1
|
Sun M, Wang J, Wan S. Accurate identification of medulloblastoma subtypes from diverse data sources with severe batch effects by RaMBat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.640010. [PMID: 40060540 PMCID: PMC11888263 DOI: 10.1101/2025.02.24.640010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
As the most common pediatric brain malignancy, medulloblastoma (MB) includes multiple distinct molecular subtypes characterized by clinical heterogeneity and genetic alterations. Accurate identification of MB subtypes is essential for downstream risk stratification and tailored therapeutic design. Existing MB subtyping approaches perform poorly due to limited cohorts and severe batch effects when integrating various MB data sources. To address these concerns, we propose a novel approach called RaMBat for accurate MB subtyping from diverse data sources with severe batch effects. Benchmarking tests based on 13 datasets with severe batch effects suggested that RaMBat achieved a median accuracy of 99%, significantly outperforming state-of-the-art MB subtyping approaches and conventional machine learning classifiers. RaMBat could efficiently deal with the batch effects and clearly separate subtypes of MB samples from diverse data sources. We believe RaMBat will bring direct positive impacts on downstream MB risk stratification and tailored treatment design.
Collapse
|
2
|
Schwalbe EC, Lindsey JC, Danilenko M, Hill RM, Crosier S, Ryan SL, Williamson D, Castle J, Hicks D, Kool M, Milde T, Korshunov A, Pfister SM, Bailey S, Clifford SC. Molecular and clinical heterogeneity within MYC-family amplified medulloblastoma is associated with survival outcomes: A multicenter cohort study. Neuro Oncol 2025; 27:222-236. [PMID: 39377358 PMCID: PMC11726341 DOI: 10.1093/neuonc/noae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND MYC/MYCN are the most frequent oncogene amplifications in medulloblastoma (MB) and its primary biomarkers of high-risk (HR) disease. However, while many patients' MYC(N)-amplified tumors are treatment-refractory, some achieve long-term survival. We therefore investigated clinicobiological heterogeneity within MYC(N)-amplified MB and determined its relevance for improved disease management. METHODS We characterized the clinical and molecular correlates of MYC- (MYC-MB; n = 64) and MYCN-amplified MBs (MYCN-MB; n = 95), drawn from >1600 diagnostic cases. RESULTS Most MYC-MBs were molecular group 3 (46/58; 79% assessable) and aged ≥3 years at diagnosis (44/64 [69%]). We identified a "canonical" very high-risk (VHR) MYC-amplified group (n = 51/62; 82%) with dismal survival irrespective of treatment (11% 5-year progression-free survival [PFS]), defined by co-occurrence with ≥1 additional established risk factor(s) (subtotal surgical-resection [STR], metastatic disease, LCA pathology), and commonly group 3/4 subgroup 2 with a high proportion of amplified cells. The majority of remaining noncanonical MYC-MBs survived (i.e. non-group 3/group 3 without other risk features; 11/62 (18%); 61% 5-year PFS). MYCN survival was primarily related to molecular group; MYCN-amplified SHH MB, and group 3/4 MB with additional risk factors, respectively defined VHR and HR groups (VHR, 39% [35/89]; 20% 5-year PFS/HR, 33% [29/89]; 46% 5-year PFS). Twenty-two out of 35 assessable MYCN-amplified SHH tumors harbored TP53 mutations; 9/12 (75%) with data were germline. MYCN-amplified group 3/4 MB with no other risk factors (28%; 25/89) had 70% 5-year PFS. CONCLUSIONS MYC(N)-amplified MB displays significant clinicobiological heterogeneity. Diagnostics incorporating molecular groups, subgroups, and clinical factors enable their risk assessment. VHR "canonical" MYC tumors are essentially incurable and SHH-MYCN-amplified MBs fare extremely poorly (20% survival at 5 years); both require urgent development of alternative treatment strategies. Conventional risk-adapted therapies are appropriate for more responsive groups, such as noncanonical MYC and non-SHH-MYCN MB.
Collapse
Affiliation(s)
- Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marina Danilenko
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Gupta T, Mani S, Chatterjee A, Dasgupta A, Epari S, Chinnaswamy G. Risk-stratification for treatment de-intensification in WNT-pathway medulloblastoma: finding the optimal balance between survival and quality of survivorship. Expert Rev Anticancer Ther 2024; 24:589-598. [PMID: 38761170 DOI: 10.1080/14737140.2024.2357807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Advances in molecular biology have led to consensus classification of medulloblastoma into four broad molecular subgroups - wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4, respectively. Traditionally, children >3 years of age, with no/minimal residual tumor (<1.5 cm2) and lack of metastasis were classified as average-risk disease with >80% long-term survival. Younger age (<3 years), large residual disease (≥1.5 cm2), and leptomeningeal metastases either alone or in combination were considered high-risk features yielding much worse 5-year survival (30-60%). This clinico-radiological risk-stratification has been refined by incorporating molecular/genetic information. Contemporary multi-modality management for non-infantile medulloblastoma entails maximal safe resection followed by risk-stratified adjuvant radio(chemo)therapy. Aggressive multi-modality management achieves good survival but is associated with substantial dose-dependent treatment-related toxicity prompting conduct of subgroup-specific prospective clinical trials. AREAS COVERED We conducted literature search on PubMed from 1969 till 2023 to identify putative prognostic factors and risk-stratification for medulloblastoma, including molecular subgrouping. Based on previously published data, including our own institutional experience, we discuss molecular risk-stratification focusing on WNT-pathway medulloblastoma to identify candidates suitable for treatment de-intensification to strike the optimal balance between survival and quality of survivorship. EXPERT OPINION Prospective clinical trials and emerging biological information should further refine risk-stratification in WNT-pathway medulloblastoma.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shakthivel Mani
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Holmberg KO, Borgenvik A, Zhao M, Giraud G, Swartling FJ. Drivers Underlying Metastasis and Relapse in Medulloblastoma and Targeting Strategies. Cancers (Basel) 2024; 16:1752. [PMID: 38730706 PMCID: PMC11083189 DOI: 10.3390/cancers16091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.
Collapse
Affiliation(s)
- Karl O. Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Anna Borgenvik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Géraldine Giraud
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
- Department of Women and Child Health, Uppsala University, 75124 Uppsala, Sweden
- Department of Pediatric Hematology and Oncology, Uppsala University Children’s Hospital, 75185 Uppsala, Sweden
| | - Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| |
Collapse
|
5
|
Do AD, Wu KS, Chu SS, Giang LH, Lin YL, Chang CC, Wong TT, Hsieh CL, Sung SY. LOXL1-AS1 contributes to metastasis in sonic-hedgehog medulloblastoma by promoting cancer stem-like phenotypes. J Exp Clin Cancer Res 2024; 43:130. [PMID: 38689348 PMCID: PMC11059759 DOI: 10.1186/s13046-024-03057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-β2. Knockdown of TGF-β2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-β2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.
Collapse
Affiliation(s)
- Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Le Hien Giang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Biology and Genetics, Hai Phong University of Medicine and Pharmacy, Hai Phong, 180000, Vietnam
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Neuroscience Institute, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, 11571, Taiwan.
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Mani S, Chatterjee A, Dasgupta A, Shirsat N, Pawar A, Epari S, Sahay A, Sahu A, Moiyadi A, Prasad M, Chinnaswamy G, Gupta T. Clinico-Radiological Outcomes in WNT-Subgroup Medulloblastoma. Diagnostics (Basel) 2024; 14:358. [PMID: 38396397 PMCID: PMC10888131 DOI: 10.3390/diagnostics14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Medulloblastoma (MB) comprises four broad molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4, respectively, with subgroup-specific developmental origins, unique genetic profiles, distinct clinico-demographic characteristics, and diverse clinical outcomes. This is a retrospective audit of clinical outcomes in molecularly confirmed WNT-MB patients treated with maximal safe resection followed by postoperative standard-of-care risk-stratified adjuvant radio(chemo)therapy at a tertiary-care comprehensive cancer centre. Of the 74 WNT-MB patients registered in a neuro-oncology unit between 2004 to 2020, 7 patients accrued on a prospective clinical trial of treatment deintensification were excluded, leaving 67 patients that constitute the present study cohort. The median age at presentation was 12 years, with a male preponderance (2:1). The survival analysis was restricted to 61 patients and excluded 6 patients (1 postoperative mortality plus 5 without adequate details of treatment or outcomes). At a median follow-up of 72 months, Kaplan-Meier estimates of 5-year progression-free survival and overall survival were 87.7% and 91.2%, respectively. Traditional high-risk features, large residual tumour (≥1.5 cm2), and leptomeningeal metastases (M+) did not significantly impact upon survival in this molecularly characterized WNT-MB cohort treated with risk-stratified contemporary multimodality therapy. The lack of a prognostic impact of conventional high-risk features suggests the need for refined risk stratification and potential deintensification of therapy.
Collapse
Affiliation(s)
- Shakthivel Mani
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Archya Dasgupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Neelam Shirsat
- Neuro-Oncology Laboratory, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Akash Pawar
- Clinical Research Secretariat, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Sridhar Epari
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.E.); (A.S.)
| | - Ayushi Sahay
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.E.); (A.S.)
| | - Arpita Sahu
- Department of Radio-Diagnosis, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Aliasgar Moiyadi
- Department of Neurosurgery, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Maya Prasad
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (M.P.); (G.C.)
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (M.P.); (G.C.)
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| |
Collapse
|
7
|
Chapman OS, Luebeck J, Sridhar S, Wong ITL, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, He BJ, Hung KL, Lange JT, Dehkordi SR, Chandran S, Adam M, Morgan L, Wani S, Tiwari A, Guccione C, Lin Y, Dutta A, Lo YY, Juarez E, Robinson JT, Korshunov A, Michaels JEA, Cho YJ, Malicki DM, Coufal NG, Levy ML, Hobbs C, Scheuermann RH, Crawford JR, Pomeroy SL, Rich JN, Zhang X, Chang HY, Dixon JR, Bagchi A, Deshpande AJ, Carter H, Fraenkel E, Mischel PS, Wechsler-Reya RJ, Bafna V, Mesirov JP, Chavez L. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 2023; 55:2189-2199. [PMID: 37945900 PMCID: PMC10703696 DOI: 10.1038/s41588-023-01551-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.
