1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
3
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
4
|
Zhen Z, Ren J, Zhu J. The redox requirement and regulation during cell proliferation. Trends Endocrinol Metab 2024; 35:385-399. [PMID: 38262821 DOI: 10.1016/j.tem.2023.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
The intracellular metabolic network comprises a variety of reduction-oxidation (redox) reactions that occur in a temporally and spatially distinct manner. In order to coordinate these redox processes, mammalian cells utilize a collection of electron-carrying molecules common to many redox reactions, including NAD, NADP, coenzyme Q (CoQ), and glutathione (GSH). This review considers the metabolic basis of redox regulation in the context of cell proliferation by analyzing how cells acquire and utilize electron carriers to maintain directional carbon flux, sustain reductive biosynthesis, and support antioxidant defense. Elucidating the redox requirement during cell proliferation can advance the understanding of human diseases such as cancer, and reveal effective therapeutic opportunities in the clinic.
Collapse
Affiliation(s)
- Zhuoran Zhen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankun Ren
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhang W, Yang M, Wang G, Ou S, Hu J, Liu J, Lei Y, Kang Z, Wang F, Liu J, Ma C, Wang C, Gao C, Tang D. A biosensor for D-2-hydroxyglutarate in frozen sections and intraoperative assessment of IDH mutation status. Biosens Bioelectron 2024; 247:115921. [PMID: 38104390 DOI: 10.1016/j.bios.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The oncometabolite D-2-hydroxyglutarate (D-2-HG) has emerged as a valuable biomarker in tumors with isocitrate dehydrogenase (IDH) mutations. Efficient detection methods are required and rapid intraoperative determination of D-2-HG remains a huge challenge. Herein, D-2-HG dehydrogenase from Achromobacter xylosoxidans (AX-D2HGDH) was found to have high substrate specificity. AX-D2HGDH dehydrogenizes D-2-HG and reduces flavin adenine dinucleotide (FAD) bound to the enzyme. Interestingly, the dye resazurin can be taken as another substrate to restore FAD. AX-D2HGDH thus catalyzes a bisubstrate and biproduct reaction: the dehydrogenation of D-2-HG to 2-ketoglutarate and simultaneous reduction of non-fluorescent resazurin to highly fluorescent resorufin. According to steady-state analysis, a ping-pong bi-bi mechanism has been concluded. The Km values for resazurin and D-2-HG were determined as 0.56 μM and 10.93 μM, respectively, suggesting high affinity to both substrates. On the basis, taking AX-D2HGDH and resazurin as recognition and fluorescence transducing element, a D-2-HG biosensor (HGAXR) has been constructed. HGAXR exhibits high sensitivity, accuracy and specificity for D-2-HG in different biological samples. With the aid of HGAXR and the matched low-cost palm-size detecting device, D-2-HG levels in frozen sections of resected brain tumor tissues can be measured in a direct, simple and accurate manner with a fast detection (1-3 min). As the technique of frozen section is familiar to surgeons and pathologists, HGAXR and the portable device can be easily integrated into the current workflow, having potential to provide rapid intraoperative pathology for IDH mutation status and guide decision-making during surgery.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Mu Yang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuxin Lei
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jiang Liu
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| | - Dongqi Tang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
6
|
Hou S, Kang Z, Liu Y, Lü C, Wang X, Wang Q, Ma C, Xu P, Gao C. An enzymic l-2-hydroxyglutarate biosensor based on l-2-hydroxyglutarate dehydrogenase from Azoarcus olearius. Biosens Bioelectron 2024; 243:115740. [PMID: 37862756 DOI: 10.1016/j.bios.2023.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a critical signaling and immune metabolite but its excessive accumulation can lead to l-2-hydroxyglutaric aciduria, renal cancer, and other diseases. Development of efficient and high-throughput methods for selective l-2-HG detection is urgently required. In this study, l-2-HG dehydrogenase in Azoarcus olearius BH72 (AoL2HGDH) was screened from ten homologs and identified as an enzyme with high specificity and activity toward l-2-HG dehydrogenation. Then, an enzymatic assay-based l-2-HG-sensing fluorescent reporter, EaLHGFR which consists of AoL2HGDH and resazurin, was developed for the detection of l-2-HG. The response magnitude and limit of detection of EaLHGFR were systematically optimized using a single-factor screening strategy. The optimal biosensor EaLHGFR-2 exhibited a response magnitude of 2189.25 ± 26.89% and a limit of detection of 0.042 μM. It can accurately detect the concentration of l-2-HG in bacterial and cellular samples as well as human body fluids. Considering its desirable properties, EaLHGFR-2 may be a promising alternative for quantitation of l-2-HG in biological samples.
Collapse
Affiliation(s)
- Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China.
| |
Collapse
|
7
|
Weber R, Vasella F, Klimko A, Silginer M, Lamfers M, Neidert MC, Regli L, Schwank G, Weller M. Targeting the IDH1 R132H mutation in gliomas by CRISPR/Cas precision base editing. Neurooncol Adv 2024; 6:vdae182. [PMID: 39605316 PMCID: PMC11600340 DOI: 10.1093/noajnl/vdae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background Gliomas, the most frequent malignant primary brain tumors, lack curative treatments. Understanding glioma-specific molecular alterations is crucial to develop novel therapies. Among them, the biological consequences of the isocitrate dehydrogenase 1 gene mutation (IDH1 R132H) remain inconclusive despite its early occurrence and widespread expression. Methods We thus employed CRISPR/Cas adenine base editors, which allow precise base pair alterations with minimal undesirable effects, to correct the IDH1 R132H mutation. Results Successful correction of the IDH1 R132H mutation in primary patient-derived cell models led to reduced IDH1 R132H protein levels and decreased production of 2-hydroxyglutarate, but increased proliferation. A dual adeno-associated virus split intein system was used to successfully deliver the base editor in vitro and in vivo. Conclusions Taken together, our study provides a strategy for a precise genetic intervention to target the IDH1 R132H mutation, enabling the development of accurate models to study its impact on glioma biology and serving as a framework for an in vivo gene therapy.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Artsiom Klimko
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Laboratory of Translational Genome Editing, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
He XYX, Zhao WL, Yao LP, Sun P, Cheng G, Liu YL, Yu Y, Liu Y, Wang TJ, Zhang QY, Qin LP, Zhang QL. Orcinol glucoside targeted p38 as an agonist to promote osteogenesis and protect glucocorticoid-induced osteoporosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154953. [PMID: 37573809 DOI: 10.1016/j.phymed.2023.154953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen Ⅰ, Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).
Collapse
Affiliation(s)
- Xin-Yun-Xi He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wan-Lu Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Li-Ping Yao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Peng Sun
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yu-Ling Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yang Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yan Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Teng-Jian Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiao-Yan Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Quan-Long Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
9
|
Wu B, Li Z, Kang Z, Ma C, Song H, Lu F, Zhu Z. An Enzymatic Biosensor for the Detection of D-2-Hydroxyglutaric Acid in Serum and Urine. BIOSENSORS 2022; 12:bios12020066. [PMID: 35200327 PMCID: PMC8869338 DOI: 10.3390/bios12020066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 05/28/2023]
Abstract
D-2-hydroxyglutaric acid (D2HG) is overproduced as a result of the D-2-hydroxyglutaric aciduria and relevant cancers, caused by gene mutation. Accurate analysis of D2HG could help rapid diagnosis of these diseases and allow for timely treatment. In this work, a D-2-hydroxyglutarate dehydrogenase from Ralstonia solanacearum (RsD2HGDH) is cloned and recombinantly expressed. This enzyme features the direct electron transfer to chemical electron mediators (such as methylene blue (MB)) in the absence of additional coenzymes. Therefore, NAD+, a natural electron acceptor for the commercial D2HGDH and usually known for being unstable and difficult for immobilization can be avoided in the preparation of biosensors. The RsD2HGDH and MB are co-immobilized on a two-dimensional material, Ti3C2 MXene, followed by drop-coating on the gold screen-printed electrode (AuSPE) to construct a compact and portable biosensor. The D2HG in samples can be catalyzed by RsD2HGDH, where the current change is measured by chronoamperometry at -0.23 V. The biosensor shows a D2HG detection range of 0.5 to 120 µM (R2 = 0.9974) with a sensitivity of 22.26 μA mM-1 cm-2 and a detection limit of 0.1 µM (S/N = 3). The biosensor retains 72.52% performance of its incipient state after 30 days of storage. The samples of D2HG-containing fetal bovine serum and artificial urine were analyzed with the recovery of 99.56% to 106.83% and 97.30% to 102.47% further indicating the great application potential of our portable D2HG biosensor.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; (B.W.); (F.L.)
- Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zepeng Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; (B.W.); (F.L.)
- Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
11
|
A D-2-hydroxyglutarate biosensor based on specific transcriptional regulator DhdR. Nat Commun 2021; 12:7108. [PMID: 34876568 PMCID: PMC8651671 DOI: 10.1038/s41467-021-27357-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
D-2-Hydroxyglutarate (D-2-HG) is a metabolite involved in many physiological metabolic processes. When D-2-HG is aberrantly accumulated due to mutations in isocitrate dehydrogenase or D-2-HG dehydrogenase, it functions in a pro-oncogenic manner and is thus considered a therapeutic target and biomarker in many cancers. In this study, DhdR from Achromobacter denitrificans NBRC 15125 is identified as an allosteric transcriptional factor that negatively regulates D-2-HG dehydrogenase expression and responds to the presence of D-2-HG. Based on the allosteric effect of DhdR, a D-2-HG biosensor is developed by combining DhdR with amplified luminescent proximity homogeneous assay (AlphaScreen) technology. The biosensor is able to detect D-2-HG in serum, urine, and cell culture medium with high specificity and sensitivity. Additionally, this biosensor is used to identify the role of D-2-HG metabolism in lipopolysaccharide biosynthesis of Pseudomonas aeruginosa, demonstrating its broad usages.
Collapse
|
12
|
Babikir H, Wang L, Shamardani K, Catalan F, Sudhir S, Aghi MK, Raleigh DR, Phillips JJ, Diaz AA. ATRX regulates glial identity and the tumor microenvironment in IDH-mutant glioma. Genome Biol 2021; 22:311. [PMID: 34763709 PMCID: PMC8588616 DOI: 10.1186/s13059-021-02535-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent single-cell transcriptomic studies report that IDH-mutant gliomas share a common hierarchy of cellular phenotypes, independent of genetic subtype. However, the genetic differences between IDH-mutant glioma subtypes are prognostic, predictive of response to chemotherapy, and correlate with distinct tumor microenvironments. RESULTS To reconcile these findings, we profile 22 human IDH-mutant gliomas using scATAC-seq and scRNA-seq. We determine the cell-type-specific differences in transcription factor expression and associated regulatory grammars between IDH-mutant glioma subtypes. We find that while IDH-mutant gliomas do share a common distribution of cell types, there are significant differences in the expression and targeting of transcription factors that regulate glial identity and cytokine elaboration. We knock out the chromatin remodeler ATRX, which suffers loss-of-function alterations in most IDH-mutant astrocytomas, in an IDH-mutant immunocompetent intracranial murine model. We find that both human ATRX-mutant gliomas and murine ATRX-knockout gliomas are more heavily infiltrated by immunosuppressive monocytic-lineage cells derived from circulation than ATRX-intact gliomas, in an IDH-mutant background. ATRX knockout in murine glioma recapitulates gene expression and open chromatin signatures that are specific to human ATRX-mutant astrocytomas, including drivers of astrocytic lineage and immune-cell chemotaxis. Through single-cell cleavage under targets and tagmentation assays and meta-analysis of public data, we show that ATRX loss leads to a global depletion in CCCTC-binding factor association with DNA, gene dysregulation along associated chromatin loops, and protection from therapy-induced senescence. CONCLUSIONS These studies explain how IDH-mutant gliomas from different subtypes maintain distinct phenotypes and tumor microenvironments despite a common lineage hierarchy.
Collapse
Affiliation(s)
- Husam Babikir
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Lin Wang
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Karin Shamardani
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Francisca Catalan
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Sweta Sudhir
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, Aaron Diaz, 1450 3rd Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
13
|
Lan C, Li H, Wang L, Zhang J, Wang X, Zhang R, Yuan X, Wu T, Wu J, Lu M, Ma X. Absolute quantification of 2-hydroxyglutarate on tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging for rapid and precise identification of isocitrate dehydrogenase mutations in human glioma. Int J Cancer 2021; 149:2091-2098. [PMID: 34224582 DOI: 10.1002/ijc.33729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
Isocitrate dehydrogenase (IDH) gene mutations are important predictive molecular markers to guide surgical strategy in brain cancer therapy. Herein, we presented a method using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for absolute quantification of 2-hydroxyglutarate (2-HG) on tissues to identify IDH mutations and evaluate tumor residue. This analytical method was tested among 34 glioma patients and validated with gold standard clinical technologies. The cut-off value of 2-HG was set as 0.81 pmol/μg to identify IDH mutant (IDHmt) gliomas with 100% specificity and sensitivity. In addition, 2-HG levels and tumor cell density (TCD) showed positive correlation in IDHmt gliomas by this spatial method. This MALDI MSI-based absolute quantification method has great potentiality for incorporating into surgical workflow in the future.
Collapse
Affiliation(s)
- Chunyan Lan
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China.,Peking Union Medical College Graduate School, Beijing, China
| | - Hainan Li
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lei Wang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Jing Zhang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, China
| | - Rumeng Zhang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Xiaoai Yuan
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Taihua Wu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Jie Wu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ming Lu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xu Ma
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China.,Peking Union Medical College Graduate School, Beijing, China
| |
Collapse
|
14
|
Cheng H, Li Z, Guo Z, Shao S, Mo L, Wei W, Xue M. Single-cell profiling of D-2-hydroxyglutarate using surface-immobilized resazurin analogs. Biosens Bioelectron 2021; 190:113368. [PMID: 34098361 DOI: 10.1016/j.bios.2021.113368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
D-2-hydroxyglutarate (D2HG) is over-produced as an oncometabolite due to mutations in isocitrate dehydrogenases (IDHs). Accumulation of D2HG can cause the dysfunction of many enzymes and genome-wide epigenetic alterations, which can promote oncogenesis. Quantification of D2HG at single-cell resolution can help understand the phenotypic signatures of IDH-mutant cancers and identify effective therapeutics. In this study, we developed an analytical method to detect D2HG levels in single cancer cells by adapting cascade enzymatic reactions on a resazurin-based fluorescence reporter. The resazurin probe was immobilized to the sensing surface via biotin-streptavidin interaction. This surface chemistry was rationally optimized to translate the D2HG levels to sensitive fluorescence readouts efficiently. This D2HG assay demonstrated good selectivity and high sensitivity toward D2HG, and it was compatible with the previously developed single-cell barcode chip (SCBC) technology. Using the SCBC platform, we performed simultaneous single-cell profiling of D2HG, glucose uptake, and critical oncogenic signaling proteins in single IDH-mutant glioma cells. The results unveiled the complex interplays between metabolic and oncogenic signaling and led to the identification of effective combination targeted therapy against these IDH-mutant glioma cells.
