1
|
Feng Z, Zhang N, Wang L, Guan X, Xie Y, Xia YL. CDC20 protects the heart from doxorubicin-induced cardiotoxicity by modulating CCDC69 degradation. Cell Mol Biol Lett 2025; 30:29. [PMID: 40045239 PMCID: PMC11884132 DOI: 10.1186/s11658-025-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
AIMS Doxorubicin (DOX) is a potent anticancer drug; however, it is associated with significant cardiotoxicity. CDC20 is an E3 ubiquitin ligase that plays a role in cell cycle progression and apoptosis in various types of cancers. The involvement of CDC20 in DOX-induced cardiotoxicity (DIC) is poorly understood. Hence, this study aimed to explore the potential role of CDC20 in the development of DIC and assess whether CDC20 influences the antitumor effects of DOX. METHODS AND RESULTS H9C2 cells were treated with DOX, followed by transcriptomic analysis to identify differentially expressed genes. C57BL/6 mice were treated with DOX for 4 weeks after tail vein injection of CDC20 myocardial-specific knockout mice, AAV9-cTNT-(si) CDC20, or intraperitoneal injection of apcin. Cardiac function and pathological changes were evaluated by echocardiography and pathological staining, respectively. The influence of CDC20 on DOX-induced tumor inhibition was assessed in tumor-bearing mice. In vitro analysis involved treating cardiomyocytes with the Ad-CDC20 adenovirus and DOX, followed by proteomic and ubiquitination-related assays to identify potential downstream ubiquitinated CDC20 proteins. Additionally, we investigated the effect of CCDC69 on CDC20-mediated protection against DOX-induced apoptosis using CCDC69 shRNA. Transcriptome analysis revealed that DOX effectively suppressed the expression of CDC20. Cardiomyocyte-specific overexpression of CDC20 in a DOX-induced mouse model of myocardial injury effectively mitigated cardiomyocyte apoptosis, inflammation, fibrosis, and cell atrophy. Our mechanistic investigation revealed that CDC20 attenuates DOX-induced apoptosis by downregulating CCDC69 expression. Moreover, cardiomyocyte-specific overexpression of CDC20 had no effect on the therapeutic efficacy of DOX against tumors. CONCLUSION Our findings indicate that CDC20 safeguards the heart against DOX-induced cardiotoxicity by modulating CCDC69 degradation without compromising the antitumor efficacy of DOX.
Collapse
Affiliation(s)
- Zhenyu Feng
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Lianhe Road 193, Dalian, Liaoning, 116000, People's Republic of China
| | - Ningning Zhang
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Liang Wang
- Department of Pharmacy, Liaoyang City Central Hospital, Liaoyang, People's Republic of China
| | - Xumin Guan
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Lianhe Road 193, Dalian, Liaoning, 116000, People's Republic of China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Lianhe Road 193, Dalian, Liaoning, 116000, People's Republic of China.
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Lianhe Road 193, Dalian, Liaoning, 116000, People's Republic of China.
| |
Collapse
|
2
|
Kelly C, Kiltschewskij DJ, Leong AJW, Haw TJ, Croft AJ, Balachandran L, Chen D, Bond DR, Lee HJ, Cairns MJ, Sverdlov AL, Ngo DTM. Identifying common pathways for doxorubicin and carfilzomib-induced cardiotoxicities: transcriptomic and epigenetic profiling. Sci Rep 2025; 15:4395. [PMID: 39910168 PMCID: PMC11799237 DOI: 10.1038/s41598-025-87442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Cancer therapy-related cardiovascular toxicity (CTR-CVT) is now recognised as one of the leading causes of long-term morbidity and mortality in cancer patients. To date, potential overlapping cardiotoxicity mechanism(s) across different chemotherapeutic classes have not been elucidated. Doxorubicin, an anthracycline, and Carfilzomib, a proteasome inhibitor, are both known to cause heart failure in some patients. Given this common cardiotoxic effect of these chemotherapies, we aimed to investigate differential and common mechanism(s) associated with Doxorubicin and Carfilzomib-induced cardiac dysfunction. Primary human cardiomyocyte-like cells (HCM-ls) were treated with 1 µM of either Doxorubicin or Carfilzomib for 72 h. Both Doxorubicin and Carfilzomib induced a significant reduction in HCM cell viability and cell damage. DNA methylation analysis performed using MethylationEPIC array showed distinct and common changes induced by Doxorubicin and Carfilzomib (10,270 or approximately 12.9% of the DMPs for either treatment overlapped). RNA-seq analyses identified 5,643 differentially expressed genes (DEGs) that were commonly dysregulated for both treatments. Pathway analysis revealed that the PI3K-Akt signalling pathway was the most significantly enriched pathway with common DEGs, shared between Doxorubicin and Carfilzomib. We identified that there are shared cardiotoxicity mechanisms for Doxorubicin and Carfilzomib pathways that can be potential therapeutic targets for treatments across 2 classes of anti-cancer agents.
