J, Falcinelli S, Chung D, Carnevali O, Hardiman G. The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome. Genes (Basel) 2017; 8:genes8100269. [PMID: 29027980 PMCID: PMC5664119 DOI: 10.3390/genes8100269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer.
Collapse
Affiliation(s)
- Ludivine Renaud
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Willian A da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - E Starr Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Library Science and Informatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Jonathan Simpson
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Silvia Falcinelli
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Gary Hardiman
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Department of Medicine, University of California, La Jolla, CA 92093, USA.
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| |
Collapse
|
27
|
Spearman AD. Epigenetics for the pediatric cardiologist. CONGENIT HEART DIS 2017; 12:828-833. [PMID: 28984030 DOI: 10.1111/chd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A genetic basis of congenital heart disease (CHD) has been known for decades. In addition to the sequence of the genome, the contribution of epigenetics to pediatric cardiology is increasingly recognized. Multiple epigenetic mechanisms, including DNA methylation, histone modification, and RNA-based regulation, are known mediators of cardiovascular disease, including both development and progression of CHD and its sequelae. Basic understanding of the concepts of epigenetics will be essential to all pediatric cardiologists in order to understand mechanisms of pathophysiology, pharmacotherapeutic concepts, and to understand the role of epigenetics in precision medicine.
Collapse
Affiliation(s)
- Andrew D Spearman
- Medical College of Wisconsin, 9000 Wisconsin Avenue, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
28
|
Sabia C, Picascia A, Grimaldi V, Amarelli C, Maiello C, Napoli C. The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transplant Rev (Orlando) 2017; 31:249-256. [PMID: 28882368 DOI: 10.1016/j.trre.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
Heart transplantation is still the only possible life-saving treatment for end-stage heart failure, the critical epilogue of several cardiac diseases. Epigenetic mechanisms are being intensively investigated because they could contribute to establishing innovative diagnostic and predictive biomarkers, as well as ground-breaking therapies both for heart failure and heart transplantation rejection. DNA methylation and histone modifications can modulate the innate and adaptive immune response by acting on the expression of immune-related genes that, in turn, are crucial determinants of transplantation outcome. Epigenetic drugs acting on methylation and histone-modification pathways may modulate Treg activity by acting as immunosuppressive agents. Moreover, the identification of non-invasive and reliable epigenetic biomarkers for the prediction of allograft rejection and for monitoring immunosuppressive therapies represents an attractive perspective in the management of transplanted patients. MiRNAs seem to fit particularly well to this purpose because they are differently expressed in patients at high and low risk of rejection and are detectable in biological fluids besides biopsies. Although increasing evidence supports the involvement of epigenetic tags in heart failure and transplantation, further short and long-term clinical studies are needed to translate the possible available findings into clinical setting.
Collapse
Affiliation(s)
- Chiara Sabia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy.
| | - Antonietta Picascia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; SDN Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, Via Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
29
|
Hasin T, Iakobishvili Z, Weisz G. Associated Risk of Malignancy in Patients with Cardiovascular Disease: Evidence and Possible Mechanism. Am J Med 2017; 130:780-785. [PMID: 28344133 DOI: 10.1016/j.amjmed.2017.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease and malignancy are leading causes of morbidity and mortality. Increased risk of malignancy was identified in patients with cardiovascular disease, including patients with heart failure, heart failure after myocardial infarction, patients undergoing cardiac intervention, and patients after a thrombotic event. Common risk factors and biological pathways can explain this association and are explored in this review. Further research is needed to establish the causes of malignancy in this population and direct possible intervention.