Collapse
Affiliation(s)
- Hanjun Cheng
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Shiqun Shao
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Li Mo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wei Wei
- Institute for Systems Biology, Seattle, WA, 98109, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Zhang W, Sun J, Wang F, Liu J, Han Y, Jiang M, Tang D. Fluorescent assay for quantitative analysis of trimethylamine N-oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1527-1534. [PMID: 33710182 DOI: 10.1039/d0ay02353a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trimethylamine N-oxide (TMAO), a gut microbial metabolite involved in cardiovascular and kidney diseases, has great potential as a biomarker, thus making TMAO quantification of great significance. The current assay methods are mainly established on mass spectrometry. However, the classic enzymatic approach is absent, which may be because there is no appropriate single-enzyme reaction. Here, we prepared TMAO demethylase and formaldehyde dehydrogenase and found that these two bacterial enzymes catalyze an efficient coupled reaction that produces NADH from TMAO conversion. With the participation of another enzyme, diaphorase, the multienzymatic coupling system was constructed, which realizes the output of fluorescence signals from TMAO input using resazurin as a probe, thus laying the foundation for fluorescent assay. Through optimization, the sensitivity and specificity were improved. A pretreatment procedure was developed to eliminate formaldehyde that pre-exists with TMAO to avoid an interference effect. Our assay is suitable for quantifying serum TMAO in the range of 2.05-50 μM, covering actual levels in clinical samples, and exhibits a high degree of accordance with mass spectrometry. Therefore, the established fluorometric microplate assay is facile, sensitive and accurate and may enable low-cost and high-throughput analysis of TMAO in clinical laboratory diagnosis.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yuan BF. Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:161-172. [PMID: 33791981 DOI: 10.1007/978-3-030-51652-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) were demonstrated to induce the production and accumulation of oncometabolite 2-hydroxyglutarate (2HG). 2HG is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG-dependent dioxygenases that are critical for regulating the metabolic and epigenetic state of cells. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and therefore occurs in two enantiomers, D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG). Each enantiomer is produced and metabolized in independent biochemical pathway and catalyzed by different enzymes. The accurate diagnosis of 2HG-related diseases relies on determining the configuration of the two enantiomers. Quantitative methods for analysis of D-2HG and L-2HG have been well developed. These analytical strategies mainly include the use of chiral chromatography medium to facilitate chromatographic separation of enantiomers prior to spectroscopy or mass spectrometry analysis and the use of chiral derivatization reagents to convert the enantiomers to diastereomers with differential physical and chemical properties that can improve their chromatographic separation. Here, we summarize and discuss these established methods for analysis of total 2HG as well as the determination of the enantiomers of D-2HG and L-2HG.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Large-Scale Drug Screening in Patient-Derived IDH mut Glioma Stem Cells Identifies Several Efficient Drugs among FDA-Approved Antineoplastic Agents. Cells 2020; 9:cells9061389. [PMID: 32503220 PMCID: PMC7348988 DOI: 10.3390/cells9061389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of the isocitrate dehydrogenase (IDH) mutation in glioma led to a paradigm shift on how we see glioma biology. Difficulties in cultivating IDH mutant glioma stem cells (IDHmut GSCs) resulted in a paucity of preclinical models in IDHmut glioma, limiting the discovery of new effective chemotherapeutic agents. To fill this gap, we used six recently developed patient-derived IDHmut GSC lines and performed a large-scale drug screening with 147 Food and Drug Administration (FDA)-approved anticancer drugs. GSCs were subjected to the test compounds for 72 h in concentrations ranging from 0.0001 to 1 µM. Cell viability was assessed by CellTiterGlo and the induction of apoptosis by flow cytometry with Annexin V/propidium iodide staining. The initial screen was performed with two IDHmut GSC lines and identified seven drugs (bortezomib, carfilzomib, daunorubicin, doxorubicin, epirubicin, omacetaxine, plicamycin) with a substantial antiproliferative activity, as reflected by half maximal inhibitory concentrations (IC50) below 1 µM and maximum inhibitory effects (Emax) below 25%. These findings were validated in an additional four IDHmut GSC lines. The candidate drugs, of which plicamycin and omacetaxine are known to cross the blood brain barrier, were used for subsequent cell death analyses. A significant induction of apoptosis was observed at IC50 values of the respective drugs. In summary, we were able to identify seven FDA-approved drugs that should be further taken into clinical investigations for the treatment of IDHmut gliomas.
Collapse
|
18
|
Mohammad N, Wong D, Lum A, Lin J, Ho J, Lee CH, Yip S. Characterisation of isocitrate dehydrogenase 1/isocitrate dehydrogenase 2 gene mutation and the d-2-hydroxyglutarate oncometabolite level in dedifferentiated chondrosarcoma. Histopathology 2020; 76:722-730. [PMID: 31609487 DOI: 10.1111/his.14018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
AIMS Dedifferentiated chondrosarcoma (DDCHS) is an aggressive type of chondrosarcoma that results from high-grade transformation of a low-grade chondrosarcoma. Mutations in the isocitrate dehydrogenase (IDH) 1 gene and the IDH2 gene that lead to increased d-2-hydroxyglutarate (2HG) oncometabolite production, promoting tumorigenesis, have been recently described in low-grade cartilaginous neoplasms. The aims of this study were to examine the prevalence of IDH mutations in a single-institution cohort of DDCHS cases and correlate 2HG levels with mutation status. METHODS AND RESULTS We examined a series of 21 primary DDCHS cases by using Sanger sequencing and quantitative polymerase chain reaction genotyping to look for IDH1/IDH2 mutations, and evaluated the 2HG levels in formalin-fixed paraffin-embedded tumour and matched normal tissue samples by using a fluorometric assay. Seventy-six per cent of DDCHS cases (16/21) harboured a heterozygous IDH1 or IDH2 mutation. Six of 14 IDH-mutated DDCHS cases showed elevated 2HG levels in tumour tissue relative to matched normal tissue. There were no consistent histological or disease-specific survival differences between IDH-mutated tumours and wild-type tumours. CONCLUSIONS Our study confirms the frequent presence of a variety of IDH1 and IDH2 mutation variants, indicating that a sequencing-based approach is required for DDCHS if IDH is to be used as a diagnostic marker. Similarly to other IDH-mutated tumour types, IDH-mutated DDCHS cases show elevated 2HG levels, indicating that the oncometabolite activity of 2HG may contribute to DDCHS oncogenesis and progression.
Collapse
Affiliation(s)
- Nissreen Mohammad
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Derek Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amy Lum
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Jonah Lin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julie Ho
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheng-Han Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
19
|
Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, Unruh D, James CD, Sarkaria JN, Horbinski C. Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro Oncol 2019; 20:1197-1206. [PMID: 29660019 DOI: 10.1093/neuonc/noy051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Among diffusely infiltrative gliomas in adults, 20%-30% contain a point mutation in isocitrate dehydrogenase 1 (IDH1mut), which increases production of D-2-hydroxyglutarate (D2HG). This is so efficient that D2HG often reaches 30 mM within IDH1mut gliomas. Yet, while up to 100 µM D2HG can be detected in the circulating cerebrospinal fluid of IDH1mut glioma patients, the exposure of nonneoplastic cells within and surrounding an IDH1mut glioma to D2HG is unknown and difficult to measure directly. Methods Conditioned medium from patient-derived wild type IDH1 (IDH1wt) and IDH1mut glioma cells was analyzed for D2HG by liquid chromatography-mass spectrometry (LC-MS). Mathematical models of D2HG release and diffusion around an IDH1mut glioma were independently generated based on fluid dynamics within the brain and on previously reported intratumoral and cerebrospinal D2HG concentrations. Results LC-MS analysis indicates that patient-derived IDH1mut glioma cells release 3.7-97.0 pg D2HG per cell per week. Extrapolating this to an average-sized tumor (30 mL glioma volume and 1 × 108 cells/mL tumor), the rate of D2HG release by an IDH1mut glioma (SA) is estimated at 3.2-83.0 × 10-12 mol/mL/sec. Mathematical models estimate an SA of 2.9-12.9 × 10-12 mol/mL/sec, within the range of the in vitro LC-MS data. In even the most conservative of these models, the extracellular concentration of D2HG exceeds 3 mM within a 2 cm radius from the center of an IDH1mut glioma. Conclusions The microenvironment of an IDH1mut glioma is likely being exposed to high concentrations of D2HG, in the low millimolar range. This has implications for understanding how D2HG affects nonneoplastic cells in an IDH1mut glioma.