Collapse
Affiliation(s)
- Conagh Kelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Angeline J W Leong
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2305, Australia
| | - Tatt Jhong Haw
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2305, Australia
| | - Amanda J Croft
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2305, Australia
| | - Lohis Balachandran
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2305, Australia
| | - Dongqing Chen
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Aaron L Sverdlov
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia.
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2305, Australia.
- Cardiovascular Department, John Hunter Hospital, New Lambton Heights, NSW, Australia.
| | - Doan T M Ngo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2305, Australia.
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Newcastle Centre of Excellence in Cardio-Oncology, Hunter Medical Research Institute, Hunter New England Local Health District, University of Newcastle and Calvary Mater Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
3
|
Osorio-Méndez JJ, Gómez-Grosso LA, Montoya-Ortiz G, Novoa-Herrán S, Domínguez-Romero Y. Small Extracellular Vesicles from Breast Cancer Cells Induce Cardiotoxicity. Int J Mol Sci 2025; 26:945. [PMID: 39940718 PMCID: PMC11816698 DOI: 10.3390/ijms26030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Cardiovascular diseases and cancer are leading global causes of morbidity and mortality, necessitating advances in diagnosis and treatment. Doxorubicin (Doxo), a potent chemotherapy drug, causes long-term heart damage due to cardiotoxicity. Small extracellular vesicles (sEVs) carry bioactive molecules-such as proteins, lipids, and nucleic acids-that can modulate gene expression and signaling pathways in recipient cells, including cardiomyocytes. Through the delivery of cytokines, microRNAs, and growth factors, sEVs can influence cell survival, which plays a critical role in the development of cardiotoxicity. This study investigates the role of sEVs derived from breast cancer cells treated or not with Doxo and their potential to induce cardiomyocyte damage, thereby contributing to cardiotoxicity. We isolated sEVs from MCF-7 cells treated or not to Doxo using ultracentrifugation and characterized them through Nanoparticle Tracking Analysis (NTA), Scanning Electron Microscopy (SEM), and Western Blotting (WB) for the markers CD63, CD81, and TSG101. We analyzed cytokine profiles using a Multiplex Assay and Cytokine Membrane Array. We exposed Guinea pig cardiomyocytes to different concentrations of sEVs. We assessed their viability (MTT assay), shortening, reactive oxygen species (ROS-DHE dye) production, mitochondrial membrane potential (JC-1 dye), and calcium dynamics (FLUO-4 dye). We performed statistical analyses, including t-tests, ANOVA, Cohen's d, and η2 to validate the robustness of the results. Treatment of MCF-7 cells with 0.01 μM Doxorubicin resulted in increased sEVs production, particularly after 48 h of exposure (~1.79 × 108 ± 2.77 × 107 vs. ~5.1 × 107 ± 1.28 × 107 particles/mL, n = 3, p = 0.0019). These sEVs exhibited protein profiles in the 130-25 kDa range and 93-123 nm sizes. They carried cytokines including TNF-α, IL-1β, IL-4, IFN-γ, and IL-10. Exposure of cardiomyocytes to sEVs (0.025 μg/mL to 2.5 μg/mL) from both Doxo-treated and untreated cells significantly reduced cardiomyocyte viability, shortened cell length by up to 20%, increased ROS production, and disrupted calcium homeostasis and mitochondrial membrane potential, indicating severe cellular stress and cardiotoxicity. These findings suggest that Doxo enhances sEVs production from breast cancer cells, which plays a key role in cardiotoxicity through their cytokine cargo. The study highlights the potential of these sEVs as biomarkers for early cardiotoxicity detection and as therapeutic targets to mitigate cardiovascular risks in chemotherapy patients. Future research should focus on understanding the mechanisms by which Doxorubicin-induced sEVs contribute to cardiotoxicity and exploring their diagnostic and therapeutic potential to improve patient safety and outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jhon Jairo Osorio-Méndez
