1
|
Beccari MS, Arnold-Garcia O, Baughn MW, Artates JW, McAlonis-Downes M, Lim J, Leyva-Cázares DF, Rubio-Lara HI, Ramirez-Rodriguez A, Bernal-Buenrostro CN, Murgia-Bay B, Rangel CK, Kim DH, Melamed Z, Lutz CM, Lagier-Tourenne C, Corbett KD, López-Erauskin J, Cleveland DW. Stathmin-2 enhances motor axon regeneration after injury independent of its binding to tubulin. Proc Natl Acad Sci U S A 2025; 122:e2502294122. [PMID: 40392845 DOI: 10.1073/pnas.2502294122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/19/2025] [Indexed: 05/22/2025] Open
Abstract
Stathmin-2 (also known as SCG10) is encoded by the STMN2 gene, whose mRNA is one of the most abundantly expressed in human motor neurons. In almost all instances of ALS and other TDP-43 proteinopathies, stathmin-2 encoding mRNAs are cryptically spliced and polyadenylated in motor neurons, a pathogenic consequence of nuclear loss of function of the RNA binding protein TDP-43. While stathmin-2 has been shown to enhance regeneration after axonal injury to axons of cultured motor neurons, here, we show that after crush injury within the adult murine nervous system of wild-type or stathmin-2-null mice, the presence of stathmin-2 reduces axonal and neuromuscular junction degeneration and stimulates reinnervation and functional recovery. Mechanistically, although stathmin-2 has been proposed to function through direct binding to α/β tubulin heterodimers and correspondingly to affect microtubule assembly and dynamics, stathmin-2's role in axon regeneration after axotomy is shown to be independent of its tubulin binding abilities.
Collapse
Affiliation(s)
- Melinda S Beccari
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Olatz Arnold-Garcia
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Carlos III Institute (ISCIII), Spanish Ministry of Sciences and Innovation, Madrid 28029, Spain
| | - Michael W Baughn
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jonathan W Artates
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Melissa McAlonis-Downes
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jaisen Lim
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Dulce Fernanda Leyva-Cázares
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Programa de Licenciatura en Medicina, Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California 22427, México
| | - Hugo Isaac Rubio-Lara
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Programa de Licenciatura en Medicina, Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California 22427, México
| | - Andrea Ramirez-Rodriguez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Programa de Licenciatura en Medicina, Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California 22427, México
| | - Carol N Bernal-Buenrostro
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Programa de Licenciatura en Medicina, Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California 22427, México
| | - Brian Murgia-Bay
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Programa de Licenciatura en Medicina, Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Baja California 22427, México
| | - Carolina K Rangel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht 3584 CS, The Netherlands
| | - Dong Hyun Kim
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ze'ev Melamed
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Cathleen M Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME 04609
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Broad Institute of Harvard University and MIT, Cambridge, MA 02142
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Jone López-Erauskin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Kellett EA, Bademosi AT, Walker AK. Molecular mechanisms and consequences of TDP-43 phosphorylation in neurodegeneration. Mol Neurodegener 2025; 20:53. [PMID: 40340943 PMCID: PMC12063406 DOI: 10.1186/s13024-025-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regulators of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislocalisation, liquid-liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from various techniques and models, this review highlights both the discrepancies and unresolved aspects in the understanding of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, and includes regulation of liquid-liquid phase separation, subcellular mislocalisation, and degradation. We further suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the complex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Elise A Kellett
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
3
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Liu Y, Xiang J, Gong H, Yu T, Gao M, Huang Y. The Regulation of TDP-43 Structure and Phase Transitions: A Review. Protein J 2025; 44:113-132. [PMID: 39987392 DOI: 10.1007/s10930-025-10261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
The transactive response DNA binding protein 43 (TDP-43) is an RNA/DNA-binding protein that is involved in a number of cellular functions, including RNA processing and alternative splicing, RNA transport and translation, and stress granule assembly. It has attracted significant attention for being the primary component of cytoplasmic inclusions in patients with amyotrophic lateral sclerosis or frontotemporal dementia. Mounting evidence suggests that both cytoplasmic aggregation of TDP-43 and loss of nuclear TDP-43 function contribute to TDP-43 pathology. Furthermore, recent studies have demonstrated that TDP-43 is an important component of many constitutive or stress-induced biomolecular condensates. Dysregulation or liquid-to-gel transition of TDP-43 condensates can lead to alterations in TDP-43 function and the formation of TDP-43 amyloid fibrils. In this review, we summarize recent research progress on the structural characterization of TDP-43 and the TDP-43 phase transition. In particular, the roles that disease-associated genetic mutations, post-translational modifications, and extrinsic stressors play in the transitions among TDP-43 monomers, liquid condensates, solid condensates, and fibrils are discussed. Finally, we discuss the effectiveness of available regulators of TDP-43 phase separation and aggregation. Understanding the underlying mechanisms that drive the pathological transformation of TDP-43 could help develop therapeutic strategies for TDP-43 pathology.
Collapse
Affiliation(s)
- Yanqing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Jiani Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Hang Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Tianxiong Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
5
|
Santiago J, Pocevičiūtė D, The Netherlands Brain Bank, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2025; 35:e13304. [PMID: 39251230 PMCID: PMC11835440 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | | | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
6
|
Rabhi C, Babault N, Martin C, Desforges B, Maucuer A, Joshi V, Pankivskyi S, Feng Y, Bollot G, Rattenbach R, Pastré D, Bouhss A. TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm. Commun Biol 2025; 8:136. [PMID: 39875548 PMCID: PMC11775348 DOI: 10.1038/s42003-025-07456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations. We show that C-terminus phosphorylation prevents the recruitment of TDP-43 in mRNA-rich stress granules only under acute stress conditions because of a low affinity for mRNA but not under mild stress conditions. In addition, the self-assembly of the C-terminus is negatively regulated by phosphorylation in the cytoplasm which in turn promotes TDP-43 nuclear import. We anticipate that reducing TDP-43 C-terminus self-assembly in the cytoplasm may be an interesting strategy to reverse TDP-43 nuclear depletion in neurodegenerative diseases.