Collapse
Affiliation(s)
- Owen S Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Sunita Sridhar
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Deobrat Dixit
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shanqing Wang
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Gino Prasad
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jon D Larson
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | | | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ling Morgan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Sameena Wani
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Ashutosh Tiwari
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Caitlin Guccione
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Yingxi Lin
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Aditi Dutta
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yan Yuen Lo
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Edwin Juarez
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - James T Robinson
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - John-Edward A Michaels
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Yoon-Jae Cho
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Denise M Malicki
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael L Levy
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - John R Crawford
- Department of Pediatrics, University of California Irvine and Children's Hospital Orange County, Irvine, CA, USA
| | - Scott L Pomeroy
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeremy N Rich
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anindya Bagchi
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | | | - Hannah Carter
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Robert J Wechsler-Reya
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Fukuoka K, Kurihara J, Shofuda T, Kagawa N, Yamasaki K, Ando R, Ishida J, Kanamori M, Kawamura A, Park YS, Kiyotani C, Akai T, Keino D, Miyairi Y, Sasaki A, Hirato J, Inoue T, Nakazawa A, Koh K, Nishikawa R, Date I, Nagane M, Ichimura K, Kanemura Y. Subtyping of Group 3/4 medulloblastoma as a potential prognostic biomarker among patients treated with reduced dose of craniospinal irradiation: a Japanese Pediatric Molecular Neuro-Oncology Group study. Acta Neuropathol Commun 2023; 11:153. [PMID: 37749662 PMCID: PMC10521425 DOI: 10.1186/s40478-023-01652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND One of the most significant challenges in patients with medulloblastoma is reducing the dose of craniospinal irradiation (CSI) to minimize neurological sequelae in survivors. Molecular characterization of patients receiving lower than standard dose of CSI therapy is important to facilitate further reduction of treatment burden. METHODS We conducted DNA methylation analysis using an Illumina Methylation EPIC array to investigate molecular prognostic markers in 38 patients with medulloblastoma who were registered in the Japan Pediatric Molecular Neuro-Oncology Group and treated with reduced-dose CSI. RESULTS Among the patients, 23 were classified as having a standard-risk and 15 as high-risk according to the classic classification based on tumor resection rate and presence of metastasis, respectively. The median follow-up period was 71.5 months (12.0-231.0). The median CSI dose was 18 Gy (15.0-24.0) in both groups, and 5 patients in the high-risk group received a CSI dose of 18.0 Gy. Molecular subgrouping revealed that the standard-risk cohort included 5 WNT, 2 SHH, and 16 Group 3/4 cases; all 15 patients in the high-risk cohort had Group 3/4 medulloblastoma. Among the patients with Group 3/4 medulloblastoma, 9 of the 31 Group 3/4 cases were subclassified as subclass II, III, and V, which were known to an association with poor prognosis according to the novel subtyping among the subgroups. Patients with poor prognostic subtype showed worse prognosis than that of others (5-year progression survival rate 90.4% vs. 22.2%; p < 0.0001). The result was replicated in the multivariate analysis (hazard ratio12.77, 95% confidence interval for hazard ratio 2.38-99.21, p value 0.0026 for progression-free survival, hazard ratio 5.02, 95% confidence interval for hazard ratio 1.03-29.11, p value 0.044 for overall survival). CONCLUSION Although these findings require validation in a larger cohort, the present findings suggest that novel subtyping of Group 3/4 medulloblastoma may be a promising prognostic biomarker even among patients treated with lower-dose CSI than standard treatment.
Collapse
Affiliation(s)
- Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children's Medical Center, 1-2, Shin-Toshin, Saitama, 330-8777, Japan.
| | - Jun Kurihara
- Department of Neurosurgery, Saitama Children's Medical Center, Saitama, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kai Yamasaki
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Ryo Ando
- Department of Neurosurgery, Chiba Children's Hospital, Chiba, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School, Okayama, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsufumi Kawamura
- Department of Neurosurgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| | - Chikako Kiyotani
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takuya Akai
- Departments of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yosuke Miyairi
- Department of Neurosurgery, Nagano Children's Hospital, Azumino, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Junko Hirato
- Department of Pathology, Public Tomioka General Hospital, Gunma, Japan
| | - Takeshi Inoue
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, 1-2, Shin-Toshin, Saitama, 330-8777, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School, Okayama, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| |
Collapse
|
9
|
Ntenti C, Lallas K, Papazisis G. Clinical, Histological, and Molecular Prognostic Factors in Childhood Medulloblastoma: Where Do We Stand? Diagnostics (Basel) 2023; 13:diagnostics13111915. [PMID: 37296767 DOI: 10.3390/diagnostics13111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Medulloblastomas, highly aggressive neoplasms of the central nervous system (CNS) that present significant heterogeneity in clinical presentation, disease course, and treatment outcomes, are common in childhood. Moreover, patients who survive may be diagnosed with subsequent malignancies during their life or could develop treatment-related medical conditions. Genetic and transcriptomic studies have classified MBs into four subgroups: wingless type (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4, with distinct histological and molecular profiles. However, recent molecular findings resulted in the WHO updating their guidelines and stratifying medulloblastomas into further molecular subgroups, changing the clinical stratification and treatment management. In this review, we discuss most of the histological, clinical, and molecular prognostic factors, as well the feasibility of their application, for better characterization, prognostication, and treatment of medulloblastomas.
Collapse
Affiliation(s)
- Charikleia Ntenti
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Konstantinos Lallas
- Department of Medical Oncology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Georgios Papazisis
- Clinical Research Unit, Special Unit for Biomedical Research and Education (BRESU), School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
10
|
Goddard J, Castle J, Southworth E, Fletcher A, Crosier S, Martin-Guerrero I, García-Ariza M, Navajas A, Masliah-Planchon J, Bourdeaut F, Dufour C, Ayrault O, Goschzik T, Pietsch T, Sill M, Pfister SM, Rutkowski S, Richardson S, Hill RM, Williamson D, Bailey S, Schwalbe EC, Clifford SC, Hicks D. Molecular characterisation defines clinically-actionable heterogeneity within Group 4 medulloblastoma and improves disease risk-stratification. Acta Neuropathol 2023; 145:651-666. [PMID: 37014508 PMCID: PMC10119222 DOI: 10.1007/s00401-023-02566-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Group 4 tumours (MBGrp4) represent the majority of non-WNT/non-SHH medulloblastomas. Their clinical course is poorly predicted by current risk-factors. MBGrp4 molecular substructures have been identified (e.g. subgroups/cytogenetics/mutations), however their inter-relationships and potential to improve clinical sub-classification and risk-stratification remain undefined. We comprehensively characterised the paediatric MBGrp4 molecular landscape and determined its utility to improve clinical management. A clinically-annotated discovery cohort (n = 362 MBGrp4) was assembled from UK-CCLG institutions and SIOP-UKCCSG-PNET3, HIT-SIOP-PNET4 and PNET HR + 5 clinical trials. Molecular profiling was undertaken, integrating driver mutations, second-generation non-WNT/non-SHH subgroups (1-8) and whole-chromosome aberrations (WCAs). Survival models were derived for patients ≥ 3 years of age who received contemporary multi-modal therapies (n = 323). We first independently derived and validated a favourable-risk WCA group (WCA-FR) characterised by ≥ 2 features from chromosome 7 gain, 8 loss, and 11 loss. Remaining patients were high-risk (WCA-HR). Subgroups 6 and 7 were enriched for WCA-FR (p < 0·0001) and aneuploidy. Subgroup 8 was defined by predominantly balanced genomes with isolated isochromosome 17q (p < 0·0001). While no mutations were associated with outcome and overall mutational burden was low, WCA-HR harboured recurrent chromatin remodelling mutations (p = 0·007). Integration of methylation and WCA groups improved risk-stratification models and outperformed established prognostication schemes. Our MBGrp4 risk-stratification scheme defines: favourable-risk (non-metastatic disease and (i) subgroup 7 or (ii) WCA-FR (21% of patients, 5-year PFS 97%)), very-high-risk (metastatic disease with WCA-HR (36%, 5-year PFS 49%)) and high-risk (remaining patients; 43%, 5-year PFS 67%). These findings validated in an independent MBGrp4 cohort (n = 668). Importantly, our findings demonstrate that previously established disease-wide risk-features (i.e. LCA histology and MYC(N) amplification) have little prognostic relevance in MBGrp4 disease. Novel validated survival models, integrating clinical features, methylation and WCA groups, improve outcome prediction and re-define risk-status for ~ 80% of MBGrp4. Our MBGrp4 favourable-risk group has MBWNT-like excellent outcomes, thereby doubling the proportion of medulloblastoma patients who could benefit from therapy de-escalation approaches, aimed at reducing treatment induced late-effects while sustaining survival outcomes. Novel approaches are urgently required for the very-high-risk patients.
Collapse
Affiliation(s)
- Jack Goddard
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Emily Southworth
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anya Fletcher
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Idoia Martin-Guerrero
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Miguel García-Ariza
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pediatric Hematology and Oncology, Cruces University Hospital, Barakaldo, Spain
| | - Aurora Navajas
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Franck Bourdeaut
- SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Rue Edouard Vaillant, 94805, Villejuif, France
| | - Olivier Ayrault
- UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris Sud, Université Paris-Saclay, CNRS, Paris, France
| | - Tobias Goschzik
- Department of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
11
|
Zhou Z, Zhu B, Meng Q, Zhang T, Wu Y, Yu R, Gao S. Research progress in molecular pathology markers in medulloblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:139-156. [PMID: 36937322 PMCID: PMC10017192 DOI: 10.37349/etat.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 03/06/2023] Open
Abstract
Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yihao Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Correspondence: Rutong Yu, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Shangfeng Gao, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
12
|
Gorelyshev S, Medvedeva O, Mazerkina N, Ryzhova M, Krotkova O, Golanov A. Medulloblastomas in Pediatric and Adults. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:117-152. [PMID: 37452937 DOI: 10.1007/978-3-031-23705-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Medulloblastoma is the primary malignant embryonic tumor of the cerebellum and the most common malignant tumor of childhood, accounting up to 25% of all CNS tumors in children, but is extremely rare in adults. Despite the fact that medulloblastomas are one of the most malignant human tumors, it is worthy to note that a great breakthrough has been achieved in our understanding of oncogenesis and the development of real methods of treatment. The main objective of surgical treatment is a maximum resection of tumor with minimal impairment of neurological functions, in order to reduce the volume, remove tumor tissue, get the biopsy, and restore the cerebrospinal fluid flow. The progress of surgical techniques (using a microscope, ultrasound suction), anesthesiology, and intensive care has significantly decreased surgical mortality and increased radicality of tumor removal. Postoperative mortality is less than one percent in most studies, while neurological complications have been reported between 5-10%. Radiotherapy is the main method of treatment in patients older than 3 years, which dramatically improved the recurrence-free survival. Nevertheless, the radiation therapy without systemic chemotherapy leads to a high risk of systemic metastases. After the role of chemotherapy was statistically proven, investigations of the optimal combination of different chemotherapy regimens continued around the world. Currently, 80% of patients can already be cured, however, the quality of life of patients in the long-term period remains quite low, which depends on many factors including endocrinological, cognitive, neurological, and otoneurologic aspects. Thus, the main strategic goal of the development of neuro-oncology is to reduce the doses of radiation therapy to the CNS and the main task of international research is to optimize existing protocols and develop fundamentally new ones based on molecular genetic research in order to improve the quality of life.