Collapse
Affiliation(s)
- Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Grant A Hartung
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Benjamin P Liu
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Snezana Mirkov
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Kevin Tangen
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Dusten Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| |
Collapse
|
20
|
Zhang Y, Pusch S, Innes J, Sidlauskas K, Ellis M, Lau J, El-Hassan T, Aley N, Launchbury F, Richard-Loendt A, deBoer J, Chen S, Wang L, von Deimling A, Li N, Brandner S. Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Res 2019; 79:4994-5007. [PMID: 31391185 PMCID: PMC7611309 DOI: 10.1158/0008-5472.can-19-0054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 02/03/2023]
Abstract
Human astrocytomas and oligodendrogliomas are defined by mutations of the metabolic enzymes isocitrate dehydrogenase (IDH) 1 or 2, resulting in the production of the abnormal metabolite D-2 hydroxyglutarate. Here, we studied the effect of mutant IDH on cell proliferation and apoptosis in a glioma mouse model. Tumors were generated by inactivating Pten and p53 in forebrain progenitors and compared with tumors additionally expressing the Idh1 R132H mutation. Idh-mutant cells proliferated less in vitro and mice with Idh-mutant tumors survived significantly longer compared with Idh-wildtype mice. Comparison of miRNA and RNA expression profiles of Idh-wildtype and Idh-mutant cells and tumors revealed miR-183 was significantly upregulated in IDH-mutant cells. Idh-mutant cells were more sensitive to endoplasmic reticulum (ER) stress, resulting in increased apoptosis and thus reduced cell proliferation and survival. This was mediated by the interaction of miR-183 with the 5' untranslated region of semaphorin 3E, downregulating its function as an apoptosis suppressor. In conclusion, we show that mutant Idh1 delays tumorigenesis and sensitizes tumor cells to ER stress and apoptosis. This may open opportunities for drug treatments targeting the miR-183-semaphorin axis. SIGNIFICANCE: The pathologic metabolite 2-hydroxyglutarate, generated by IDH-mutant astrocytomas, sensitizes tumor cells to ER stress and delays tumorigenesis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4994/F1.large.jpg.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Innes
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Kastytis Sidlauskas
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Tedani El-Hassan
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Natasha Aley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom
- UCL IQPath Laboratory, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jasper deBoer
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Lei Wang
- CapitalBio Technology, Beijing, China
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Heidelberg and Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ningning Li
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Yang L, Pusch S, Jennings V, Ma T, Zhu Q, Xu Y, von Deimling A, Zha X. Identification of New Inhibitors of Mutant Isocitrate Dehydrogenase 2 through Molecular Similarity-based Virtual Screening. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180808094432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Isocitrate dehydrogenase 2 (IDH2) is an enzyme catalyzing the oxidative
decarboxylation of isocitrate to α-ketoglutarate (α-KG) in the tricarboxylic acid (TCA). Evidences
suggest that the specific mutations in IDH2 are critical to the growth and reproduction of severe
tumors especially leukemia and glioblastoma. It is found that the inhibitors of mutant IDH2 are
promising anti-tumor therapeutics.
Methods:
A virtual screening strategy combining molecular similarity search and molecular
docking was performed in the binding site of AGI-6780. YL-16, YL-17 and YL-18 were identified
as novel mutant IDH2 inhibitors for the reduction of (D)-2-hydroxyglutarate in cellular evaluation.
In addition, all the three compounds showed inhibition against IDH2-R172K mutated HEK-293T
cells, while weak inhibition against wide-type IDH2 (WT-IDH2) HEK-293T cells.
Results:
Significantly, YL-17 showed 84.55% inhibitory activity against IDH2-R172K at 1 µM and
weak cytotoxicity to wide-type IDH2 at 50 µM.
Conclusion:
YL-17 was highlighted as a new mutant IDH2 inhibitor that could be further
developed for therapeutic applications.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), INF 280, Heidelberg D-69120, Germany
| | - Victoria Jennings
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), INF 280, Heidelberg D-69120, Germany
| | - Tianfang Ma
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), INF 280, Heidelberg D-69120, Germany
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
22
|
Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 2019; 363:1222-1226. [DOI: 10.1126/science.aau5870] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the life of most multicellular organisms. Cells possess enzymes called molecular dioxygenases that depend on oxygen for activity. A subclass of molecular dioxygenases is the histone demethylase enzymes, which are characterized by the presence of a Jumanji-C (JmjC) domain. Hypoxia can alter chromatin, but whether this is a direct effect on JmjC-histone demethylases or due to other mechanisms is unknown. Here, we report that hypoxia induces a rapid and hypoxia-inducible factor–independent induction of histone methylation in a range of human cultured cells. Genomic locations of histone-3 lysine-4 trimethylation (H3K4me3) and H3K36me3 after a brief exposure of cultured cells to hypoxia predict the cell’s transcriptional response several hours later. We show that inactivation of one of the JmjC-containing enzymes, lysine demethylase 5A (KDM5A), mimics hypoxia-induced cellular responses. These results demonstrate that oxygen sensing by chromatin occurs via JmjC-histone demethylase inhibition.
Collapse
|
23
|
|
24
|
Thirumal Kumar D, Jerushah Emerald L, George Priya Doss C, Sneha P, Siva R, Charles Emmanuel Jebaraj W, Zayed H. Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metab Brain Dis 2018; 33:1699-1710. [PMID: 29987523 DOI: 10.1007/s11011-018-0278-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 01/28/2023]
Abstract
The 2-hydroxyglutaric aciduria (2-HGA) is a rare neurometabolic disorder that leads to the development of brain damage. It is classified into three categories: D-2-HGA, L-2-HGA, and combined D,L-2-HGA. The D-2-HGA includes two subtypes: type I and type II caused by the mutations in D2HGDH and IDH2 proteins, respectively. In this study, we studied six mutations, four in the D2HGDH (I147S, D375Y, N439D, and V444A) and two in the IDH2 proteins (R140G, R140Q). We performed in silico analysis to investigate the pathogenicity and stability changes of the mutant proteins using pathogenicity (PANTHER, PhD-SNP, SIFT, SNAP, and META-SNP) and stability (i-Mutant, MUpro, and iStable) predictors. All the mutations of both D2HGDH and IDH2 proteins were predicted as disease causing except V444A, which was predicted as neutral by SIFT. All the mutants were also predicted to be destabilizing the protein except the mutants D375Y and N439D. DSSP plugin of the PyMOL and Molecular Dynamics Simulations (MDS) were used to study the structural changes in the mutant proteins. In the case of D2HGDH protein, the mutations I147S and V444A that are positioned in the beta sheet region exhibited higher Root Mean Square Deviation (RMSD), decrease in compactness and number of intramolecular hydrogen bonds compared to the mutations N439D and D375Y that are positioned in the turn and loop region, respectively. While the mutants R140Q and R140QG that are positioned in the alpha helix region of the protein. MDS results revealed the mutation R140Q to be more destabilizing (higher RMSD values, decrease in compactness and number of intramolecular hydrogen bonds) compared to the mutation R140G of the IDH2 protein. This study is expected to serve as a platform for drug development against 2-HGA and pave the way for more accurate variant assessment and classification for patients with genetic diseases.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - L Jerushah Emerald
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - P Sneha
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - R Siva
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - W Charles Emmanuel Jebaraj
- Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, 600116, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Identification of a Prognostic Hypoxia-Associated Gene Set in IDH-Mutant Glioma. Int J Mol Sci 2018; 19:ijms19102903. [PMID: 30257451 PMCID: PMC6212863 DOI: 10.3390/ijms19102903] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023] Open
Abstract
Glioma growth is often accompanied by a hypoxic microenvironment favorable for the induction and maintenance of the glioma stem cell (GSC) phenotype. Due to the paucity of cell models of Isocitrate Dehydrogenase 1 mutant (IDH1mut) GSCs, biology under hypoxic conditions has not been sufficiently studied as compared to IDH1 wildtype (IDH1wt) GSCs. We therefore grew well-characterized IDH1mut (n = 4) and IDH1wt (n = 4) GSC lines under normoxic (20%) and hypoxic (1.5%) culture conditions and harvested mRNA after 72 h. Transcriptome analyses were performed and hypoxia regulated genes were further analyzed using the expression and clinical data of the lower grade glioma cohort of The Cancer Genome Atlas (LGG TCGA) in a confirmatory approach and to test for possible survival associations. Results show that global expression changes were more pronounced in IDH1wt than in IDH1mut GSCs. However, when focusing on known hypoxia-regulated gene sets, enrichment analyses showed a comparable regulation in both IDH1mut and IDH1wt GSCs. Of 272 significantly up-regulated genes under hypoxic conditions in IDH1mut GSCs a hypoxia-related survival score (HRS-score) of five genes (LYVE1, FAM162A, WNT6, OTP, PLOD1) was identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm which was able to predict survival independent of age, 1p19q co-deletion status and WHO grade (II vs. III) in the LGG TCGA cohort and in the Rembrandt dataset. Altogether, we were able to identify and validate a novel hypoxia-related survival score in IDH1mut GSCs consisting of five hypoxia-regulated genes which was significantly associated with patient survival independent of known prognostic confounders.