Collapse
Affiliation(s)
- Célia Rabhi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
- 4P-Pharma, Campus Pasteur Lille, 59000, Lille, France
| | | | - Céline Martin
- 4P-Pharma, Campus Pasteur Lille, 59000, Lille, France
| | - Bénédicte Desforges
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Alexandre Maucuer
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Serhii Pankivskyi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | - Yitian Feng
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France
| | | | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.
| |
Collapse
|
7
|
Gawor K, Tomé SO, Vandenberghe R, Van Damme P, Vandenbulcke M, Otto M, von Arnim CAF, Ghebremedhin E, Ronisz A, Ospitalieri S, Blaschko M, Thal DR. Amygdala-predominant α-synuclein pathology is associated with exacerbated hippocampal neuron loss in Alzheimer's disease. Brain Commun 2024; 6:fcae442. [PMID: 39659977 PMCID: PMC11631359 DOI: 10.1093/braincomms/fcae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Misfolded α-synuclein protein accumulates in 43-63% of individuals with symptomatic Alzheimer's disease. Two main patterns of comorbid α-synuclein pathology have been identified: caudo-rostral and amygdala-predominant. α-Synuclein aggregates have been shown to interact with the transactive response DNA-binding protein 43 (TDP-43) and abnormally phosphorylated tau protein. All these proteins accumulate in the amygdala, which is anatomically connected with the hippocampus. However, the specific role of amygdala-predominant α-synuclein pathology in the progression of Alzheimer's disease and hippocampal degeneration remains unclear. In this cross-sectional study, we analysed 291 autopsy brains from both demented and non-demented elderly individuals neuropathologically. Neuronal density in the CA1 region of the hippocampus was assessed for all cases. We semiquantitatively evaluated α-synuclein pathology severity across seven brain regions and calculated a ratio of limbic to brainstem α-synuclein pathology severity, which was used to stratify the cases into two distinct spreading patterns. In the 99 symptomatic Alzheimer's disease cases, we assessed severity of limbic-predominant age-related TDP-43 neuropathological changes and CA1 phosphorylated tau density. We performed triple fluorescence staining of medial temporal lobe samples with antibodies against phosphorylated TDP-43, α-synuclein and phosphorylated tau. Finally, we employed path analysis to determine the association network of various parameters of limbic pathology in Alzheimer's disease cases and CA1 neuronal density. We identified an association between the amygdala-predominant αSyn pathology pattern and decreased neuronal density in the CA1 region. We found that Alzheimer's disease cases with an amygdala-predominant α-synuclein pattern exhibited the highest TDP-43 severity and prevalence of TDP-43 inclusions in the dentate gyrus among all groups, while those with the caudo-rostral pattern had the lowest severity of Alzheimer's disease neuropathological changes. We observed colocalization of TDP-43, aggregated α-synuclein and hyperphosphorylated tau in cytoplasmic inclusions within hippocampal and amygdala neurons of Alzheimer's disease cases. Path analysis modelling suggests that the relationship between amygdala-predominant α-synuclein pathology and CA1 neuron loss is partially mediated by hippocampal tau and TDP-43 aggregates. Our findings suggest that Alzheimer's disease cases with amygdala-predominant α-synuclein pathology may constitute a distinct group with more severe hippocampal damage, a higher TDP-43 burden and potential interactions among α-synuclein, TDP-43 and hyperphosphorylated tau.
Collapse
Affiliation(s)
- Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
- Laboratory for Neurobiology, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt am Main 60596, Germany
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Matthew Blaschko
- Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven 3000, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
8
|
Wen J, Li Y, Qin Y, Yan L, Zhang K, Li A, Wang Z, Yu F, Lai J, Yang W, Liu YU, Qin D, Su H. Lycorine protects motor neurons against TDP-43 proteinopathy-induced degeneration in cross-species models with amyotrophic lateral sclerosis. Pharmacol Res 2024; 210:107518. [PMID: 39603574 DOI: 10.1016/j.phrs.2024.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Aggregation of TAR-DNA binding protein-43 (TDP-43) is a pathological feature present in nearly 97 % cases of amyotrophic lateral sclerosis (ALS), making it an attractive target for pathogenic studies and drug screening. Here, we have performed a high-throughput screening of 1500 compounds from a natural product library and identified that lycorine, a naturally occurring alkaloid, significantly decreases the level of TDP-43A315T in a cellular model. We further demonstrate that lycorine reduces the level of TDP-43A315T both through inhibiting its synthesis and by promoting its degradation by the ubiquitin-proteasome system (UPS). Importantly, treatment with lycorine significantly attenuates TDP-43 proteinopathy and improves functional recovery in TDP-43A315T-expressing Caenorhabditis elegans and mouse models. These findings suggest that lycorine is a promising lead compound that has therapeutic potential for ALS.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yanzhu Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ke Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ziying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jianheng Lai
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Wei Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; GuiZhou University Medical College, Guiyang 550025, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
9
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
10
|
Nakayama Y, Chambers JK, Takaichi Y, Uchida K. Cytoplasmic aggregation of TDP43 and topographic correlation with tau and α-synuclein accumulation in the rTg4510 mouse model of tauopathy. J Neuropathol Exp Neurol 2024; 83:833-842. [PMID: 38879441 DOI: 10.1093/jnen/nlae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
In patients with TDP43 proteinopathy, phosphorylated TDP43 (p-TDP43) accumulates in the cytoplasm of neurons. The accumulation of p-TDP43 has also been reported in patients with tauopathy and α-synucleinopathy. We investigated spatiotemporal changes in p-TDP43 accumulation in the brains of rTg4510 mice that overexpressed human mutant tau (P301L) and exhibited hyperphosphorylated tau (hp-tau) and phosphorylated αSyn (p-αSyn) accumulation. Immunohistochemically, p-TDP43 aggregates were observed in the cytoplasm of neurons, which increased with age. A significant positive correlation was observed between the number of cells with p-TDP43 aggregates and hp-tau and p-αSyn aggregates. Suppression of the human mutant tau (P301L) expression by doxycycline treatment reduces the accumulation of p-TDP43, hp-tau, and p-αSyn. Proteinase K-resistant p-TDP43 aggregates were found in regions with high hp-tau, and p-αSyn accumulation. Western blotting of the sarkosyl-insoluble fraction revealed bands of monomeric TDP43 and p-TDP43. These results indicate that the accumulation of mouse p-TDP43 is associated with the accumulation of human mutant tau (P301L) in rTg4510 mouse brains. The accumulation of hp-tau and p-αSyn may promote sarkosyl-insoluble p-TDP43 aggregates that are resistant to proteinase K. The synergistic effects of tau, TDP43, and αSyn may be involved in the pathology of proteinopathies, leading to the accumulation of multiple abnormal proteins.