Collapse
Affiliation(s)
- Sergey Gorelyshev
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia.
| | - Olga Medvedeva
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Nadezhda Mazerkina
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Marina Ryzhova
- Department of Neuropathology, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Olga Krotkova
- N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Andrey Golanov
- Department of Radiosurgery, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| |
Collapse
|
13
|
Qiu Q, Li Y, Zhang Y, Hou Y, Hu J, Wang L, Chen Z, Lei Y, Du Y, Liu X. A prognosis model for clear cell renal cell carcinoma based on four necroptosis-related genes. Front Med (Lausanne) 2022; 9:942991. [PMID: 36016998 PMCID: PMC9395686 DOI: 10.3389/fmed.2022.942991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Necroptosis is a type of caspase-independent cell death, and it plays a critical role in regulating the development of cancer. To date, little is known about the role of necroptosis-related genes (NRGs) in clear cell renal cell carcinoma (ccRCC). In this study, we downloaded data regarding the expression of NRGs and overall survival (OS) from The Cancer Genome Atlas (TCGA) database and constructed a risk model to determine the prognostic features of necroptosis using COX regression analysis. Patients with ccRCC were divided into low-risk and high-risk groups based on their risk scores. Thereafter, Kaplan–Meier curves were used to evaluate OS, and receiver operating characteristic (ROC) curves were used to determine the accuracy of prediction. Stratified analyses were performed according to different clinical variables. Furthermore, we assessed the correlation between clinical variables and risk scores; the NRGs with differential expression were mainly enriched in positive regulation of intracellular transport and platinum resistance pathways. We constructed prognostic signatures for OS based on four NRGs and showed that the survival time was significantly longer in the low-risk groups than in the high-risk groups (p < 0.001). The area of the ROC curve for OS was 0.717, indicating excellent predictive accuracy of the established model. Therefore, a predictive model based on NRGs was constructed, which can predict the prognosis of patients and provides insights into the biological mechanisms underlying necroptosis in patients with ccRCC.
Collapse
Affiliation(s)
- Qiangmin Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanze Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yourong Lei
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yourong Lei,
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Yang Du,
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Xiuheng Liu,
| |
Collapse
|
14
|
Williamson D, Schwalbe EC, Hicks D, Aldinger KA, Lindsey JC, Crosier S, Richardson S, Goddard J, Hill RM, Castle J, Grabovska Y, Hacking J, Pizer B, Wharton SB, Jacques TS, Joshi A, Bailey S, Clifford SC. Medulloblastoma group 3 and 4 tumors comprise a clinically and biologically significant expression continuum reflecting human cerebellar development. Cell Rep 2022; 40:111162. [PMID: 35926460 PMCID: PMC9638015 DOI: 10.1016/j.celrep.2022.111162] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 01/29/2023] Open
Abstract
Medulloblastoma is currently subclassified into distinct DNA methylation subgroups/subtypes with particular clinico-molecular features. Using RNA sequencing (RNA-seq) in large, well-annotated cohorts of medulloblastoma, we show that transcriptionally group 3 and group 4 medulloblastomas exist as intermediates on a bipolar continuum between archetypal group 3 and group 4 entities. Continuum position is prognostic, reflecting a propensity for specific DNA copy-number changes, and specific switches in isoform/enhancer usage and RNA editing. Examining single-cell RNA-seq (scRNA-seq) profiles, we show that intratumoral transcriptional heterogeneity along the continuum is limited in a subtype-dependent manner. By integrating with a human scRNA-seq reference atlas, we show that this continuum is mirrored by an equivalent continuum of transcriptional cell types in early fetal cerebellar development. We identify distinct developmental niches for all four major subgroups and link each to a common developmental antecedent. Our findings show a transcriptional continuum arising from oncogenic disruption of highly specific fetal cerebellar cell types, linked to almost every aspect of group 3/group 4 molecular biology and clinico-pathology.
Collapse
Affiliation(s)
- Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| | - Edward C. Schwalbe
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Kimberly A. Aldinger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Janet C. Lindsey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Jack Goddard
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK,Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - James Hacking
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Barry Pizer
- Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Stephen B. Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thomas S. Jacques
- Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, and Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Abhijit Joshi
- Department of Neuropathology, Royal Victoria Infirmary (RVI), Newcastle University Teaching Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK,Corresponding author
| |
Collapse
|
15
|
Isolated Bone Recurrence of Medulloblastoma With MYCN Amplification and TP53 Loss: A Case Report. J Pediatr Hematol Oncol 2022; 44:e593-e596. [PMID: 34133388 DOI: 10.1097/mph.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Extraneural recurrence of a medulloblastoma is rare with dismal prognosis. A 9-year-old girl with medulloblastoma was treated with gross total resection followed by a combination of chemotherapy and radiotherapy. Fourteen months after treatment completion, she developed multifocal bone metastases. Despite chemotherapy combined with irradiation, she died 18 months after recurrence due to progressive disease. Fluorescence in situ hybridization on formalin-fixed paraffin-embedded tissue sections revealed MYCN amplification and TP53 loss, consistent with the genetic alterations of a rapidly progressive subgroup of recurrent medulloblastomas. In clinical practice, dismal biologic features can be determined using fluorescence in situ hybridization in defective materials.
Collapse
|
16
|
Bailey S, André N, Gandola L, Massimino M, Wheatley K, Gates S, Homer V, Rutkowski S, Clifford SC. Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers (Basel) 2022; 14:374. [PMID: 35053536 PMCID: PMC8773789 DOI: 10.3390/cancers14020374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Medulloblastoma patients receive adapted therapies stratified according to their risk-profile. Favourable, standard, and high disease-risk groups are each defined by the status of clinical and pathological risk factors, alongside an evolving repertoire of diagnostic and prognostic biomarkers. Medulloblastoma clinical trials in Europe are coordinated by the International Society for Paediatric Oncology (SIOP-Europe) brain tumour group. Favourable and standard-risk patients are eligible for the SIOP-PNET5-MB clinical trial protocol. In contrast, therapies for high-risk disease worldwide have, to date, encompassed a range of different treatment philosophies, with no clear consensus on approach. Higher radiotherapy doses are typically deployed, delivered either conventionally or in hyper-fractionated/accelerated regimens. Similarly, both standard and high-dose chemotherapies were assessed. However, trials to date in high-risk medulloblastoma have commonly been institutional or national, based on modest cohort sizes, and have not evaluated the relative performance of different strategies in a randomised fashion. We describe the concepts and design of the SIOP-E high-risk medulloblastoma clinical trial (SIOP-HR-MB), the first international biomarker-driven, randomised, clinical trial for high-risk medulloblastoma. SIOP-HR-MB is programmed to recruit >800 patients in 16 countries across Europe; its primary objectives are to assess the relative efficacies of the alternative established regimens. The HR-MB patient population is molecularly and clinically defined, and upfront assessments incorporate a standardised central review of molecular pathology, radiology, and radiotherapy quality assurance. Secondary objectives include the assessment of (i) novel therapies within an upfront 'window' and (ii) therapy-associated neuropsychology, toxicity, and late effects, alongside (iii) the collection of materials for comprehensive integrated studies of biological determinants within the SIOP-HR-MB cohort.
Collapse
Affiliation(s)
- Simon Bailey
- Great North Children’s Hospital, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Nicolas André
- Pediatric Hematology and Oncology Department, Hôpital Pour Enfants de La Timone, AP-HM, 13005 Marseille, France;
- Centre de Recherche en Cancérologie de Marseille, SMARTc Unit, Inserm U1068, Aix Marseille University, 13005 Marseille, France
| | - Lorenza Gandola
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Simon Gates
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birimingham, Birmingham B15 2TT, UK; (K.W.); (S.G.); (V.H.)
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| |
Collapse
|
17
|
Danilenko M, Zaka M, Keeling C, Crosier S, Lyman S, Finetti M, Williamson D, Hussain R, Coxhead J, Zhou P, Hill RM, Hicks D, Rand V, Joshi A, Schwalbe EC, Bailey S, Clifford SC. Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development. Acta Neuropathol 2022; 144:565-578. [PMID: 35831448 PMCID: PMC9381458 DOI: 10.1007/s00401-022-02464-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
We reconstructed the natural history and temporal evolution of the most common childhood brain malignancy, medulloblastoma, by single-cell whole-genome sequencing (sc-WGS) of tumours representing its major molecular sub-classes and clinical risk groups. Favourable-risk disease sub-types assessed (MBWNT and infant desmoplastic/nodular MBSHH) typically comprised a single clone with no evidence of further evolution. In contrast, highest risk sub-classes (MYC-amplified MBGroup3 and TP53-mutated MBSHH) were most clonally diverse and displayed gradual evolutionary trajectories. Clinically adopted biomarkers (e.g. chromosome 6/17 aberrations; CTNNB1/TP53 mutations) were typically early-clonal/initiating events, exploitable as targets for early-disease detection; in analyses of spatially distinct tumour regions, a single biopsy was sufficient to assess their status. Importantly, sc-WGS revealed novel events which arise later and/or sub-clonally and more commonly display spatial diversity; their clinical significance and role in disease evolution post-diagnosis now require establishment. These findings reveal diverse modes of tumour initiation and evolution in the major medulloblastoma sub-classes, with pathogenic relevance and clinical potential.