Collapse
|
26
|
Abstract
Enasidenib is an orally available, selective, potent, small molecule inhibitor of mutant isocitrate dehydrogenase 2 (IDH2). Neomorphic mutations in IDH2 are frequently found in both hematologic malignancies and solid tumors and lead to the production of the oncometabolite (R)-2-hydroxyglutarate. Increased levels of (R)-2-hydroxyglutarate cause histone and DNA hypermethylation associated with blocked differentiation and tumorigenesis. In PDX mice transplanted with human IDH2-mutant acute myeloid leukemia cells, enasidenib treatment led to normalization of (R)-2-hydroxyglutarate serum levels, differentiation of leukemic blasts and increased survival. Early clinical data in patients with relapsed/refractory IDH2-mutant acute myeloid leukemia show that enasidenib is well tolerated and induces durable complete remissions as a single agent in about 20% of cases. One notable drug-related adverse effect is differentiation syndrome. On the basis of these results the compound has recently been approved for the treatment of relapsed/refractory IDH2-mutant acute myeloid leukemia in the USA. Although no data are available yet, clinical trials on the treatment of patients with several types of IDH2-mutant solid tumors including gliomas, chondrosarcomas and cholangiocarcinomas are currently being performed.
Collapse
|
27
|
Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, Alansary D, Sonner JK, Green E, Deumelandt K, Kilian M, Neftel C, Uhlig S, Kessler T, von Landenberg A, Berghoff AS, Marsh K, Steadman M, Zhu D, Nicolay B, Wiestler B, Breckwoldt MO, Al-Ali R, Karcher-Bausch S, Bozza M, Oezen I, Kramer M, Meyer J, Habel A, Eisel J, Poschet G, Weller M, Preusser M, Nadji-Ohl M, Thon N, Burger MC, Harter PN, Ratliff M, Harbottle R, Benner A, Schrimpf D, Okun J, Herold-Mende C, Turcan S, Kaulfuss S, Hess-Stumpp H, Bieback K, Cahill DP, Plate KH, Hänggi D, Dorsch M, Suvà ML, Niemeyer BA, von Deimling A, Wick W, Platten M. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 2018; 24:1192-1203. [PMID: 29988124 DOI: 10.1038/s41591-018-0095-6] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Theresa Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- Department of Neurology, University Hospital and Medical Faculty Mannheim, Mannheim, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Khwab Sanghvi
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mirco Friedrich
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Jana K Sonner
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward Green
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Deumelandt
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Kilian
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Cyril Neftel
- Broad Institute of Harvard and MIT and Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefanie Uhlig
- FlowCore Mannheim and Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Tobias Kessler
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Anna von Landenberg
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna S Berghoff
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
- CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kelly Marsh
- Agios Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Dongwei Zhu
- Agios Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Neuro-Kopf-Zentrum, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Michael O Breckwoldt
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Ruslan Al-Ali
- Max Eder Junior Group on Low Grade Gliomas, Heidelberg University Medical Center, Heidelberg, Germany
| | - Simone Karcher-Bausch
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Iris Oezen
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magdalena Kramer
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Meyer
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Antje Habel
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Jessica Eisel
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department for Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Minou Nadji-Ohl
- Department of Neurosurgery, Stuttgart Clinics, Stuttgart, Germany
| | - Niklas Thon
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Michael C Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Patrick N Harter
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), University Hospital and Medical Faculty, Goethe University, Frankfurt, Germany
| | - Miriam Ratliff
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Axel Benner
- Division of Biostatistics, DKFZ, Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Jürgen Okun
- Metabolic Center Heidelberg, University Children's Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Medical Center, Heidelberg, Germany
| | - Sevin Turcan
- Max Eder Junior Group on Low Grade Gliomas, Heidelberg University Medical Center, Heidelberg, Germany
| | - Stefan Kaulfuss
- Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | | - Karen Bieback
- FlowCore Mannheim and Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl H Plate
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), University Hospital and Medical Faculty, Goethe University, Frankfurt, Germany
| | - Daniel Hänggi
- Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Mario L Suvà
- Broad Institute of Harvard and MIT and Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Andreas von Deimling
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany.
- Department of Neurology, University Hospital and Medical Faculty Mannheim, Mannheim, Germany.
| |
Collapse
|
28
|
Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate. Nat Commun 2018; 9:2114. [PMID: 29844506 PMCID: PMC5974017 DOI: 10.1038/s41467-018-04513-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Glutarate is a five carbon platform chemical produced during the catabolism of L-lysine. It is known that it can be catabolized through the glutaryl-CoA dehydrogenation pathway. Here, we discover that Pseudomonas putida KT2440 has an additional glutarate catabolic pathway involving L-2-hydroxyglutarate (L-2-HG), an abnormal metabolite produced from 2-ketoglutarate (2-KG). In this pathway, CsiD, a Fe2+/2-KG-dependent glutarate hydroxylase, is capable of converting glutarate into L-2-HG, and LhgO, an L-2-HG oxidase, can catalyze L-2-HG into 2-KG. We construct a recombinant strain that lacks both glutarate catabolic pathways. It can produce glutarate from L-lysine with a yield of 0.85 mol glutarate/mol L-lysine. Thus, L-2-HG anabolism and catabolism is a metabolic alternative to the glutaryl-CoA dehydrogenation pathway in P. putida KT2440; L-lysine can be both ketogenic and glucogenic.
Collapse
|
29
|
Böttcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE, Dettmer K, Oefner PJ, Mackensen A, Kreutz M, Mougiakakos D. D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology 2018; 7:e1445454. [PMID: 29900057 PMCID: PMC5993507 DOI: 10.1080/2162402x.2018.1445454] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
D-2-hydroxyglutarate (D-2HG) is released by various types of malignant cells including acute myeloid leukemia (AML) blasts carrying isocitrate dehydrogenase (IDH) gain-of-function mutations. D-2HG acting as an oncometabolite promotes proliferation, anoikis, and differentiation block of hematopoietic cells in an autocrine fashion. However, prognostic impact of IDH mutations and high D-2HG levels remains controversial and might depend on the overall mutational context. An increasing number of studies focus on the permissive environment created by AML blasts to promote immune evasion. Impact of D-2HG on immune cells remains incompletely understood. Here, we sought out to investigate the effects of D-2HG on T-cells as key mediators of anti-AML immunity. D-2HG was efficiently taken up by T-cells in vitro, which is in line with high 2-HG levels measured in T-cells isolated from AML patients carrying IDH mutations. T-cell activation was slightly impacted by D-2HG. However, D-2HG triggered HIF-1a protein destabilization resulting in metabolic skewing towards oxidative phosphorylation, increased regulatory T-cell (Treg) frequency, and reduced T helper 17 (Th17) polarization. Our data suggest for the first time that D-2HG might contribute to fine tuning of immune responses.
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kathrin Renner
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Raffaela Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kristin Mentz
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simone Thomas
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Marina Kreutz
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
30
|
Li T, Cox CD, Ozer BH, Nguyen NT, Nguyen HN, Lai TJ, Li S, Liu F, Kornblum HI, Liau LM, Nghiemphu PL, Cloughesy TF, Lai A. D-2-Hydroxyglutarate Is Necessary and Sufficient for Isocitrate Dehydrogenase 1 Mutant-Induced MIR148A Promoter Methylation. Mol Cancer Res 2018; 16:947-960. [PMID: 29545476 DOI: 10.1158/1541-7786.mcr-17-0367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/13/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Mutant isocitrate dehydrogenase (IDH) 1/2 converts α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2-HG), a putative oncometabolite that can inhibit α-KG-dependent enzymes, including ten-eleven translocation methylcytosine dioxygenase (TET) DNA demethylases. We recently established that miRNAs are components of the IDH1 mutant-associated glioma CpG island methylator phenotype (G-CIMP) and specifically identified MIR148A as a tumor-suppressive miRNA within G-CIMP. However, the precise mechanism by which mutant IDH induces hypermethylation of MIR148A and other G-CIMP promoters remains to be elucidated. In this study, we demonstrate that treatment with exogenous D-2-HG induces MIR148A promoter methylation and transcriptional silencing in human embryonic kidney 293T (293T) cells and primary normal human astrocytes. Conversely, we show that the development of MIR148A promoter methylation in mutant IDH1-overexpressing 293T cells is abrogated via treatment with C227, an inhibitor of mutant IDH1 generation of D-2-HG. Using dot blot assays for global assessment of 5-hydroxymethylcytosine (5-hmC), we show that D-2-HG treatment reduces 5-hmC levels, whereas C227 treatment increases 5-hmC levels, strongly suggesting TET inhibition by D-2-HG. Moreover, we show that withdrawal of D-2-HG treatment reverses methylation with an associated increase in MIR148A transcript levels and transient generation of 5-hmC. We also demonstrate that RNA polymerase II binds endogenously to the predicted promoter region of MIR148A, validating the hypothesis that its transcription is driven by an independent promoter.Implications: Establishment of D-2-HG as a necessary and sufficient intermediate by which mutant IDH1 induces CpG island methylation of MIR148A will help with understanding the efficacy of selective mutant IDH1 inhibitors in the clinic. Mol Cancer Res; 16(6); 947-60. ©2018 AACR.
