1
|
Vollhardt A, Frölich L, Stockbauer AC, Danek A, Schmitz C, Wahl AS. Towards a better diagnosis and treatment of dementia: Identifying common and distinct neuropathological mechanisms in Alzheimer's and vascular dementia. Neurobiol Dis 2025; 208:106845. [PMID: 39999928 DOI: 10.1016/j.nbd.2025.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) together contribute to almost 90 % of all dementia cases leading to major health challenges of our time with a substantial global socioeconomic burden. While in AD, the improved understanding of Amyloid beta (Aß) mismetabolism and tau hyperphosphorylation as pathophysiological hallmarks has led to significant clinical breakthroughs, similar advances in VaD are lacking. After comparing the clinical presentation, including risk factors, disease patterns, course of diseases and further diagnostic parameters for both forms of dementia, we highlight the importance of shared pathomechanisms found in AD and VaD: Endothelial damage, blood brain barrier (BBB) breakdown and hypoperfusion inducing oxidative stress and inflammation and thus trophic uncoupling in the neurovascular unit. A dysfunctional endothelium and BBB lead to the accumulation of neurotoxic molecules and Aß through impaired clearance, which in turn leads to neurodegeneration. In this context we discuss possible neuropathological parameters, which might serve as biomarkers and thus improve diagnostic accuracy or reveal targets for novel therapeutic strategies for both forms of dementia.
Collapse
Affiliation(s)
- Alisa Vollhardt
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Anna Christina Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Adrian Danek
- Department of Neurology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Christoph Schmitz
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany
| | - Anna-Sophia Wahl
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336 Munich, Germany; Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany.
| |
Collapse
|
2
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Takahashi MKN, Paradela RS, Grinberg LT, Leite REP, Farias-Itao DS, Paes VR, Braga ME, Naslavsky MS, Zatz M, Jacob-Filho W, Nitrini R, Pasqualucci CA, Suemoto CK. Hypertension may associate with cerebral small vessel disease and infarcts through the pathway of intracranial atherosclerosis. Neurobiol Aging 2025; 145:84-95. [PMID: 39541803 PMCID: PMC11864294 DOI: 10.1016/j.neurobiolaging.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Hypertension, a major modifiable risk factor for cardiovascular diseases, is linked to late-life neurocognitive disorders such as vascular dementia and Alzheimer's disease (AD). This study explores the associations between hypertension, intracranial atherosclerotic disease (ICAD), cerebral small vessel disease (cSVD), and Alzheimer's disease neuropathologic change (ADNC) in a large community-based autopsy study. This cross-sectional study used data from the Biobank for Aging Studies of the University of São Paulo Medical School. Sociodemographic and clinical information was gathered from a reliable next-of-kin informant. Neurofibrillary tangles, neuritic plaques, lacunar infarcts, hyaline arteriolosclerosis, and cerebral amyloid angiopathy were evaluated. Causal mediation analyses with natural effect models were performed to examine indirect associations of hypertension with cerebrovascular pathologies and ADNC through morphometric measurements of intracranial artery lumen obstruction. Hypertensive participants (n = 354) presented a higher rate of stenosed arteries (obstruction ≥ 50 %), critically stenosed arteries (obstruction ≥ 70 %), and more severe ICAD, shown by higher maximum and mean obstruction indexes compared to nonhypertensive participants (n = 166). These measurements of atherosclerosis were associated with neurofibrillary tangles and cSVD lesions. Hypertension was indirectly associated with hyaline arteriolosclerosis and lacunar infarcts through the pathway of ICAD. Presenting hypertension indirectly increased the odds of displaying hyaline arteriolosclerosis by 26 % (95 % CI: 1.08, 1.45, p = 0.002) and lacunar infarcts by 17 % (95 % CI: 1.01, 1.35, p = 0.029). Cognitive and APOE ε4 carrier status did not alter the investigated associations. In this community sample, hypertension was indirectly associated with cSVD through ICAD.
Collapse
Affiliation(s)
| | - Regina Silva Paradela
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo 01246-903, Brazil
| | - Lea Tenenholz Grinberg
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP 01246-903, Brazil; Memory and Aging Center, Weill Institute for Neurosciences, Dept. of Neurology, University of California San Francisco, CA 94158, USA
| | | | | | - Vitor Ribeiro Paes
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP 01246-903, Brazil
| | - Maria Eduarda Braga
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo 01246-903, Brazil
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Center, Biosciences Institute, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo 01246-903, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of Sao Paulo Medical School, SP 01246-903, Brazil
| | | | - Claudia Kimie Suemoto
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
4
|
Barisano G, Iv M, Choupan J, Hayden-Gephart M. Robust, fully-automated assessment of cerebral perivascular spaces and white matter lesions: a multicentre MRI longitudinal study of their evolution and association with risk of dementia and accelerated brain atrophy. EBioMedicine 2025; 111:105523. [PMID: 39721217 PMCID: PMC11732520 DOI: 10.1016/j.ebiom.2024.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility. METHODS We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials. We analysed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1 ± 9.7 years-old, 56.6% women) from three publicly available observational studies on ageing and dementia (the Alzheimer's Disease Neuroimaging Initiative, the National Alzheimer's Coordinating Centre database, and the Open Access Series of Imaging Studies). Clinical and MRI data collected between 2004 and 2022 were analysed with consistent methods, controlling for confounding factors, and combined using mixed-effects models. FINDINGS Our fully-automated method for PVS assessment showed excellent inter-scanner reproducibility (intraclass correlation coefficients >0.8). Fewer PVS and larger PVS diameter at baseline predicted higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers differed significantly in participants without dementia who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants at low risk of dementia based on our PVS markers enhanced the power of the trial independently of Alzheimer's disease biomarkers. INTERPRETATION These robust cerebrovascular markers predict dementia risk and brain atrophy and may improve risk-stratification of patients, potentially reducing cost and increasing throughput of clinical trials to combat dementia. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., New York, NY, USA
| | | |
Collapse
|
5
|
Yang D, Cherian L, Arfanakis K, Schneider JA, Aggarwal NT, Gutierrez J. Intracranial atherosclerotic disease and neurodegeneration: a narrative review and plausible mechanisms. J Stroke Cerebrovasc Dis 2024; 33:108015. [PMID: 39303868 PMCID: PMC11570339 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Intracranial atherosclerotic disease (ICAD) of the large cerebral arteries, a leading cause of stroke worldwide, is increasingly implicated in cognitive impairment and neurodegeneration among the general population; however, the underlying pathophysiologic mechanisms in this relationship remain unknown. METHODS In this narrative review, we aim to provide an overview of the epidemiology and pathophysiology of ICAD, the evidence that relates ICAD to neurodegeneration, putative mechanisms, and future research directions. We synthesized available evidence on PubMed up to August 2024. RESULTS AND CONCLUSIONS ICAD, a common cause of stroke, is characterized as a chronic, inflammatory, fibroproliferative disease of the cerebral large arteries. Numerous lines of evidence have related ICAD to clinical, neuroimaging, and pathology-based markers of cognitive impairment and Alzheimer's disease; however, little data exists on plausible pathophysiological links. Based on ongoing and adjacent work, we hypothesize hypoperfusion, arterial stiffness, and inflammation to play a role, but further research is needed. Conventional classification of ICAD often infers from symptomatic coronary artery disease and relies on degree of luminal stenosis, but unique anatomic features of the intracranial circulation may be relevant and a more comprehensive description that includes arterial wall features and plaque morphology may be needed to fully understand its relationship with cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Laurel Cherian
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Neelum T Aggarwal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Mok VCT, Cai Y, Markus HS. Vascular cognitive impairment and dementia: Mechanisms, treatment, and future directions. Int J Stroke 2024; 19:838-856. [PMID: 39283037 PMCID: PMC11490097 DOI: 10.1177/17474930241279888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 10/21/2024]
Abstract
Worldwide, around 50 million people live with dementia, and this number is projected to triple by 2050. It has been estimated that 20% of all dementia cases have a predominant cerebrovascular pathology, while perhaps another 20% of vascular diseases contribute to a mixed dementia picture. Therefore, the vascular contribution to dementia affects 20 million people currently and will increase markedly in the next few decades, particularly in lower- and middle-income countries.In this review, we discuss the mechanisms of vascular cognitive impairment (VCI) and review management. VCI refers to the spectrum of cerebrovascular pathologies that contribute to any degree of cognitive impairment, ranging from subjective cognitive decline, to mild cognitive impairment, to dementia. While acute cognitive decline occurring soon after a stroke is the most recognized form of VCI, chronic cerebrovascular disease, in particular cerebral small-vessel disease, can cause insidious cognitive decline in the absence of stroke. Moreover, cerebrovascular disease not only commonly co-occurs with Alzheimer's disease (AD) and increases the probability that AD pathology will result in clinical dementia, but may also contribute etiologically to the development of AD pathologies.Despite its enormous health and economic impact, VCI has been a neglected research area, with few adequately powered trials of therapies, resulting in few proven treatments. Current management of VCI emphasizes prevention and treatment of stroke and vascular risk factors, with most evidence for intensive hypertension control. Reperfusion therapies in acute stroke may attenuate the risk of VCI. Associated behavioral symptoms such as apathy and poststroke emotionalism are common. We also highlight novel treatment strategies that will hopefully lead to new disease course-modifying therapies. Finally, we highlight the importance of including cognitive endpoints in large cardiovascular prevention trials and the need for an increased research focus and funding for this important area.