Collapse
Affiliation(s)
- Tal Hasin
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Zaza Iakobishvili
- Department of Cardiology, Rabin Medical Center, Petach Tiqwa, Israel
| | - Giora Weisz
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Li X, Zhang M, Pan X, Xu Z, Sun M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res 2017; 109:744-757. [PMID: 28509412 DOI: 10.1002/bdr2.1037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiang Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Mengshu Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences
- Key Laboratory of Biochip Technology in Guangdong province; Southern Medical University; Guangzhou China
- Department of Genetics; Yale University School of Medicine; New Haven Connecticut
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| |
Collapse
|
31
|
van Middendorp LB, Kuiper M, Munts C, Wouters P, Maessen JG, van Nieuwenhoven FA, Prinzen FW. Local microRNA-133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Fail 2017; 4:241-251. [PMID: 28772031 PMCID: PMC5542733 DOI: 10.1002/ehf2.12154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022] Open
Abstract
Aims Left bundle branch block (LBBB) creates considerable regional differences in mechanical load within the left ventricle (LV). We investigated expression of selected microRNAs (miRs) in relation to regional hypertrophy and fibrosis in LBBB hearts and their reversibility upon cardiac resynchronization therapy (CRT). Methods and results Eighteen dogs were followed for 4 months after induction of LBBB, 10 of which received CRT after 2 months. Five additional dogs served as control. LV geometric changes were determined by echocardiography and myocardial strain by magnetic resonance imaging tagging. Expression levels of miRs, their target genes: connective tissue growth factor (CTGF), serum response factor (SRF), nuclear factor of activated T cells (NFATc4), and cardiomyocyte diameter and collagen deposition were measured in the septum and LV free wall (LVfw). In LBBB hearts, LVfw and septal systolic circumferential strain were 200% and 50% of control, respectively. This coincided with local hypertrophy in the LVfw. MiR‐133a expression was reduced by 33% in the LVfw, which corresponded with a selective increase of CTGF expression in the LVfw (279% of control). By contrast, no change was observed in SRF and NFATc4 expression was decreased in LBBB hearts. CRT normalized strain patterns and reversed miR‐133a and CTGF expression towards normal, expression of other miRs, related to remodelling, such as miR‐199b and miR‐155f, were not affected. Conclusions In the clinically relevant large animal model of LBBB, a close inverse relation exists between local hypertrophy and miR‐133a. Reduced miR‐133a correlated with increased CTGF levels but not with SRF and NFATc4.
Collapse
Affiliation(s)
- Lars B van Middendorp
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands.,Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Philippe Wouters
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| |
Collapse
|
32
|
Yu M, Liang W, Xie Y, Long Q, Cheng X, Liao YH, Yuan J. Circulating miR-185 might be a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. Sci Rep 2016; 6:33580. [PMID: 27645404 PMCID: PMC5028782 DOI: 10.1038/srep33580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
B cells contribute to the development of dilated cardiomyopathy (DCM) by inducing myocyte injuries and myocardial fibrosis. Our recent research indicated that microRNA (miR) -185 participated in human B-cell activation. Thus, this study was aimed to explore the relationship between miR-185 and DCM progression. Forty-one healthy volunteers and fifty newly diagnosed DCM patients were enrolled. The levels of plasma miR-185, TNF-α secreting B cells, and anti-heart autoantibody were detected. We found that the mean levels of plasma miR-185 in DCM patients were significantly higher than those in healthy controls. Furthermore, these DCM patients could be divided into miR-185high and miR-185low groups according to the cluster distribution. During one-year follow-up period, the miR-185high group showed apparent improvements in left ventricular ejection fraction, left ventricular end diastolic diameter, and NT-proBNP, accompanied by significant declines in both cardiovascular mortality and total admissions for heart failure re-hospitalizations. In addition, the levels of anti-β1-AR antibody and TNF-α secreting B cells were also reduced in miR-185high group. These findings suggested that high miR-185 levels might be associated with a favorable prognosis by repressing B cell function in DCM. The findings of this study need to be confirmed with larger sample size and longer duration of observation.
Collapse
Affiliation(s)
- Miao Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Liang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Xie
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi Long
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Hua Liao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Yuan
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
33
|
Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2634976. [PMID: 27722168 PMCID: PMC5046009 DOI: 10.1155/2016/2634976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.