Collapse
Affiliation(s)
- Marina Danilenko
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Masood Zaka
- National Horizons Centre, Teesside University, Darlington, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Claire Keeling
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephanie Lyman
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Martina Finetti
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Peixun Zhou
- National Horizons Centre, Teesside University, Darlington, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, Darlington, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Abhijit Joshi
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle University Teaching Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Mynarek M, Milde T, Padovani L, Janssens GO, Kwiecien R, Mosseri V, Clifford SC, Doz F, Rutkowski S. SIOP PNET5 MB Trial: History and Concept of a Molecularly Stratified Clinical Trial of Risk-Adapted Therapies for Standard-Risk Medulloblastoma. Cancers (Basel) 2021; 13:6077. [PMID: 34885186 PMCID: PMC8657236 DOI: 10.3390/cancers13236077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SIOP PNET5 MB was initiated in 2014 as the first European trial using clinical, histological, and molecular parameters to stratify treatments for children and adolescents with standard-risk medulloblastoma. METHODS Stratification by upfront assessment of molecular parameters requires the timely submission of adequate tumour tissue. In the standard-risk phase-III cohort, defined by the absence of high-risk criteria (M0, R0), pathological (non-LCA), and molecular biomarkers (MYCN amplification in SHH-MB or MYC amplification), a randomized intensification by carboplatin concomitant with radiotherapy is investigated. In the LR stratum for localized WNT-activated medulloblastoma and age <16 years, a reduction of craniospinal radiotherapy dose to 18 Gy and a reduced maintenance chemotherapy are investigated. Two additional strata (WNT-HR, SHH-TP53) were implemented during the trial. RESULTS SIOP PNET5 MB is actively recruiting. The availability of adequate tumour tissue for upfront real-time biological assessments to assess inclusion criteria has proven feasible. CONCLUSION SIOP PNET5 MB has demonstrated that implementation of biological parameters for stratification is feasible in a prospective multicentre setting, and may improve risk-adapted treatment. Comprehensive research studies may allow assessment of additional parameters, e.g., novel medulloblastoma subtypes, and identification and validation of biomarkers for the further refinement of risk-adapted treatment in the future.
Collapse
Affiliation(s)
- Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Milde
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Laetitia Padovani
- Oncology Radiotherapy Department, CRCM Inserm, Aix-Marseille University, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, Assistance Publique des Hôpitaux de Marseille, 13284 Marseille, France;
| | - Geert O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| | | | - Steven C. Clifford
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - François Doz
- SIREDO Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, Paris and Université de Paris, 75248 Paris, France;
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
19
|
Aras Y, Dölen D, İribas Çelik A, Kılıç G, Kebudi R, Ünverengil G, Sabancı PA, İzgi AN. Effects of different molecular subtypes and tumor biology on the prognosis of medulloblastoma. Childs Nerv Syst 2021; 37:3733-3742. [PMID: 34550414 DOI: 10.1007/s00381-021-05350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Medulloblastoma is one of the most common malignant brain tumors in the pediatric population. Recent studies identified four distinct medulloblastoma subgroups with different molecular alterations and pathways, and natural courses and outcomes. To evaluate the results of surgical and medical treatments of patients with medulloblastoma and compare them among the medulloblastoma subgroups. METHODS The clinical and radiological features, medical and surgical management and treatment outcomes and their correlation with molecular subgroups of 58 patients treated for medulloblastoma in the last 20 years were evaluated. RESULTS Fifty-eight patients, of whom 35 were male and 23 were female, were evaluated. The median age was 6 years (range, 1-19 years). The most common symptoms were nausea and vomiting (60%). Forty-three percent of the patients had headache and 40% had ataxia. Previous pathology reports revealed that 43 (74%), eight (14%), five (8%), and two (3%) had classic, desmoplastic, desmoplastic/nodular, and anaplastic morphologies, respectively. After the subgroup analyses, five patients (12%) were attributed to the wingless subgroup (WNT) group; 14 (32.5%), to the sonic hedgehog subgroup (SHH) group; and 24 (56%), to the non-WNT non-SHH group. On the basis of immunohistochemical analysis results, 15 patients could not be attributed to any subgroups. The clinical risk groups (average vs high-risk) and age at diagnosis (≥ 3 years vs < 3 years of age) were significant for 5-year event free survival (86% vs 43%, p:0.011 and 59% vs 36%, p:0.039). There was no significant difference in survival or event free survival according to molecular subtypes in this cohort. CONCLUSION In corporation of molecular features to the clinicopathologic classification leads to risk-adapted treatment. Although the molecular subgroups did not affect outcome significantly in this study, more studies with larger numbers of patients are needed to understand the tumor pathophysiology of medulloblastoma and design the future medical practice.
Collapse
Affiliation(s)
- Yavuz Aras
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| | - Duygu Dölen
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey.
| | - Ayca İribas Çelik
- Istanbul Faculty of Medicine, Radiation Oncology Department, Istanbul University, Istanbul, Turkey
| | - Gozde Kılıç
- Istanbul Faculty of Medicine, Pathology Department, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Institute of Oncology, Pediatric Hematology-Oncology Department, Istanbul University, Istanbul, Turkey
| | - Gökçen Ünverengil
- Istanbul Faculty of Medicine, Pathology Department, Istanbul University, Istanbul, Turkey
| | - Pulat Akın Sabancı
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| | - Ali Nail İzgi
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Grassberger C, Shinnick D, Yeap BY, Tracy M, G Ellsworth S, Hess CB, Weyman EA, Gallotto SL, Lawell MP, Bajaj B, Ebb DH, Ioakeim-Ioannidou M, Loeffler JS, MacDonald SM, Tarbell NJ, Yock TI. Circulating Lymphocyte Counts Early During Radiation Therapy Are Associated With Recurrence in Pediatric Medulloblastoma. Int J Radiat Oncol Biol Phys 2021; 110:1044-1052. [PMID: 33556478 PMCID: PMC8238781 DOI: 10.1016/j.ijrobp.2021.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Decreased peripheral lymphocyte counts are associated with survival after radiation therapy (RT) in several solid tumors, although they appear late during or after the radiation course and often correlate with other clinical factors. Here we investigate if absolute lymphocyte counts (ALCs) are independently associated with recurrence in pediatric medulloblastoma early during RT. METHODS AND MATERIALS We assessed 202 patients with medulloblastoma treated between 2000 and 2016 and analyzed ALC throughout therapy, focusing on both early markers (ALC during week 1 - ALCwk1; grade 3+ Lymphopenia during week 2 - Lymphopeniawk2) and late markers (ALC nadir). Uni- and multivariable regressions were used to assess association of clinical and treatment variables with ALC and of ALC with recurrence. RESULTS Thirty-six recurrences were observed, with a median time to recurrence of 1.6 years (range, 0.2-10.3) and 7.1 years median follow-up. ALC during RT was associated with induction chemotherapy (P < .001), concurrent carboplatin (P = .009), age (P = .01), and high-risk status (P = .05). On univariable analysis, high-risk disease (hazard ratio = 2.0 [1.06-3.9]; P = .03) and M stage≥1 (hazard ratio = 2.2 [1.1-4.4]) were associated with recurrence risk, as was lower ALC early during RT (ALCwk1, hazard ratio = 0.28 [0.12-0.65]; P = .003; Lymphopeniawk2, hazard ratio = 2.27 [1.1-4.6]; P = .02). Neither baseline ALC nor nadir correlated with outcome. These associations persisted when excluding carboplatin and pre-RT chemotherapy patients, and in the multivariable analysis accounting for confounders lymphocyte counts remained significant (ALCwk1, hazard-ratio = 0.23 [0.09-0.57]; P = .002; Lymphopeniawk2, hazard-ratio = 2.3 [1.1-4.8]; P = .03). CONCLUSIONS ALC during weeks 1 and 2 of RT was associated with recurrence, and low ALC is an independent prognostic factor in medulloblastoma. Strategies to mitigate the risk of radiation-induced lymphopenia should be considered.
Collapse
Affiliation(s)
- Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Daniel Shinnick
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark Tracy
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susannah G Ellsworth
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Clayton B Hess
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Weyman
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara L Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miranda P Lawell
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David H Ebb
- Pediatric Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Myrsini Ioakeim-Ioannidou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Pediatric Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Veo B, Danis E, Pierce A, Wang D, Fosmire S, Sullivan KD, Joshi M, Khanal S, Dahl N, Karam S, Serkova N, Venkataraman S, Vibhakar R. Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Rep 2021; 35:109013. [PMID: 33910002 PMCID: PMC12023313 DOI: 10.1016/j.celrep.2021.109013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
MYC-driven medulloblastoma is a major therapeutic challenge due to frequent metastasis and a poor 5-year survival rate. MYC gene amplification results in transcriptional dysregulation, proliferation, and survival of malignant cells. To identify therapeutic targets in MYC-amplified medulloblastoma, we employ a CRISPR-Cas9 essentiality screen targeting 1,140 genes. We identify CDK7 as a mediator of medulloblastoma tumorigenesis. Using chemical inhibitors and genetic depletion, we observe cessation of tumor growth in xenograft mouse models and increases in apoptosis. The results are attributed to repression of a core set of MYC-driven transcriptional programs mediating DNA repair. CDK7 inhibition alters RNA polymerase II (RNA Pol II) and MYC association at DNA repair genes. Blocking CDK7 activity sensitizes cells to ionizing radiation leading to accrual of DNA damage, extending survival and tumor latency in xenograft mouse models. Our studies establish the selective inhibition of MYC-driven medulloblastoma by CDK7 inhibition combined with radiation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Nathan Dahl
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Sana Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Aurora, CO, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
22
|
Alassiri AH, Alsufiani FM, Almutairi AA, Almohini IA, Aldosari MA, Essa MF. Spectrum of medulloblastoma subtypes and frequency of MYC amplification; Experience from a tertiary care center in Saudi Arabia. ACTA ACUST UNITED AC 2021; 25:218-221. [PMID: 32683405 PMCID: PMC8015469 DOI: 10.17712/nsj.2020.3.20190124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objectives: To clarify the spectrum of morphological and molecular subtypes of medulloblastoma (MBL), in addition to MYC and MYCN amplification statuses in a cohort of Saudi patients. The latter was correlated with patient outcome. Methods: We conducted a retrospective cohort study of 57 patients with MBL, diagnosed at the central laboratory of King Abdulaziz Medical City in Riyadh, Saudi Arabia, between 2006 and 2019. Molecular analysis for MYC and MYCN amplification was performed for the 19 most recently diagnosed patients. Results: Classic MBL was the most prevalent histologic subtype and MBL with extensive nodularity was the rarest. The non-WNT/non-SHH molecular subgroup was the most common while the WNT-activated was the least common. Among 19 patients analyzed, MYC and MYCN amplifications were discovered in 2 (10.5%) and 1 (5.3%) cases, respectively, using interphase fluorescence in-situ hybridization. The 2 MYC amplified cases belonged to the large cell/anaplastic subtype and had the worst outcomes. Conclusion: The MYC amplification corresponded with poor prognosis, the large cell/anaplastic variant of MBL, and the non-WNT/non-SHH molecular subtype.