Collapse
Affiliation(s)
- Yutaro Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Ikeda A, Meng H, Taniguchi D, Mio M, Funayama M, Nishioka K, Yoshida M, Li Y, Yoshino H, Inoshita T, Shiba-Fukushima K, Okubo Y, Sakurai T, Amo T, Aiba I, Saito Y, Saito Y, Murayama S, Atsuta N, Nakamura R, Tohnai G, Izumi Y, Morita M, Tamura A, Kano O, Oda M, Kuwabara S, Yamashita T, Sone J, Kaji R, Sobue G, Imai Y, Hattori N. CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca 2+ homeostasis. PNAS NEXUS 2024; 3:pgae319. [PMID: 39131911 PMCID: PMC11316225 DOI: 10.1093/pnasnexus/pgae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
CHCHD2 and CHCHD10, linked to Parkinson's disease and amyotrophic lateral sclerosis-frontotemporal dementia (ALS), respectively, are mitochondrial intermembrane proteins that form a heterodimer. This study aimed to investigate the impact of the CHCHD2 P14L variant, implicated in ALS, on mitochondrial function and its subsequent effects on cellular homeostasis. The missense variant of CHCHD2, P14L, found in a cohort of patients with ALS, mislocalized CHCHD2 to the cytoplasm, leaving CHCHD10 in the mitochondria. Drosophila lacking the CHCHD2 ortholog exhibited mitochondrial degeneration. In contrast, human CHCHD2 P14L, but not wild-type human CHCHD2, failed to suppress this degeneration, suggesting that P14L is a pathogenic variant. The mitochondrial Ca2+ buffering capacity was reduced in Drosophila neurons expressing human CHCHD2 P14L. The altered Ca2+-buffering phenotype was also observed in cultured human neuroblastoma SH-SY5Y cells expressing CHCHD2 P14L. In these cells, transient elevation of cytoplasmic Ca2+ facilitated the activation of calpain and caspase-3, accompanied by the processing and insolubilization of TDP-43. These observations suggest that CHCHD2 P14L causes abnormal Ca2+ dynamics and TDP-43 aggregation, reflecting the pathophysiology of ALS.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Muneyo Mio
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yohei Okubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yufuko Saito
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Genki Tohnai
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Asako Tamura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima 728-0001, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Kita-ku, Okayama 700-8558, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Tokushima University, Tokushima 770-8503, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Tazwar M, Evia AM, Ridwan AR, Leurgans SE, Bennett DA, Schneider JA, Arfanakis K. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is associated with abnormalities in white matter structural integrity and connectivity: An ex-vivo diffusion MRI and pathology investigation. Neurobiol Aging 2024; 140:81-92. [PMID: 38744041 PMCID: PMC11182335 DOI: 10.1016/j.neurobiolaging.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Limbic predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is common in older adults and is associated with neurodegeneration, cognitive decline and dementia. In this MRI and pathology investigation we tested the hypothesis that LATE-NC is associated with abnormalities in white matter structural integrity and connectivity of a network of brain regions typically harboring TDP-43 inclusions in LATE, referred to here as the "LATE-NC network". Ex-vivo diffusion MRI and detailed neuropathological data were collected on 184 community-based older adults. Linear regression revealed an independent association of higher LATE-NC stage with lower diffusion anisotropy in a set of white matter connections forming a pattern of connectivity that is consistent with the stereotypical spread of this pathology in the brain. Graph theory analysis revealed an association of higher LATE-NC stage with weaker integration and segregation in the LATE-NC network. Abnormalities were significant in stage 3, suggesting that they are detectable in later stages of the disease. Finally, LATE-NC network abnormalities were associated with faster cognitive decline, specifically in episodic and semantic memory.
Collapse
Affiliation(s)
- Mahir Tazwar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Abdur Raquib Ridwan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
13
|
Zheng X, Wang M, He Q, Chen S, Simayi D, Ma X, Zhao J, Sun X, Yang P, Mao Q, Xia H. Production and characterization of novel monoclonal antibodies against pathological human TDP-43 proteins. J Neuropathol Exp Neurol 2024; 83:655-669. [PMID: 38728009 PMCID: PMC11258413 DOI: 10.1093/jnen/nlae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xia Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| |
Collapse
|
14
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
15
|
Robinson AC, Davidson YS, Minshull J, Lally I, Walker L, Mann DMA, Roncaroli F. Retrospective neuropathological diagnosis of TDP-43 proteinopathies: Factors affecting immunoreactivity of phosphorylated TDP-43 in fixed post-mortem brain tissue. Neuropathology 2024; 44:173-179. [PMID: 37528690 DOI: 10.1111/neup.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/27/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Yvonne S Davidson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - James Minshull
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Imogen Lally
- Department of Cellular Pathology, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Liam Walker
- Research and Innovation, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - David M A Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Federico Roncaroli
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
16
|
Whitwell JL. Atypical clinical variants of Alzheimer's disease: are they really atypical? Front Neurosci 2024; 18:1352822. [PMID: 38482142 PMCID: PMC10933030 DOI: 10.3389/fnins.2024.1352822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/15/2024] [Indexed: 02/12/2025] Open
Abstract
Alzheimer's disease (AD) is a neuropathological disorder defined by the deposition of the proteins, tau and β-amyloid. Alzheimer's disease is commonly thought of as a disease of the elderly that is associated with episodic memory loss. However, the very first patient described with AD was in her 50's with impairments in multiple cognitive domains. It is now clear that AD can present with multiple different non-amnestic clinical variants which have been labeled as atypical variants of AD. Instead of these variants of AD being considered "atypical," I propose that they provide an excellent disease model of AD and reflect the true clinical heterogeneity of AD. The atypical variants of AD usually have a relatively young age at onset, and they show striking cortical tau deposition on molecular PET imaging which relates strongly with patterns of neurodegeneration and clinical outcomes. In contrast, elderly patients with AD show less tau deposition on PET, and neuroimaging and clinical outcomes are confounded by other age-related pathologies, including TDP-43 and vascular pathology. There is also considerable clinical and anatomical heterogeneity across atypical and young-onset amnestic variants of AD which reflects the fact that AD is a disease that causes impairments in multiple cognitive domains. Future studies should focus on careful characterization of cognitive impairment in AD and consider the full clinical spectrum of AD, including atypical AD, in the design of research studies investigating disease mechanisms in AD and clinical treatment trials, particularly with therapeutics targeting tau.
Collapse
|
17
|
Inui S, Kaneda D, Sakurai K, Morimoto S, Uchida Y, Abe O, Hashizume Y. The influence of limbic-predominant age-related TDP-43 encephalopathy on argyrophilic grain disease: A voxel-based morphometry analysis of pathologically confirmed cases. J Neurol Sci 2024; 457:122894. [PMID: 38266517 DOI: 10.1016/j.jns.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The influence of limbic-predominant age-related TAR DNA-binding protein of 43 kDa encephalopathy neuropathological change (LATE-NC) on structural alterations in argyrophilic grain disease (AGD) have not been documented. This study aimed to investigate the morphological impact of LATE-NC on AGD through voxel-based morphometry (VBM) technique. MATERIALS AND METHODS Fifteen individuals with pathologically verified AGD, comprising 6 with LATE-NC (comorbid AGD [cAGD]) and 9 without LATE-NC (pure AGD [pAGD]), along with 10 healthy controls (HC) were enrolled. Whole-brain 3D-T1-weighted images were captured and preprocessed utilizing the Computational Anatomy Toolbox 12. VBM was employed to compare gray matter volume among (i) pAGD and HC, (ii) cAGD and HC, and (iii) pAGD and cAGD. RESULTS In comparison to HC, the pAGD group exhibited slightly asymmetric gray matter volume loss, particularly in the ambient gyrus, amygdala, hippocampus, anterior cingulate gyrus, and insula. Alternatively, the cAGD group exhibited greater gray matter volume loss, with a predominant focus on the inferolateral regions encompassing the ambient gyrus, amygdala, hippocampus, and the inferior temporal area, including the anterior temporal pole. The atrophy of the bilateral anterior temporal pole and right inferior temporal gyrus persisted when contrasting the pAGD and cAGD groups. CONCLUSION Comorbidity with LATE-NC is linked to different atrophic distribution, particularly affecting the inferolateral regions in AGD. Consequently, the consideration of comorbid LATE-NC is crucial in individuals with AGD exhibiting more widespread temporal atrophy.