Collapse
|
34
|
Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, Kurz K, Carell T, Angius A, Latronico MVG, Papait R, Condorelli G. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 2016; 7:12418. [PMID: 27489048 PMCID: PMC4976219 DOI: 10.1038/ncomms12418] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Abstract
Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease.
Collapse
Affiliation(s)
- Carolina M Greco
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Paolo Kunderfranco
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Veronica Larcher
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Pierluigi Carullo
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Achille Anselmo
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Kerstin Kurz
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-Universität München, 8137 Munich, Germany
| | - Thomas Carell
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-Universität München, 8137 Munich, Germany
| | - Andrea Angius
- Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | | | - Roberto Papait
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Humanitas University, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
| |
Collapse
|
35
|
Jo BS, Koh IU, Bae JB, Yu HY, Jeon ES, Lee HY, Kim JJ, Choi M, Choi SS. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy. Genomics 2016; 108:84-92. [PMID: 27417303 DOI: 10.1016/j.ygeno.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Dilated cardiomyopathy (DCM) is one of the main causes of heart failure (called cardiomyopathies) in adults. Alterations in epigenetic regulation (i.e., DNA methylation) have been implicated in the development of DCM. Here, we identified a total of 1828 differentially methylated probes (DMPs) using the Infinium 450K HumanMethylation Bead chip by comparing the methylomes between 18 left ventricles and 9 right ventricles. Alterations in DNA methylation levels were observed mainly in lowly methylated regions corresponding to promoter-proximal regions, which become hypermethylated in severely affected left ventricles. Subsequent mRNA microarray analysis showed that the effect of DNA methylation on gene expression regulation is not unidirectional but is controlled by the functional sub-network context. DMPs were significantly enriched in the transcription factor binding sites (TFBSs) we tested. Alterations in DNA methylation were specifically enriched in the cis-regulatory regions of cardiac development genes, the majority of which are involved in ventricular development (e.g., TBX5 and HAND1).
Collapse
Affiliation(s)
- Bong-Seok Jo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Chuncheon 24341, South Korea
| | - In-Uk Koh
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Jae-Bum Bae
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Ho-Yeong Yu
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Cardiac and Vascular Center, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, South Korea
| | - Hae-Young Lee
- Division of Cardiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jae-Joong Kim
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44033, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Chuncheon 24341, South Korea.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article provides an overview, highlighting recent findings, of a major mechanism of gene regulation and its relevance to the pathophysiology of heart failure. RECENT FINDINGS The syndrome of heart failure is a complex and highly prevalent condition, one in which the heart undergoes substantial structural remodeling. Triggered by a wide range of disease-related cues, heart failure pathophysiology is governed by both genetic and epigenetic events. Epigenetic mechanisms, such as chromatin/DNA modifications and noncoding RNAs, have emerged as molecular transducers of environmental stimuli to control gene expression. Here, we emphasize metabolic milieu, aging, and hemodynamic stress as they impact the epigenetic landscape of the myocardium. SUMMARY Recent studies in multiple fields, including cancer, stem cells, development, and cardiovascular biology, have uncovered biochemical ties linking epigenetic machinery and cellular energetics and mitochondrial function. Elucidation of these connections will afford molecular insights into long-established epidemiological observations. With time, exploitation of the epigenetic machinery therapeutically may emerge with clinical relevance.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi Morales
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Iyngkaran P, Thomas MC, Johnson R, French J, Ilton M, McDonald P, Hare DL, Fatkin D. Contextualizing Genetics for Regional Heart Failure Care. Curr Cardiol Rev 2016; 12:231-242. [PMID: 27280306 PMCID: PMC5011192 DOI: 10.2174/1573403x12666160606123103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) is a chronic and often devastating cardiovascular disorder with no cure. There has been much advancement in the last two decades that has seen improvements in morbidity and mortality. Clinicians have also noted variations in the responses to therapies. More detailed observations also point to clusters of diseases, phenotypic groupings, unusual severity and the rates at which CHF occurs. Medical genetics is playing an increasingly important role in answering some of these observations. This developing field in many respects provides more information than is currently clinically applicable. This includes making sense of the established single gene mutations or uncommon private mutations. In this thematic series which discusses the many factors that could be relevant for CHF care, once established treatments are available in the communities; this section addresses a contextual role for medical genetics.