Collapse
Affiliation(s)
- Vincent Chung Tong Mok
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yuan Cai
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Science, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Zhao D, Guallar E, Qiao Y, Knopman DS, Palatino M, Gottesman RF, Mosley TH, Wasserman BA. Intracranial Atherosclerotic Disease and Incident Dementia: The ARIC Study (Atherosclerosis Risk in Communities). Circulation 2024; 150:838-847. [PMID: 39087353 PMCID: PMC11513165 DOI: 10.1161/circulationaha.123.067003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Studies of the neurovascular contribution to dementia have largely focused on cerebral small vessel disease (CSVD), but the role of intracranial atherosclerotic disease (ICAD) remains unknown in the general population. The objective of this study was to determine the risk of incident dementia from ICAD after adjusting for CSVD and cardiovascular risk factors in a US community-based cohort. METHODS We acquired brain magnetic resonance imaging examinations from 2011 through 2013 in 1980 Black and White participants in the ARIC study (Atherosclerosis Risk in Communities), a prospective cohort conducted in 4 US communities. Magnetic resonance imaging examinations included high-resolution vessel wall magnetic resonance imaging and magnetic resonance angiography to identify ICAD. Of these participants, 1590 without dementia, without missing covariates, and with adequate magnetic resonance image quality were followed through 2019 for incident dementia. Associations between ICAD and incident dementia were assessed using Cox proportional hazard ratios adjusted for CSVD (characterized by white matter hyperintensities, lacunar infarctions, and microhemorrhages), APOE4 genotype (apolipoprotein E gene ε4), and cardiovascular risk factors. RESULTS The mean age (SD) of study participants was 77.4 (5.2) years. ICAD was detected in 34.6% of participants. After a median follow-up of 5.6 years, 286 participants developed dementia. Compared with participants without ICAD, the fully adjusted hazard ratios (95% CIs) for incident dementia in participants with any ICAD, with ICAD only causing stenosis ≤50%, and with ICAD causing stenosis >50% in ≥1 vessel were 1.57 (1.17-2.11), 1.41 (1.02-1.95), and 1.94 (1.32-2.84), respectively. ICAD was associated with dementia even among participants with low white matter hyperintensities burden, a marker of CSVD. CONCLUSIONS ICAD was associated with an increased risk of incident dementia, independent of CSVD, APOE4 genotype, and cardiovascular risk factors. The increased risk of dementia was evident even among participants with low CSVD burden, a group less likely to be affected by vascular dementia, and in participants with ICAD causing only low-grade stenosis. Our results suggest that ICAD may partially mediate the effect that cardiovascular risk factors have on the brain leading to dementia. Both ICAD and CSVD must be considered to understand the vascular contributions to cognitive decline.
Collapse
Affiliation(s)
- Di Zhao
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Maylin Palatino
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca F. Gottesman
- Stroke Branch, Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bruce A. Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Barisano G, Iv M, on behalf of the Alzheimer’s Disease Neuroimaging Initiative, Choupan J, Hayden-Gephart M. Cerebral perivascular spaces as predictors of dementia risk and accelerated brain atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306324. [PMID: 38712073 PMCID: PMC11071547 DOI: 10.1101/2024.04.25.24306324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cerebral small vessel disease, an important risk factor for dementia, lacks robust, in vivo measurement methods. Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. We developed a novel, robust algorithm to automatically assess PVS count and size on MRI, and investigated their relationship with dementia risk and brain atrophy. We analyzed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1±9.7 years-old, 56.6% women). Fewer PVS and larger PVS diameter at baseline were associated with higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers were significantly different in non-demented individuals who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants less likely to develop dementia based on our PVS markers enhanced the power of the trial. These novel radiographic cerebrovascular markers may improve risk-stratification of individuals, potentially reducing cost and increasing throughput of clinical trials to combat dementia.
Collapse
Affiliation(s)
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Jeiran Choupan
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Hirano Y, Miyawaki S, Sakaguchi Y, Koizumi S, Hongo H, Saito N. A bibliometric analysis of the 100 most-cited clinical articles in the research of intracranial artery stenosis and intracranial atherosclerosis. Surg Neurol Int 2024; 15:74. [PMID: 38628533 PMCID: PMC11021113 DOI: 10.25259/sni_1030_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intracranial arterial stenosis (ICAS), caused by intracranial atherosclerosis, is one of the major causes of ischemic stroke. This study identified the top 100 most-cited publications on ICAS through a bibliometric analysis. Methods Two independent authors conducted a search in the Web of Science database for clinical articles on ICAS published between 1993 and 2022. The top 100 most-cited articles were then extracted. For each article, the analysis covered the title, author, country of origin/affiliation, journal, total number of citations, number of citations per year, and type of study. Results The top 100 most-cited papers in the ICAS were authored by 565 authors from 12 countries and published in 29 journals. In terms of the 5-year trend, the largest number of papers were published between 2003 and 2007 (n = 31). The median number of citations for the 100 papers was 161 (range 109-1,115). The journal with the highest proportion of the 100 most published articles was Stroke, accounting for 41% of articles and 37% of the citations. According to country of origin, the United States of America accounted for the largest number of articles, followed by China, Japan, and South Korea, with these four countries together accounting for 81% of the total number of articles and 88% of the citations. Trends in the past five years included the use of terms such as acute ischemic stroke and mechanical thrombectomy. Conclusion The findings of this study provide novel insight into this field and will facilitate future research endeavors.
Collapse
Affiliation(s)
- Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Yusuke Sakaguchi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan
| |
Collapse
|
10
|
Coomans EM, van Westen D, Binette AP, Strandberg O, Spotorno N, Serrano GE, Beach TG, Palmqvist S, Stomrud E, Ossenkoppele R, Hansson O. Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation. Brain 2024; 147:949-960. [PMID: 37721482 PMCID: PMC10907085 DOI: 10.1093/brain/awad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cerebrovascular pathology often co-exists with Alzheimer's disease pathology and can contribute to Alzheimer's disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer's disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-β pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-β pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ɛ4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-β and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ɛ4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-β pathology on greater baseline tau load (β = 0.68, P < 0.001) and longitudinal tau accumulation (β = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-β on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-β on longitudinal tau (β = -0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-β pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (β = 0.38, P < 0.001) and between infarcts and plaque density (β = -0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology-in the presence of amyloid-β pathology-modifies tau accumulation in early stages of Alzheimer's disease. More specifically, the co-occurrence of microbleeds and amyloid-β pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Emma M Coomans
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Amsterdam Neuroscience, Neurodegeneration, 1071HV Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
11
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
12
|
Sabayan B, Goudarzi R, Ji Y, Borhani‐Haghighi A, Olson‐Bullis BA, Murray AM, Sedaghat S. Intracranial Atherosclerosis Disease Associated With Cognitive Impairment and Dementia: Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032506. [PMID: 37955546 PMCID: PMC10727275 DOI: 10.1161/jaha.123.032506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Intracranial atherosclerosis disease (ICAD) alters cerebrovascular hemodynamics and brain structural integrity. Multiple studies have evaluated the link between ICAD and cognitive impairment, with mixed results. This study aims to systematically review and summarize the current evidence on this link. METHODS AND RESULTS PubMed, EMBASE, PsycInfo, and Web of Science were searched from 2000 to 2023 without language restriction. Cross-sectional and prospective cohort studies as well as postmortem studies were included. Studies containing data on the link between ICAD, defined as at least 50% stenosis in 1 intracranial vessel, and cognitive impairment and dementia were screened by 2 independent reviewers. A total of 22 (17 observational and 5 postmortem) unique studies, comprising 11 184 individuals (average age range, 59.8-87.6 years; 45.7% women; 36.5% Asian race), were included in the systematic review. Seven of 10 cross-sectional studies and 5 of 7 prospective studies showed a significant association between ICAD and cognitive impairment. In the pooled analysis, ICAD was associated with greater cognitive impairment (measure of association, 1.87 [95% CI, 1.49-2.35]). Meta-regression analyses did not show a significant impact of age, sex, and race. All postmortem studies showed that patients with Alzheimer disease and vascular dementia had a higher burden of ICAD compared with controls. CONCLUSIONS This study shows that ICAD is associated with cognitive impairment and dementia across age, sex, and race groups. Our findings may underscore the need to develop individualized dementia preventive care plans in patients with ICAD.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Neurology, Hennepin Healthcare Research InstituteHennepin County Medical CenterMinneapolisMN
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Roham Goudarzi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yuekai Ji
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| | | | | | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research and Geriatrics Division, Department of MedicineHennepin Healthcare Research InstituteMinneapolisMN
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
13
|
Abstract
Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in aging adults across the United States. Prior studies indicate that the presence of atherosclerosis, the pathogenic basis of CVD, is linked with dementias. Alzheimer's disease (AD) and AD-related dementias are a major public health challenge in the United States. Recent studies indicate that ≈3.7 million Americans ≥65 years of age had clinical AD in 2017, with projected increases to 9.3 million by 2060. Treatment options for AD remain limited. Development of disease-modifying therapies are challenging due, in part, to the long preclinical window of AD. The preclinical incubation period of AD starts in midlife, providing a critical window for identification and optimization of AD risk factors. Studies link AD with CVD risk factors such as hypertension, inflammation, and dyslipidemia. Both AD and CVD are progressive diseases with decades-long development periods. CVD can clinically manifest several years earlier than AD, making CVD and its risk factors a potential predictor of future AD. The current review focuses on the state of literature on molecular and metabolic pathways modulating the heart-brain axis underlying the potential association of midlife CVD risk factors and their effect on AD and related dementias. Further, we explore potential CVD/dementia preventive strategies during the window of opportunity in midlife and the future of research in the field in the multiomics and novel biomarker use era.