Collapse
Affiliation(s)
- Ali H Alassiri
- Department of Pathology & Lab Medicine, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia. E-mail:
| | | | | | | | | | | |
Collapse
|
23
|
Crosier S, Hicks D, Schwalbe EC, Williamson D, Leigh Nicholson S, Smith A, Lindsey JC, Michalski A, Pizer B, Bailey S, Bown N, Cuthbert G, Wharton SB, Jacques TS, Joshi A, Clifford SC. Advanced molecular pathology for rare tumours: A national feasibility study and model for centralised medulloblastoma diagnostics. Neuropathol Appl Neurobiol 2021; 47:736-747. [PMID: 33826763 PMCID: PMC8600954 DOI: 10.1111/nan.12716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Aims Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co‐ordinated real‐time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA‐seq/DNA methylation‐array). Methods This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards. Paired frozen/formalin‐fixed, paraffin‐embedded tumour material were co‐submitted from 135 patients (16 referral centres). Results Complete CPR diagnostics were successful for 88% (120/135). Inadequate sampling was the most common cause of failure; biomaterials were typically suitable for methylation‐array (129/135, 94%), but frozen tissues commonly fell below RNA‐seq QC requirements (53/135, 39%). Late reporting was most often due to delayed submission. CPR assigned or altered histological variant (vs local diagnosis) for 40/135 tumours (30%). Benchmarking/QC of specific biomarker assays impacted test results; fluorescent in‐situ hybridisation most accurately identified high‐risk MYC/MYCN amplification (20/135, 15%), while combined methods (CTNNB1/chr6 status, methylation‐array subgrouping) best defined favourable‐risk WNT tumours (14/135; 10%). Engagement of a specialist pathologist panel was essential for consensus assessment of histological variants and immunohistochemistry. Overall, CPR altered clinical risk‐status for 29% of patients. Conclusion National real‐time CPR is feasible, delivering robust diagnostics to WHO criteria and assignment of clinical risk‐status, significantly altering clinical management. Recommendations and experience from our study are applicable to advanced molecular diagnostics systems, both local and centralised, across rare tumour types, enabling their application in biomarker‐driven routine diagnostics and clinical/research studies.
Collapse
Affiliation(s)
- Stephen Crosier
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Applied Sciences, Northumbria University, Newcastle, UK
| | - Daniel Williamson
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Amanda Smith
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Antony Michalski
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Barry Pizer
- Department of Haematology and Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | - Simon Bailey
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nick Bown
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gavin Cuthbert
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Sheffield University, Sheffield, UK
| | - Thomas S Jacques
- Developmental Biology & Cancer Department, UCL GOS Institute of Child Health, London, UK
| | - Abhijit Joshi
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Guerrini-Rousseau L, Abbas R, Huybrechts S, Kieffer-Renaux V, Puget S, Andreiuolo F, Beccaria K, Blauwblomme T, Bolle S, Dhermain F, Longaud Valès A, Roujeau T, Sainte-Rose C, Tauziede-Espariat A, Varlet P, Zerah M, Valteau-Couanet D, Dufour C, Grill J. Role of neoadjuvant chemotherapy in metastatic medulloblastoma: a comparative study in 92 children. Neuro Oncol 2021; 22:1686-1695. [PMID: 32267940 PMCID: PMC7846143 DOI: 10.1093/neuonc/noaa083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous pilot studies have shown the feasibility of preoperative chemotherapy in patients with medulloblastoma, but benefits and risks compared with initial surgery have not been assessed. METHODS Two therapeutic strategies were retrospectively compared in 92 patients with metastatic medulloblastoma treated at Gustave Roussy between 2002 and 2015: surgery at diagnosis (n = 54, group A) and surgery delayed after carboplatin and etoposide-based neoadjuvant therapy (n = 38, group B). Treatment strategies were similar in both groups. RESULTS The rate of complete tumor excision was significantly higher in group B than in group A (93.3% vs 57.4%, P = 0.0013). Postoperative complications, chemotherapy-associated side effects, and local progressions were not increased in group B. Neoadjuvant chemotherapy led to a decrease in the primary tumor size in all patients; meanwhile 4/38 patients experienced a distant progression. The histological review of 19 matched tumor pairs (before and after chemotherapy) showed that proliferation was reduced and histological diagnosis feasible and accurate even after neoadjuvant chemotherapy. The 5-year progression-free and overall survival rates were comparable between groups. Comparison of the longitudinal neuropsychological data showed that intellectual outcome tended to be better in group B (the mean predicted intellectual quotient value was 6 points higher throughout the follow-up). CONCLUSION Preoperative chemotherapy is a safe and efficient strategy for metastatic medulloblastoma. It increases the rate of complete tumor excision and may improve the neuropsychological outcome without jeopardizing survival. KEY POINTS 1. Preoperative chemotherapy increases the rate of complete tumor removal.2. No additional risk (toxic or disease progression) is linked to the delayed surgery.3. Preoperative chemotherapy could have a positive impact on the neuropsychological outcome of patients.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France.,Gustave Roussy Cancer Center, Combined Research Unit 8203, National Center of Scientific Research, Paris-Saclay University, Villejuif, France
| | - Rachid Abbas
- Gustave Roussy Cancer Center, Department of Biostatistics, Paris-Saclay University, Villejuif, France
| | - Sophie Huybrechts
- Hospital Center of Luxembourg, Department of Oncology and Hematology, Luxembourg City, Luxembourg
| | - Virginie Kieffer-Renaux
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France.,Saint Maurice Hospital, Monitoring and Integration Center for Children and Adolescents with Acquired Brain Injury, Saint Maurice, France
| | - Stéphanie Puget
- Necker Hospital, Department of Pediatric Neurosurgery, Paris Descartes University, Paris, France
| | - Felipe Andreiuolo
- Sainte Anne Hospital, Department of Neuropathology, Rene Descartes University, Paris, France
| | - Kévin Beccaria
- Necker Hospital, Department of Pediatric Neurosurgery, Paris Descartes University, Paris, France
| | - Thomas Blauwblomme
- Necker Hospital, Department of Pediatric Neurosurgery, Paris Descartes University, Paris, France
| | - Stéphanie Bolle
- Gustave Roussy Cancer Center, Department of Radiation Oncology, Paris-Saclay University, Villejuif, France
| | - Frédéric Dhermain
- Gustave Roussy Cancer Center, Department of Radiation Oncology, Paris-Saclay University, Villejuif, France
| | - Audrey Longaud Valès
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | - Thomas Roujeau
- Gui-de-Chauliac Hospital, Department of Neurosurgery, Montpellier University Hospital, Montpellier, France
| | - Christian Sainte-Rose
- Necker Hospital, Department of Pediatric Neurosurgery, Paris Descartes University, Paris, France
| | | | - Pascale Varlet
- Sainte Anne Hospital, Department of Neuropathology, Rene Descartes University, Paris, France
| | - Michel Zerah
- Necker Hospital, Department of Pediatric Neurosurgery, Paris Descartes University, Paris, France
| | - Dominique Valteau-Couanet
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | - Christelle Dufour
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France.,Gustave Roussy Cancer Center, Combined Research Unit 8203, National Center of Scientific Research, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France.,Gustave Roussy Cancer Center, Combined Research Unit 8203, National Center of Scientific Research, Paris-Saclay University, Villejuif, France
| |
Collapse
|
25
|
Danilenko M, Clifford SC, Schwalbe EC. Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma. Pharmacol Ther 2021; 228:107828. [PMID: 33662447 DOI: 10.1016/j.pharmthera.2021.107828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant CNS tumor of childhood, affecting ~350 patients/year in the USA. In 2020, most children are cured of their disease, however, survivors are left with life-long late-effects as a consequence of intensive surgery, and application of chemo- and radio-therapy to the developing brain. A major contributor to improvements in patient survival has been the development of risk-stratified treatments derived from a better understanding of the prognostic value of disease biomarkers. The characterization and validation of these biomarkers has engendered a comprehensive understanding of the extensive heterogeneity that exists within the disease, which can occur both between and within tumors (inter- and intra-tumoral heterogeneity, respectively). In this review, we discuss inter-tumoral heterogeneity, describing the early characterization of clinical and histopathological disease heterogeneity, the more recent elucidation of molecular disease subgroups, and the potential for novel therapies based on specific molecular defects. We reflect on the limitations of current approaches when applied to a rare disease. We then review early investigations of intra-tumoral heterogeneity using FISH and immunohistochemical approaches, and focus on the application of next generation sequencing on bulk tumors to elucidate intra-tumoral heterogeneity. Finally, we critically appraise the applications of single-cell sequencing approaches and discuss their potential to drive next biological insights, and for routine clinical application.
Collapse
Affiliation(s)
- Marina Danilenko
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
Wong GCH, Li KKW, Wang WW, Liu APY, Huang QJ, Chan AKY, Poon MFM, Chung NYF, Wong QHW, Chen H, Chan DTM, Liu XZ, Mao Y, Zhang ZY, Shi ZF, Ng HK. Clinical and mutational profiles of adult medulloblastoma groups. Acta Neuropathol Commun 2020; 8:191. [PMID: 33172502 PMCID: PMC7656770 DOI: 10.1186/s40478-020-01066-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Adult medulloblastomas are clinically and molecularly understudied due to their rarity. We performed molecular grouping, targeted sequencing, and TERT promoter Sanger sequencing on a cohort of 99 adult medulloblastomas. SHH made up 50% of the cohort, whereas Group 3 (13%) was present in comparable proportion to WNT (19%) and Group 4 (18%). In contrast to paediatric medulloblastomas, molecular groups had no prognostic impact in our adult cohort (p = 0.877). Most frequently mutated genes were TERT (including promoter mutations, mutated in 36% cases), chromatin modifiers KMT2D (31%) and KMT2C (30%), TCF4 (31%), PTCH1 (27%) and DDX3X (24%). Adult WNT patients showed enrichment of TP53 mutations (6/15 WNT cases), and 3/6 TP53-mutant WNT tumours were of large cell/anaplastic histology. Adult SHH medulloblastomas had frequent upstream pathway alterations (PTCH1 and SMO mutations) and few downstream alterations (SUFU mutations, MYCN amplifications). TERT promoter mutations were found in 72% of adult SHH patients, and were restricted to this group. Adult Group 3 tumours lacked hallmark MYC amplifications, but had recurrent mutations in KBTBD4 and NOTCH1. Adult Group 4 tumours harboured recurrent mutations in TCF4 and chromatin modifier genes. Overall, amplifications of MYC and MYCN were rare (3%). Since molecular groups were not prognostic, alternative prognostic markers are needed for adult medulloblastoma. KMT2C mutations were frequently found across molecular groups and were associated with poor survival (p = 0.002). Multivariate analysis identified histological type (p = 0.026), metastasis (p = 0.031) and KMT2C mutational status (p = 0.046) as independent prognosticators in our cohort. In summary, we identified distinct clinical and mutational characteristics of adult medulloblastomas that will inform their risk stratification and treatment.