Collapse
|
38
|
Stenzig J, Hirt MN, Löser A, Bartholdt LM, Hensel JT, Werner TR, Riemenschneider M, Indenbirken D, Guenther T, Müller C, Hübner N, Stoll M, Eschenhagen T. DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors. Basic Res Cardiol 2015; 111:9. [DOI: 10.1007/s00395-015-0528-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
|
39
|
Diniz GP, Lino CA, Guedes EC, Moreira LDN, Barreto-Chaves MLM. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor. Basic Res Cardiol 2015. [PMID: 26202011 DOI: 10.1007/s00395-015-0504-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil.
| | - Caroline Antunes Lino
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Elaine Castilho Guedes
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Luana do Nascimento Moreira
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
40
|
Spaich S, Katus HA, Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white-or rather fifty shades of gray? Front Physiol 2015; 6:202. [PMID: 26257654 PMCID: PMC4510775 DOI: 10.3389/fphys.2015.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cardiac remodeling describes the heart's multimodal response to a myriad of external or intrinsic stimuli and stressors most of which are probably only incompletely elucidated to date. Over many years the signaling molecules involved in these remodeling processes have been dichotomized according to a classic antagonistic view of black and white, i.e., attributed either a solely maladaptive or entirely beneficial character. By dissecting controversies, recent developments and shifts in perspective surrounding the three major cardiac signaling molecules calcineurin (Cn), protein kinase A (PKA) and calcium/calmodulin-dependent kinase II (CaMKII), this review challenges this dualistic view and advocates the nature and dignity of each of these key mediators of cardiac remodeling as a multilayered, highly context-sensitive and sophisticated continuum that can be markedly swayed and influenced by a multitude of environmental factors and crosstalk mechanisms. Furthermore this review delineates the importance and essential contributions of degradation and proteolysis to cardiac plasticity and homeostasis and finally aims to integrate the various aspects of protein synthesis and turnover into a comprehensive picture.
Collapse
Affiliation(s)
- Sebastian Spaich
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Hugo A. Katus
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
| |
Collapse
|
41
|
Koczor CA, Jiao Z, Fields E, Russ R, Ludaway T, Lewis W. AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress. Physiol Genomics 2015. [PMID: 26199398 DOI: 10.1152/physiolgenomics.00045.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction causes oxidative stress and cardiomyopathy. Oxidative stress also is a side effect of dideoxynucleoside antiretrovirals (NRTI) and is observed in NRTI-induced cardiomyopathy. We show here that treatment with the NRTI AZT {1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione} modulates cardiac gene expression epigenetically through production of mitochondrially derived reactive oxygen species. Transgenic mice with ubiquitous expression of mitochondrially targeted catalase (MCAT) and C57Bl/6 wild-type mice littermates (WT) were administered AZT (0.22 mg/day po, 35 days), and cardiac DNA and mRNA were isolated. In AZT-treated WT, 95 cardiac genes were differentially expressed compared with vehicle-treated WTs. When MCAT mice were treated with AZT, each of those 95 genes reverted toward the expression of vehicle-treated WTs. In AZT-treated WT hearts, Mthfr [5,10-methylenetetrahydrofolate reductase; a critical enzyme in synthesis of methionine cycle intermediates including S-adenosylmethionine (SAM)], was overexpressed. Steady-state abundance of SAM in cardiac extracts from AZT-treated MCAT mice increased 60% above that of vehicle-treated MCAT. No such change occurred in WT. AZT caused hypermethylation (47%) and hypomethylation (53%) of differentially methylated DNA regions in WT cardiac DNA. AZT-treated MCAT heart DNA exhibited greater hypermethylation (91%) and less hypomethylation (9%) compared with vehicle-treated MCAT controls. The gene encoding protein kinase C-α displayed multifocal epigenetic regulation caused by oxidative stress. Results show that mitochondrially derived oxidative stress in the heart hinders cardiac DNA methylation, alters steady-state abundance of SAM, alters cardiac gene expression, and promotes characteristic pathophysiological changes of cardiomyopathy. This mechanism for NRTI toxicity offers insight into long-term side effects from these commonly used antiviral agents.