Collapse
Affiliation(s)
- Tie Li
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christopher D Cox
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Byram H Ozer
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Nhung T Nguyen
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - HuyTram N Nguyen
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Thomas J Lai
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Sichen Li
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fei Liu
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Harley I Kornblum
- Department of Pediatrics, Psychiatry and Biobehavioral Sciences, Pediatric Neurology, Semel Institute for Neuroscience and Human Behavior, Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Phioanh L Nghiemphu
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Timothy F Cloughesy
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Albert Lai
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
31
|
Longuespée R, Wefers AK, De Vita E, Miller AK, Reuss DE, Wick W, Herold-Mende C, Kriegsmann M, Schirmacher P, von Deimling A, Pusch S. Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI-TOF mass spectrometry. Acta Neuropathol Commun 2018; 6:21. [PMID: 29499756 PMCID: PMC5834865 DOI: 10.1186/s40478-018-0523-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/10/2022] Open
Abstract
All isocitrate dehydrogenase (IDH) mutant solid neoplasms exhibit highly elevated levels of D-2-hydroxyglutarate (D-2HG). Detection of 2HG in tumor tissues currently is performed by gas or liquid chromatography-mass spectrometry (GC- or LC-MS) or biochemical detection. While these methods are highly accurate, a considerable amount of time for tissue preparation and a relatively high amount of tissue is required for testing. We here present a rapid approach to detect 2HG in brain tumor tissue based on matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF). We analyzed 26 brain tumor samples with known IDH1 or IDH2 mutation and compared readouts to those from 28 brain tumor samples of wildtype IDH status. IDH mutant samples exhibited a clear positive signal for 2HG which was not observed in any of the IDH wildtype tumors. Our analytical pipeline allowed for 2HG detection in less than 5 min. Data were validated by determining 2HG levels in all tissues with a biochemical assay. In conclusion, we developed a protocol for rapid detection of 2HG levels and illustrate the possibility to use MALDI-TOF for the detection of metabolites on frozen tissue sections in a diagnostic setting.
Collapse
|
32
|
Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current and Future Therapeutic Strategies. Cancers (Basel) 2018; 10:cancers10020049. [PMID: 29439493 PMCID: PMC5836081 DOI: 10.3390/cancers10020049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain an unusual new activity of reducing the α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2HG) in a NADPH-consuming reaction. The oncometabolite D-2HG, which accumulates >35 mM, is widely accepted to drive a progressive oncogenesis besides exacerbating the already increased oxidative stress in these cancers. More importantly, D-2HG competes with α-KG and inhibits a large number of α-KG-dependent dioxygenases such as TET (Ten-eleven translocation), JmjC domain-containing KDMs (histone lysine demethylases), and the ALKBH DNA repair proteins that ultimately lead to hypermethylation of the CpG islands in the genome. The resulting CpG Island Methylator Phenotype (CIMP) accounts for major gene expression changes including the silencing of the MGMT (O6-methylguanine DNA methyltransferase) repair protein in gliomas. Glioma patients with IDH1 mutations also show better therapeutic responses and longer survival, the reasons for which are yet unclear. There has been a great surge in drug discovery for curtailing the mutant IDH activities, and arresting tumor proliferation; however, given the unique and chronic metabolic effects of D-2HG, the promise of these compounds for glioma treatment is uncertain. This comprehensive review discusses the biology, current drug design and opportunities for improved therapies through exploitable synthetic lethality pathways, and an intriguing oncometabolite-inspired strategy for primary glioblastoma.
Collapse
|
33
|
Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, Liu Y, Sundaram RK, Hegan DC, Fons NR, Breuer GA, Song Y, Mishra-Gorur K, De Feyter HM, de Graaf RA, Surovtseva YV, Kachman M, Halene S, Günel M, Glazer PM, Bindra RS. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 2018; 9:9/375/eaal2463. [PMID: 28148839 DOI: 10.1126/scitranslmed.aal2463] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors. This "BRCAness" phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability.
Collapse
Affiliation(s)
- Parker L Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher D Corso
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathaniel D Robinson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan E Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karin R Purshouse
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanwen Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise C Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathan R Fons
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gregory A Breuer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, National Institute of Environmental Health Sciences (NIEHS) Children's Health Exposure Analysis Resource for Metabolomics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Neuberger U, Kickingereder P, Helluy X, Fischer M, Bendszus M, Heiland S. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4 T. Z Med Phys 2017; 27:300-309. [DOI: 10.1016/j.zemedi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/28/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
|
35
|
Design, synthesis and biological activity of 3-pyrazine-2-yl-oxazolidin-2-ones as novel, potent and selective inhibitors of mutant isocitrate dehydrogenase 1. Bioorg Med Chem 2017; 25:6379-6387. [PMID: 29089260 DOI: 10.1016/j.bmc.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022]
Abstract
Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG) generating carbon dioxide and NADPH/NADH. Evidence suggests that the specific mutations in IDH1 are critical to the growth and reproduction of some tumor cells such as gliomas and acute myeloid leukemia, emerging as an attractive antitumor target. In order to discovery potent new mutant IDH1 inhibitors, we designed, synthesized and evaluated a series of allosteric mIDH1 inhibitors harboring the scaffold of 3-pyrazine-2-yl-oxazolidin-2-ones. All tested compounds effectively suppress the D-2-hydroxyglutarate (D-2-HG) production in cells transfected with IDH1-R132H and IDH1-R132C mutations at 10 μM and 50 μM. Importantly, compound 3g owns the similar inhibitory activity to the positive agent NI-1 and shows no significant toxicity at the two concentrations. The parallel artificial membrane permeation assay of the blood-brain barrier (PAMPA-BBB) identified 3g with a good ability to penetrate the blood-brain barrier (BBB). These findings indicate that 3g deserves further optimization as a lead compound for the treatment of patients with IDH1 mutated brain cancers.
Collapse
|
36
|
Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays. Sci Rep 2017; 7:12758. [PMID: 28986582 PMCID: PMC5630632 DOI: 10.1038/s41598-017-12630-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022] Open
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that are mutated in a variety of cancers to confer a gain-of-function activity resulting in the accumulation of an oncometabolite, D-2-hydroxyglutarate (2-HG). Accumulation of 2-HG can result in epigenetic dysregulation and a block in cellular differentiation, suggesting these mutations play a role in neoplasia. Based on its potential as a cancer target, a number of small molecule inhibitors have been developed to specifically inhibit mutant forms of IDH (mIDH1 and mIDH2). We present a comprehensive suite of in vitro preclinical drug development assays that can be used as a tool-box to identify lead compounds for mIDH drug discovery programs, as well as what we believe is the most comprehensive publically available dataset on the top mIDH inhibitors. This involved biochemical, cell-based, and tier-one ADME techniques.
Collapse
|
37
|
Wiehle L, Raddatz G, Pusch S, Gutekunst J, von Deimling A, Rodríguez-Paredes M, Lyko F. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress 2017; 1:55-67. [PMID: 31225434 PMCID: PMC6551656 DOI: 10.15698/cst2017.10.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1/2) are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant IDH1/2 (mIDH1/2), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, mIDH also induces a differentiation block in various cell culture and mouse models. Here we analyze the genomic methylation patterns of AML patients with mIDH using Infinium 450K data from a large AML cohort and found that mIDH is associated with pronounced DNA hypermethylation at tens of thousands of CpGs. Interestingly, however, myeloid leukemia cells overexpressing mIDH, cells that were cultured in the presence of D-2-HG or TET2 mutant AML patients did not show similar methylation changes. In further analyses, we also characterized the methylation landscapes of myeloid progenitor cells and analyzed their relationship to mIDH-associated hypermethylation. Our findings identify the differentiation state of myeloid cells, rather than inhibition of TET-mediated DNA demethylation, as a major factor of mIDH-associated hypermethylation in AML. Furthermore, our results are also important for understanding the mode of action of currently developed mIDH inhibitors.