Collapse
Affiliation(s)
- Shohei Inui
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
18
|
Chung M, Carter EK, Veire AM, Dammer EB, Chang J, Duong DM, Raj N, Bassell GJ, Glass JD, Gendron TF, Nelson PT, Levey AI, Seyfried NT, McEachin ZT. Cryptic exon inclusion is a molecular signature of LATE-NC in aging brains. Acta Neuropathol 2024; 147:29. [PMID: 38308693 PMCID: PMC10838224 DOI: 10.1007/s00401-023-02671-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.
Collapse
Affiliation(s)
- Mingee Chung
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - E Kathleen Carter
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Austin M Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA
| | - Jonathan D Glass
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Allan I Levey
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
| | - Zachary T McEachin
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Agra Almeida Quadros AR, Li Z, Wang X, Ndayambaje IS, Aryal S, Ramesh N, Nolan M, Jayakumar R, Han Y, Stillman H, Aguilar C, Wheeler HJ, Connors T, Lopez-Erauskin J, Baughn MW, Melamed Z, Beccari MS, Olmedo Martínez L, Canori M, Lee CZ, Moran L, Draper I, Kopin AS, Oakley DH, Dickson DW, Cleveland DW, Hyman BT, Das S, Ertekin-Taner N, Lagier-Tourenne C. Cryptic splicing of stathmin-2 and UNC13A mRNAs is a pathological hallmark of TDP-43-associated Alzheimer's disease. Acta Neuropathol 2024; 147:9. [PMID: 38175301 PMCID: PMC10766724 DOI: 10.1007/s00401-023-02655-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-β or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Rita Agra Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Zhaozhi Li
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandeep Aryal
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Nandini Ramesh
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Matthew Nolan
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Rojashree Jayakumar
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Han
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Stillman
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey Aguilar
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hayden J Wheeler
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theresa Connors
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jone Lopez-Erauskin
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Michael W Baughn
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Melinda S Beccari
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Laura Olmedo Martínez
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Canori
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Chao-Zong Lee
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Moran
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
20
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Babazadeh A, Rayner SL, Lee A, Chung RS. TDP-43 as a therapeutic target in neurodegenerative diseases: Focusing on motor neuron disease and frontotemporal dementia. Ageing Res Rev 2023; 92:102085. [PMID: 37813308 DOI: 10.1016/j.arr.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A common feature of adult-onset neurodegenerative diseases is the presence of characteristic pathological accumulations of specific proteins. These pathological protein depositions can vary in their protein composition, cell-type distribution, and intracellular (or extracellular) location. For example, abnormal cytoplasmic protein deposits which consist of the TDP-43 protein are found within motor neurons in patients with amyotrophic lateral sclerosis (ALS, a common form of motor neuron disease) and frontotemporal dementia (FTD). The presence of these insoluble intracellular TDP-43 inclusions suggests that restoring TDP-43 homeostasis represents a potential therapeutical strategy, which has been demonstrated in alleviating neurodegenerative symptoms in cell and animal models of ALS/FTD. We have reviewed the mechanisms that lead to disrupted TDP-43 homeostasis and discussed how small molecule-based therapies could be applied in modulating these mechanisms. This review covers recent advancements and challenges in small molecule-based therapies that could be used to clear pathological forms of TDP-43 through various protein homeostasis mechanisms and advance the way towards finding effective therapeutical drug discoveries for neurodegenerative diseases characterized by TDP-43 proteinopathies, especially ALS and FTD. We also consider the wider insight of these therapeutic strategies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
22
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Prinzi C, Kostenko A, de Leo G, Gulino R, Leanza G, Caccamo A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. BIOLOGY 2023; 12:1264. [PMID: 37759663 PMCID: PMC10526041 DOI: 10.3390/biology12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Noradrenaline (NA) depletion occurs in Alzheimer's disease (AD); however, its relationship with the pathological expression of Tau and transactive response DNA-binding protein 43 (TDP-43), two major hallmarks of AD, remains elusive. Here, increasing doses of a selective noradrenergic immunotoxin were injected into developing rats to generate a model of mild or severe NA loss. At about 12 weeks post-lesion, dose-dependent working memory deficits were detected in these animals, associated with a marked increase in cortical and hippocampal levels of TDP-43 phosphorylated at Ser 409/410 and Tau phosphorylated at Thr 217. Notably, the total levels of both proteins were largely unaffected, suggesting a direct relationship between neocortical/hippocampal NA depletion and the phosphorylation of pathological Tau and TDP-43 proteins. As pTD43 is present in 23% of AD cases and pTau Thr217 has been detected in patients with mild cognitive impairment that eventually would develop into AD, improvement of noradrenergic function in AD might represent a viable therapeutic approach with disease-modifying potential.