Collapse
Affiliation(s)
| | - Zhe Jiao
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Earl Fields
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Rodney Russ
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Tomika Ludaway
- Department of Pathology, Emory University, Atlanta, Georgia
| | - William Lewis
- Department of Pathology, Emory University, Atlanta, Georgia
| |
Collapse
|
42
|
Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW, Göring HHH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, Curran JE, Blangero J, Carless MA. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet 2015; 24:5330-44. [PMID: 26101197 DOI: 10.1093/hmg/ddv232] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic basis of such diseases is accounted for by DNA methylation is unknown. In the setting of large, extended families representing a minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2 diabetes (T2D). Using Illumina HumanMethylation450 BeadChip arrays, we tested for association of DNA methylation at 446 356 sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical analyses showed that (i) 15% of the methylome is significantly heritable, with a median heritability of 0.14; (ii) DNA methylation at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin resistance; (v) DNA methylation levels at five CpG sites, mapping to three well-characterized genes (TXNIP, ABCG1 and SAMD12) independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.
Collapse
Affiliation(s)
- Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Mark Z Kos
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Jennifer Neary
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
43
|
[Epigenetics in atherosclerosis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:102-19. [PMID: 26088002 DOI: 10.1016/j.arteri.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis.
Collapse
|
44
|
MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res Cardiol 2015; 110:26. [PMID: 25840774 DOI: 10.1007/s00395-015-0483-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
Abstract
MCP-1-induced protein (MCPIP, also known as ZC3H12A) has recently been uncovered to act as a negative regulator of inflammation. Expression of MCPIP was elevated in the ventricular myocardium of patients with ischemic heart failure. However, the role of MCPIP in the development of post-infarct cardiac inflammation and remodeling is unknown. The objective of the present study was to investigate whether MCPIP exerts an inhibitory effect on the cardiac inflammatory response and adverse remodeling after myocardial infarction (MI). Mice with cardiomyocyte-specific expression of MCPIP and their wild-type littermates (FVB/N) were subjected to permanent ligation of left coronary artery. The levels of MCPIP were significantly increased in the ischemic myocardium and sustained for 4 weeks after MI. Acute infarct size was comparable between groups. However, constitutive overexpression of MCPIP in the murine heart resulted in improved survival rate, decreased cardiac hypertrophy, less of fibrosis and scar formation, and better cardiac performance at 28 days after MI, along with a markedly reduced monocytic cell infiltration, less cytokine expression, decreased caspase-3/7 activities and apoptotic cell death compared to the wild-type hearts. Cardiomyocyte-specific expression of MCPIP also attenuated activation of cardiac NF-κB signaling and expression of inflammation-associated microRNAs (miR-126, -146a, -155, and -199a) when compared with the post-infarct wild-type hearts. In vitro, MCPIP expression suppressed hypoxia-induced NF-κB-luciferase activity in cardiomyocytes. In conclusion, MCPIP expression in the ischemic myocardium protects against adverse cardiac remodeling and dysfunction following MI by modulation of local myocardial inflammation, possibly through mitigating NF-κB signaling and suppressing inflammation-associated microRNA expression.