Collapse
|
27
|
Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H, Duan Z. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol 2020; 12:1758835920922055. [PMID: 32426053 PMCID: PMC7222246 DOI: 10.1177/1758835920922055] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past four decades, outcomes for osteosarcoma patients have plateaued as there have been few emerging therapies showing clinical results. Thus, the identification of novel biomarkers and therapeutic strategies are urgently needed to address these primary obstacles in patient care. Although the Myc-oncogene has known roles in oncogenesis and cancer cell growth, its expression and function in osteosarcoma are largely unknown. Methods Expression of Myc was determined by Western blotting of osteosarcoma cell lines and patient tissues, and by immunohistochemistry of a unique osteosarcoma tissue microarray (TMA) constructed from 70 patient samples with extensive follow-up data. Myc specific siRNA and inhibitor 10058-F4 were applied to examine the effect of Myc inhibition on osteosarcoma cell proliferation. The clonogenicity and migration activity was determined by clonogenic and wound-healing assays. A mimic in vivo assay, three-dimensional (3D) cell culture model, was performed to further validate the effect of Myc inhibition on osteosarcoma cell tumorigenic markers. Results Myc was significantly overexpressed in human osteosarcoma cell lines compared with normal human osteoblasts, and also highly expressed in fresh osteosarcoma tissues. Higher Myc expression correlated significantly with metastasis and poor prognosis. Through the addition of Myc specific siRNA and inhibitor, we significantly reduced Myc protein expression, resulting in decreased osteosarcoma cell proliferation. Inhibition of Myc also suppressed the migration, clonogenicity, and spheroid growth of osteosarcoma cells. Conclusion Our results support Myc as an emerging prognostic biomarker and therapeutic target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA Department of Surgery, University of California, San Diego, CA, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumors in children and comprise 15% to 20% of all malignancies in children. Presentation, symptoms, and signs depend on tumor location and age of the patient at the time of diagnosis. This article summarizes the common childhood CNS tumors, presentations, classification, and recent updates in treatment approaches due to the increased understanding of the molecular pathogenesis of pediatric brain tumors.
Collapse
Affiliation(s)
- Yoko T Udaka
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Oncology, Center for Cancer and Blood Disorders, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Roger J Packer
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; The Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| |
Collapse
|
29
|
Wang SZ, Poore B, Alt J, Price A, Allen SJ, Hanaford AR, Kaur H, Orr BA, Slusher BS, Eberhart CG, Raabe EH, Rubens JA. Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine. Clin Cancer Res 2019; 25:5925-5936. [PMID: 31300448 DOI: 10.1158/1078-0432.ccr-19-0189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) are aggressive infantile brain tumors with poor survival. Recent advancements have highlighted significant molecular heterogeneity in AT/RT with an aggressive subgroup featuring overexpression of the MYC proto-oncogene. We perform the first comprehensive metabolic profiling of patient-derived AT/RT cell lines to identify therapeutic susceptibilities in high MYC-expressing AT/RT. EXPERIMENTAL DESIGN Metabolites were extracted from AT/RT cell lines and separated in ultra-high performance liquid chromatography mass spectrometry. Glutamine metabolic inhibition with 6-diazo-5-oxo-L-norleucine (DON) was tested with growth and cell death assays and survival studies in orthotopic mouse models of AT/RT. Metabolic flux analysis was completed to identify combination therapies to act synergistically to improve survival in high MYC AT/RT. RESULTS Unbiased metabolic profiling of AT/RT cell models identified a unique dependence of high MYC AT/RT on glutamine for survival. The glutamine analogue, DON, selectively targeted high MYC cell lines, slowing cell growth, inducing apoptosis, and extending survival in orthotopic mouse models of AT/RT. Metabolic flux experiments with isotopically labeled glutamine revealed DON inhibition of glutathione (GSH) synthesis. DON combined with carboplatin further slowed cell growth, induced apoptosis, and extended survival in orthotopic mouse models of high MYC AT/RT. CONCLUSIONS Unbiased metabolic profiling of AT/RT identified susceptibility of high MYC AT/RT to glutamine metabolic inhibition with DON therapy. DON inhibited glutamine-dependent synthesis of GSH and synergized with carboplatin to extend survival in high MYC AT/RT. These findings can rapidly translate into new clinical trials to improve survival in high MYC AT/RT.
Collapse
Affiliation(s)
- Sabrina Z Wang
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Brad Poore
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Antoinette Price
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sariah J Allen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Allison R Hanaford
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Harpreet Kaur
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Eric H Raabe
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Division of Neuropathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Merve A, Zhang X, Pomella N, Acquati S, Hoeck JD, Dumas A, Rosser G, Li Y, Jeyapalan J, Vicenzi S, Fan Q, Yang ZJ, Sabò A, Sheer D, Behrens A, Marino S. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun 2019; 7:95. [PMID: 31142360 PMCID: PMC6540455 DOI: 10.1186/s40478-019-0739-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus tumours (CPTs) account for 2–5% of brain tumours in children. They can spread along the neuraxis and can recur after treatment. Little is known about the molecular mechanisms underlying their formation and only few high fidelity mouse models of p53-deficient malignant CPTs are available. We show here that c-MYC overexpression in the choroid plexus epithelium induces T-cell inflammation-dependent choroid plexus papillomas in a mouse model. We demonstrate that c-MYC is expressed in a substantial proportion of human choroid plexus tumours and that this subgroup of tumours is characterised by an inflammatory transcriptome and significant inflammatory infiltrates. In compound mutant mice, overexpression of c-MYC in an immunodeficient background led to a decreased incidence of CPP and reduced tumour bulk. Finally, reduced tumour size was also observed upon T-cell depletion in CPP-bearing mice. Our data raise the possibility that benign choroid plexus tumours expressing c-MYC could be amenable to medical therapy with anti-inflammatory drugs.
Collapse
|
31
|
Menyhárt O, Giangaspero F, Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol 2019; 12:29. [PMID: 30876441 PMCID: PMC6420757 DOI: 10.1186/s13045-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations. The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials. To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected. Molecularly stratified treatment options are limited, and targeted therapies are still in preclinical development. Attacking these aggressive tumors at multiple frontiers will be needed to improve stagnant survival rates.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Felice Giangaspero
- Department of Radiological, Oncological, and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (Is), Italy
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary. .,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
32
|
Veo B, Danis E, Pierce A, Sola I, Wang D, Foreman NK, Jin J, Ma A, Serkova N, Venkataraman S, Vibhakar R. Combined functional genomic and chemical screens identify SETD8 as a therapeutic target in MYC-driven medulloblastoma. JCI Insight 2019; 4:122933. [PMID: 30626740 DOI: 10.1172/jci.insight.122933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/27/2018] [Indexed: 01/11/2023] Open
Abstract
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, accounting for 20% of all childhood brain tumors. The molecular profiling of MB into 4 major subgroups (WNT, SHH, Grp3, and Grp4) emphasizes the heterogeneity of MB and opens paths in which treatments may be targeted to molecularly aggressive and distinct tumors. Current therapeutic strategies for Group 3 MB are challenging and can be accompanied by long-term side effects from treatment. The involvement of altered epigenetic machinery in neoplastic transformation in MB has become more evident. Thus, we performed an epigenomic RNAi and chemical screen and identified SETD8/PRE-SET7/KMT5a as a critical player in maintaining proliferation and cell survival of MB cells. We have found that inhibition of SETD8 effects the migration/invasive ability of MB cells. SETD8 alters H4K20me chromatin occupancy at key genes involved in tumor invasiveness and pluripotency. Interestingly, these results link the aggressive and metastatic behavior of MYC-driven MB with SETD8 activity. Based on our results, we suggest that SETD8 has a critical role mediating Group 3 MB tumorigenesis. Establishing a role for SETD8 as a factor in MYC-driven MB has potential to lead to more effective therapies needed to improve outcomes in high-risk patients.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ismail Sola
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anqi Ma
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA.,Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
33
|
Shih RY, Koeller KK. Embryonal Tumors of the Central Nervous System: From the Radiologic Pathology Archives. Radiographics 2018. [PMID: 29528832 DOI: 10.1148/rg.2018170182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Embryonal tumors of the central nervous system (CNS) are highly malignant undifferentiated or poorly differentiated tumors of neuroepithelial origin and have been defined as a category in the World Health Organization (WHO) classification since the first edition of the "Blue Book" in 1979. This category has evolved over time to reflect our ever-improving understanding of tumor biology and behavior. With the most recent update in 2016, many previous histologic diagnoses incorporate molecular parameters for the first time (genetically defined entities). While medulloblastoma and atypical teratoid/rhabdoid tumor are familiar carryovers from the 2007 CNS WHO classification, there are major changes to the embryonal tumor category: for example, elimination of the term CNS primitive neuroectodermal tumor and addition of a new genetically defined entity, embryonal tumor with multilayered rosettes, C19MC-altered. The purpose of this article is to discuss both the radiologic-pathologic features of CNS embryonal tumors and the new molecularly defined types/subtypes that will become the standard classification/terminology for future diagnoses and tumor research.