Collapse
Affiliation(s)
- Chiara Prinzi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| | - Anna Kostenko
- B.R.A.I.N. (Basic Research and Integrative Neuroscience) Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Gioacchino de Leo
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Triste, Italy;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
24
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
25
|
Estades Ayuso V, Pickles S, Todd T, Yue M, Jansen-West K, Song Y, González Bejarano J, Rawlinson B, DeTure M, Graff-Radford NR, Boeve BF, Knopman DS, Petersen RC, Dickson DW, Josephs KA, Petrucelli L, Prudencio M. TDP-43-regulated cryptic RNAs accumulate in Alzheimer's disease brains. Mol Neurodegener 2023; 18:57. [PMID: 37605276 PMCID: PMC10441763 DOI: 10.1186/s13024-023-00646-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Inclusions of TAR DNA-binding protein 43 kDa (TDP-43) has been designated limbic-predominant, age-related TDP-43 encephalopathy (LATE), with or without co-occurrence of Alzheimer's disease (AD). Approximately, 30-70% AD cases present TDP-43 proteinopathy (AD-TDP), and a greater disease severity compared to AD patients without TDP-43 pathology. However, it remains unclear to what extent TDP-43 dysfunction is involved in AD pathogenesis. METHODS To investigate whether TDP-43 dysfunction is a prominent feature in AD-TDP cases, we evaluated whether non-conserved cryptic exons, which serve as a marker of TDP-43 dysfunction in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), accumulate in AD-TDP brains. We assessed a cohort of 192 post-mortem brains from three different brain regions: amygdala, hippocampus, and frontal cortex. Following RNA and protein extraction, qRT-PCR and immunoassays were performed to quantify the accumulation of cryptic RNA targets and phosphorylated TDP-43 pathology, respectively. RESULTS We detected the accumulation of misspliced cryptic or skiptic RNAs of STMN2, KCNQ2, UNC13A, CAMK2B, and SYT7 in the amygdala and hippocampus of AD-TDP cases. The topographic distribution of cryptic RNA accumulation mimicked that of phosphorylated TDP-43, regardless of TDP-43 subtype classification. Further, cryptic RNAs efficiently discriminated AD-TDP cases from controls. CONCLUSIONS Overall, our results indicate that cryptic RNAs may represent an intriguing new therapeutic and diagnostic target in AD, and that methods aimed at detecting and measuring these species in patient biofluids could be used as a reliable tool to assess TDP-43 pathology in AD. Our work also raises the possibility that TDP-43 dysfunction and related changes in cryptic splicing could represent a common molecular mechanism shared between AD-TDP and FTLD-TDP.
Collapse
Affiliation(s)
- Virginia Estades Ayuso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Tiffany Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | | | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
26
|
Maioli H, Mittenzwei R, Shofer JB, Scherpelz KP, Marshall D, Nolan AL, Nelson PT, Keene CD, Latimer CS. Performance of a condensed protocol to assess limbic-predominant age-related TDP-43 encephalopathy neuropathologic change. J Neuropathol Exp Neurol 2023; 82:611-619. [PMID: 37195467 PMCID: PMC10280345 DOI: 10.1093/jnen/nlad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a dementia-related proteinopathy common in the elderly population. LATE-NC stages 2 or 3 are consistently associated with cognitive impairment. A condensed protocol (CP) for the assessment of Alzheimer disease neuropathologic change and other disorders associated with cognitive impairment, recommended sampling of small brain portions from specific neuroanatomic regions that were consolidated, resulting in significant cost reduction. Formal evaluation of the CP for LATE-NC staging was not previously performed. Here, we determined the ability of the CP to identify LATE-NC stages 2 or 3. Forty brains donated to the University of Washington BioRepository and Integrated Neuropathology laboratory with known LATE-NC status were resampled. Slides containing brain regions required for LATE-NC staging were immunostained for phospho-TDP-43 and reviewed by 6 neuropathologists blinded to original LATE-NC diagnosis. Overall group performance distinguishing between LATE-NC stages 0-1 and 2-3 was 85% (confidence interval [CI]: 75%-92%). We also used the CP to evaluate LATE-NC in a hospital autopsy cohort, in which LATE-NC was more common in individuals with a history of cognitive impairment, older age, and/or comorbid hippocampal sclerosis. This study shows that the CP can effectively discriminate higher stages of LATE-NC from low or no LATE-NC and that it can be successfully applied in clinical practice using a single tissue block and immunostain.
Collapse
Affiliation(s)
- Heather Maioli
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Rhonda Mittenzwei
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jane B Shofer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Kathryn P Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Desiree Marshall
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Amber L Nolan
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin S Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Licht-Murava A, Meadows SM, Palaguachi F, Song SC, Jackvony S, Bram Y, Zhou C, Schwartz RE, Froemke RC, Orr AL, Orr AG. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. SCIENCE ADVANCES 2023; 9:eade1282. [PMID: 37075107 PMCID: PMC10115456 DOI: 10.1126/sciadv.ade1282] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha M. Meadows
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Fernando Palaguachi
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Soomin C. Song
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephanie Jackvony
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Constance Zhou
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| | - Robert E. Schwartz
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Robert C. Froemke
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna G. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| |
Collapse
|
28
|
Llamas-Rodríguez J, Oltmer J, Marshall M, Champion S, Frosch MP, Augustinack JC. TDP-43 and tau concurrence in the entorhinal subfields in primary age-related tauopathy and preclinical Alzheimer's disease. Brain Pathol 2023:e13159. [PMID: 37037195 DOI: 10.1111/bpa.13159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Phosphorylated tau (p-tau) pathology correlates strongly with cognitive decline and is a pathological hallmark of Alzheimer's Disease (AD). In recent years, phosphorylated transactive response DNA-binding protein (pTDP-43) has emerged as a common comorbidity, found in up to 70% of all AD cases (Josephs et al., Acta Neuropathol, 131(4), 571-585; Josephs, Whitwell, et al., Acta Neuropathol, 127(6), 811-824). Current staging schemes for pTDP-43 in AD and primary age-related tauopathy (PART) track its progression throughout the brain, but the distribution of pTDP-43 within the entorhinal cortex (EC) at the earliest stages has not been studied. Moreover, the exact nature of p-tau and pTDP-43 co-localization is debated. We investigated the selective vulnerability of the entorhinal subfields to phosphorylated pTDP-43 pathology in preclinical AD and PART postmortem tissue. Within the EC, posterior-lateral subfields showed the highest semi-quantitative pTDP-43 density scores, while the anterior-medial subfields had the lowest. On the rostrocaudal axis, pTDP-43 scores were higher posteriorly than anteriorly (p < 0.010), peaking at the posterior-most level (p < 0.050). Further, we showed the relationship between pTDP-43 and p-tau in these regions at pathology-positive but clinically silent stages. P-tau and pTDP-43 presented a similar pattern of affected subregions (p < 0.0001) but differed in density magnitude (p < 0.0001). P-tau burden was consistently higher than pTDP-43 at every anterior-posterior level and in most EC subfields. These findings highlight pTDP-43 burden heterogeneity within the EC and the posterior-lateral subfields as the most vulnerable regions within stage II of the current pTDP-43 staging schemes for AD and PART. The EC is a point of convergence for p-tau and pTDP-43 and identifying its most vulnerable neuronal populations will prove key for early diagnosis and disease intervention.