Collapse
|
45
|
Kuehl U, Lassner D, Gast M, Stroux A, Rohde M, Siegismund C, Wang X, Escher F, Gross M, Skurk C, Tschoepe C, Loebel M, Scheibenbogen C, Schultheiss HP, Poller W. Differential Cardiac MicroRNA Expression Predicts the Clinical Course in Human Enterovirus Cardiomyopathy. Circ Heart Fail 2015; 8:605-18. [PMID: 25761932 DOI: 10.1161/circheartfailure.114.001475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Investigation of disease pathogenesis confined to protein-coding regions of the genome may be incomplete because many noncoding variants are associated with disease. We aimed to identify novel predictive markers for the course of enterovirus (CVB3) cardiomyopathy by screening for noncoding elements influencing the grossly different antiviral capacity of individual patients. METHODS AND RESULTS Transcriptome mapping of CVB3 cardiomyopathy patients revealed distinctive cardiac microRNA (miR) patterns associated with spontaneous virus clearance and recovery (CVB3-ELIM) versus virus persistence and progressive clinical deterioration (CVB3-PERS). Profiling of protein-coding genes and 754 miRs in endomyocardial biopsies of test cohorts was performed at their initial presentation, and those spontaneously eliminating the virus were compared with those with virus persistence on follow-up. miR profiling revealed highly significant differences in cardiac levels of 16 miRs, but not of protein-coding genes. Evaluation of this primary distinctive miR pattern in validation cohorts, and multivariate receiver operating characteristic curve analysis, confirmed this pattern as highly predictive for disease course (area under the curve, 0.897±0.071; 95% confidence interval, 0.758-1.000). Eight miRs were strongly induced in CVB3-PERS (miRs 135b, 155, 190, 422a, 489, 590, 601, 1290), but undetectable in CVB3-ELIM or controls. They are predicted to target multiple immune response genes, and 2 of these were confirmed by antisense-mediated ablation of miRs 135b, 190, and 422a in the monocytic THP-1 cell line. CONCLUSIONS An immediate clinical application of the data is cardiac miR profiling to assess the risk of virus persistence and progressive clinical deterioration in CVB3 cardiomyopathy. Patients at risk are eligible for immediate antiviral therapy to minimize irreversible cardiac damage.
Collapse
Affiliation(s)
- Uwe Kuehl
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Dirk Lassner
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Martina Gast
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Andrea Stroux
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Maria Rohde
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Christine Siegismund
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Xiaomin Wang
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Felicitas Escher
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Michael Gross
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Carsten Skurk
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Carsten Tschoepe
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Madlen Loebel
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Carmen Scheibenbogen
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Heinz-Peter Schultheiss
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund)
| | - Wolfgang Poller
- From the Department of Cardiology and Pneumology (U.K., M.G., X.W., F.E., M.G., C. Skurk, C.T., H.-P.S., W.P.), Institute for Biometry and Clinical Epidemiology, Campus Benjamin Franklin (A.S.), Institute for Medical Immunology, Campus Virchow Klinikum (M.L., C. Scheibenbogen), Berlin Center for Regenerative Therapies (BCRT) (C.T., M.L., C. Scheibenbogen, W.P.), Charité-Universitätsmedizin Berlin, Berlin, Germany; and Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany (D.L., M.R., C. Siegismund).
| |
Collapse
|
46
|
Sekar TV, Foygel K, Devulapally R, Paulmurugan R. Degron protease blockade sensor to image epigenetic histone protein methylation in cells and living animals. ACS Chem Biol 2015; 10:165-74. [PMID: 25489787 PMCID: PMC4301175 DOI: 10.1021/cb5008037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lysine
methylation of histone H3 and H4 has been identified as
a promising therapeutic target in treating various cellular diseases.
The availability of an in vivo assay that enables
rapid screening and preclinical evaluation of drugs that potentially
target this cellular process will significantly expedite the pace
of drug development. This study is the first to report the development
of a real-time molecular imaging biosensor (a fusion protein, [FLuc2]-[Suv39h1]-[(G4S)3]-[H3-K9]-[cODC]) that can detect and monitor the methylation
status of a specific histone lysine methylation mark (H3-K9) in live
animals. The sensitivity of this sensor was assessed in various cell
lines, in response to down-regulation of methyltransferase EHMT2 by
specific siRNA, and in nude mice with lysine replacement mutants. In vivo imaging in response to a combination of methyltransferase
inhibitors BIX01294 and Chaetocin in mice reveals the potential of
this sensor for preclinical drug evaluation. This biosensor thus has
demonstrated its utility in the detection of H3-K9 methylations in vivo and potential value in preclinical drug development.
