1
|
Lan T, Kaminsky S, Wu CC. Ploidy in cardiovascular development and regeneration. Semin Cell Dev Biol 2025; 172:103618. [PMID: 40398363 DOI: 10.1016/j.semcdb.2025.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Somatic polyploidy, a non-inheritable form of genome multiplication, plays cell-type specific and context-dependent roles in organ development and regeneration. In the mammalian heart, embryonic cardiomyocytes are primarily diploid, which lose their ability to complete cell division and become polyploid as they mature. Unlike lower vertebrates like zebrafish, polyploid cardiomyocytes are commonly found across mammals, including humans. Intriguingly, the degree, timing, and modes of cardiomyocyte polyploidization vary greatly between species. In addition to the association with cardiomyocyte development and maturation, recent studies have established polyploidy as a barrier against cardiomyocyte proliferation and heart regeneration following cardiac injury. Hence, a thorough understanding of how and why cardiomyocyte become polyploid will provide insights into heart development and may help develop therapeutic strategies for heart regeneration. Here, we review the dynamics of cardiomyocyte polyploidization across species and how cardiomyocyte-intrinsic, -extrinsic, and environmental factors regulate this process as well as the impact of cardiomyocyte polyploidization on heart development and regeneration.
Collapse
Affiliation(s)
- Tian Lan
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University
| | - Sabrina Kaminsky
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Chi-Chung Wu
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University.
| |
Collapse
|
2
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Villa Del Campo C, Rivero-García I, Torres M. ERC-funded grant: cardiac regeneration. Eur Heart J 2025; 46:887-889. [PMID: 39797422 DOI: 10.1093/eurheartj/ehae873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2025] Open
Affiliation(s)
- Cristina Villa Del Campo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3, Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| | - Inés Rivero-García
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3, Melchor Fernández Almagro, Madrid 28029, Spain
- Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3, Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| |
Collapse
|
4
|
Sukhacheva TV, Serov RA, Kim AI, Podzolkov VP, Bockeria LA. Patterns of Increased Cardiomyocyte Ploidy in Myocardial Hypertrophy of Various Origins. Bull Exp Biol Med 2025; 178:301-306. [PMID: 39948178 DOI: 10.1007/s10517-025-06325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 02/28/2025]
Abstract
An increase in the ploidy of cardiomyocytes (CMCs) determines the potential for their hypertrophic growth. We analyzed the changes in CMC ploidy and size of the interventricular septum in patients with hypertrophic cardiomyopathy (HCM) and tetralogy of Fallot (TF). The ploidy of CMCs in children and adult patients with HCM and children with TF was 1.5-2-fold higher than in individuals without cardiovascular pathology, and it did not change with age. The size of the CMCs was also larger by 1.3-2 times in patients with HCM and TF, compared to the control groups. However, the increase in CMCs size was more significant in HCM than in TF. The proportion of multinucleated CMCs was significantly lower in patients with HCM compared to controls and was by almost 2 times higher in patients with TF. Thus, myocardial hypertrophy in HCM is mainly due to the polyploidy of mononucleated CMCs, whereas in TF, the proportion of multinucleated CMCs increases.
Collapse
Affiliation(s)
- T V Sukhacheva
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia.
- Petrovsky National Research Centre of Surgery, Moscow, Russia.
| | - R A Serov
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A I Kim
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Podzolkov
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Bockeria
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
6
|
Hayashi K, Horisaka K, Harada Y, Ogawa Y, Yamashita T, Kitano T, Wakita M, Fukusumi T, Inohara H, Hara E, Matsumoto T. Polyploidy mitigates the impact of DNA damage while simultaneously bearing its burden. Cell Death Discov 2024; 10:436. [PMID: 39397009 PMCID: PMC11471775 DOI: 10.1038/s41420-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Polyploidy is frequently enhanced under pathological conditions, such as tissue injury and cancer in humans. Polyploidization is critically involved in cancer evolution, including cancer initiation and the acquisition of drug resistance. However, the effect of polyploidy on cell fate remains unclear. In this study, we explored the effects of polyploidization on cellular responses to DNA damage and cell cycle progression. Through various comparisons based on ploidy stratifications of cultured cells, we found that polyploidization and the accumulation of genomic DNA damage mutually induce each other, resulting in polyploid cells consistently containing more genomic DNA damage than diploid cells under both physiological and stress conditions. Notably, despite substantial DNA damage, polyploid cells demonstrated a higher tolerance to its impact, exhibiting delayed cell cycle arrest and reduced secretion of inflammatory cytokines associated with DNA damage-induced senescence. Consistently, in mice with ploidy tracing, hepatocytes with high ploidy appeared to potentially persist in the damaged liver, while being susceptible to DNA damage. Polyploidy acts as a reservoir of genomic damage by mitigating the impact of DNA damage, while simultaneously enhancing its accumulation.