Collapse
Affiliation(s)
- Anum Saeed
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Oscar Lopez
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Cognitive and Behavioral and Neurology DivisionUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Ann Cohen
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Division of PsychiatryUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Steven E. Reis
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| |
Collapse
|
14
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
15
|
Yang D, Masurkar AV, Khasiyev F, Rundek T, Wright CB, Elkind MSV, Sacco RL, Gutierrez J. Intracranial artery stenosis is associated with cortical thinning in stroke-free individuals of two longitudinal cohorts. J Neurol Sci 2023; 444:120533. [PMID: 36577280 PMCID: PMC9880900 DOI: 10.1016/j.jns.2022.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND We examined the association between asymptomatic intracranial artery stenosis (aICAS) and cortical thickness using brain magnetic resonance morphometry in two cohorts. METHODS This cross-sectional study included stroke-free participants from the Northern Manhattan Study (NOMAS) and the National Alzheimer's Coordinating Center (NACC). We represented the predictor aICAS in NOMAS as a continuous global stenosis score reflecting an overall burden of stenosis (possible range 0-44) assessed by magnetic resonance angiography and in NACC as a dichotomous autopsy-determined Circle of Willis (CoW) atherosclerosis (none-mild vs moderate-severe). The primary outcome of interest was total cortical thickness. We analyzed each dataset separately using multivariable linear regression. RESULTS The analysis included 1209 NOMAS (46% had any stenosis, 5% had ≥70% stenosis of at least one vessel; stenosis score range 0-11) and 392 NACC (36% moderate-severe CoW atherosclerosis) participants. We found an inverse relationship between stenosis score and total cortical thickness (β-estimate [95% confidence interval (CI)]: -2.98 [-5.85, -0.11]) in adjusted models. We replicated these results in NACC (β-estimate [95% CI]: -0.06 [-0.11, -0.003]). Post-hoc, we segregated stenosis scores by location and only posterior circulation stenosis score was associated with total cortical thickness (anterior β-estimate [95% CI]: -0.90 [-5.16, 3.36], posterior β-estimate [95% CI]: -7.25 [-14.30, -0.20]). CONCLUSION We found both radiographically and neuropathologically determined aICAS to be associated with global cortical thinning. Interestingly, posterior circulation stenoses appeared to drive this association with global cortical thinning, raising the possibility of pathophysiologic mechanisms for cortical thinning other than impaired hemodynamics.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Arjun V Masurkar
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Farid Khasiyev
- Department of Neurology, Saint Louis University, Saint Louis, MO, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clinton B Wright
- National Institute of Neurologic Disorders and Stroke, Bethesda, MD, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ralph L Sacco
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Li D, Huang Z, Dai Y, Guo L, Lin S, Liu X. Bioinformatic identification of potential biomarkers and therapeutic targets in carotid atherosclerosis and vascular dementia. Front Neurol 2023; 13:1091453. [PMID: 36703641 PMCID: PMC9872033 DOI: 10.3389/fneur.2022.1091453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular disease is the second most common cause of dementia. The prevalence of vascular dementia (VaD) has increased over the past decade. However, there are no licensed treatments for this disease. Carotid atherosclerosis (CAS) is highly prevalent and is the main cause of ischemic stroke and VaD. We studied co-expressed genes to understand the relationships between CAS and VaD and further reveal the potential biomarkers and therapeutic targets of CAS and VaD. Methods CAS and VaD differentially expressed genes (DEGs) were identified through bioinformatic analysis Gene Expression Omnibus (GEO) datasets GSE43292 and GSE122063, respectively. Furthermore, a variety of target prediction methods and network analysis approaches were used to assess the protein-protein interaction (PPI) networks, the Gene Ontology (GO) terms, and the pathway enrichment for DEGs, and the top 7 hub genes, coupled with corresponding predicted miRNAs involved in CAS and VaD, were assessed as well. Result A total of 60 upregulated DEGs and 159 downregulated DEGs were identified, of which the top 7 hub genes with a high degree of connectivity were selected. Overexpression of these hub genes was associated with CAS and VaD. Finally, the top 7 hub genes were coupled with corresponding predicted miRNAs. hsa-miR-567 and hsa-miR-4652-5p may be significantly associated with CAS and VaD.
Collapse
|
17
|
Aaron SE, Tomoto T, Zhang R, Thyfault JP, Vidoni ED, Montgomery RN, Burns JM, Billinger SA. Statin contribution to middle cerebral artery blood flow velocity in older adults at risk for dementia. Eur J Appl Physiol 2022; 122:2417-2426. [PMID: 35960268 PMCID: PMC9830632 DOI: 10.1007/s00421-022-05022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE It is plausible that statins could improve cerebral blood flow through pleiotropic mechanisms. The purpose of this investigation was to assess the contribution of statins to cerebrovascular variables in older adults with dyslipidemia and familial history of dementia. Furthermore, we explored the interaction between statin use and sex due to prevalent bias in statin trials. METHODS Middle cerebral artery blood flow velocity (MCAv) was measured using transcranial Doppler ultrasound. Continuous supine rest recordings lasted 8 min. Participants included in analyses were statin (n = 100) or non-statin users (n = 112). RESULTS MCAv and cerebrovascular conductance were significantly higher in statin users (p = 0.047; p = 0.04), and pulsatility index (PI) was significantly lower in statin users (p < 0.01). An interaction effect between statin use and sex was present for PI (p = 0.02); female statin users had significantly lower cerebrovascular resistance than the other three groups. CONCLUSION In this cross-sectional analysis, statin use was positively associated with cerebrovascular variables in older adults at risk for dementia. Female statin users had significantly higher resting MCAv and cerebrovascular conductance than female non-statin users. The greatest contribution of statin use was the association with reduced cerebrovascular resistance. Given that cerebrovascular dysregulation is one of the earliest changes in Alzheimer's disease and related dementia pathology, targeting the cerebrovasculature with statins may be a promising prevention strategy.
Collapse
Affiliation(s)
- Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS, USA
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA
- University of Kansas Alzheimer's Research Disease Center, Fairway, KS, USA
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Research Disease Center, Fairway, KS, USA
| | - Robert N Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Research Disease Center, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
- University of Kansas Alzheimer's Research Disease Center, Fairway, KS, USA.
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Dumais F, Caceres MP, Janelle F, Seifeldine K, Arès-Bruneau N, Gutierrez J, Bocti C, Whittingstall K. eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage 2022; 260:119425. [PMID: 35809887 DOI: 10.1016/j.neuroimage.2022.119425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The accurate segmentation, labeling and quantification of cerebral blood vessels on MR imaging is important for basic and clinical research, yet results are not generalizable, and often require user intervention. New methods are needed to automate this process. PURPOSE To automatically segment, label and quantify Circle of Willis (CW) arteries on Magnetic Resonance Angiography images using deep convolutional neural networks. MATERIALS AND METHODS MRA images were pooled from three public and private databases. A total of 116 subjects (mean age 56 years ± 21 [standard deviation]; 72 women) were used to make up the training set (N=101) and the testing set (N=15). In each image, fourteen arterial segments making up or surrounding the CW were manually annotated and validated by a clinical expert. Convolutional neural network (CNN) models were trained on a training set to be finally combined in an ensemble to develop eICAB. Model performances were evaluated using (1) quantitative analysis (dice score on test set) and (2) qualitative analysis (external datasets, N=121). The reliability was assessed using multiple MRAs of healthy participants (ICC of vessel diameters and volumes on test-retest). RESULTS Qualitative analysis showed that eICAB correctly predicted the large, medium and small arteries in 99±0.4%, 97±1% and 88±7% of all images, respectively. For quantitative assessment, the average dice score coefficients for the large (ICAs, BA), medium (ACAs, MCAs, PCAs-P2), and small (AComm, PComm, PCAs-P1) vessels were 0.76±0.07, 0.76±0.08 and 0.41±0.27, respectively. These results were similar and, in some cases, statistically better (p<0.05) than inter-expert annotation variability and robust to image SNR. Finally, test-retest analysis showed that the model yielded high diameter and volume reliability (ICC=0.99). CONCLUSION We have developed a quick and reliable open-source CNN-based method capable of accurately segmenting and labeling the CW in MRA images. This method is largely independent of image quality. In the future, we foresee this approach as a critical step towards fully automated analysis of MRA databases in basic and clinical research.
Collapse
Affiliation(s)
- Félix Dumais
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada.
| | - Marco Perez Caceres
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Félix Janelle
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Kassem Seifeldine
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Noémie Arès-Bruneau
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christian Bocti
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada; Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Whittingstall
- Department of Radiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
19
|
Gottesman RF, Wu A, Coresh J, Knopman DS, Jack CR, Rahmim A, Sharrett AR, Spira AP, Wong DF, Wagenknecht LE, Hughes TM, Walker KA, Mosley TH. Associations of Vascular Risk and Amyloid Burden with Subsequent Dementia. Ann Neurol 2022; 92:607-619. [PMID: 35732594 PMCID: PMC11412067 DOI: 10.1002/ana.26447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Midlife vascular risk factors (MVRFs) are associated with incident dementia, as are amyloid β (Aβ) deposition and neurodegeneration. Whether vascular and Alzheimer disease-associated factors contribute to dementia independently or interact synergistically to reduce cognition is poorly understood. METHODS Participants in the Atherosclerosis Risk in Communities-Positron Emission Tomography study were followed from 1987-1989 (45-64 years old) through 2016-2017 (74-94 years old), with repeat cognitive assessment and dementia adjudication. In 2011-2013, dementia-free participants underwent brain magnetic resonance imaging (with white matter hyperintensity [WMH] and brain volume measurement) and florbetapir (Aβ) positron emission tomography. The relative contributions of vascular risk and injury (MVRFs, WMH volume), elevated Aβ standardized uptake value ratio (SUVR), and neurodegeneration (smaller temporoparietal brain regions) to incident dementia were evaluated with adjusted Cox models. RESULTS In 298 individuals, 36 developed dementia (median follow-up = 4.9 years). Midlife hypertension and Aβ each independently predicted dementia risk (hypertension: hazard ratio [HR] = 2.57, 95% confidence interval [CI] = 1.16-5.67; Aβ SUVR [per standard deviation (SD)]: HR = 2.57, 95% CI = 1.72-3.84), but did not interact significantly, whereas late life diabetes (HR = 2.50, 95% CI = 1.18-5.28) and Aβ independently predicted dementia risk. WMHs (per SD: HR = 1.51, 95% CI = 1.03-2.20) and Aβ SUVR (HR = 2.52, 95% CI = 1.83-3.47) independently contributed to incident dementia, but WMHs lost significance when MVRFs were included. Smaller temporoparietal brain regions were associated with incident dementia, independent of Aβ and MVRFs (HR = 2.18, 95% CI = 1.18-4.01). INTERPRETATION Midlife hypertension and late life Aβ are independently associated with dementia risk, without evidence for synergy on a multiplicative scale. Given the independent contributions of vascular and amyloid mechanisms, multiple pathways should be considered when evaluating interventions to reduce the burden of dementia. ANN NEUROL 2022;92:607-619.