Collapse
Affiliation(s)
- Robert Y Shih
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (R.Y.S., K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.); and Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.)
| | - Kelly K Koeller
- From the Department of Neuroradiology, American Institute for Radiologic Pathology, Silver Spring, Md (R.Y.S., K.K.K.); Uniformed Services University of the Health Sciences, Bethesda, Md (R.Y.S.); Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (R.Y.S.); and Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (K.K.K.)
| |
Collapse
|
34
|
Krüger K, Geist K, Stuhldreier F, Schumacher L, Blümel L, Remke M, Wesselborg S, Stork B, Klöcker N, Bormann S, Roos WP, Honnen S, Fritz G. Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Lett 2018; 430:34-46. [PMID: 29753759 DOI: 10.1016/j.canlet.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Targeting of oncogene-driven replicative stress as therapeutic option for high-risk medullobastoma was assessed using a panel of medulloblastoma cells differing in their c-Myc expression [i.e. group SHH (c-Myc low) vs. group 3 (c-Myc high)]. High c-Myc levels were associated with hypersensitivity to pharmacological Chk1 and ATR inhibition but not to CDK inhibition nor to conventional (genotoxic) anticancer therapeutics. The enhanced sensitivity of group 3 medulloblastoma cells to Chk1 inhibitors likely results from enhanced damage to intracellular organelles, elevated replicative stress and DNA damage and activation of apoptosis/necrosis. Furthermore, Chk1 inhibition differentially affected c-Myc expression and functions. In c-Myc high cells, Chk1 blockage decreased c-Myc and p-GSK3α protein and increased p21 and GADD45A mRNA expression. By contrast, c-Myc low cells revealed increased p-GSK3β protein and CHOP and DUSP1 mRNA levels. Inhibition of Chk1 sensitized medulloblastoma cells to additional replication stress evoked by cisplatin independent of c-Myc. Importantly, Chk1 inhibition only caused minor toxicity in primary rat neurons in vitro. Collectively, targeting of ATR/Chk1 effectively triggers death in high-risk medulloblastoma, potentiates the anticancer efficacy of cisplatin and is well tolerated in non-cancerous neuronal cells.
Collapse
Affiliation(s)
- Katharina Krüger
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Katharina Geist
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lena Blümel
- Clinic of Pediatric Oncology/Neuro-Oncology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Marc Remke
- Clinic of Pediatric Oncology/Neuro-Oncology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Nicolaj Klöcker
- Institute of Neurophysiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Stefanie Bormann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
35
|
Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene 2018; 37:2850-2862. [PMID: 29511348 PMCID: PMC5966365 DOI: 10.1038/s41388-018-0135-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. MYC genes are frequently amplified and correlate with poor prognosis in MB. BET bromodomains recognize acetylated lysine residues and often promote and maintain MYC transcription. Certain cyclin-dependent kinases (CDKs) are further known to support MYC stabilization in tumor cells. In this report, MB cells were suppressed by combined targeting of MYC expression and MYC stabilization using BET bromodomain inhibition and CDK2 inhibition, respectively. Such combination treatment worked synergistically and caused cell cycle arrest as well as massive apoptosis. Immediate transcriptional changes from this combined MYC blockade were found using RNA-Seq profiling and showed remarkable similarities to changes in MYC target gene expression when MYCN was turned off with doxycycline in our MYCN-inducible animal model for Group 3 MB. In addition, the combination treatment significantly prolonged survival as compared to single-agent therapy in orthotopically transplanted human Group 3 MB with MYC amplifications. Our data suggest that dual inhibition of CDK2 and BET bromodomains can be a novel treatment approach for suppressing MYC-driven cancer.
Collapse
|
36
|
Synergistic anti-cancer effects of epigenetic drugs on medulloblastoma cells. Cell Oncol (Dordr) 2017; 40:263-279. [PMID: 28429280 DOI: 10.1007/s13402-017-0319-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Medulloblastomas are aggressive brain malignancies. While considerable progress has been made in the treatment of medulloblastoma patients with respect to overall survival, these patients are still at risk of developing neurologic and cognitive deficits as a result of anti-cancer therapies. It is hypothesized that targeted molecular therapies represent a better treatment option for medulloblastoma patients. Therefore, the aim of the present study was to test a panel of epigenetic drugs for their effect on medulloblastoma cells under mild hypoxic conditions that reflect the physiological concentrations of oxygen in the brain. METHODS Protein levels of histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) in medulloblastoma-derived cells (Daoy and D283 Med), as well as in developing and differentiated brain cells, were determined and compared. Class I and II histone deacetylase inhibitors (HDACi) and a DNMT inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), were applied to Daoy and D283 Med cells, and their effects were studied using viability, apoptosis and cancer sphere assays. RESULTS We found that in HDAC1 and DNMT1 overexpressing medulloblastoma-derived cells, cell death was induced under various epigenetic drug conditions tested. At low HDACi concentrations, however, a pro-proliferative effect was observed. Parthenolide, a drug that affects cancer stem cells, was found to be efficient in inducing cell death in both cell lines tested. In contrast, we found that Daoy cells were more resistant to 5-aza-dC than D283 Med cells. When suberoylanilide hydroxamic acid (SAHA) and parthenolide were individually applied to both cell lines in combination with 5-aza-dC, a synergistic effect on cell survival was observed. CONCLUSIONS Our current results suggest that the application of HDACi in combination with drugs that target DNMT may represent a promising option for the treatment of medulloblastoma.
Collapse
|
37
|
Archer TC, Mahoney EL, Pomeroy SL. Medulloblastoma: Molecular Classification-Based Personal Therapeutics. Neurotherapeutics 2017; 14:265-273. [PMID: 28386677 PMCID: PMC5398996 DOI: 10.1007/s13311-017-0526-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer genomics have revealed 4 distinct subgroups of medulloblastomas, each with unique transcription profiles, DNA alterations and clinical outcome. Molecular classification of medulloblastomas improves predictions of clinical outcome, allowing more accurate matching of intensity of conventional treatments with chemotherapy and radiation to overall prognosis and setting the stage for the introduction of targeted therapies.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | | | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Neill SG, Saxe DF, Rossi MR, Schniederjan MJ, Brat DJ. Genomic Analysis in the Practice of Surgical Neuropathology: The Emory Experience. Arch Pathol Lab Med 2017; 141:355-365. [DOI: 10.5858/arpa.2016-0276-sai] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evaluation of central nervous system tumors increasingly relies on molecular genetic methods to aid in classification, offer prognostic information, and predict response to therapy. Available assays make it possible to assess genetic losses, amplifications, translocations, mutations, or the expression levels of specific gene transcripts or proteins. Current molecular diagnostics frequently use a panel-based approach and whole genome analysis, and generally rely either on DNA sequencing or on hybridization-based methodologies, such as those used in cytogenomic microarrays. In some cases, immunohistochemistry can be used as a surrogate for genetic analysis when the mutation of interest consistently results in overexpression or underexpression of a known protein product. In surgical neuropathology practice, the diagnostic workup of diffuse gliomas, medulloblastomas, low-grade circumscribed gliomas, as well as other diseases, now routinely incorporates the results of genomic studies. Here we summarize our institution's current approach to diagnostic surgical neuropathology, using these contemporary molecular diagnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Brat
- From the Departments of Pathology and Laboratory Medicine (Drs Neill, Saxe, Rossi, Schniederjan, and Brat) and Radiation Oncology (Dr Rossi), Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia; and the Department of Pathology, Children's Healthcare of Atlanta, Atlanta, Georgia (Dr Schniederjan)
| |
Collapse
|
39
|
Martin M, Hua L, Wang B, Wei H, Prabhu L, Hartley AV, Jiang G, Liu Y, Lu T. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer. J Biol Chem 2017; 292:3433-3444. [PMID: 28077578 DOI: 10.1074/jbc.m116.740258] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer.
Collapse
Affiliation(s)
| | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Han Wei
- Departments of Pharmacology and Toxicology
| | | | | | - Guanglong Jiang
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yunlong Liu
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tao Lu
- Departments of Pharmacology and Toxicology; Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202; Biochemistry and Molecular Biology.
| |
Collapse
|
40
|
Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol 2016; 129:515-524. [PMID: 27423645 PMCID: PMC5020107 DOI: 10.1007/s11060-016-2202-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/03/2016] [Indexed: 12/20/2022]
Abstract
The HIT-SIOP-PNET4 randomised trial for standard risk medulloblastoma (MB) (2001–2006) included 338 patients and compared hyperfractionated and conventional radiotherapy. We here report the long-term outcome after a median follow up of 7.8 years, including detailed information on relapse and the treatment of relapse. Data were extracted from the HIT Group Relapsed MB database and by way of a specific case report form. The event-free and overall (OS) survival at 10 years were 76 ± 2 % and 78 ± 2 % respectively with no significant difference between the treatment arms. Seventy-two relapses and three second malignant neoplasms were reported. Thirteen relapses (18 %) were isolated local relapses in the posterior fossa (PF) and 59 (82 %) were craniospinal, metastatic relapses (isolated or multiple) with or without concurrent PF disease. Isolated PF relapse vs all other relapses occurred at mean/median of 38/35 and 28/26 months respectively (p = 0.24). Late relapse, i.e. >5 years from diagnosis, occurred in six patients (8 %). Relapse treatment consisted of combinations of surgery (25 %), focal radiotherapy (RT 22 %), high dose chemotherapy with stem cell rescue (HDSCR 21 %) and conventional chemotherapy (90 %). OS at 5 years after relapse was 6.0 ± 4 %. In multivariate analysis; isolated relapse in PF, and surgery were significantly associated with prolonged survival whereas RT and HDSCR were not. Survival after relapse was not related to biological factors and was very poor despite several patients receiving intensive treatments. Exploration of new drugs is warranted, preferably based on tumour biology from biopsy of the relapsed tumour.
Collapse
|
41
|
Borowska A, Jóźwiak J. Medulloblastoma: molecular pathways and histopathological classification. Arch Med Sci 2016; 12:659-66. [PMID: 27279861 PMCID: PMC4889700 DOI: 10.5114/aoms.2016.59939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/05/2014] [Indexed: 12/04/2022] Open
Abstract
Malignant brain tumors are the leading cause of cancer death among pediatric patients, and medulloblastoma constitutes 20% of them. Currently, the treatment is risk-adapted. Maximum surgical resection is recommended, always followed by chemotherapy and neuroaxis radiotherapy. In spite of the improving survival rate, survivors succumb to treatment-induced side effects. To reduce toxic effects, molecular-targeted treatment is proposed. Medulloblastoma research is very robust, and new articles on the subject are published daily. In the current review we have tried to bring together molecular pathophysiology of the neoplasm and current pathological classification, thus making an effort to relate tumor biology and the histological picture.