- Master in Biochemistry Program, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Luis Alberto Gómez-Grosso
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Gladis Montoya-Ortiz
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Susana Novoa-Herrán
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Yohana Domínguez-Romero
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
- Doctorate in Biotechnology Program, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
4
|
Syed Ali G, Rebs S, Eberl H, Zinke C, Hübscher D, Maurer W, Busley A, Cyganek L, Streckfuss-Bömeke K. Generation of a heterozygous Calsequestrin 2 F189L iPSC line (UMGi158-B) by CRISPR/Cas9 genome editing to investigate the cardiac pathophysiology of Takotsubo Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia. Stem Cell Res 2024; 81:103538. [PMID: 39378715 DOI: 10.1016/j.scr.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Takotsubo Syndrome (TTS) is a potentially life-threatening disease characterized by a transient left ventricular apical akinesia in response to β-adrenergic overstimulation. Since a genetic predisposition is assumed, we generated an iPSC-line carrying a p.F189L mutation in the calcium buffering protein Calsequestrin 2 (CasQ2). This missense mutation was previously discovered in a TTS patient and further described in a family with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The established cell line is used to investigate the main mechanisms leading to TTS and CPVT using a patient-specific stem cell approach.
Collapse
Affiliation(s)
- Gideon Syed Ali
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Hanna Eberl
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Clarissa Zinke
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Daniela Hübscher
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Alexandra Busley
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
6
|
Lee SH, Lee J, Oh J, Hwang JT, Lee HJ, Byun HK, Kim HJ, Suh D, Yoon HG, Park SW, Kang SM, Kwon C, Lee SH, Choi HK. Inhibition of TBL1 cleavage alleviates doxorubicin-induced cardiomyocytes death by regulating the Wnt/β-catenin signal pathway. Cardiovasc Res 2024; 120:1037-1050. [PMID: 38722811 PMCID: PMC11288742 DOI: 10.1093/cvr/cvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Doxorubicin (DOX) is a widely used anthracycline anticancer agent; however, its irreversible effects on the heart can result in DOX-induced cardiotoxicity (DICT) after cancer treatment. Unfortunately, the pathophysiology of DICT has not yet been fully elucidated, and there are no effective strategies for its prevention or treatment. In this investigation, the novel role of transducin beta-like protein 1 (TBL1) in developing and regulating DICT was explored. METHODS AND RESULTS We observed a reduction in TBL1 protein expression levels as well as cleavage events in the transplanted cardiac tissues of patients diagnosed with Dilated Cardiomyopathy and DICT. It was revealed that DOX selectively induces TBL1 cleavage at caspase-3 preferred sites-D125, D136, and D215. Interestingly, overexpression of the uncleaved TBL1 mutant (TBL1uclv) variant reduced apoptosis, effectively preventing DOX-induced cell death. We confirmed that cleaved TBL1 cannot form a complex with β-catenin. As a result, Wnt reporter activity and Wnt target gene expression collectively indicate a decrease in Wnt/β-catenin signalling, leading to DICT progression. Furthermore, the cleaved TBL1 triggered DOX-induced abnormal electrophysiological features and disrupted calcium homeostasis. However, these effects were improved in TBL1uclv-overexpressing human-induced pluripotent stem cell-derived cardiomyocytes. Finally, in a DICT mouse model, TBL1uclv overexpression inhibited the DICT-induced reduction of cardiac contractility and collagen accumulation, ultimately protecting cardiomyocytes from cell death. CONCLUSION Our findings reveal that the inhibition of TBL1 cleavage not only mitigates apoptosis but also enhances cardiomyocyte function, even in the context of DOX administration. Consequently, this study's results suggest that inhibiting TBL1 cleavage may be a novel strategy to ameliorate DICT.