Collapse
Affiliation(s)
- Josué Llamas-Rodríguez
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jan Oltmer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael Marshall
- Department of Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samantha Champion
- Department of Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew P Frosch
- Department of Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
29
|
Yusuff T, Chang YC, Sang TK, Jackson GR, Chatterjee S. Codon-optimized TDP-43 mediates neurodegeneration in a Drosophila model of ALS/FTLD. Front Genet 2023; 14:881638. [PMID: 36968586 PMCID: PMC10034021 DOI: 10.3389/fgene.2023.881638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Transactive response DNA binding protein-43 (TDP-43) is known to mediate neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The exact mechanism by which TDP-43 exerts toxicity in the brains, spinal cord, and lower motor neurons of affected patients remains unclear. In a novel Drosophila melanogaster model, we report gain-of-function phenotypes due to misexpression of insect codon-optimized version of human wild-type TDP-43 (CO-TDP-43) using both the binary GAL4/UAS system and direct promoter fusion constructs. The CO-TDP-43 model showed robust tissue specific phenotypes in the adult eye, wing, and bristles in the notum. Compared to non-codon optimized transgenic flies, the CO-TDP-43 flies produced increased amount of high molecular weight protein, exhibited pathogenic phenotypes, and showed cytoplasmic aggregation with both nuclear and cytoplasmic expression of TDP-43. Further characterization of the adult retina showed a disruption in the morphology and function of the photoreceptor neurons with the presence of acidic vacuoles that are characteristic of autophagy. Based on our observations, we propose that TDP-43 has the propensity to form toxic protein aggregates via a gain-of-function mechanism, and such toxic overload leads to activation of protein degradation pathways such as autophagy. The novel codon optimized TDP-43 model is an excellent resource that could be used in genetic screens to identify and better understand the exact disease mechanism of TDP-43 proteinopathies and find potential therapeutic targets.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| | - Ya-Chu Chang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - George R. Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- National Parkinson’s Disease Research Education and Clinical Center, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Shreyasi Chatterjee
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| |
Collapse
|
30
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
31
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
32
|
Toledo JB, Abdelnour C, Weil RS, Ferreira D, Rodriguez-Porcel F, Pilotto A, Wyman-Chick KA, Grothe MJ, Kane JPM, Taylor A, Rongve A, Scholz S, Leverenz JB, Boeve BF, Aarsland D, McKeith IG, Lewis S, Leroi I, Taylor JP. Dementia with Lewy bodies: Impact of co-pathologies and implications for clinical trial design. Alzheimers Dement 2023; 19:318-332. [PMID: 36239924 PMCID: PMC9881193 DOI: 10.1002/alz.12814] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.
Collapse
Affiliation(s)
- Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Carla Abdelnour
- Fundació ACE. Barcelona Alzheimer Treatment and Research Center, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rimona S Weil
- Dementia Research Centre, Wellcome Centre for Human Neuroimaging, Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Parkinson's Disease Rehabilitation Centre, FERB ONLUS-S, Isidoro Hospital, Trescore Balneario (BG), Italy
| | - Kathryn A Wyman-Chick
- HealthPartners Center for Memory and Aging and Struthers Parkinson's Center, Saint Paul, Minnesota, USA
| | - Michel J Grothe
- Instituto de Biomedicina de Sevilla (IBiS), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Angela Taylor
- Lewy Body Dementia Association, Lilburn, Georgia, USA
| | - Arvid Rongve
- Department of Research and Innovation, Institute of Clinical Medicine (K1), Haugesund Hospital, Norway and The University of Bergen, Bergen, Norway
| | - Sonja Scholz
- Department of Neurology, National Institute of Neurological Disorders and Stroke, Neurodegenerative Diseases Research Unit, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Ian G McKeith
- Newcastle University Translational and Clinical Research Institute (NUTCRI, Newcastle upon Tyne, UK
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Iracema Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - John P Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Yang M, Qi R, Liu Y, Shen X, Zhao Y, Jin N, Wu R, Liu F, Gu J. Casein Kinase 1δ Phosphorylates TDP-43 and Suppresses Its Function in Tau mRNA Processing. J Alzheimers Dis 2023; 91:1527-1539. [PMID: 36641675 DOI: 10.3233/jad-220985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neurofibrillary tangle aggregated from anomalous hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD). Trans-active response DNA-binding protein of 43 kDa (TDP-43) enhances the instability and exon (E) 10 inclusion of tau mRNA. Cytoplasmic inclusion of hyperphosphorylated TDP-43 in the neurons constitutes the third most prevalent proteinopathy of AD. Casein kinase 1δ (CK1δ) is elevated in AD brain and phosphorylates TDP-43 in vitro. OBJECTIVE To determine the roles of CK1δ in phosphorylation, aggregation, and function of TDP-43 in the processing of tau mRNA. METHODS The interaction and colocalization of TDP-43 and CK1δ were analyzed by co-immunoprecipitation and immunofluorescence staining. TDP-43 phosphorylation by CK1δ was determined in vitro and in cultured cells. RIPA-insoluble TDP-43 aggregates obtained by ultracentrifugation were analyzed by immunoblots. The instability and E10 splicing of tau mRNA were studied by using a reporter of green fluorescence protein tailed with 3'-untranslational region of tau mRNA and a mini-tau gene and analyzed by real-time quantitative PCR and reverse transcriptional PCR. RESULTS We found that CK1δ interacted and co-localized with TDP-43. TDP-43 was phosphorylated by CK1δ at Ser379, Ser403/404, and Ser409/410 in vitro and in cultured cells, which was mutually enhanced. CK1δ overexpression promoted the aggregation of TDP-43 and suppressed its activity in enhancing the instability and E10 inclusion of tau mRNA. CONCLUSION CK1δ phosphorylates TDP-43, promotes its aggregation, and inhibits its activity in promoting the instability of tau mRNA and inclusion of tau E10. Elevated CK1δ in AD brain may contribute to TDP-43 and tau pathologies directly or indirectly.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Rongrong Qi
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuxiao Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yulou Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Ruozhen Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
34
|
Ohene-Nyako M, Nass SR, Richard HT, Lukande R, Nicol MR, McRae M, Knapp PE, Hauser KF. Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia. ASN Neuro 2023; 15:17590914231158218. [PMID: 36890725 PMCID: PMC9998424 DOI: 10.1177/17590914231158218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
SUMMARY STATEMENT HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Hope T Richard
- Pathology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Robert Lukande
- Pathology, College of Health Sciences, 58589Makerere University, Kampala, Uganda
| | - Melanie R Nicol
- Experimental and Clinical Pharmacology, College of Pharmacy, 15515University of Minnesota, Minneapolis, MN, USA
| | - MaryPeace McRae
- Pharmacotherapy and Outcomes Science, School of Pharmacy, 15535Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E Knapp
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
35
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
36
|
Tazwar M, Evia AM, Tamhane AA, Ridwan AR, Leurgans SE, Bennett DA, Schneider JA, Arfanakis K. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is associated with lower R 2 relaxation rate: an ex-vivo MRI and pathology investigation. Neurobiol Aging 2022; 117:128-138. [PMID: 35728463 PMCID: PMC9667705 DOI: 10.1016/j.neurobiolaging.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Limbic predominant age-related transactive response DNA binding protein 43 (TDP-43) encephalopathy neuropathological change (LATE-NC) is common in persons older than 80 years of age and is associated with cognitive decline and increased likelihood of dementia. The MRI signature of LATE-NC has not been fully determined. In this study, the association of LATE-NC with the transverse relaxation rate, R2, was investigated in a large number of community-based older adults. Cerebral hemispheres from 738 participants of the Rush Memory and Aging Project, Religious Orders Study, and Minority Aging Research Study, were imaged ex-vivo with multi-echo spin-echo MRI and underwent detailed neuropathologic examination. Voxel-wise analysis revealed a novel spatial pattern of lower R2 for higher LATE-NC stage, controlling for other neuropathologies and demographics. This pattern was consistent with the distribution of LATE-NC in gray matter, and also involved white matter providing temporo-temporal, fronto-temporal, and temporo-basal ganglia connectivity. Furthermore, analysis at different LATE-NC stages showed that R2 imaging may capture the general progression of LATE-NC, but only when TDP-43 inclusions extend beyond the amygdala.