Collapse
Affiliation(s)
- Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Aozhou Wu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health and Center on Aging and Health, Johns Hopkins Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dean F Wong
- Department of Radiology, Washington University, St Louis, MO, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Timothy M Hughes
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keenan A Walker
- National Institute on Aging Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
20
|
Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100148. [PMID: 36324408 PMCID: PMC9616381 DOI: 10.1016/j.cccb.2022.100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
It is well recognized that brains of older people often harbor cerebrovascular disease pathology including vessel disease and vascular-related tissue injuries and that this is associated with vascular cognitive impairment and contributes to dementia. Here we review vascular pathologies, cognitive impairment, and dementia. We highlight the importance of mixed co-morbid AD/non-AD neurodegenerative and vascular pathology that has been collected in multiple clinical pathologic studies, especially in community-based studies. We also provide an update of vascular pathologies from the Rush Memory and Aging Project and Religious Orders Study cohorts with special emphasis on the differences across age in persons with and without dementia. Finally, we discuss neuropathological perspectives on the interpretation of clinical-pathological studies and emerging data in community-based studies.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Abstract
Senile plaques have been studied in postmortem brains for more than 120 years and the resultant knowledge has not only helped us understand the etiology and pathogenesis of Alzheimer disease (AD), but has also pointed to possible modes of prevention and treatment. Within the last 15 years, it has become possible to image plaques in living subjects. This is arguably the single greatest advance in AD research since the identification of the Aβ peptide as the major plaque constituent. The limitations and potentialities of amyloid imaging are still not completely clear but are perhaps best glimpsed through the perspective gained from the accumulated postmortem histological studies. The basic morphological classification of plaques into neuritic, cored and diffuse has been supplemented by sophisticated immunohistochemical and biochemical analyses and increasingly detailed mapping of plaque brain distribution. Changes in plaque classification and staging have in turn contributed to changes in the definition and diagnostic criteria for AD. All of this information continues to be tested by clinicopathological correlations and it is through the insights thereby gained that we will best be able to employ the powerful tool of amyloid imaging.
Collapse
Affiliation(s)
- Thomas G Beach
- From the Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
22
|
7T MRI for Intracranial Vessel Wall Lesions and Its Associated Neurological Disorders: A Systematic Review. Brain Sci 2022; 12:brainsci12050528. [PMID: 35624915 PMCID: PMC9139315 DOI: 10.3390/brainsci12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Intracranial vessel wall lesions are involved in a variety of neurological diseases. The advanced technique 7T MRI provides greater efficacy in the diagnosis of the pathology changes in the vessel wall and helps to identify potential subtle lesions. The purpose of this literature review was to systematically describe and evaluate the existing literature focusing on the use of 7T MRI in the detection and characterization of intracranial vessel wall lesions and their associated neurological disorders, to highlight the current knowledge gaps, and to formulate a framework to guide future applications and investigations. We systematically reviewed the existing articles up to July 2021, seeking the studies that assessed intracranial vessel wall lesions and their associated neurological disorders using 7T MRI. The literature search provided 12 studies that met the inclusion criteria. The most common intracranial vessel wall lesions were changes related to intracranial atherosclerosis (n = 8) and aneurysms (n = 4), such as intracranial atherosclerosis burden and aneurysm wall enhancement. The associated neurological disorders included aneurysms, ischemic stroke or TIA, small vessel disease, cognitive decline, and extracranial atherosclerosis. No paper studied the use of 7T MRI for investigating vessel wall conditions such as moyamoya disease, small vessel disease, or neurological disorders related to central nervous vasculitis. In conclusion, the novel 7T MRI enables the identification of a wider spectrum of subtle changes and associations. Future research on cerebral vascular diseases other than intracranial atherosclerosis and aneurysms may also benefit from 7T MRI.
Collapse
|
23
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
24
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Mol Brain 2021; 14:110. [PMID: 34238312 PMCID: PMC8268468 DOI: 10.1186/s13041-021-00803-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.
Collapse
Affiliation(s)
- Joseph O Ojo
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA. .,The Open University, Milton Keynes, UK.
| | - Jon M Reed
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Gogce Crynen
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | | | - James Evans
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Benjamin Shackleton
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Maximillian Eisenbaum
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Charis Ringland
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Anastasia Edsell
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Michael Mullan
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Fiona Crawford
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA.,The Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
26
|
Cheng G, He S, He Q, Xie X, Tang C, Xie Q, Wu X, Jiang N, Li C, Min X, Yan Y. Trajectory patterns of blood pressure change up to six years and the risk of dementia: a nationwide cohort study. Aging (Albany NY) 2021; 13:17380-17406. [PMID: 34198262 PMCID: PMC8312414 DOI: 10.18632/aging.203228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
The present study aimed to investigate the associations between the trajectory of blood pressure (BP) change and the risk of subsequent dementia and to explore the differences in age, gender, and hypertension subgroups. We included 10,660 participants aged ≥ 60 years from 1998 to 2018 waves of the Chinese Longitudinal Healthy Longevity Survey. Latent growth mixture models were used to estimate BP trajectories. Cox-proportional hazard models were used to analyze the effects of BP trajectories on the risk of dementia. According to the results, stabilized systolic BP (SBP) was found to be associated with a higher risk of dementia compared with normal SBP [adjusted hazard ratio (aHR): 1.62; 95% confidence interval (CI): 1.27-2.07] and elevated SBP (aHR: 2.22; 95% CI: 1.51-3.28) in and only in the subgroups of the oldest-old, women, and subjects without hypertension at baseline. Similarly, stabilized pulse pressure (PP) was associated with a higher risk of dementia compared with normal PP (aHR: 1.52; 95% CI: 1.24-1.88) and elevated PP (aHR: 2.12; 95% CI: 1.48-3.04) in and only in the subgroups of the oldest-old, women, and subjects with hypertension at baseline. These findings suggest that stabilized SBP and PP have predictive significance for the occurrence of dementia in late life, and the factors of age, gender, and late-life hypertension should be considered when estimating the risk of BP decline on dementia.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Simin He
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Qiong He
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiaowei Xie
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Cai Tang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Qunhui Xie
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xihong Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ni Jiang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xianying Min
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yan Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Slowed Temporal and Parietal Cerebrovascular Response in Patients with Alzheimer's Disease. Can J Neurol Sci 2021; 47:366-373. [PMID: 32051047 DOI: 10.1017/cjn.2020.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer's disease (AD) and may underpin part of the disease's neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia. The purpose of this study was to investigate AD and MCI patients by mapping repeatable and accurate measures of cerebrovascular function, namely the magnitude and speed of cerebrovascular response (τ) to a vasoactive stimulus in key predilection sites for vascular dysfunction in AD. METHODS Thirty-three subjects (age range: 52-83 years, 20 males) were prospectively recruited. CVR and τ were assessed using blood oxygen level-dependent MRI during a standardized carbon dioxide stimulus. Temporal and parietal cortical regions of interest (ROIs) were generated from anatomical images using the FreeSurfer image analysis suite. RESULTS Of 33 subjects recruited, 3 individuals were excluded, leaving 30 subjects for analysis, consisting of 6 individuals with early AD, 11 individuals with MCI, and 13 older healthy controls (HCs). τ was found to be significantly higher in the AD group compared to the HC group in both the temporal (p = 0.03) and parietal cortex (p = 0.01) following a one-way ANCOVA correcting for age and microangiopathy scoring and a Bonferroni post-hoc correction. CONCLUSION The study findings suggest that AD is associated with a slowing of the cerebrovascular response in the temporal and parietal cortices.