Collapse
Affiliation(s)
- Laura Wiehle
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis. Proc Natl Acad Sci U S A 2017; 114:E7574-E7582. [PMID: 28827360 DOI: 10.1073/pnas.1619034114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.
Collapse
|
39
|
Pusch S, Krausert S, Fischer V, Balss J, Ott M, Schrimpf D, Capper D, Sahm F, Eisel J, Beck AC, Jugold M, Eichwald V, Kaulfuss S, Panknin O, Rehwinkel H, Zimmermann K, Hillig RC, Guenther J, Toschi L, Neuhaus R, Haegebart A, Hess-Stumpp H, Bauser M, Wick W, Unterberg A, Herold-Mende C, Platten M, von Deimling A. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol 2017; 133:629-644. [PMID: 28124097 DOI: 10.1007/s00401-017-1677-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Mutations in codon 132 of isocitrate dehydrogenase (IDH) 1 are frequent in diffuse glioma, acute myeloid leukemia, chondrosarcoma and intrahepatic cholangiocarcinoma. These mutations result in a neomorphic enzyme specificity which leads to a dramatic increase of intracellular D-2-hydroxyglutarate (2-HG) in tumor cells. Therefore, mutant IDH1 protein is a highly attractive target for inhibitory drugs. Here, we describe the development and properties of BAY 1436032, a pan-inhibitor of IDH1 protein with different codon 132 mutations. BAY 1436032 strongly reduces 2-HG levels in cells carrying IDH1-R132H, -R132C, -R132G, -R132S and -R132L mutations. Cells not carrying IDH mutations were unaffected. BAY 1436032 did not exhibit toxicity in vitro or in vivo. The pharmacokinetic properties of BAY 1436032 allow for oral administration. In two independent experiments, BAY 1436032 has been shown to significantly prolong survival of mice intracerebrally transplanted with human astrocytoma carrying the IDH1R132H mutation. In conclusion, we developed a pan-inhibitor targeting tumors with different IDH1R132 mutations.
Collapse
Affiliation(s)
- Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sonja Krausert
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Fischer
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jörg Balss
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Martina Ott
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schrimpf
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - David Capper
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jessica Eisel
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Beck
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility, Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility, Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Olaf Panknin
- Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Chiang S, Weigelt B, Wen HC, Pareja F, Raghavendra A, Martelotto LG, Burke KA, Basili T, Li A, Geyer FC, Piscuoglio S, Ng CKY, Jungbluth AA, Balss J, Pusch S, Baker GM, Cole KS, von Deimling A, Batten JM, Marotti JD, Soh HC, McCalip BL, Serrano J, Lim RS, Siziopikou KP, Lu S, Liu X, Hammour T, Brogi E, Snuderl M, Iafrate AJ, Reis-Filho JS, Schnitt SJ. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity. Cancer Res 2016; 76:7118-7129. [PMID: 27913435 DOI: 10.1158/0008-5472.can-16-0298] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
Abstract
Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1 One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R hotspot mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. Cancer Res; 76(24); 7118-29. ©2016 AACR.
Collapse
Affiliation(s)
- Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Huei-Chi Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwini Raghavendra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thais Basili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anqi Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jörg Balss
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Kimberly S Cole
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Julie M Batten
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jonathan D Marotti
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Hwei-Choo Soh
- Pathology North, North Shore Private Hospital, New South Wales, Australia
| | | | - Jonathan Serrano
- Department of Pathology, New York University Langone Medical Center and Medical School, New York, New York
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalliopi P Siziopikou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Song Lu
- Department of Pathology, Mon General Hospital, Morgantown, West Virginia
| | | | | | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matija Snuderl
- Department of Pathology, New York University Langone Medical Center and Medical School, New York, New York
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stuart J Schnitt
- Department of Pathology, Harvard Medical School, Boston, Massachusetts. .,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
41
|
Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 2016; 31:272-281. [PMID: 27721426 PMCID: PMC5292675 DOI: 10.1038/leu.2016.275] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Alterations to genes involved in cellular metabolism and epigenetic regulation are implicated in the pathogenesis of myeloid malignancies. Recurring mutations in isocitrate dehydrogenase (IDH) genes are detected in approximately 20% of adult patients with acute myeloid leukemia (AML) and 5% of adults with myelodysplastic syndromes (MDS). IDH proteins are homodimeric enzymes involved in diverse cellular processes, including adaptation to hypoxia, histone demethylation and DNA modification. The IDH2 protein is localized in the mitochondria and is a critical component of the tricarboxylic acid (also called the ‘citric acid' or Krebs) cycle. Both IDH2 and IDH1 (localized in the cytoplasm) proteins catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Mutant IDH enzymes have neomorphic activity and catalyze reduction of α-KG to the (R) enantiomer of 2-hydroxyglutarate, which is associated with DNA and histone hypermethylation, altered gene expression and blocked differentiation of hematopoietic progenitor cells. The prognostic significance of mutant IDH (mIDH) is controversial but appears to be influenced by co-mutational status and the specific location of the mutation (IDH1-R132, IDH2-R140, IDH2-R172). Treatments specifically or indirectly targeted to mIDH are currently under clinical investigation; these therapies have been generally well tolerated and, when used as single agents, have shown promise for inducing responses in some mIDH patients when used as first-line treatment or in relapsed or refractory AML or MDS. Use of mIDH inhibitors in combination with drugs with non-overlapping mechanisms of action is especially promising, as such regimens may address the clonal heterogeneity and the multifactorial pathogenic processes involved in mIDH myeloid malignancies. Advances in mutational analysis have made testing more rapid and convenient, and less expensive; such testing should become part of routine diagnostic workup and repeated at relapse to identify patients who may benefit from treatments that target mIDH.
Collapse
Affiliation(s)
- B C Medeiros
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford Cancer Center, Stanford, CA, USA
| | - A T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - C D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - S M Chan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - R Swords
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
42
|
Švidrnoch M, Přibylka A, Bekárek V, Ševčík J, Smolka V, Maier V. Enantioseparation of d,l-2-hydroxyglutaric acid by capillary electrophoresis with tandem mass spectrometry-Fast and efficient tool for d- and l-2-hydroxyglutaracidurias diagnosis. J Chromatogr A 2016; 1467:383-390. [PMID: 27295961 DOI: 10.1016/j.chroma.2016.05.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 12/27/2022]
Abstract
A novel capillary electrophoresis-tandem mass spectrometry method for the enantioseparation and identification of 2-hydroxyglutaric acid enantiomers without derivatization for clinical purposes was described. Vancomycin chloride was used as an efficient chiral selector for the discrimination of 2-hydroxyglutaric acid enantiomers by capillary electrophoresis employed complete capillary filling method. The obtained resolution was 2.05. Hyphenation of CE with tandem mass spectrometry allows a reliable identification of separated enantiomers as well as their quantification. The method was validated and applied for the separation, identification and determination of 2-hydroxyglutaric enantiomers in urine samples obtained from healthy patients and two urine samples obtained from child patients suffering from high urine excretion of 2-hydroxyglutaric acid. Abnormal excretion of d-hydroxyglutaric acid was found in both child urine samples (104.5±2.1 and 2200.0±12.6mmol/mol of creatinine, respectively). The limits of detection for d- and l-hydroxyglutaric acid were 31 and 38nmol/L, respectively.
Collapse
Affiliation(s)
- Martin Švidrnoch
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, in Olomouc, 17. listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Adam Přibylka
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, in Olomouc, 17. listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Vojtěch Bekárek
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, I. P. Pavlova 6, CZ-77520 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Juraj Ševčík
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, in Olomouc, 17. listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Vratislav Smolka
- Child Clinic, Faculty of Medicine, Palacký University in Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - Vítězslav Maier
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, in Olomouc, 17. listopadu 12, Olomouc CZ-77146, Czech Republic.
| |
Collapse
|
43
|
Voelxen NF, Walenta S, Proescholdt M, Dettmer K, Pusch S, Mueller-Klieser W. Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique. Front Oncol 2016; 6:46. [PMID: 27014623 PMCID: PMC4779886 DOI: 10.3389/fonc.2016.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/24/2022] Open
Abstract
Patients with malignant gliomas have a poor prognosis with average survival of less than 1 year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite that was discovered first in this tumor entity. D2HG is generated in large amounts due to various “gain-of-function” mutations in the isocitrate dehydrogenases IDH1 and IDH2. Meanwhile, D2HG has been detected in several other tumor entities, including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (<0.1 mM), but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the “oncometabolite” D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography/mass spectrometry. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0–10 μmol/g tissue (wet weight). In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.