Collapse
Affiliation(s)
- Mahir Tazwar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ashish A Tamhane
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
37
|
Cao MC, Scotter EL. Novel and known transcriptional targets of ALS/FTD protein TDP-43: Meta-analysis and interactive graphical database. Dis Model Mech 2022; 15:276263. [PMID: 35946434 PMCID: PMC9509890 DOI: 10.1242/dmm.049418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
TDP-43 proteinopathy is the major pathology in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal dementia (FTD). Mounting evidence implicates loss of normal TDP-43 RNA processing function as a key pathomechanism. However, the RNA targets of TDP-43 differ by report, and have never been formally collated or compared between models and disease, hampering understanding of TDP-43 function. Here, we conducted re-analysis and meta-analysis of publicly available RNA-sequencing datasets from six TDP-43-knockdown models, and TDP-43-immunonegative neuronal nuclei from ALS/ FTD brain, to identify differentially expressed genes (DEGs) and exon usage (DEU) events. There was little overlap in DEGs between knockdown models, but PFKP, STMN2, CFP, KIAA1324 and TRHDE were common targets and were also differentially expressed in TDP-43-immunonegative neurons. DEG enrichment analysis revealed diverse biological pathways including immune and synaptic functions. Common DEU events in human datasets included well-known targets POLDIP3 and STMN2, and novel targets EXD3, MMAB, DLG5 and GOSR2. Our interactive database https://phpstack-449938-2576646.cloudwaysapps.com/ allows further exploration of TDP-43 DEG and DEU targets. Together, these data identify TDP-43 targets that can be exploited therapeutically or to validate loss-of-function processes.
Collapse
Affiliation(s)
- Maize C Cao
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| | - Emma L Scotter
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
38
|
Carlos AF, Josephs KA. Frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43): its journey of more than 100 years. J Neurol 2022; 269:4030-4054. [PMID: 35320398 PMCID: PMC10184567 DOI: 10.1007/s00415-022-11073-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with TDP-43-immunoreactive inclusions (FTLD-TDP) is a neurodegenerative disease associated with clinical, genetic, and neuropathological heterogeneity. An association between TDP-43, FTLD and amyotrophic lateral sclerosis (ALS) was first described in 2006. However, a century before immunohistochemistry existed, atypical dementias displaying behavioral, language and/or pyramidal symptoms and showing non-specific FTLD with superficial cortical neuronal loss, gliosis and spongiosis were often confused with Alzheimer's or Pick's disease. Initially this pathology was termed dementia lacking distinctive histopathology (DLDH), but this was later renamed when ubiquitinated inclusions originally found in ALS were also discovered in (DLDH), thus warranting a recategorization as FTLD-U (ubiquitin). Finally, the ubiquitinated protein was identified as TDP-43, which aggregates in cortical, subcortical, limbic and brainstem neurons and glial cells. The topography and morphology of TDP-43 inclusions associate with specific clinical syndromes and genetic mutations which implies different pathomechanisms that are yet to be discovered; hence, the TDP-43 journey has actually just begun. In this review, we describe how FTLD-TDP was established and defined clinically and neuropathologically throughout the past century.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Niss F, Piñero-Paez L, Zaidi W, Hallberg E, Ström AL. Key Modulators of the Stress Granule Response TIA1, TDP-43, and G3BP1 Are Altered by Polyglutamine-Expanded ATXN7. Mol Neurobiol 2022; 59:5236-5251. [PMID: 35689166 PMCID: PMC9363381 DOI: 10.1007/s12035-022-02888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) and other polyglutamine (polyQ) diseases are caused by expansions of polyQ repeats in disease-specific proteins. Aggregation of the polyQ proteins resulting in various forms of cellular stress, that could induce the stress granule (SG) response, is believed to be a common pathological mechanism in these disorders. SGs can contribute to cell survival but have also been suggested to exacerbate disease pathology by seeding protein aggregation. In this study, we show that two SG-related proteins, TDP-43 and TIA1, are sequestered into the aggregates formed by polyQ-expanded ATXN7 in SCA7 cells. Interestingly, mutant ATXN7 also localises to induced SGs, and this association altered the shape of the SGs. In spite of this, neither the ability to induce nor to disassemble SGs, in response to arsenite stress induction or relief, was affected in SCA7 cells. Moreover, we could not observe any change in the number of ATXN7 aggregates per cell following SG induction, although a small, non-significant, increase in total aggregated ATXN7 material could be detected using filter trap. However, mutant ATXN7 expression in itself increased the speckling of the SG-nucleating protein G3BP1 and the SG response. Taken together, our results indicate that the SG response is induced, and although some key modulators of SGs show altered behaviour, the dynamics of SGs appear normal in the presence of mutant ATXN7.
Collapse
Affiliation(s)
- Frida Niss
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Laura Piñero-Paez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Wajiha Zaidi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping, Sweden
| | - Einar Hallberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anna-Lena Ström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
40
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
41
|
Koyano S, Yagishita S, Tada M, Doi H, Uchihara T, Tanaka F. Parallel Appearance of Polyglutamine and Transactivation-Responsive DNA-Binding Protein 43 and Their Complementary Subcellular Localization in Brains of Patients With Spinocerebellar Ataxia Type 2. J Neuropathol Exp Neurol 2022; 81:535-544. [PMID: 35511239 DOI: 10.1093/jnen/nlac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.