Collapse
|
28
|
A Genetic Study of Cerebral Atherosclerosis Reveals Novel Associations with NTNG1 and CNOT3. Genes (Basel) 2021; 12:genes12060815. [PMID: 34073619 PMCID: PMC8228534 DOI: 10.3390/genes12060815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cerebral atherosclerosis is a leading cause of stroke and an important contributor to dementia. Yet little is known about its genetic basis. To examine the association of common single nucleotide polymorphisms with cerebral atherosclerosis severity, we conducted a genomewide association study (GWAS) using data collected as part of two community-based cohort studies in the United States, the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP). Both studies enroll older individuals and exclude participants with signs of dementia at baseline. From our analysis of 1325 participants of European ancestry who had genotype and neuropathologically assessed cerebral atherosclerosis measures available, we found a novel locus for cerebral atherosclerosis in NTNG1. The locus comprises eight SNPs, including two independent significant SNPs: rs6664221 (β = -0.27, 95% CI = (-0.35, -0.19), p = 1.29 × 10-10) and rs10881463 (β = -0.20, 95% CI = (-0.27, -0.13), p = 3.40 × 10-8). We further found that the SNPs may influence cerebral atherosclerosis by regulating brain protein expression of CNOT3. CNOT3 is a subunit of CCR4-NOT, which has been shown to be a master regulator of mRNA stability and translation and an important complex for cholesterol homeostasis. In summary, we identify a novel genetic locus for cerebral atherosclerosis and a potential mechanism linking this variation to cerebral atherosclerosis progression. These findings offer insights into the genetic effects on cerebral atherosclerosis.
Collapse
|
29
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. Molecular Pathobiology of the Cerebrovasculature in Aging and in Alzheimers Disease Cases With Cerebral Amyloid Angiopathy. Front Aging Neurosci 2021; 13:658605. [PMID: 34079449 PMCID: PMC8166206 DOI: 10.3389/fnagi.2021.658605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | | | | | - James Evans
- Roskamp Institute, Sarasota, FL, United States
| | - Benjamin Shackleton
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Maximillian Eisenbaum
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Charis Ringland
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
- Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
30
|
Duong MT, Nasrallah IM, Wolk DA, Chang CCY, Chang TY. Cholesterol, Atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential Mechanisms and Therapy. Front Aging Neurosci 2021; 13:647990. [PMID: 33841127 PMCID: PMC8026881 DOI: 10.3389/fnagi.2021.647990] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are a common cause of cognitive decline, yet limited therapies exist. This cerebrovascular disease results in neurodegeneration via acute, chronic, local, and systemic mechanisms. The etiology of VCID is complex, with a significant impact from atherosclerosis. Risk factors including hypercholesterolemia and hypertension promote intracranial atherosclerotic disease and carotid artery stenosis (CAS), which disrupt cerebral blood flow and trigger ischemic strokes and VCID. Apolipoprotein E (APOE) is a cholesterol and phospholipid carrier present in plasma and various tissues. APOE is implicated in dyslipidemia and Alzheimer disease (AD); however, its connection with VCID is less understood. Few experimental models for VCID exist, so much of the present information has been drawn from clinical studies. Here, we review the literature with a focus on the clinical aspects of atherosclerotic cerebrovascular disease and build a working model for the pathogenesis of VCID. We describe potential intermediate steps in this model, linking cholesterol, atherosclerosis, and APOE with VCID. APOE4 is a minor isoform of APOE that promotes lipid dyshomeostasis in astrocytes and microglia, leading to chronic neuroinflammation. APOE4 disturbs lipid homeostasis in macrophages and smooth muscle cells, thus exacerbating systemic inflammation and promoting atherosclerotic plaque formation. Additionally, APOE4 may contribute to stromal activation of endothelial cells and pericytes that disturb the blood-brain barrier (BBB). These and other risk factors together lead to chronic inflammation, atherosclerosis, VCID, and neurodegeneration. Finally, we discuss potential cholesterol metabolism based approaches for future VCID treatment.
Collapse
Affiliation(s)
- Michael Tran Duong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ilya M Nasrallah
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ta-Yuan Chang
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
31
|
Pahlavian SH, Wang X, Ma S, Zheng H, Casey M, D’Orazio LM, Shao X, Ringman JM, Chui H, Wang DJJ, Yan L. Cerebroarterial pulsatility and resistivity indices are associated with cognitive impairment and white matter hyperintensity in elderly subjects: A phase-contrast MRI study. J Cereb Blood Flow Metab 2021; 41:670-683. [PMID: 32501154 PMCID: PMC7922759 DOI: 10.1177/0271678x20927101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
Abstract
Increased cerebroarterial pulsations are thought to be contributing factors in microvascular damage and cognitive impairment. In this study, we assessed the utility of two-dimensional (2D) phase-contrast MRI (PC-MRI) in quantifying cerebroarterial pulsations and evaluated the associations of pulsatile and non-pulsatile hemodynamic measures with cognitive performance and white matter hyperintensities (WMH). Neurocognitive assessments on 50 elderly subjects were performed using clinical dementia rating (CDR) and Montreal cognitive assessment (MoCA). An electrocardiogram-gated 2D PC-MRI sequence was used to calculate mean flow rate, pulsatility index (PI), and resistivity index (RI) of the internal carotid artery. For each subject, whole brain global cerebral blood flow (gCBF) and relative WMH volume were also quantified. Elevated RI was significantly associated with reduced cognitive performance quantified using MoCA (p = 0.04) and global CDR (p = 0.02). PI and RI were both significantly associated with relative WMH volume (p = 0.01, p < 0.01, respectively). However, non-pulsatile hemodynamic measures were not associated with cognitive impairment or relative WMH volume. This study showed that the cerebroarterial pulsatile measures obtained using PC-MRI have stronger association with the measures of cognitive impairment compared to global blood flow measurement and as such, might be useful as potential biomarkers of cerebrovascular dysfunction in preclinical populations.
Collapse
Affiliation(s)
- Soroush H Pahlavian
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Xinhui Wang
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Samantha Ma
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Hong Zheng
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
| | - Marlena Casey
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Lina M D’Orazio
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Xingfeng Shao
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Helena Chui
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Danny JJ Wang
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| | - Lirong Yan
- USC Stevens Neuroimaging and
Informatics Institute, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA
- Department of Neurology, University
of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Nichols JB, Malek-Ahmadi M, Tariot PN, Serrano GE, Sue LI, Beach TG. Vascular Lesions, APOE ε4, and Tau Pathology in Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:240-246. [PMID: 33617650 PMCID: PMC7899190 DOI: 10.1093/jnen/nlaa160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We sought to determine the associations among cerebral amyloid angiopathy (CAA), white matter rarefaction (WMR), circle of Willis atherosclerosis (CWA), and total microinfarct number with Braak neurofibrillary stage in postmortem individuals with and without Alzheimer disease (AD). Data from 355 cases of autopsied individuals with Braak stage I-VI who had antemortem consensus diagnoses of cognitively unimpaired (n = 183), amnestic mild cognitive impairment (n = 31), and AD dementia (n = 141) were used. The association between Braak stage and vascular lesions were individually assessed using multivariable linear regression that adjusted for age at death, APOE ε4 carrier status, sex, education, and neuritic plaque density. CAA (p = 0.007) and WMR (p < 0.001) were associated with Braak stage, independent of amyloid load; microinfarct number and CWA showed no association. Analyses of the interactions between APOE ε4 carrier status and vascular lesions found that greater WMR and positive ε4 carrier status were associated with higher Braak stages. These results suggest that CAA and WMR are statistically linked to the severity of AD-related NFT pathology. The statistical link between WMR and NFT load may be strengthened by the presence of APOE ε4 carrier status. An additional finding was that Lewy body pathology was most prevalent in higher Braak stages.
Collapse
Affiliation(s)
- Jodie B Nichols
- From the Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | | | | | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
33
|
Pluta R, Januszewski S, Czuczwar SJ. Brain Ischemia as a Prelude to Alzheimer's Disease. Front Aging Neurosci 2021; 13:636653. [PMID: 33679381 PMCID: PMC7931451 DOI: 10.3389/fnagi.2021.636653] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Transient ischemic brain injury causes massive neuronal death in the hippocampus of both humans and animals. This was accompanied by progressive atrophy of the hippocampus, brain cortex, and white matter lesions. Furthermore, it has been noted that neurodegenerative processes after an episode of ischemia-reperfusion in the brain can continue well-beyond the acute stage. Rarefaction of white matter was significantly increased in animals at 2 years following ischemia. Some rats that survived 2 years after ischemia developed severe brain atrophy with dementia. The profile of post-ischemic brain neurodegeneration shares a commonality with neurodegeneration in Alzheimer's disease. Furthermore, post-ischemic brain injury is associated with the deposition of folding proteins, such as amyloid and tau protein, in the intracellular and extracellular space. Recent studies on post-ischemic brain neurodegeneration have revealed the dysregulation of Alzheimer's disease-associated genes such as amyloid protein precursor, α-secretase, β-secretase, presenilin 1, presenilin 2, and tau protein. The latest data demonstrate that Alzheimer's disease-related proteins and their genes play a key role in the development of post-ischemic brain neurodegeneration with full-blown dementia in disease types such as Alzheimer's. Ongoing interest in the study of brain ischemia has provided evidence showing that ischemia may be involved in the development of the genotype and phenotype of Alzheimer's disease, suggesting that brain ischemia can be considered as a useful model for understanding the mechanisms responsible for the initiation of Alzheimer's disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland,*Correspondence: Ryszard Pluta
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
34
|
Gottesman RF, Mosley TH, Knopman DS, Hao Q, Wong D, Wagenknecht LE, Hughes TM, Qiao Y, Dearborn J, Wasserman BA. Association of Intracranial Atherosclerotic Disease With Brain β-Amyloid Deposition: Secondary Analysis of the ARIC Study. JAMA Neurol 2021; 77:350-357. [PMID: 31860001 DOI: 10.1001/jamaneurol.2019.4339] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Intracranial atherosclerotic disease (ICAD) is an important cause of stroke and has also been recently identified as an important risk factor for all-cause dementia, but the mechanism of its association with cognitive performance is not fully understood. Objective To test the hypothesis that ICAD is associated with cerebral β-amyloid deposition as a marker of Alzheimer disease. Design, Setting, and Participants This cross-sectional analysis of data collected from August 2011 through November 2014 was a community-based cohort study conducted in 3 US communities. Of 346 adults without dementia aged 70 to 90 years who were sequentially recruited from 3 of 4 sites of the larger Atherosclerosis Risk in Communities study into a study of brain florbetapir positron emission tomography (ARIC-PET), 300 met inclusion criteria. A total of 589 were approached about recruitment, of whom 346 (58.7%) consented (the remainder either met exclusion criteria for ARIC-PET or refused to participate). Data were analyzed from July 2017 through October 2019. Exposures Intracranial atherosclerotic disease presence, frequency, and extent of stenosis, by high-resolution vessel wall magnetic resonance imaging. Main Outcomes and Measures Global cortical standardized uptake value ratio (SUVR) of greater than 1.2 as measured by florbetapir PET. Models were conducted using logistic regression methods. In secondary analyses, we tested effect modifications by apolipoprotein E ε4 genotype with interaction terms and in stratified models and evaluated regional patterns of associations. Results In 300 participants (mean [SD] age, 76 [5] years; 132 African American individuals [44%], 167 women [56%], and 94 carriers of at least 1 apolipoprotein E ε4 allele [31%]), ICAD was found in 105 participants (35%) and mean (SD) SUVR was higher in individuals with vs without intracranial plaques (1.34 [0.29] vs 1.27 [0.23]; P = .03). In adjusted models, ICAD presence (plaque presence [adjusted odds ratio (aOR), 1.20; 95% CI, 0.69-2.07] and frequency [aOR, 1.10; 95% CI, 0.96-1.26]) was not associated significantly with elevated SUVR in the total sample. Furthermore, modest stenosis of the intracranial vessels (defined as >50% stenosis) was not associated with elevated SUVR (aOR, 2.33; 95% CI, 0.82-6.60). Conclusions and Relevance In this community-based cohort of adults without dementia, intracranial atherosclerotic plaque or stenosis was not associated with brain β-amyloid deposition.