Collapse
Affiliation(s)
- Thillai V. Sekar
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Kira Foygel
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Rammohan Devulapally
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program
at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
47
|
Jalife J, Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med 2014; 25:475-84. [PMID: 25661032 DOI: 10.1016/j.tcm.2014.12.015] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
Abstract
The fundamental mechanisms governing the perpetuation of atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, are poorly understood, which explains in part why AF prevention and treatment remain suboptimal. Although some clinical parameters have been identified as predicting a transition from paroxysmal to persistent AF in some patients, the molecular, electrophysiological, and inflammation changes leading to such a progression have not been described in detail. Oxidative stress, atrial dilatation, calcium overload, inflammation, microRNAs, and myofibroblast activation are all thought to be involved in AF-induced atrial remodeling. However, it is unknown to what extent and at which time points such alterations influence the remodeling process that perpetuates AF. Here we postulate a working model that might open new pathways for future investigation into mechanisms of AF perpetuation. We start from the premise that the progression to AF perpetuation is the result of interplay among manifold signaling pathways with differing kinetics. Some such pathways have relatively fast kinetics (e.g., oxidative stress-mediated shortening of refractory period); others likely depend on molecular processes with slower kinetics (e.g., transcriptional changes in myocyte ion channel protein expression mediated through inflammation and fibroblast activation). We stress the need to fully understand the relationships among such pathways should one hope to identify novel, truly effective targets for AF therapy and prevention.
Collapse
Affiliation(s)
- José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI.
| | - Kuljeet Kaur
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI
| |
Collapse
|
48
|
Cardiospheres reverse adverse remodeling in chronic rat myocardial infarction: roles of soluble endoglin and Tgf-β signaling. Basic Res Cardiol 2014; 109:443. [PMID: 25245471 DOI: 10.1007/s00395-014-0443-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/22/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Self-assembling heart-derived stem cell clusters named cardiospheres (CSps) improve function and attenuate remodeling in rodent models of acute myocardial infarction. The effects of CSps in chronically remodeled myocardium post-MI, and the underlying mechanisms, remain unknown. One month after permanent coronary ligation, rats were randomly assigned to injection of vehicle (controls) or CSps in the peri-infarct area. One month post-injection, CSps increased left ventricular function, reduced scar mass and collagen density, and enhanced vascularity within the infarct zone compared to controls. Immunoblots revealed Tgfβ-1/smad cascade downregulation and an increase in soluble endoglin post-CSp injection. Six months post-transplantation, left ventricular function further improved and cardiomyocyte hypertrophy was attenuated in the CSp-treated group. In vitro, co-culture of CSps with fibroblasts recapitulated the suppression of the Tgf-β1/smad pathway changes, responses which were blunted by neutralizing antibody against endoglin. Thus, cardiosphere transplantation enhances angiogenesis and reduces fibrosis in chronically infarcted myocardium, leading to partial reversal of cardiac dysfunction. The underlying mechanism involves inhibition of Tgf-β1/smad signaling by CSp-secreted soluble endoglin.
Collapse
|
49
|
Affiliation(s)
- Ali J Marian
- From the Institute of Molecular Medicine, Center for Cardiovascular Genetic Research, University of Texas Health Science Center, Houston.
| |
Collapse
|
50
|
Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, Bottino R, Pero R, Lembo F, Avvedimento EV, Esposito G, Trimarco B, Chiariotti L, Perrino C. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One 2014; 9:e106024. [PMID: 25181347 PMCID: PMC4152141 DOI: 10.1371/journal.pone.0106024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022] Open
Abstract
Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF.
Collapse
Affiliation(s)
- Tiziana Angrisano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Biology, Federico II University, Naples, Italy
| | | | - Simona Keller
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Gianluigi Pironti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ermanno Florio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Bottino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Francesca Lembo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | | | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- * E-mail: (LC); (CP)
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- * E-mail: (LC); (CP)
| |
Collapse
|