Collapse
MESH Headings
- Doxorubicin/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Wnt Signaling Pathway/drug effects
- Humans
- Animals
- Cardiotoxicity
- Apoptosis/drug effects
- beta Catenin/metabolism
- beta Catenin/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/chemically induced
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/physiopathology
- Male
- Transducin/metabolism
- Transducin/genetics
- Disease Models, Animal
- Mice, Inbred C57BL
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/enzymology
- Induced Pluripotent Stem Cells/pathology
- Female
- Case-Control Studies
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
Collapse
Affiliation(s)
- Sun-Ho Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jangho Lee
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Jaewon Oh
- Division of Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - David Suh
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seok-Min Kang
- Division of Cardiology, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute of Genetic Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
7
|
Yan G, Han Z, Kwon Y, Jousma J, Nukala SB, Prosser BL, Du X, Pinho S, Ong SB, Lee WH, Ong SG. Integrated Stress Response Potentiates Ponatinib-Induced Cardiotoxicity. Circ Res 2024; 134:482-501. [PMID: 38323474 PMCID: PMC10940206 DOI: 10.1161/circresaha.123.323683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.
Collapse
Affiliation(s)
- Gege Yan
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaoping Du
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, CUHK, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong SAR, China
- Kunming Institute of Zoology – The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, USA
| |
Collapse
|
8
|
Rebs S, Streckfuss-Bömeke K. How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1222986. [PMID: 39086669 PMCID: PMC11285589 DOI: 10.3389/fmmed.2023.1222986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%-40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
10
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
11
|
Antiresistin Neutralizing Antibody Alleviates Doxorubicin-Induced Cardiac Injury in Mice. DISEASE MARKERS 2022; 2022:3040521. [PMID: 36561112 PMCID: PMC9767745 DOI: 10.1155/2022/3040521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Background Resistin is closely related to cardiovascular diseases, and this study is aimed at examining the role of resistin in doxorubicin- (DOX-) induced cardiac injury. Methods First, 48 mice were divided into 2 groups and treated with saline or DOX, and the expression of resistin at different time points was examined (N = 24). A total of 40 mice were pretreated with the antiresistin neutralizing antibody (nAb) or isotype IgG for 1 hour and further administered DOX or saline for 5 days. The mice were divided into 4 groups: saline-IgG, saline-nAb, DOX-IgG, and DOX-nAb (N = 10). Cardiac injury, cardiomyocyte apoptosis, inflammatory factors, and the biomarkers of M1 and M2 macrophages in each group were analyzed. Result DOX administration increased the expression of resistin. DOX treatment exacerbated the loss of body and heart weight and cardiac vacuolation in mice. The antiresistin nAb reversed these conditions, downregulated the expression of myocardial injury markers, and decreased apoptosis. In addition, the antiresistin nAb decreased p65 pathway activation, decreased M1 macrophage differentiation and the expression of related inflammatory factors, and increased M2 macrophage differentiation and the expression of related inflammatory factors. Conclusion The antiresistin nAb protected against DOX-induced cardiac injury by reducing cardiac inflammation and may be a promising target to relieve DOX-related cardiac injury.