Collapse
Affiliation(s)
- Anna Borowska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Jóźwiak
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Chan TSY, Hawkins C, Krieger JR, McGlade CJ, Huang A. JPO2/CDCA7L and LEDGF/p75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res 2016; 76:2802-12. [PMID: 27013196 DOI: 10.1158/0008-5472.can-15-2194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
Substantial evidence links Myc-PI3K/AKT signaling to the most aggressive subtype of medulloblastoma and this axis in medulloblastoma therapy. In this study, we advance understanding of how Myc-PI3K/AKT signaling contributes to this malignancy, specifically, in identifying the Myc-interacting protein JPO2 and its partner binding protein LEDGF/p75 as critical modulators of PI3K/AKT signaling and metastasis in medulloblastoma. JPO2 overexpression induced metastatic medulloblastoma in vivo through two synergistic feed-forward regulatory circuits involving LEDGF/p75 and AKT that promote metastatic phenotypes in this setting. Overall, our findings highlight two novel prometastatic loci in medulloblastoma and point to the JPO2:LEDGF/p75 protein complex as a potentially new targetable component of PI3K/AKT signaling in medulloblastoma. Cancer Res; 76(9); 2802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Tiffany Sin Yu Chan
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Krieger
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, von Bueren AO, Krauss J, Schweitzer T, Vince GH, Picard D, Eyrich M, Rosenwald A, Ramaswamy V, Taylor MD, Remke M, Monoranu CM, Beilhack A, Schlegel PG, Wölfl M. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer 2016; 16:115. [PMID: 26883117 PMCID: PMC4756501 DOI: 10.1186/s12885-016-2170-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2170-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Dietl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefanie Schwinn
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Susanne Dietl
- Department of Surgery II, University of Würzburg, Würzburg, Germany
| | - Simone Riedel
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Frank Deinlein
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre O von Bueren
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Jürgen Krauss
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | | | - Giles H Vince
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Eyrich
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | | | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | | | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
44
|
Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, Dastur A, Gomez-Caraballo M, Krytska K, Hata AN, Floros KV, Hughes MT, Jakubik CT, Heisey DAR, Ferrell JT, Bristol ML, March RJ, Yates C, Hicks MA, Nakajima W, Gowda M, Windle BE, Dozmorov MG, Garnett MJ, McDermott U, Harada H, Taylor SM, Morgan IM, Benes CH, Engelman JA, Mossé YP, Faber AC. Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell 2016; 29:159-72. [PMID: 26859456 PMCID: PMC4749542 DOI: 10.1016/j.ccell.2016.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023]
Abstract
Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.
Collapse
Affiliation(s)
- Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Erin M Sennott
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Anahita Dastur
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Gomez-Caraballo
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos V Floros
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark T Hughes
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A R Heisey
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Justin T Ferrell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Ryan J March
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Yates
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark A Hicks
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Madhu Gowda
- Department of Pediatrics, Children's Hospital of Richmond, VCU, Richmond, VA 23298, USA
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mathew J Garnett
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Shirley M Taylor
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA.
| |
Collapse
|
45
|
Abstract
As in only few other areas of oncology, molecular markers in neurooncology have become an integral part of clinical decision-making. This development is driven by a bustling scientific activity exploring the molecular basis and pathogenesis of human brain tumors. In addition, a high percentage of brain tumor patients are included in clinical studies in which molecular markers are assessed and linked with clinical informativeness. First steps towards more differentiated therapeutic strategies against brain tumors have thus been taken. The implementation in the clinical and diagnostic routine requires a detailed knowledge and a close collaboration between all medical disciplines involved.
Collapse
|
46
|
Gopalakrishnan V, Tao RH, Dobson T, Brugmann W, Khatua S. Medulloblastoma development: tumor biology informs treatment decisions. CNS Oncol 2015; 4:79-89. [PMID: 25768332 DOI: 10.2217/cns.14.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Current treatments including surgery, craniospinal radiation and high-dose chemotherapy have led to improvement in survival. However, the risk for recurrence as well as significant long-term neurocognitive and endocrine sequelae associated with current treatment modalities underscore the urgent need for novel tumor-specific, normal brain-sparing therapies. It has also provided the impetus for research focused on providing a better understanding of medulloblastoma biology. The expectation is that such studies will lead to the identification of new therapeutic targets and eventually to an increase in personalized treatment approaches.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Clifford SC, Lannering B, Schwalbe EC, Hicks D, O' Toole K, Nicholson SL, Goschzik T, zur Mühlen A, Figarella-Branger D, Doz F, Rutkowski S, Gustafsson G, Pietsch T. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 2015; 6:38827-39. [PMID: 26420814 PMCID: PMC4770740 DOI: 10.18632/oncotarget.5149] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To improve stratification of risk-adapted treatment for non-metastatic (M0), standard-risk medulloblastoma patients by prospective evaluation of biomarkers of reported biological or prognostic significance, alongside clinico-pathological variables, within the multi-center HIT-SIOP-PNET4 trial. METHODS Formalin-fixed paraffin-embedded tumor tissues were collected from 338 M0 patients (>4.0 years at diagnosis) for pathology review and assessment of the WNT subgroup (MBWNT) and genomic copy-number defects (chromosome 17, MYC/MYCN, 9q22 (PTCH1) and DNA ploidy). Clinical characteristics were reviewed centrally. RESULTS The favorable prognosis of MBWNT was confirmed, however better outcomes were observed for non-MBWNT tumors in this clinical risk-defined cohort compared to previous disease-wide clinical trials. Chromosome 17p/q defects were heterogeneous when assessed at the cellular copy-number level, and predicted poor prognosis when they occurred against a diploid (ch17(im)/diploid(cen)), but not polyploid, genetic background. These factors, together with post-surgical tumor residuum (R+) and radiotherapy delay, were supported as independent prognostic markers in multivariate testing. Notably, MYC and MYCN amplification were not associated with adverse outcome. In cross-validated survival models derived for the clinical standard-risk (M0/R0) disease group, (ch17(im)/diploid(cen); 14% of patients) predicted high disease-risk, while the outcomes of patients without (ch17(im)/diploid(cen)) did not differ significantly from MBWNT, allowing re-classification of 86% as favorable-risk. CONCLUSIONS Biomarkers, established previously in disease-wide studies, behave differently in clinically-defined standard-risk disease. Distinct biomarkers are required to assess disease-risk in this group, and define improved risk-stratification models. Routine testing for specific patterns of chromosome 17 imbalance at the cellular level, and MBWNT, provides a strong basis for incorporation into future trials.
Collapse
Affiliation(s)
- Steven C. Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg and The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ed C. Schwalbe
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Debbie Hicks
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kieran O' Toole
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Leigh Nicholson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tobias Goschzik
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Anja zur Mühlen
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Dominique Figarella-Branger
- Department of Pathology and Neuropathology, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - François Doz
- Institut Curie and University Paris Descartes, Paris, France
| | | | | | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Ji MH, Kim SK, Kim CY, Phi JH, Jun HJ, Blume SW, Choi HS. Physiological Expression and Accumulation of the Products of Two Upstream Open Reading Frames mrtl and MycHex1 Along With p64 and p67 Myc From the Human c-myc Locus. J Cell Biochem 2015; 117:1407-18. [PMID: 26552949 DOI: 10.1002/jcb.25431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 11/05/2022]
Abstract
In addition to the canonical c-Myc p64 and p67 proteins, the human c-myc locus encodes two distinct proteins, mrtl (myc-related translation/localization regulatory factor) and MycHex1 (Myc Human Exon 1), from the upstream open reading frames within the 5'-untranslated region of the c-myc P0 mRNA. The aim of this study is to examine simultaneously, for the first time, mrtl, MycHex1, c-Myc p64, and p67 in human tumor cell lines and pediatric brain tumor tissues. Western blot analysis demonstrated endogenous mrtl, MycHex1, c-Myc p64, and p67 simultaneously. The relative abundance of mrtl and MycHex1 were consistent among a variety of human tumor cell lines, and the relative intensities of mrtl and MycHex1 correlated positively. Confocal imaging revealed mrtl predominantly localized to the nuclear envelope, along with prominent reticular pattern in the cytoplasm. MycHex1 was observed as a series of bright foci located within the nucleus, a subset of which colocalized with fibrillarin. mrtl and MycHex1 co-immunoprecipitated with RACK1, c-Myc, fibrillarin, coilin, and with each other. These findings suggest that mrtl and MycHex1 have multiple interaction partners in both the nucleus and cytoplasm. Sequence analyses confirmed a known polymorphism of mrtl at base 1965 (G>T) and new mutations at bases 1900 (C>G) and 1798 (C>G). Evidence is presented for expression and stable accumulation of all four proteins encoded by three distinct non-overlapping open reading frames within the human c-myc locus. Additional work is warranted to further elucidate the functional or regulatory roles of these molecules in regulation of c-Myc and in oncogenesis.
Collapse
Affiliation(s)
- Mi Hong Ji
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Jun
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Scott W Blume
- Department of Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
49
|
Faria CC, Agnihotri S, Mack SC, Golbourn BJ, Diaz RJ, Olsen S, Bryant M, Bebenek M, Wang X, Bertrand KC, Kushida M, Head R, Clark I, Dirks P, Smith CA, Taylor MD, Rutka JT. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget 2015; 6:21718-29. [PMID: 26061748 PMCID: PMC4673298 DOI: 10.18632/oncotarget.4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma.
Collapse
Affiliation(s)
- Claudia C. Faria
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sameer Agnihotri
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Stephen C. Mack
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Brian J. Golbourn
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Roberto J. Diaz
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Samantha Olsen
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Melissa Bryant
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Matthew Bebenek
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Xin Wang
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kelsey C. Bertrand
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Michelle Kushida
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Renee Head
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Ian Clark
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Peter Dirks
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Christian A. Smith
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Taylor
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - James T. Rutka
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
50
|
Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, Cascione L, Antenucci A, Kumchala P, Vicentini C, Gardiman MP, Alder H, Carosi MA, Ammirati M, Gherardi S, Luscrì M, Carapella C, Zanesi N, Croce CM. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget 2015; 6:20829-20839. [PMID: 26246487 PMCID: PMC4673232 DOI: 10.18632/oncotarget.4096] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.
Collapse
Affiliation(s)
| | | | - Alessandro Laganà
- Dept. of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Acunzo
- MVIMG, The Ohio State University, Columbus, OH, USA
| | - Matteo Fassan
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luciano Cascione
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Anna Antenucci
- UOSD of Clinical pathology, Regina Elena Institute, Rome, Italy
| | | | - Caterina Vicentini
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Marina P. Gardiman
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | | | - Mario Ammirati
- Dept. of Neurological Surgery, The Ohio State University, OH, USA
| | | | - Marilena Luscrì
- Dept. of Anesthesiology, Sandro Pertini Hospital, Rome, Italy
| | | | | | | |
Collapse
|