Collapse
Affiliation(s)
- Kazuki Hayashi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Kisara Horisaka
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Harada
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Ogawa
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Takako Yamashita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Taku Kitano
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Wakita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tomonori Matsumoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Salmenov R, Mummery C, ter Huurne M. Cell cycle visualization tools to study cardiomyocyte proliferation in real-time. Open Biol 2024; 14:240167. [PMID: 39378987 PMCID: PMC11461051 DOI: 10.1098/rsob.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiomyocytes in the adult human heart are quiescent and those lost following heart injury are not replaced by proliferating survivors. Considerable effort has been made to understand the mechanisms underlying cardiomyocyte cell cycle exit and re-entry, with view to discovering therapeutics that could stimulate cardiomyocyte proliferation and heart regeneration. The advent of large compound libraries and robotic liquid handling platforms has enabled the screening of thousands of conditions in a single experiment but success of these screens depends on the appropriateness and quality of the model used. Quantification of (human) cardiomyocyte proliferation in high throughput has remained problematic because conventional antibody-based staining is costly, technically challenging and does not discriminate between cardiomyocyte division and failure in karyokinesis or cytokinesis. Live cell imaging has provided alternatives that facilitate high-throughput screening but these have other limitations. Here, we (i) review the cell cycle features of cardiomyocytes, (ii) discuss various cell cycle fluorescent reporter systems, and (iii) speculate on what could improve their predictive value in the context of cardiomyocyte proliferation. Finally, we consider how these new methods can be used in combination with state-of-the-art three-dimensional human cardiac organoid platforms to identify pro-proliferative signalling pathways that could stimulate regeneration of the human heart.
Collapse
Affiliation(s)
- Rustem Salmenov
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Menno ter Huurne
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| |
Collapse
|
8
|
Zhang D, Wen Q, Zhang R, Kou K, Lin M, Zhang S, Yang J, Shi H, Yang Y, Tan X, Yin S, Ou X. From Cell to Gene: Deciphering the Mechanism of Heart Failure With Single-Cell Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308900. [PMID: 39159065 PMCID: PMC11497092 DOI: 10.1002/advs.202308900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of Rehabilitation MedicineSouthwest Medical UniversityLuzhouSichuan646000China
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang RdWuhanHubei430022China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Hangchuan Shi
- Department of Clinical & Translational ResearchUniversity of Rochester Medical Center265 Crittenden BlvdRochesterNY14642USA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical Center601 Elmwood AveRochesterNY14642USA
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PhysiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shigang Yin
- Luzhou Key Laboratory of Nervous system disease and Brain FunctionSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinGuangxi541004China
| |
Collapse
|
9
|
Wang L, Jin B. Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease. BIOLOGY 2024; 13:783. [PMID: 39452092 PMCID: PMC11504358 DOI: 10.3390/biology13100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.
Collapse
Affiliation(s)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
10
|
Ellman DG, Bjerre FA, Bak ST, Mathiesen SB, Harvald EB, Jensen CH, Andersen DC. Protocol to achieve high-resolution single-cell transcriptomics of cardiomyocytes in multiple species. STAR Protoc 2024; 5:103194. [PMID: 39096494 PMCID: PMC11345562 DOI: 10.1016/j.xpro.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) remains state-of-the-art for transcriptomic cell-mapping. Here, we provide a protocol to generate high-resolution scRNA-seq of rare cardiomyocyte populations (e.g., regenerating/dividing, etc.) from mouse and zebrafish hearts as well as induced pluripotent stem cells, collected in time to achieve detailed transcriptomic insight. We describe the serial steps of viability staining, methanol fixation, storage, and cell sorting to preserve RNA integrity suited for scRNA-seq as well as the quality assessment of the data as shown by examples. For complete details on the use and execution of this protocol, please refer to Bak et al.1.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Frederik Adam Bjerre
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark; Amplexa Genetics, 5000 Odense C, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Harken Jensen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
11
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
12
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Zhou T, Pan J, Xu K, Yan C, Yuan J, Song H, Han Y. Single-cell transcriptomics in MI identify Slc25a4 as a new modulator of mitochondrial malfunction and apoptosis-associated cardiomyocyte subcluster. Sci Rep 2024; 14:9274. [PMID: 38654053 PMCID: PMC11039722 DOI: 10.1038/s41598-024-59975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of premature death. The death of cardiomyocytes (CMs) and the dysfunction of the remaining viable CMs are the main pathological factors contributing to heart failure (HF) following MI. This study aims to determine the transcriptional profile of CMs and investigate the heterogeneity among CMs under hypoxic conditions. Single-cell atlases of the heart in both the sham and MI groups were developed using single-cell data (GSE214611) downloaded from Gene Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/ ). The heterogeneity among CMs was explored through various analyses including enrichment, pseudo time, and