Collapse
Affiliation(s)
- Shigeru Koyano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Saburo Yagishita
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
43
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
44
|
Latimer CS, Stair JG, Hincks JC, Currey HN, Bird TD, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis Model Mech 2022; 15:275149. [PMID: 35178571 PMCID: PMC9066518 DOI: 10.1242/dmm.049323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although amyloid β (Aβ) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aβ, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aβ, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aβ neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Neurology, University of Washington, Seattle, WA 98104, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Author for correspondence ()
| |
Collapse
|
45
|
Catarzi D, Varano F, Vigiani E, Lambertucci C, Spinaci A, Volpini R, Colotta V. Casein Kinase 1δ Inhibitors as Promising Therapeutic Agents for Neurodegenerative Disorders. Curr Med Chem 2022; 29:4698-4737. [PMID: 35232339 DOI: 10.2174/0929867329666220301115124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1 isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1 dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1 has been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1 inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1 inhibitory activity. Here we report a comprehensive review on the development of CK1 inhibitors, with a particular emphasis on structure-activity relationships and computational studies which provide useful insight for the design of novel inhibitors.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
46
|
TDP-43 Pathology and Prionic Behavior in Human Cellular Models of Alzheimer’s Disease Patients. Biomedicines 2022; 10:biomedicines10020385. [PMID: 35203594 PMCID: PMC8962248 DOI: 10.3390/biomedicines10020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder for which there is currently no effective treatment. Despite advances in the molecular pathology of the characteristic histopathological markers of the disease (tau protein and β-amyloid), their translation to the clinic has not provided the expected results. Increasing evidences have demonstrated the presence of aggregates of TDP-43 (TAR DNA binding protein 43) in the postmortem brains of patients diagnosed with AD. The present research is focused on of the study of the pathological role of TDP-43 in AD. For this purpose, immortalized lymphocytes samples from patients diagnosed with different severity of sporadic AD were used and the TDP-43 pathology was analyzed against controls, looking for differences in their fragmentation, phosphorylation and cellular location using Western blot and immunocytochemical techniques. The results revealed an increase in TDP-43 fragmentation, as well as increased phosphorylation and aberrant localization of TDP-43 in the cytosolic compartment of lymphocytes of patients diagnosed with severe AD. Moreover, a fragment of approximately 25 KD was found in the extracellular medium of cells derived from severe AD individuals that seem to have prion-like characteristics. We conclude that TDP-43 plays a key role in AD pathogenesis and its cell to cell propagation.
Collapse
|
47
|
Buciuc M, Martin PR, Tosakulwong N, Murray ME, Petrucelli L, Senjem ML, Spychalla AJ, Knopman DS, Boeve BF, Petersen RC, Parisi JE, Reichard RR, Dickson DW, Jack CR, Whitwell JL, Josephs KA. TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. Neuroimage Clin 2022; 34:102954. [PMID: 35168140 PMCID: PMC8850800 DOI: 10.1016/j.nicl.2022.102954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Transactive response DNA-binding protein of ∼43 kDa (TDP-43), a primary pathologic substrate in tau-negative frontotemporal lobar degeneration (FTLD), is also often found in the brains of elderly individuals without FTLD and is a key player in the process of neurodegeneration in brains with and without FTLD. It is unknown how rates and trajectories of TDP-43-associated brain atrophy compare between these two groups. Additionally, non-FTLD TDP-43 inclusions are not homogeneous and can be divided into two morphologic types: type-α and neurofibrillary tangle-associated type-β. Therefore, we explored whether neurodegeneration also varies due to the morphologic type. In this longitudinal retrospective study of 293 patients with 843 MRI scans spanning over ∼10 years, we used a Bayesian hierarchical linear model to quantify similarities and differences between the non-FTLD TDP-43 (type-α/type-β) and FTLD-TDP (n = 68) in both regional volume at various timepoints before death and annualized rate of atrophy. Since Alzheimer's disease (AD) is a frequent co-pathology in non-FTLD TDP-43, we further divided types α/β based on presence/absence of intermediate-high likelihood AD: AD-TDP type-β (n = 90), AD-TDP type-α (n = 104), and Pure-TDP (n = 31, all type-α). FTLD-TDP was associated with faster atrophy rates in the inferior temporal lobe and temporal pole compared to all non-FTLD TDP-43 groups. The atrophy rate in the frontal lobe was modulated by age with younger FTLD-TDP having the fastest rates. Older FTLD-TDP showed a limbic predominant pattern of neurodegeneration. AD-TDP type-α showed faster rates of hippocampal atrophy and smaller volumes of amygdala, temporal pole, and inferior temporal lobe compared to AD-TDP type-β. Pure-TDP was associated with slowest rates and less atrophy in all brain regions. The results suggest that there are differences and similarities in longitudinal brain volume loss between FTLD-TDP and non-FTLD TDP-43. Within FTLD-TDP age plays a role in which brain regions are the most affected. Additionally, brain atrophy regional rates also vary by non-FTLD TDP-43 type.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Peter R Martin
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Anthony J Spychalla
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Mukherjee A, Al-Lahham R, Corkins ME, Samanta S, Schmeichel AM, Singer W, Low PA, Govindaraju T, Soto C. Identification of Multicolor Fluorescent Probes for Heterogeneous Aβ Deposits in Alzheimer's Disease. Front Aging Neurosci 2022; 13:802614. [PMID: 35185519 PMCID: PMC8852231 DOI: 10.3389/fnagi.2021.802614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulation of amyloid-beta (Aβ) into amyloid plaques and hyperphosphorylated tau into neurofibrillary tangles (NFTs) are pathological hallmarks of Alzheimer's disease (AD). There is a significant intra- and inter-individual variability in the morphology and conformation of Aβ aggregates, which may account in part for the extensive clinical and pathophysiological heterogeneity observed in AD. In this study, we sought to identify an array of fluorescent dyes to specifically probe Aβ aggregates, in an effort to address their diversity. We screened a small library of fluorescent probes and identified three benzothiazole-coumarin derivatives that stained both vascular and parenchymal Aβ deposits in AD brain sections. The set of these three dyes allowed the visualization of Aβ deposits in three different colors (blue, green and far-red). Importantly, two of these dyes specifically stained Aβ deposits with no apparent staining of hyperphosphorylated tau or α-synuclein deposits. Furthermore, this set of dyes demonstrated differential interactions with distinct types of Aβ deposits present in the same subject. Aβ aggregate-specific dyes identified in this study have the potential to be further developed into Aβ imaging probes for the diagnosis of AD. In addition, the far-red dye we identified in this study may serve as an imaging probe for small animal imaging of Aβ pathology. Finally, these dyes in combination may help us advance our understanding of the relation between the various Aβ deposits and the clinical diversity observed in AD.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rabab Al-Lahham
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mark E. Corkins
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Phillip A. Low
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
49
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
50
|
A Microplate-Based Approach to Map Interactions between TDP-43 and α-Synuclein. J Clin Med 2022; 11:jcm11030573. [PMID: 35160025 PMCID: PMC8836581 DOI: 10.3390/jcm11030573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein. Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein. Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43 and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together, this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as well as interaction sites of two proteins.
Collapse
|