Collapse
Affiliation(s)
- Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson
| | | | - Qing Hao
- Department of Neurology, Mount Sinai Medical Center, New York, New York
| | - Dean Wong
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ye Qiao
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer Dearborn
- Department of Neurology, Beth Israel Deaconness Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Bruce A Wasserman
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
35
|
Parikh NS, Gottesman RF. Midlife Cardiovascular Risk Factors, Subclinical Atherosclerosis, and Cerebral Hypometabolism. J Am Coll Cardiol 2021; 77:899-901. [PMID: 33602473 DOI: 10.1016/j.jacc.2020.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Neal S Parikh
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, Department of Neurology, Weill Cornell Medicine, New York, New York, USA.
| | - Rebecca F Gottesman
- Departments of Neurology and Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA. https://twitter.com/gottesman_lab
| |
Collapse
|
36
|
Shaffer RM, Li G, Adar SD, Dirk Keene C, Latimer CS, Crane PK, Larson EB, Kaufman JD, Carone M, Sheppard L. Fine Particulate Matter and Markers of Alzheimer's Disease Neuropathology at Autopsy in a Community-Based Cohort. J Alzheimers Dis 2021; 79:1761-1773. [PMID: 33459717 PMCID: PMC8061707 DOI: 10.3233/jad-201005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence links fine particulate matter (PM2.5) to Alzheimer's disease (AD), but no community-based prospective cohort studies in older adults have evaluated the association between long-term exposure to PM2.5 and markers of AD neuropathology at autopsy. OBJECTIVE Using a well-established autopsy cohort and new spatiotemporal predictions of air pollution, we evaluated associations of 10-year PM2.5 exposure prior to death with Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC score). METHODS We used autopsy specimens (N = 832) from the Adult Changes in Thought (ACT) study, with enrollment ongoing since 1994. We assigned long-term exposure at residential address based on two-week average concentrations from a newly developed spatiotemporal model. To account for potential selection bias, we conducted inverse probability weighting. Adjusting for covariates with tiered models, we performed ordinal regression for Braak and CERAD and logistic regression for dichotomized ABC score. RESULTS 10-year average (SD) PM2.5 from death across the autopsy cohort was 8.2 (1.9) μg/m3. Average age (SD) at death was 89 (7) years. Each 1μg/m3 increase in 10-year average PM2.5 prior to death was associated with a suggestive increase in the odds of worse neuropathology as indicated by CERAD score (OR: 1.35 (0.90, 1.90)) but a suggestive decreased odds of neuropathology as defined by the ABC score (OR: 0.79 (0.49, 1.19)). There was no association with Braak stage (OR: 0.99 (0.64, 1.47)). CONCLUSION We report inconclusive associations between PM2.5 and AD neuropathology at autopsy among a cohort where 94% of individuals experienced 10-year exposures below the current EPA standard. Prior studies of AD risk factors and AD neuropathology are similarly inconclusive, suggesting alternative mechanistic pathways for disease or residual confounding.
Collapse
Affiliation(s)
- Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C. Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Paul K. Crane
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B. Larson
- School of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Departments of Medicine and Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
37
|
Litak J, Mazurek M, Kulesza B, Szmygin P, Litak J, Kamieniak P, Grochowski C. Cerebral Small Vessel Disease. Int J Mol Sci 2020; 21:ijms21249729. [PMID: 33419271 PMCID: PMC7766314 DOI: 10.3390/ijms21249729] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) represents a cluster of various vascular disorders with different pathological backgrounds. The advanced vasculature net of cerebral vessels, including small arteries, capillaries, arterioles and venules, is usually affected. Processes of oxidation underlie the pathology of CSVD, promoting the degenerative status of the epithelial layer. There are several classifications of cerebral small vessel diseases; some of them include diseases such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes. This paper presents the characteristics of CSVD and the impact of the current knowledge of this topic on the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (B.K.); (P.S.); (P.K.)
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (B.K.); (P.S.); (P.K.)
| | - Bartłomiej Kulesza
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (B.K.); (P.S.); (P.K.)
| | - Paweł Szmygin
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (B.K.); (P.S.); (P.K.)
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, 20-090 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (B.K.); (P.S.); (P.K.)
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
38
|
Kang KM, Byun MS, Lee JH, Yi D, Choi HJ, Lee E, Lee Y, Lee JY, Kim YK, Sohn BK, Sohn CH, Lee DY. Association of carotid and intracranial stenosis with Alzheimer's disease biomarkers. ALZHEIMERS RESEARCH & THERAPY 2020; 12:106. [PMID: 32912336 PMCID: PMC7488394 DOI: 10.1186/s13195-020-00675-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Background To clarify whether atherosclerosis of the carotid and intracranial arteries is related to Alzheimer’s disease (AD) pathology in vivo, we investigated the associations of carotid and intracranial artery stenosis with cerebral beta-amyloid (Aβ) deposition and neurodegeneration in middle- and old-aged individuals. Given different variations of the pathologies between cognitive groups, we focused separately on cognitively normal (CN) and cognitively impaired (CI) groups. Methods A total of 281 CN and 199 CI (mild cognitive impairment and AD dementia) subjects underwent comprehensive clinical assessment, [11C] Pittsburgh compound B-positron emission tomography, and magnetic resonance (MR) imaging including MR angiography. We evaluated extracranial carotid and intracranial arteries for the overall presence, severity (i.e., number and degree of narrowing), and location of stenosis. Results We found no associations between carotid and intracranial artery stenosis and cerebral Aβ burden in either the CN or the CI group. In terms of neurodegeneration, exploratory univariable analyses showed associations between the presence and severity of stenosis and regional neurodegeneration biomarkers (i.e., reduced hippocampal volume [HV] and cortical thickness in the AD-signature regions) in both the CN and CI groups. In confirmatory multivariable analyses controlling for demographic covariates and diagnosis, the association between number of stenotic intracranial arteries ≥ 2 and reduced HV in the CI group remained significant. Conclusions Neither carotid nor intracranial artery stenosis appears to be associated with brain Aβ burden, while intracranial artery stenosis is related to amyloid-independent neurodegeneration, particularly hippocampal atrophy.
Collapse
Affiliation(s)
- Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hye Jeong Choi
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Eunjung Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Younghwa Lee
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea. .,Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | | |
Collapse
|
39
|
Migrino RQ, Karamanova N, Truran S, Serrano GE, Davies HA, Madine J, Beach TG. Cerebrovascular medin is associated with Alzheimer's disease and vascular dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12072. [PMID: 32875054 PMCID: PMC7447901 DOI: 10.1002/dad2.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Medin, an aging-associated amyloidogenic protein, induces cerebrovascular dysfunction and inflammation. We investigated the relationship between cerebrovascular medin and Alzheimer's disease (AD) and vascular dementia (VaD). METHODS Cerebral arteriole medin was quantified from 91 brain donors with no dementia (ND), AD, VaD, or combined AD and VaD. Correlation analyses evaluated the relationship between arteriole medin, and plaques, tangles, or white matter lesions (WML). Receiver operating characteristic and regression analyses assessed whether medin is predictive of AD or VaD versus other cerebrovascular pathologies (circle of Willis [CoW] atherosclerosis and cerebral amyloid angiopathy [CAA]). RESULTS Arteriole medin was higher in those with AD, VaD, or combined AD/VaD versus ND (P < .05), and correlated with tangle, plaque, and WML, but not CAA or CoW atherosclerosis. Among cerebrovascular pathologies, medin was the strongest predictor of AD diagnosis, whereas CoW atherosclerosis and arteriole medin were predictors of VaD. DISCUSSION Cerebral arteriole medin is associated with and could be a potential novel risk factor or biomarker for AD and VaD.