intercellular communication analysis. The marker gene of C5 was identified using differential expression analysis (DEA). Real-time polymerase chain reaction (RT-PCR), bulk RNA-sequencing dataset analysis, western blotting, immunohistochemical and immunofluorescence staining, Mito-Tracker staining, TUNEL staining, and flow cytometry analysis were conducted to validate the impact of the marker gene on mitochondrial function and cell apoptosis of CMs under hypoxic conditions. We identified a cell subcluster named C5 that exhibited a close association with mitochondrial malfunction and cellular apoptosis characteristics, and identified Slc25a4 as a significant biomarker of C5. Furthermore, our findings indicated that the expression of Slc25a4 was increased in failing hearts, and the downregulation of Slc25a4 improved mitochondrial function and reduced cell apoptosis. Our study significantly identified a distinct subcluster of CMs that exhibited strong associations with ventricular remodeling following MI. Slc25a4 served as the hub gene for C5, highlighting its significant potential as a novel therapeutic target for MI.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Jing Pan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
14
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
15
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
16
|
Chen S, Wang K, Wang J, Chen X, Tao M, Shan D, Hua X, Hu S, Song J. Profiling cardiomyocytes at single cell resolution reveals COX7B could be a potential target for attenuating heart failure in cardiac hypertrophy. J Mol Cell Cardiol 2024; 186:45-56. [PMID: 37979444 DOI: 10.1016/j.yjmcc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cardiac hypertrophy can develop to end-stage heart failure (HF), which inevitably leading to heart transplantation or death. Preserving cardiac function in cardiomyocytes (CMs) is essential for improving prognosis in hypertrophic cardiomyopathy (HCM) patients. Therefore, understanding transcriptomic heterogeneity of CMs in HCM would be indispensable to aid potential therapeutic targets investigation. We isolated primary CM from HCM patients who had extended septal myectomy, and obtained transcriptomes in 338 human primary CM with single-cell tagged reverse transcription (STRT-seq) approach. Our results revealed that CMs could be categorized into three subsets in nonfailing HCM heart: high energy synthesis cluster, high cellular metabolism cluster and intermediate cluster. The expression of electron transport chain (ETC) was up-regulated in larger-sized CMs from high energy synthesis cluster. Of note, we found the expression of Cytochrome c oxidase subunit 7B (COX7B), a subunit of Complex IV in ETC had trends of positively correlation with CMs size. Further, by assessing COX7B expression in HCM patients, we speculated that COX7B was compensatory up-regulated at early-stage but down-regulated in failing HCM heart. To test the hypothesis that COX7B might participate both in hypertrophy and HF progression, we used adeno associated virus 9 (AAV9) to mediate the expression of Cox7b in pressure overload-induced mice. Mice in vivo data supported that knockdown of Cox7b would accelerate HF and Cox7b overexpression could restore partial cardiac function in hypertrophy. Our result highlights targeting COX7B and preserving energy synthesis in hypertrophic CMs could be a promising translational direction for HF therapeutic strategy.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Jingyu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Shan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Yuan X, Braun T. Amending the injured heart by in vivo reprogramming. Curr Opin Genet Dev 2023; 82:102098. [PMID: 37595409 DOI: 10.1016/j.gde.2023.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Ischemic heart injury causes death of cardiomyocyte (CM), formation of a fibrotic scar, and often adverse cardiac remodeling, resulting in chronic heart failure. Therapeutic interventions have lowered myocardial damage and improved heart function, but pharmacological treatment of heart failure has only shown limited progress in recent years. Over the past two decades, different approaches have been pursued to regenerate the heart, by transplantation of newly generated CMs derived from pluripotent stem cells, generation of new CMs by reprogramming of cardiac fibroblasts, or by activating proliferation of preexisting CMs. Here, we summarize recent progress in the development of strategies for in situ generation of new CMs, review recent advances in understanding the underlying mechanisms, and discuss the challenges and future directions of the field.
Collapse
Affiliation(s)
- Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
19
|
Elia A, Mohsin S, Khan M. Cardiomyocyte Ploidy, Metabolic Reprogramming and Heart Repair. Cells 2023; 12:1571. [PMID: 37371041 DOI: 10.3390/cells12121571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023] Open
Abstract
The adult heart is made up of cardiomyocytes (CMs) that maintain pump function but are unable to divide and form new myocytes in response to myocardial injury. In contrast, the developmental cardiac tissue is made up of proliferative CMs that regenerate injured myocardium. In mammals, CMs during development are diploid and mononucleated. In response to cardiac maturation, CMs undergo polyploidization and binucleation associated with CM functional changes. The transition from mononucleation to binucleation coincides with unique metabolic changes and shift in energy generation. Recent studies provide evidence that metabolic reprogramming promotes CM cell cycle reentry and changes in ploidy and nucleation state in the heart that together enhances cardiac structure and function after injury. This review summarizes current literature regarding changes in CM ploidy and nucleation during development, maturation and in response to cardiac injury. Importantly, how metabolism affects CM fate transition between mononucleation and binucleation and its impact on cell cycle progression, proliferation and ability to regenerate the heart will be discussed.