Collapse
|
12
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
13
|
Tolstik E, Gongalsky MB, Dierks J, Brand T, Pernecker M, Pervushin NV, Maksutova DE, Gonchar KA, Samsonova JV, Kopeina G, Sivakov V, Osminkina LA, Lorenz K. Raman and fluorescence micro-spectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells. Front Pharmacol 2022; 13:962763. [PMID: 36016563 PMCID: PMC9397571 DOI: 10.3389/fphar.2022.962763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterials are a central pillar in modern medicine. They are thought to optimize drug delivery, enhance therapeutic efficacy, and reduce side-effects. To foster this technology, analytical methods are needed to validate not only the localization and distribution of these nanomaterials, but also their compatibility with cells, drugs, and drug release. In the present work, we assessed nanoparticles based on porous silicon (pSiNPs) loaded with the clinically used tyrosine kinase inhibitor sunitinib for their effectiveness of drug delivery, release, and toxicity in colon cancer cells (HCT 116 cells) and cardiac myoblast cells (H9c2) using Raman micro-spectroscopy, high-resolution fluorescence microscopy, along with biological methods for toxicological effects. We produced pSiNPs with a size of about 100 nm by grinding mesoporous silicon layers. pSiNPs allowed an effective loading of sunitinib due to their high porosity. Photoluminescence properties of the nanoparticles within the visible spectrum allowed the visualization of their uptake in cardiac cells. Raman micro-spectroscopy allowed not only the detection of the uptake and distribution of pSiNPs within the cells via a characteristic silicon Raman band at about 518–520 cm−1, but also the localization of the drug based on its characteristic molecular fingerprints. Cytotoxicity studies by Western blot analyses of apoptotic marker proteins such as caspase-3, and the detection of apoptosis by subG1-positive cell fractions in HCT 116 and MTT analyses in H9c2 cells, suggest a sustained release of sunitinib from pSiNPs and delayed cytotoxicity of sunitinib in HCT 116 cells. The analyses in cardiac cells revealed that pSiNPs are well tolerated and that they may even protect from toxic effects in these cells to some extent. Analyses of the integrity of mitochondrial networks as an early indicator for apoptotic cellular effects seem to validate these observations. Our study suggests pSiNPs-based nanocontainers for efficient and safe drug delivery and Raman micro-spectroscopy as a reliable method for their detection and monitoring. Thus, the herein presented nanocontainers and analytical methods have the potential to allow an efficient advancement of nanoparticles for targeted and sustained intracellular drug release that is of need, e.g., in chronic diseases and for the prevention of cardiac toxicity.
Collapse
Affiliation(s)
- E. Tolstik
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| | - M. B. Gongalsky
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - J. Dierks
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
| | - T. Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - M. Pernecker
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
| | - N. V. Pervushin
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | - D. E. Maksutova
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - K. A. Gonchar
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - J. V. Samsonova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - G. Kopeina
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | - V. Sivakov
- Leibniz Institute of Photonic Technology, Department Functional Interfaces, Jena, Germany
| | - L. A. Osminkina
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
- Institute for Biological Instrumentation of Russian Academy of Sciences, Moscow, Russia
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| | - K. Lorenz
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| |
Collapse
|
14
|
Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions. Basic Res Cardiol 2022; 117:45. [PMID: 36068416 PMCID: PMC9448689 DOI: 10.1007/s00395-022-00949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 01/31/2023]
Abstract
Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits. Tachypacing was performed with 330 bpm for 10 days (n = 11, early left ventricular dysfunction) or with up to 380 bpm over 30 days (n = 24, tachycardiomyopathy, TCM). In n = 26, pacemakers remained inactive (SHAM). Left ventricular tissue was subjected to respirometry, metabolomics and acetylomics. Results were assessed for translational relevance using a human-based model: induced pluripotent stem cell derived cardiomyocytes underwent field stimulation for 7 days (TACH-iPSC-CM). TCM animals showed systolic dysfunction compared to SHAM (fractional shortening 37.8 ± 1.0% vs. 21.9 ± 1.2%, SHAM vs. TCM, p < 0.0001). Histology revealed cardiomyocyte hypertrophy (cross-sectional area 393.2 ± 14.5 µm2 vs. 538.9 ± 23.8 µm2, p < 0.001) without fibrosis. Mitochondria were shifted to the intercalated discs and enlarged. Mitochondrial membrane potential remained stable in TCM. The metabolite profiles of ELVD and TCM were characterised by profound depletion of tricarboxylic acid cycle intermediates. Redox balance was shifted towards a more oxidised state (ratio of reduced to oxidised nicotinamide adenine dinucleotide 10.5 ± 2.1 vs. 4.0 ± 0.8, p < 0.01). The mitochondrial acetylome remained largely unchanged. Neither TCM nor TACH-iPSC-CM showed relevantly increased levels of reactive oxygen species. Oxidative phosphorylation capacity of TCM decreased modestly in skinned fibres (168.9 ± 11.2 vs. 124.6 ± 11.45 pmol·O2·s-1·mg-1 tissue, p < 0.05), but it did not in isolated mitochondria. The pattern of mitochondrial dysfunctions detected in two models of tachycardiomyopathy diverges from previously published characteristic signs of other heart failure aetiologies.
Collapse
|