Collapse
Affiliation(s)
- Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
- University of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | - Seth Truran
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | | | | | | | | |
Collapse
|
40
|
Eglit GML, Weigand AJ, Nation DA, Bondi MW, Bangen KJ. Hypertension and Alzheimer's disease: indirect effects through circle of Willis atherosclerosis. Brain Commun 2020; 2:fcaa114. [PMID: 33543127 PMCID: PMC7846096 DOI: 10.1093/braincomms/fcaa114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hypertension is common among older adults and is believed to increase susceptibility to Alzheimer's disease, but mechanisms underlying this relationship are unclear. Hypertension also promotes circle of Willis atherosclerosis, which contributes to cerebral hypoperfusion and arterial wall stiffening, two potential mechanisms linking hypertension to Alzheimer's disease. To examine the role of circle of Willis atherosclerosis in the association between hypertension and Alzheimer's disease neuropathology, we analysed post-mortem neuropathological data on 2198 decedents from the National Alzheimer's Coordinating Center database [mean (standard deviation) age at last visit 80.51 (1.95) and 47.1% female] using joint simultaneous (i.e. mediation) modelling. Within the overall sample and among Alzheimer's dementia decedents, hypertension was indirectly associated with increased neuritic plaques and neurofibrillary tangles through its association with circle of Willis atherosclerosis. Similar indirect effects were observed for continuous measures of systolic and diastolic blood pressure. These results suggest that hypertension may promote Alzheimer's disease pathology indirectly through intracranial atherosclerosis by limiting cerebral blood flow and/or dampening perivascular clearance. Circle of Willis atherosclerosis may be an important point of convergence between vascular risk factors, cerebrovascular changes and Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Graham M L Eglit
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Disorders and Neurological Impairments, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark W Bondi
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine J Bangen
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
41
|
Wang X, Zhao Y, Ji X, Sang S, Shao S, Yan P, Li S, Li J, Wang G, Lu M, Du Y, Xue F, Qiu C, Sun Q. Kongcun Town Asymptomatic Intracranial Artery Stenosis study in Shandong, China: cohort profile. BMJ Open 2020; 10:e036454. [PMID: 32665348 PMCID: PMC7359188 DOI: 10.1136/bmjopen-2019-036454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The population-based Kongcun Town Asymptomatic Intracranial Artery Stenosis (KT-aICAS) study aims to investigate the prevalence of aICAS and major cardiovascular risk factors (CRFs) or biomarkers related to the development and prognosis of aICAS. PARTICIPANTS The KT-aICAS study included 2311 rural residents who were aged ≥40 years and living in Kongcun Town, Shandong Province, China. Baseline examination was conducted from October 2017 to October 2018, during which information on demographics, socioeconomics, personal and family medical history, and lifestyle factors was collected through face-to-face interviews, physical examination and blood tests. aICAS was initially screened using transcranial Doppler examination and then diagnosed using magnetic resonance angiography. Atherosclerosis in carotid arteries was diagnosed via carotid ultrasonography. High-resolution MRI was further used to evaluate the vessel wall of aICAS. Neuropsychological assessments were performed in the participants diagnosed with aICAS and the age-matched and sex-matched controls. FINDINGS TO DATE Of the 2311 participants, 2027 (87.7%) completed the diagnostic procedure and aICAS was detected in 154 persons, resulting in an overall prevalence of 7.6%. The prevalence of aICAS increased with advancing age from 5.1% in participants aged 40-49 years to 12.7% in those aged ≥70 years (p<0.001). aICAS was detected in 305 intracranial arteries, including 221 (72.5%) in the anterior circulation and 84 (27.5%) in the posterior circulation (p<0.001). In addition, major CRFs were highly prevalent among middle-aged and elderly rural dwellers who were free of clinical stroke. FUTURE PLANS Follow-up examinations will be performed every 3 years following the baseline examination. This study will increase our knowledge about the natural history of aICAS and facilitate studies of aICAS-associated disorders among rural-dwelling Chinese adults, such as ischaemic stroke and vascular cognitive impairment. TRIAL REGISTRATION NUMBER ChiCTR1800017197.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Zhao
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaokang Ji
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Shaowei Sang
- Department of Clinical Epidemiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Sai Shao
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, Shandong, China
| | - Peng Yan
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shan Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jifeng Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangbin Wang
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, Shandong, China
| | - Ming Lu
- Department of Clinical Epidemiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
42
|
Zwartbol MHT, van der Kolk AG, Ghaznawi R, van der Graaf Y, Hendrikse J, Geerlings MI. Intracranial atherosclerosis on 7T MRI and cognitive functioning: The SMART-MR study. Neurology 2020; 95:e1351-e1361. [PMID: 32631923 DOI: 10.1212/wnl.0000000000010199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/11/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between intracranial atherosclerosis (ICAS) and cognitive functioning in patients with a history of vascular disease. METHODS Within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study, cross-sectional analyses were performed in 130 patients (mean ± SD age 68 ± 9 years) with 7T vessel wall MRI data. Vessel wall lesions were rated according to established criteria and summed into a circulatory and artery-specific ICAS burden. Associations between ICAS burden and Z scores of memory, executive functioning, working memory, and processing speed were estimated using linear regression analyses adjusted for age, sex, education, reading ability, and vascular risk factors. RESULTS A total of 125 patients (96%) had ≥1 vessel wall lesion; the mean ICAS burden was 8.5 ± 5.7. A statistically nonsignificant association was found between total ICAS burden and memory (b = -0.03 per +1 lesion; 95% confidence interval [CI] -0.05 to 0.00). No associations were found for the other domains. A statistically significant association was found for ICAS burden of the posterior cerebral artery (PCA) and memory (b = -0.12 per +1 lesion; 95% CI -0.23 to -0.01) and executive functioning (b = -0.10 per +1 lesion; 95% CI -0.19 to -0.01). Statistically nonsignificant associations were found for the anterior cerebral artery (ACA) burden and memory (b = -0.13 per +1 lesion; 95% CI -0.26 to 0.01) and executive functioning (b = -0.11 per +1 lesion; 95% CI -0.22 to 0.01). Additional adjustments for large infarcts, white matter hyperintensities, lacunes, and ≥50% carotid stenosis produced similar results. CONCLUSIONS Our results suggest an artery-specific vulnerability of memory and executive functioning to ICAS, possibly due to strategic brain regions involved with these cognitive domains, which are located in the arterial territory of the PCA and ACA.
Collapse
Affiliation(s)
- Maarten H T Zwartbol
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Anja G van der Kolk
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Rashid Ghaznawi
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Yolanda van der Graaf
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Jeroen Hendrikse
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Mirjam I Geerlings
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands.
| | | |
Collapse
|
43
|
Filshtein TJ, Dugger BN, Jin LW, Olichney JM, Farias ST, Carvajal-Carmona L, Lott P, Mungas D, Reed B, Beckett LA, DeCarli C. Neuropathological Diagnoses of Demented Hispanic, Black, and Non-Hispanic White Decedents Seen at an Alzheimer's Disease Center. J Alzheimers Dis 2020; 68:145-158. [PMID: 30775996 DOI: 10.3233/jad-180992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our nation is becoming increasingly diverse; however, few autopsy studies examine multiple ethnoracial groups, especially Hispanics. We examined differences in neuropathological diagnoses of 423 deceased participants with dementia from three ethnoracial groups (35 Black, 28 Hispanic, and 360 non-Hispanic White) evaluated at the University of California Davis Alzheimer's Disease Center. We used novel applications of bootstrap resampling and logistic regression standardization to project neuropathological diagnostic rates for non-Hispanic Whites to minority sample characteristics to improve inference of findings. Alzheimer's disease (AD) without significant cerebrovascular disease (CVD) or other dementia-related pathologies (AD (non-mixed)) was present in 15 Black (43%), 4 Hispanic (14%), and 156 (43%) non-Hispanic Whites. CVD sufficient to contribute to dementia was confirmed in 14 Black (40%), 15 Hispanic (54%), and 101 (28%) non-Hispanic White decedents. The observed CVD prevalence of 40% in Blacks exceeded the predicted 29% [95% CI: 22%-36%]. Despite being outside the 95% confidence interval, the difference between observed and predicted was not statistically significant after bootstrap testing. Conversely, for Hispanics, the observed proportion at 54% exceeded significantly the predicted prevalence of 24% from non-Hispanic Whites [95% CI: 16%-34%], avg. p = 0.008). An identical analysis using AD (non-mixed) as the outcome predicted AD (non-mixed) in Blacks averaging 41% [95% CI: 34%-48%], nearly equal to observed prevalence. For Hispanics, however, the observed proportion at 14%, was well below predictions (mean = 42%, 95% CI: 32%-53%], avg. p = 0.008). We conclude mixed diagnoses and CVD are more common in Hispanic and Black decedents than Non-Hispanic Whites with dementia in our cohort. The increased prevalence of vascular co-morbidity may be a potential opportunity to intervene more effectively in dementia treatment of those individuals.