Collapse
Affiliation(s)
- Andrea Elia
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
20
|
Yamada S, Ko T, Katagiri M, Morita H, Komuro I. Recent Advances in Translational Research for Heart Failure in Japan. J Card Fail 2023; 29:931-938. [PMID: 37321698 DOI: 10.1016/j.cardfail.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Despite decades of intensive research and therapeutic development, heart failure remains a leading cause of death worldwide. However, recent advances in several basic and translational research fields, such as genomic analysis and single-cell analysis, have increased the possibility of developing novel diagnostic approaches to heart failure. Most cardiovascular diseases that predispose individuals to heart failure are caused by genetic and environmental factors. It follows that genomic analysis can contribute to the diagnosis and prognostic stratification of patients with heart failure. In addition, single-cell analysis has shown great potential for unveiling the pathogenesis and/or pathophysiology and for discovering novel therapeutic targets for heart failure. Here, we summarize the recent advances in translational research on heart failure in Japan, based mainly on our studies.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
21
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
22
|
Watanabe H, Tao G, Gan P, Westbury BC, Cox KD, Tjen K, Song R, Fishman GI, Makita T, Sucov HM. Purkinje Cardiomyocytes of the Adult Ventricular Conduction System Are Highly Diploid but Not Uniquely Regenerative. J Cardiovasc Dev Dis 2023; 10:161. [PMID: 37103040 PMCID: PMC10140853 DOI: 10.3390/jcdd10040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Adult hearts are characterized by inefficient regeneration after injury, thus, the features that support or prevent cardiomyocyte (CM) proliferation are important to clarify. Diploid CMs are a candidate cell type that may have unique proliferative and regenerative competence, but no molecular markers are yet known that selectively identify all or subpopulations of diploid CMs. Here, using the conduction system expression marker Cntn2-GFP and the conduction system lineage marker Etv1CreERT2, we demonstrate that Purkinje CMs that comprise the adult ventricular conduction system are disproportionately diploid (33%, vs. 4% of bulk ventricular CMs). These, however, represent only a small proportion (3%) of the total diploid CM population. Using EdU incorporation during the first postnatal week, we demonstrate that bulk diploid CMs found in the later heart enter and complete the cell cycle during the neonatal period. In contrast, a significant fraction of conduction CMs persist as diploid cells from fetal life and avoid neonatal cell cycle activity. Despite their high degree of diploidy, the Purkinje lineage had no enhanced competence to support regeneration after adult heart infarction.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peiheng Gan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Baylee C. Westbury
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristie D. Cox
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey Tjen
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ruolan Song
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takako Makita
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Henry M. Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Secco I, Giacca M. Regulation of endogenous cardiomyocyte proliferation: The known unknowns. J Mol Cell Cardiol 2023; 179:80-89. [PMID: 37030487 PMCID: PMC10390341 DOI: 10.1016/j.yjmcc.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Myocardial regeneration in patients with cardiac damage is a long-sought goal of clinical medicine. In animal species in which regeneration occurs spontaneously, as well as in neonatal mammals, regeneration occurs through the proliferation of differentiated cardiomyocytes, which re-enter the cell cycle and proliferate. Hence, the reprogramming of the replicative potential of cardiomyocytes is an achievable goal, provided that the mechanisms that regulate this process are understood. Cardiomyocyte proliferation is under the control of a series of signal transduction pathways that connect extracellular cues to the activation of specific gene transcriptional programmes, eventually leading to the activation of the cell cycle. Both coding and non-coding RNAs (in particular, microRNAs) are involved in this regulation. The available information can be exploited for therapeutic purposes, provided that a series of conceptual and technical barriers are overcome. A major obstacle remains the delivery of pro-regenerative factors specifically to the heart. Improvements in the design of AAV vectors to enhance their cardiotropism and efficacy or, alternatively, the development of non-viral methods for nucleic acid delivery in cardiomyocytes are among the challenges ahead to progress cardiac regenerative therapies towards clinical application.
Collapse
Affiliation(s)
- Ilaria Secco
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
24
|
Xu G, Fatima A, Breitbach M, Kuzmenkin A, Fügemann CJ, Ivanyuk D, Kim KP, Cantz T, Pfannkuche K, Schoeler HR, Fleischmann BK, Hescheler J, Šarić T. Electrophysiological Properties of Tetraploid Cardiomyocytes Derived from Murine Pluripotent Stem Cells Generated by Fusion of Adult Somatic Cells with Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24076546. [PMID: 37047520 PMCID: PMC10095437 DOI: 10.3390/ijms24076546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.
Collapse
|
25
|
Bak ST, Harvald EB, Ellman DG, Mathiesen SB, Chen T, Fang S, Andersen KS, Fenger CD, Burton M, Thomassen M, Andersen DC. Ploidy-stratified single cardiomyocyte transcriptomics map Zinc Finger E-Box Binding Homeobox 1 to underly cardiomyocyte proliferation before birth. Basic Res Cardiol 2023; 118:8. [PMID: 36862248 PMCID: PMC9981540 DOI: 10.1007/s00395-023-00979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/31/2022] [Accepted: 01/21/2023] [Indexed: 03/03/2023]
Abstract
Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Kristian Skriver Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Mark Burton
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
26
|
Singh BN, Yucel D, Garay BI, Tolkacheva EG, Kyba M, Perlingeiro RCR, van Berlo JH, Ogle BM. Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circ Res 2023; 132:519-540. [PMID: 36795845 PMCID: PMC9943541 DOI: 10.1161/circresaha.122.321770] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
| | - Dogacan Yucel
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Bayardo I. Garay
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School, MN, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Rita C. R. Perlingeiro
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Jop H. van Berlo
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Brenda M. Ogle
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
- Masonic Cancer Center, University of Minnesota, MN, USA
| |
Collapse
|
27
|
Xu X, Hua X, Mo H, Hu S, Song J. Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside. Basic Res Cardiol 2023; 118:7. [PMID: 36750503 DOI: 10.1007/s00395-022-00972-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023]
Abstract
The mechanisms of cardiovascular diseases (CVDs) remain incompletely elucidated. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of single-cell transcriptomes at unprecedented resolution and throughput, which is critical for deciphering cardiovascular cellular heterogeneity and underlying disease mechanisms, thereby facilitating the development of therapeutic strategies. In this review, we summarize cellular heterogeneity in cardiovascular homeostasis and diseases as well as the discovery of potential disease targets based on scRNA-seq, and yield new insights into the promise of scRNA-seq technology in precision medicine and clinical application.