Collapse
Affiliation(s)
- Nadine F Voelxen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Stefan Walenta
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg , Regensburg , Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg , Regensburg , Germany
| | - Stefan Pusch
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| |
Collapse
|
44
|
Zou F, Pusch S, Eisel J, Ma T, Zhu Q, Deng D, Gu Y, Xu Y, von Deimling A, Zha X. Identification of a novel selective inhibitor of mutant isocitrate dehydrogenase 1 at allosteric site by docking-based virtual screening. RSC Adv 2016. [DOI: 10.1039/c6ra21617j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Optimal docking was employed to screen SPECS compound library, followed by cellular assays of mutant and wild type of IDH1.
Collapse
|
45
|
Balss J, Thiede C, Bochtler T, Okun JG, Saadati M, Benner A, Pusch S, Ehninger G, Schaich M, Ho AD, von Deimling A, Krämer A, Heilig CE. Pretreatment d-2-hydroxyglutarate serum levels negatively impact on outcome in IDH1-mutated acute myeloid leukemia. Leukemia 2015; 30:782-8. [DOI: 10.1038/leu.2015.317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
|
46
|
Chittaranjan S, Chan S, Yang C, Yang KC, Chen V, Moradian A, Firme M, Song J, Go NE, Blough MD, Chan JA, Cairncross JG, Gorski SM, Morin GB, Yip S, Marra MA. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget 2015; 5:7960-79. [PMID: 25277207 PMCID: PMC4202173 DOI: 10.18632/oncotarget.2401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism bof reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples.
Collapse
Affiliation(s)
- Suganthi Chittaranjan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Susanna Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Cindy Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Vincent Chen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Annie Moradian
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada. California Institute of Technology, Beckman Institute, Pasadena, CA, USA
| | - Marlo Firme
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Nancy E Go
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada. Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michael D Blough
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada. Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB, Canada. Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada. Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB, Canada. Clark H. Smith Brain Tumour Centre, University of Calgary, Calgary, AB, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada. Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine Vancouver General Hospital, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, Gonzalez M, Solecki G, Osswald M, Capper D, Wiestler B, Winkler F, Herold-Mende C, von Deimling A, Wick W, Platten M. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest 2015; 125:593-606. [PMID: 25555220 DOI: 10.1172/jci77780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
For a targeted cancer vaccine to be effective, the antigen of interest needs to be naturally processed and presented on MHC by the target cell or an antigen-presenting cell (APC) in the tumor stroma. The presence of these characteristics is often assumed based on animal models, evaluation of antigen-overexpressing APCs in vitro, or assays of material-consuming immune precipitation from fresh solid tissue. Here, we evaluated the use of an alternative approach that uses the proximity ligation assay (PLA) to identify the presentation of an MHC class II-restricted antigen in paraffin-embedded tissue sections from patients with brain tumors. This approach required a specific antibody directed against the epitope that was presented. We used an antibody that specifically binds an epitope of mutated isocitrate dehydrogenase type 1 (IDH1R132H), which is frequently expressed in gliomas and other types of tumors. In situ PLA showed that the IDH1R132H epitope colocalizes with MHC class II in IDH1R132H-mutated glioma tissue. Moreover, PLA demonstrated colocalization between the class II epitope-containing melanoma antigen New York esophageal 1 and MHC class II. Collectively, our data suggest that PLA may be a useful tool to acquire information on whether an antigen is presented in situ, and this technique has potential to guide clinical studies that use antigen-specific cancer immunotherapy.
Collapse
|
48
|
Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, Fiehn O, Denkert C. Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer 2014; 136:1619-28. [PMID: 25155347 DOI: 10.1002/ijc.29152] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/05/2014] [Indexed: 01/11/2023]
Abstract
Exogenous glutamine is an important source of energy and molecular building blocks for many tumors. There is a renewed interest in therapeutically targeting glutamine metabolism due to the recent discovery of two novel glutaminase inhibitors. To quantify the dysregulation of the glutamate-glutamine equilibrium in breast cancer, metabolomics analysis of 270 clinical breast cancer samples and 97 normal breast samples was carried out using gas chromatography combined with time-of-flight mass spectrometry. Positive correlation between glutamate and glutamine in normal breast tissues switched to negative correlation between glutamate and glutamine in breast cancer tissues. Compared with the ratio of glutamate to glutamine in normal tissues, we found 56% of the ER+ tumor tissues and 88% of the ER- tumor tissues glutamate-enriched. The glutamate-to-glutamine ratio (GGR) significantly correlated with ER status (p = 8.0E-09) and with tumor grade (p = 3.3E-05). Higher levels of GGR were associated with prolonged overall survival in univariate analysis (HR = 0.77, p = 0.027) and in multivariate analysis (HR = 0.73, p = 0.038). GGR levels were reflected in an unsupervised clustering of metabolomics profiles. In a supervised analysis of metabolomics data and of genome-wide expression data, replacement of GGR by metabolite surrogate markers was feasible, while replacement of GGR by RNA markers had a limited accuracy. Functional analysis of the gene expression data showed negative correlation between glutamate enrichment and activation of peroxisome proliferator-activated receptor (PPAR) pathway. Our findings may have important implications for patient stratification related to utilization of glutaminase inhibitors.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Megova M, Drabek J, Koudelakova V, Trojanec R, Kalita O, Hajduch M. Isocitrate dehydrogenase 1and2mutations in gliomas. J Neurosci Res 2014; 92:1611-20. [DOI: 10.1002/jnr.23456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Magdalena Megova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| | - Jiri Drabek
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| | - Vladimira Koudelakova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| | - Radek Trojanec
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| | - Ondrej Kalita
- Department of Neurosurgery; Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc and University Hospital in Olomouc; Olomouc Czech Republic
| |
Collapse
|
50
|
Elhammali A, Ippolito JE, Collins L, Crowley J, Marasa J, Piwnica-Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov 2014; 4:828-39. [PMID: 24740997 PMCID: PMC4197823 DOI: 10.1158/2159-8290.cd-13-0572] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Recently identified isocitrate dehydrogenase (IDH) mutations lead to the production of 2-hydroxyglutarate (2HG), an oncometabolite aberrantly elevated in selected cancers. We developed a facile and inexpensive fluorimetric microplate assay for the quantitation of 2HG and performed an unbiased small-molecule screen in live cells to identify compounds capable of perturbing 2HG production. Zaprinast, a phosphodiesterase 5 inhibitor, was identified as an efficacious modulator of 2HG production and confirmed to lower 2HG levels in vivo. The mechanism of action was not due to cGMP stabilization, but rather, profiling of metabolites upstream of mutant IDH1 pointed to targeted inhibition of the enzyme glutaminase (GLS). Zaprinast treatment reversed histone hypermethylation and soft-agar growth of IDH1-mutant cells, and treatment of glutamine-addicted pancreatic cancer cells reduced growth and sensitized cells to oxidative damage. Thus, Zaprinast is efficacious against glutamine metabolism and further establishes the therapeutic linkages between GLS and 2HG-mediated oncogenesis. SIGNIFICANCE Gain-of-function IDH mutations are common events in glioma, acute myelogenous leukemia, and other cancer types, which lead to the accumulation of the oncometabolite 2HG. We show that the drug Zaprinast is capable of reducing cellular 2HG levels by inhibiting the upstream enzyme GLS, thus identifying a new strategy to target 2HG production in selected IDH-mutant cancers.
Collapse
Affiliation(s)
- Adnan Elhammali
- Authors' Affiliations:BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology
| | - Joseph E Ippolito
- Authors' Affiliations:BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology
| | - Lynne Collins
- Authors' Affiliations:BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology
| | - Jan Crowley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Jayne Marasa
- Authors' Affiliations:BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology
| | - David Piwnica-Worms
- Authors' Affiliations:BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|