Collapse
Affiliation(s)
- Teresa Jenica Filshtein
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA.,UC Davis MIND Institute, Sacramento, CA, USA
| | - John M Olichney
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Sarah T Farias
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Luis Carvajal-Carmona
- Department of Biochemistry and Molecular Medicine and Genome Center, University of California, Davis, Sacramento, CA, USA
| | - Paul Lott
- Genome Center, University of California, Davis, Sacramento, CA, USA
| | - Dan Mungas
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Bruce Reed
- Center for Scientific Review, Division of Neuroscience, Development and Aging, NIH, Bethesda, MD, USA
| | - Laurel A Beckett
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, Sacramento, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.,IDeA Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
44
|
Shared proteomic effects of cerebral atherosclerosis and Alzheimer's disease on the human brain. Nat Neurosci 2020; 23:696-700. [PMID: 32424284 PMCID: PMC7269838 DOI: 10.1038/s41593-020-0635-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
Cerebral atherosclerosis contributes to dementia via unclear processes. We performed proteomic sequencing of dorsolateral prefrontal cortex in 438 older individuals and found associations between cerebral atherosclerosis and reduced synaptic signaling and RNA splicing and increased oligodendrocyte development and myelination. Consistently, single-cell RNA sequencing showed cerebral atherosclerosis associated with higher oligodendrocyte abundance. A subset of proteins and modules associated with cerebral atherosclerosis was also associated with Alzheimer’s disease, suggesting shared mechanisms.
Collapse
|
45
|
Suryadevara V, Klüppel M, Monte FD, Willis MS. The Unraveling: Cardiac and Musculoskeletal Defects and Their Role in Common Alzheimer Disease Morbidity and Mortality. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1609-1621. [PMID: 32407731 DOI: 10.1016/j.ajpath.2020.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is characterized by deterioration of cognitive capabilities with an estimated 44 million individuals worldwide living with it. Beyond memory deficits, the most common AD co-morbidities include swallowing defects (muscle), fractures (bone, muscle), and heart failure. The underlying causes of these co-morbidities and their role in AD pathophysiology are currently unknown. This review is the first to summarize the emerging picture of the cardiac and musculoskeletal deficits in human AD. We present the involvement of the heart, characterized by diastolic heart failure, the presence of amyloid deposits, and electrophysiological changes, compared with age-matched control subjects. The characteristic musculoskeletal defects in AD come from recent clinical studies and include potential underlying mechanisms (bone) in animal models. These studies detail a primary muscle weakness (without a loss of muscle mass) in patients with mild cognitive impairment, with progression of cognitive impairment to AD associating with ongoing muscle weakness and the onset of muscle atrophy. We conclude by reviewing the loss of bone density in patients with AD, paralleling the increase in fracture and fall risk in specific populations. These studies paint AD as a systemic disease in broad strokes, which may help elucidate AD pathophysiology and to allow for new ways of thinking about therapeutic interventions, diagnostic biomarkers, and the pathogenesis of this multidisciplinary disease.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Klüppel
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Section of Cardiology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
46
|
Abner EL, Elahi FM, Jicha GA, Mustapic M, Al-Janabi O, Kramer JH, Kapogiannis D, Goetzl EJ. Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy. FASEB J 2020; 34:5967-5974. [PMID: 32157747 PMCID: PMC7233139 DOI: 10.1096/fj.202000034r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
Small cerebral vascular disease (SCeVD) demonstrated by white matter hyperintensity (WMH) on MRI contributes to the development of dementia in Alzheimer's disease (AD), but it has not been possible to correlate onset, severity, or protein components of SCeVD with characteristics of WMH in living patients. Plasma endothelial-derived exosomes (EDEs) were enriched by two-step immunoabsorption from four groups of participants with no clinical evidence of cerebrovascular disease: cognitively normal (CN) without WMH (CN without SCeVD, n = 20), CN with SCeVD (n = 22), preclinical AD (pAD) + mild cognitive impairment (MCI) without SCeVD (pAD/MCI without SCeVD, n = 22), and pAD/MCI with SCeVD (n = 16) for ELISA quantification of cargo proteins. Exosome marker CD81-normalized EDE levels of the cerebrovascular-selective biomarkers large neutral amino acid transporter 1 (LAT-1), glucose transporter type 1 (Glut-1), and permeability-glycoprotein (p-GP, ABCB1) were similarly significantly higher in the CN with SCeVD and pAD/MCI with SCeVD groups than their corresponding control groups without SCeVD. CD81-normalized EDE levels of Aβ40 and Aβ42 were significantly higher in the pAD/MCI with SCeVD group but not in the CN with SCeVD group relative to controls without SCeVD. Levels of normal cellular prion protein (PrPc), a receptor for amyloid peptides, and phospho-181T-tau were higher in both CN and pAD/MCI with SCeVD groups than in the corresponding controls. High EDE levels of Aβ40, Aβ42, and phospho-181T-tau in patients with WMH suggesting SCeVD appear at the pre-clinical or MCI stage of AD and therapeutic lowering of neurotoxic peptide levels may delay progression of AD angiopathy.
Collapse
Affiliation(s)
- Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Maja Mustapic
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Omar Al-Janabi
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Kapogiannis
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Edward J. Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Campus for Jewish Living, San Francisco, CA, USA
| |
Collapse
|
47
|
Xie B, Shi X, Xing Y, Tang Y. Association between atherosclerosis and Alzheimer's disease: A systematic review and meta-analysis. Brain Behav 2020; 10:e01601. [PMID: 32162494 PMCID: PMC7177569 DOI: 10.1002/brb3.1601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the relationship between atherosclerosis and Alzheimer's disease (AD), we conducted a systematic review and meta-analysis to study the difference of carotid intima-media thickness (CIMT) and the prevalence of atherosclerosis between AD patients and non-AD controls. METHODS The studies on the association between atherosclerosis and AD were manually searched in PubMed, Embase, Cochrane Library, and CNKI (China National Knowledge Infrastructure) spanned to September 2018 according to PRISMA (the Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS Thirteen studies were included in the final analysis, seven studies with data on the mean CIMT (610 cases and 417 controls) and ten studies reporting on the prevalence of atherosclerosis (1,698 cases and 6,452 controls). Compared with controls, AD group showed a significantly higher CIMT (overall standard mean difference = 0.94; 95% CI, 0.48-1.40; p < .0001) and an increased prevalence of atherosclerosis (OR = 1.46; 95% CI, 1.26-1.68; p < .0001). CONCLUSIONS Atherosclerosis is significantly associated with AD. CIMT might be a useful marker to predict the risk of AD and assess the vascular burden. The finding is also important for possible prevention and treatment of AD in the future.
Collapse
Affiliation(s)
- Beijia Xie
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Xinrui Shi
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yi Xing
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yi Tang
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersNeurodegenerative Laboratory of Ministry of Education of the People's Republic of ChinaBeijingChina
| |
Collapse
|
48
|
Wijesinghe P, Steinbusch HWM, Shankar SK, Yasha TC, De Silva KRD. Circle of Willis abnormalities and their clinical importance in ageing brains: A cadaveric anatomical and pathological study. J Chem Neuroanat 2020; 106:101772. [PMID: 32165168 DOI: 10.1016/j.jchemneu.2020.101772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
The circle of Willis (CW) located at the base of the brain forms an important collateral network to maintain adequate cerebral perfusion, especially in clinical situations requiring compensatory changes in blood flow. Morphopathological changes in the CW may relate to the severity of the symptoms of certain neurodegenerative and cerebrovascular disorders. The purpose of this study was to investigate the CW abnormalities and their clinical importance in ageing brains. The CW was examined macroscopically in 73 formalin-fixed samples to determine the degree of stenosis of each CW component, atherosclerosis of the CW, hypoplasia (threshold diameter < 1 mm), anatomical variations and aneurysms. Age-related neurodegenerative and cerebrovascular pathologies were screened using immunohistopathological techniques on specific neuroanatomical regions based on standard guidelines. The majority of the elderly brains -93 % (68/73) presented at least a single hypoplastic CW component at death. Anatomical variations were mostly identified in communicating arteries, followed by proximal posterior and anterior cerebral arteries. Arterial bifurcations were found to be the predominant sites for cerebral aneurysms. More than 90 % of the elderly brains presented CW atherosclerosis at death. CW abnormalities did not show any strong associations with neurodegenerative pathologies except for an "at risk" significant association observed between Braak's neurofibrillary tangle (NFT) stages 1-VI and CW atherosclerosis grades ≥ mild (p = 0.05). However, a significant association was observed between microscopic infarcts in deep white matter and hypoplasia in communicating arteries with Fisher's exact test (p < 0.05). Overall, CW abnormalities were predominant in the ageing brains, however their relationships to the occurrence and severity of the symptoms of neurodegenerative pathologies were found to be low.
Collapse
Affiliation(s)
- P Wijesinghe
- Interdisciplinary Center for Innovation in Biotechnology & Neuroscience, Genetic Diagnostic & Research Laboratory and Human Brain Tissue and DNA Repository, Dept. Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - H W M Steinbusch
- Dept. Translational Neuroscience, Faculty Health, Medicine & Life Sciences, University of Maastricht, Maastricht, Netherlands; EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - S K Shankar
- Dept. Neuropathology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - T C Yasha
- Dept. Neuropathology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - K R D De Silva
- Interdisciplinary Center for Innovation in Biotechnology & Neuroscience, Genetic Diagnostic & Research Laboratory and Human Brain Tissue and DNA Repository, Dept. Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This article provides an overview of vascular cognitive impairment; discusses its epidemiology, subtypes, and associations with other neurodegenerative diseases; and reviews the diagnostic evaluation and management of these disorders. RECENT FINDINGS Cerebrovascular disease is a common cause of dementia and frequently coexists with neurodegenerative causes. The heterogeneity of mechanisms leading to vascular cognitive impairment makes developing unifying clinical and research criteria difficult. Recognizing the neuroimaging hallmarks of different forms of vascular cognitive impairment can allow for individualized treatment and management. In individuals with mild vascular cognitive impairment, aerobic exercise appears to be a promising treatment but requires further investigation. SUMMARY Vascular cognitive impairment can be caused by several mechanisms. While treating vascular risk factors is rational to prevent worsening of cognitive impairment, well-designed studies are needed to demonstrate efficacy.
Collapse
|
50
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|