Collapse
Affiliation(s)
- Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
28
|
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC. Single-cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Commun Biol 2023; 6:79. [PMID: 36681760 PMCID: PMC9867722 DOI: 10.1038/s42003-022-04402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Giulia Germena
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Cheila Rocha
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Petra Tucholla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Mostafa Samak
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Rabea Hinkel
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Zoltán Giricz
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Julia C Gross
- Health and Medical University, D-14471, Potsdam, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
29
|
Yu Z, Zhang L, Cattaneo P, Guimarães-Camboa N, Fang X, Gu Y, Peterson KL, Bogomolovas J, Cuitino C, Leone GW, Chen J, Evans SM. Increasing Mononuclear Diploid Cardiomyocytes by Loss of E2F Transcription Factor 7/8 Fails to Improve Cardiac Regeneration After Infarct. Circulation 2023; 147:183-186. [PMID: 36622904 PMCID: PMC9988404 DOI: 10.1161/circulationaha.122.061018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhe Yu
- Skaggs School of Pharmacy and Pharmaceutical Sciences (Z.Y., L.Z., S.M.E.), University of California at San Diego, La Jolla
| | - Lunfeng Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences (Z.Y., L.Z., S.M.E.), University of California at San Diego, La Jolla
| | - Paola Cattaneo
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy (P.C.)
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy (P.C.)
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (P.C., N.G.-C.)
- German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main) (P.C., N.G.-C.)
| | - Nuno Guimarães-Camboa
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany (P.C., N.G.-C.)
- German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main) (P.C., N.G.-C.)
| | - Xi Fang
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
| | - Kirk L Peterson
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
| | - Cecilia Cuitino
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus (C.C.)
| | - Gustavo W Leone
- Medical College of Wisconsin Cancer Center, Department of Biochemistry, Medical College of Wisconsin, Wauwatosa (G.W.L.)
| | - Ju Chen
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences (Z.Y., L.Z., S.M.E.), University of California at San Diego, La Jolla
- Department of Medicine (X.F., Y.G., K.L.P., J.B., J.C., S.M.E.), University of California at San Diego, La Jolla
- Department of Pharmacology (S.M.E.), University of California at San Diego, La Jolla
| |
Collapse
|
30
|
Reuter SP, Soonpaa MH, Field D, Simpson E, Rubart-von der Lohe M, Lee HK, Sridhar A, Ware SM, Green N, Li X, Ofner S, Marchuk DA, Wollert KC, Field LJ. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023; 147:142-153. [PMID: 36382596 PMCID: PMC9839600 DOI: 10.1161/circulationaha.122.061130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.
Collapse
Affiliation(s)
- Sean P. Reuter
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Mark H. Soonpaa
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Dorothy Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Ed Simpson
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | | | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Arthi Sridhar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Stephanie M. Ware
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Nick Green
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Susan Ofner
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Kai C. Wollert
- Department of Cardiology and Angiology, Division of Molecular and Translational Cardiology, Hannover Medical School
| | - Loren J. Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| |
Collapse
|
31
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Barefield DY, Yamakawa S, Tahtah I, Sell JJ, Broman M, Laforest B, Harris S, Alvarez AA, Araujo KN, Puckelwartz MJ, Wasserstrom JA, Fishman GI, McNally EM. Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. J Mol Cell Cardiol 2022; 169:28-40. [PMID: 35533732 PMCID: PMC9329245 DOI: 10.1016/j.yjmcc.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL;,Correspondence to: David Y. Barefield, PhD, Department of Cell and Molecular Physiology Loyola University Chicago, 2160 S. 1st Ave. Maywood, IL 60153,
| | - Sean Yamakawa
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jordan J. Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Broman
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Brigitte Laforest
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Sloane Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro A. Alvarez
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Kelly N. Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn I. Fishman
- Division of Cardiology, NYU Grossman School of Medicine, New York, New York
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Correspondence to: Elizabeth McNally, MD, PhD, Center for Genetic Medicine, Northwestern University, 303 E. Superior St. Chicago, IL 60611,
| |
Collapse
|
33
|
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R. Spatial multi-omic map of human myocardial infarction. Nature 2022; 608:766-777. [PMID: 35948637 PMCID: PMC9364862 DOI: 10.1038/s41586-022-05060-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
Collapse
Affiliation(s)
- Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Zhijian Li
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Xian Liao
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Gideon Schäfer
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Konrad Hoeft
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Xiaoting Zhang
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nadine Kaesler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Turgay Saritas
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Jan Gummert
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rogier J A Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Linda W Van Laake
- Department of Cardiology, Regenerative Medicine Center and Circulatory Health Lab, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leon Schurgers
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rebekka K Schneider
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
35
|
Zhang H, Pei L, Ouyang Z, Wang H, Chen X, Jiang K, Huang S, Jiang R, Xiang Y, Wei K. AP-1 activation mediates postnatal cardiomyocyte maturation. Cardiovasc Res 2022; 119:536-550. [PMID: 35640820 DOI: 10.1093/cvr/cvac088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Postnatal maturation of mammalian cardiomyocytes proceeds rapidly after birth, with most of the myocytes exiting cell cycle, becoming binucleated, and adopting oxidative phosphorylation as the primary metabolic route. The triggers and transcriptional programs regulating cardiomyocyte maturation have not been fully understood yet. We performed single cell RNA-Seq in postnatal rat hearts in order to identify the important factors for this process. METHODS AND RESULTS Single cell RNA-Seq profiling was performed of postnatal day 1 and day 7 rat hearts, and we found that members of the AP-1 transcription factors showed a transient upregulation in the maturing cardiomyocytes, suggesting their functional involvement in the process. Activating members of the AP-1 family by palmitate or adrenergic stimulation inhibited cardiomyocyte cytokinesis and promoted cardiomyocyte maturation. In contrast, knocking down AP-1 members Atf3 and Jun promoted cardiomyocyte cytokinesis, reduced polyploidy and inhibited maturation. Mechanistically, RNA-Seq results and rescue experiments indicated that AP-1 members activate the expression of fatty acid metabolic genes to promote cardiomyocyte maturation. Finally, intraperitoneal injection of AP-1 inhibitor T-5224 in neonatal mice inhibits cardiomyocyte maturation in vivo. CONCLUSION Our results are the first evidence implicating AP-1 transcription factors in postnatal cardiomyocyte maturation both in vitro and in vivo, which expand our understanding of the molecular mechanism of cardiomyocyte maturation, and may lead to novel therapies to treat congenital heart diseases. TRANSLATIONAL PERSPECTIVE Postnatal cardiomyocyte maturation is a crucial process of cardiac development that determines fitness of the adult heart, and can be affected by multiple congenital heart diseases which lead to adult heart conditions. Our finding that AP-1 transcription factors transiently activated by multiple cues such as fatty acid and adrenergic signal promote cardiomyocyte maturation provided novel targets for therapeutic intervention, which may be applied during the narrow time window of postnatal cardiomyocyte maturation to treat congenital heart diseases and limit their impact on the adult heart.
Collapse
Affiliation(s)
- Hongjie Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Lijuan Pei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haocun Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Xin Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shiqi Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Rui Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
36
|
van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. Endomitosis controls tissue-specific gene expression during development. PLoS Biol 2022; 20:e3001597. [PMID: 35609035 PMCID: PMC9129049 DOI: 10.1371/journal.pbio.3001597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function. Why do some cells contain more than one nucleus? By comparing mononucleated and multinucleated polyploid cells in C. elegans, this study shows that having multiple nuclei is important for optimal transcriptional upregulation of developmentally controlled genes.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramon Barrull-Mascaró
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reinier L. van der Palen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik S. Schild
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
37
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
38
|
Li L, Wang M, Ma Q, Li Y, Ye J, Sun X, Sun G. Progress of Single-Cell RNA Sequencing Technology in Myocardial Infarction Research. Front Cardiovasc Med 2022; 9:768834. [PMID: 35252379 PMCID: PMC8893277 DOI: 10.3389/fcvm.2022.768834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
After myocardial infarction, the heart enters a remodeling and repair phase that involves myocardial cell damage, inflammatory response, fibroblast activation, and, ultimately, angiogenesis. In this process, the proportions and functions of cardiomyocytes, immune cells, fibroblasts, endothelial cells, and other cells change. Identification of the potential differences in gene expression among cell types and/or transcriptome heterogeneity among cells of the same type greatly contribute to understanding the cellular changes that occur in heart and disease conditions. Recent advent of the single-cell transcriptome sequencing technology has facilitated the exploration of single cell diversity as well as comprehensive elucidation of the natural history and molecular mechanisms of myocardial infarction. In this manner, novel putative therapeutic targets for myocardial infarction treatment may be detected and clinically applied.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunxiu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Centre, College of Integration Science, College of Pharmacy, Yanbian University, Yanji, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Jingxue Ye
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiaobo Sun
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guibo Sun
| |
Collapse
|
39
|
Schoger E, Lelek S, Panáková D, Zelarayán LC. Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Front Cardiovasc Med 2022; 8:783072. [PMID: 35097003 PMCID: PMC8795974 DOI: 10.3389/fcvm.2021.783072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Daniela Panáková
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
- *Correspondence: Laura Cecilia Zelarayán
| |
Collapse
|
40
|
Accelerated Growth, Differentiation, and Ploidy with Reduced Proliferation of Right Ventricular Cardiomyocytes in Children with Congenital Heart Defect Tetralogy of Fallot. Cells 2022; 11:cells11010175. [PMID: 35011735 PMCID: PMC8750260 DOI: 10.3390/cells11010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The myocardium of children with tetralogy of Fallot (TF) undergoes hemodynamic overload and hypoxemia immediately after birth. Comparative analysis of changes in the ploidy and morphology of the right ventricular cardiomyocytes in children with TF in the first years of life demonstrated their significant increase compared with the control group. In children with TF, there was a predominantly diffuse distribution of Connexin43-containing gap junctions over the cardiomyocytes sarcolemma, which redistributed into the intercalated discs as cardiomyocytes differentiation increased. The number of Ki67-positive cardiomyocytes varied greatly and amounted to 7.0–1025.5/106 cardiomyocytes and also were decreased with increased myocytes differentiation. Ultrastructural signs of immaturity and proliferative activity of cardiomyocytes in children with TF were demonstrated. The proportion of interstitial tissue did not differ significantly from the control group. The myocardium of children with TF under six months of age was most sensitive to hypoxemia, it was manifested by a delay in the intercalated discs and myofibril assembly and the appearance of ultrastructural signs of dystrophic changes in the cardiomyocytes. Thus, the acceleration of ontogenetic growth and differentiation of the cardiomyocytes, but not the reactivation of their proliferation, was an adaptation of the immature myocardium of children with TF to hemodynamic overload and hypoxemia.
Collapse
|
41
|
Dai Z, Nomura S. Recent Progress in Cardiovascular Research Involving Single-Cell Omics Approaches. Front Cardiovasc Med 2021; 8:783398. [PMID: 34977189 PMCID: PMC8716466 DOI: 10.3389/fcvm.2021.783398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Although the spectrum of the heart from development to disease has long been studied, it remains largely enigmatic. The emergence of single-cell omics technologies has provided a powerful toolbox for defining cell heterogeneity, unraveling previously unknown pathways, and revealing intercellular communications, thereby boosting biomedical research and obtaining numerous novel findings over the last 7 years. Not only cell atlases of normal and developing hearts that provided substantial research resources, but also some important findings regarding cell-type-specific disease gene program, could never have been established without single-cell omics technologies. Herein, we briefly describe the latest technological advances in single-cell omics and summarize the major findings achieved by such approaches, with a focus on development and homeostasis of the heart, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Wang M, Gu M, Liu L, Liu Y, Tian L. Single-Cell RNA Sequencing (scRNA-seq) in Cardiac Tissue: Applications and Limitations. Vasc Health Risk Manag 2021; 17:641-657. [PMID: 34629873 PMCID: PMC8495612 DOI: 10.2147/vhrm.s288090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders of the blood vessels and heart, which are considered as the leading causes of death worldwide. The pathology of CVDs could be related to the functional abnormalities of multiple cell types in the heart. Single-cell RNA sequencing (scRNA-seq) technology is a powerful method for characterizing individual cells and elucidating the molecular mechanisms by providing a high resolution of transcriptomic changes at the single-cell level. Specifically, scRNA-seq has provided novel insights into CVDs by identifying rare cardiac cell types, inferring the trajectory tree, estimating RNA velocity, elucidating the cell-cell communication, and comparing healthy and pathological heart samples. In this review, we summarize the different scRNA-seq platforms and published single-cell datasets in the cardiovascular field, and describe the utilities and limitations of this technology. Lastly, we discuss the future perspective of the application of scRNA-seq technology into cardiovascular research.
Collapse
Affiliation(s)
- Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
43
|
Galow AM, Kussauer S, Wolfien M, Brunner RM, Goldammer T, David R, Hoeflich A. Quality control in scRNA-Seq can discriminate pacemaker cells: the mtRNA bias. Cell Mol Life Sci 2021; 78:6585-6592. [PMID: 34427691 PMCID: PMC8558157 DOI: 10.1007/s00018-021-03916-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 10/30/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) provides high-resolution insights into complex tissues. Cardiac tissue, however, poses a major challenge due to the delicate isolation process and the large size of mature cardiomyocytes. Regardless of the experimental technique, captured cells are often impaired and some capture sites may contain multiple or no cells at all. All this refers to "low quality" potentially leading to data misinterpretation. Common standard quality control parameters involve the number of detected genes, transcripts per cell, and the fraction of transcripts from mitochondrial genes. While cutoffs for transcripts and genes per cell are usually user-defined for each experiment or individually calculated, a fixed threshold of 5% mitochondrial transcripts is standard and often set as default in scRNA-seq software. However, this parameter is highly dependent on the tissue type. In the heart, mitochondrial transcripts comprise almost 30% of total mRNA due to high energy demands. Here, we demonstrate that a 5%-threshold not only causes an unacceptable exclusion of cardiomyocytes but also introduces a bias that particularly discriminates pacemaker cells. This effect is apparent for our in vitro generated induced-sinoatrial-bodies (iSABs; highly enriched physiologically functional pacemaker cells), and also evident in a public data set of cells isolated from embryonal murine sinoatrial node tissue (Goodyer William et al. in Circ Res 125:379-397, 2019). Taken together, we recommend omitting this filtering parameter for scRNA-seq in cardiovascular applications whenever possible.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Center, 18057, Rostock, Germany
- Department of Life, Light, and Matter, Interdisciplinary Faculty, Rostock University, 18059, Rostock, Germany
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
- Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057, Rostock, Germany
- Department of Life, Light, and Matter, Interdisciplinary Faculty, Rostock University, 18059, Rostock, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
44
|
Kannan S, Farid M, Lin BL, Miyamoto M, Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput Biol 2021; 17:e1009305. [PMID: 34534204 PMCID: PMC8448341 DOI: 10.1371/journal.pcbi.1009305] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023] Open
Abstract
The immaturity of pluripotent stem cell (PSC)-derived tissues has emerged as a universal problem for their biomedical applications. While efforts have been made to generate adult-like cells from PSCs, direct benchmarking of PSC-derived tissues against in vivo development has not been established. Thus, maturation status is often assessed on an ad-hoc basis. Single cell RNA-sequencing (scRNA-seq) offers a promising solution, though cross-study comparison is limited by dataset-specific batch effects. Here, we developed a novel approach to quantify PSC-derived cardiomyocyte (CM) maturation through transcriptomic entropy. Transcriptomic entropy is robust across datasets regardless of differences in isolation protocols, library preparation, and other potential batch effects. With this new model, we analyzed over 45 scRNA-seq datasets and over 52,000 CMs, and established a cross-study, cross-species CM maturation reference. This reference enabled us to directly compare PSC-CMs with the in vivo developmental trajectory and thereby to quantify PSC-CM maturation status. We further found that our entropy-based approach can be used for other cell types, including pancreatic beta cells and hepatocytes. Our study presents a biologically relevant and interpretable metric for quantifying PSC-derived tissue maturation, and is extensible to numerous tissue engineering contexts.
Collapse
Affiliation(s)
- Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
| | - Michael Farid
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
| | - Brian L. Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Kirillova A, Han L, Liu H, Kühn B. Polyploid cardiomyocytes: implications for heart regeneration. Development 2021; 148:271050. [PMID: 34897388 DOI: 10.1242/dev.199401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terminally differentiated cells are generally thought to have arrived at their final form and function. Many terminally differentiated cell types are polyploid, i.e. they have multiple copies of the normally diploid genome. Mammalian heart muscle cells, termed cardiomyocytes, are one such example of polyploid cells. Terminally differentiated cardiomyocytes are bi- or multi-nucleated, or have polyploid nuclei. Recent mechanistic studies of polyploid cardiomyocytes indicate that they can limit cellular proliferation and, hence, heart regeneration. In this short Spotlight, we present the mechanisms generating bi- and multi-nucleated cardiomyocytes, and the mechanisms generating polyploid nuclei. Our aim is to develop hypotheses about how these mechanisms might relate to cardiomyocyte proliferation and cardiac regeneration. We also discuss how these new findings could be applied to advance cardiac regeneration research, and how they relate to studies of other polyploid cells, such as cancer cells.
Collapse
Affiliation(s)
- Anna Kirillova
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | - Lu Han
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Honghai Liu
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Bernhard Kühn
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
46
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
47
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
48
|
Single-Cell RNA Sequencing of the Adult Mammalian Heart-State-of-the-Art and Future Perspectives. Curr Heart Fail Rep 2021; 18:64-70. [PMID: 33629280 PMCID: PMC7954708 DOI: 10.1007/s11897-021-00504-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
Purpose of the Review Cardiovascular disease remains the leading cause of death worldwide, resulting in cardiac dysfunction and, subsequently, heart failure (HF). Single-cell RNA sequencing (scRNA-seq) is a rapidly developing tool for studying the transcriptional heterogeneity in both healthy and diseased hearts. Wide applications of techniques like scRNA-seq could significantly contribute to uncovering the molecular mechanisms involved in the onset and progression to HF and contribute to the development of new, improved therapies. This review discusses several studies that successfully applied scRNA-seq to the mouse and human heart using various methods of tissue processing and downstream analysis. Recent Findings The application of scRNA-seq in the cardiovascular field is continuously expanding, providing new detailed insights into cardiac pathophysiology. Summary Increased understanding of cardiac pathophysiology on the single-cell level will contribute to the development of novel, more effective therapeutic strategies. Here, we summarise the possible application of scRNA-seq to the adult mammalian heart.
Collapse
|
49
|
Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. Int J Mol Sci 2021; 22:ijms22042071. [PMID: 33669808 PMCID: PMC7922347 DOI: 10.3390/ijms22042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.
Collapse
|
50
|
Bishop SP, Zhou Y, Nakada Y, Zhang J. Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals. J Am Heart Assoc 2021; 10:e017839. [PMID: 33399005 PMCID: PMC7955297 DOI: 10.1161/jaha.120.017839] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The failure of adult cardiomyocytes to reproduce themselves to repair an injury results in the development of severe cardiac disability leading to death in many cases. The quest for an understanding of the inability of cardiac myocytes to repair an injury has been ongoing for decades with the identification of various factors which have a temporary effect on cell‐cycle activity. Fetal cardiac myocytes are continuously replicating until the time that the developing fetus reaches a stage of maturity sufficient for postnatal life around the time of birth. Recent reports of the ability for early neonatal mice and pigs to completely repair after the severe injury has stimulated further study of the regulators of the cardiomyocyte cell cycle to promote replication for the remuscularization of injured heart. In all mammals just before or after birth, single‐nucleated hyperplastically growing cardiomyocytes, 1X2N, undergo ≥1 additional DNA replications not followed by cytokinesis, resulting in cells with ≥2 nuclei or as in primates, multiple DNA replications (polyploidy) of 1 nucleus, 2X2(+)N or 1X4(+)N. All further growth of the heart is attributable to hypertrophy of cardiomyocytes. Animal studies ranging from zebrafish with 100% 1X2N cells in the adult to some strains of mice with up to 98% 2X2N cells in the adult and other species with variable ratios of 1X2N and 2X2N cells are reviewed relative to the time of conversion. Various structural, physiologic, metabolic, genetic, hormonal, oxygenation, and other factors that play a key role in the inability of post‐neonatal and adult myocytes to undergo additional cytokinesis are also reviewed.
Collapse
Affiliation(s)
- Sanford P Bishop
- Department of Biomedical Engineering, School of Medicine, School of Engineering The University of Alabama at Birmingham AL
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine, School of Engineering The University of Alabama at Birmingham AL
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine, School of Engineering The University of Alabama at Birmingham AL
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering The University of Alabama at Birmingham AL
| |
Collapse
|