1
|
Krieger B, Bellenberg B, Roenneke AK, Schneider R, Ladopoulos T, Abbas Z, Rust R, Schmitz-Hübsch T, Chien C, Gold R, Paul F, Lukas C. Relevance of choroid plexus volumes in multiple sclerosis. Fluids Barriers CNS 2025; 22:47. [PMID: 40340923 PMCID: PMC12060557 DOI: 10.1186/s12987-025-00656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/20/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND The choroid plexus (ChP) plays a pivotal role in inflammatory processes that occur in multiple sclerosis (MS). The enlargement of the ChP in relapsing-remitting multiple sclerosis (RRMS) is considered to be an indication of disease activity and has been associated with periventricular remyelination failure. This cross-sectional study aimed to identify the relationship between ChP and periventricular tissue damage which occurs in MS, and to elucidate the role of neuroinflammation in primary progressive multiple sclerosis (PPMS). METHODS ChP volume was assessed by a novel deep learning segmentation method based on structural MRI data acquired from two centers. In total, 141 RRMS and 64 PPMS patients were included, along with 75 healthy control subjects. In addition, T1w/FLAIR ratios were calculated within periventricular bands to quantify microstructural tissue damage and to assess its relationship to ChP volume. RESULTS When compared to healthy controls, ChP volumes were significantly increased in RRMS, but not in patients with PPMS. T1w/FLAIR ratios in the normal appearing white matter (NAWM) showing periventricular gradients were decreased in patients with multiple sclerosis when compared to healthy control subjects and lower T1w/FLAIR ratios radiating out from the lateral ventricles were found in patients with PPMS. A relationship between ChP volume and T1w/FLAIR ratio in NAWM was found within the inner periventricular bands in RRMS patients. A longer duration of disease was associated with larger ChP volumes only in RRMS patients. Enlarged ChP volumes were also significantly associated with reduced cortex volumes and increased lesion volumes in RRMS. CONCLUSIONS Our analysis confirmed that the ChP was significantly enlarged in patients with RRMS, which was related to brain lesion volumes and which suggested a dynamic development as it was associated with disease duration. Plexus enlargement was further associated with periventricular demyelination or tissue damage assessed by T1w/FLAIR ratios in RRMS. Furthermore, we did not find an enlargement of the ChP in patients with PPMS, possibly indicating the reduced involvement of inflammatory processes in the progressive phase of MS. The association between enlarged ChP volumes and cortical atrophy in RRMS highlighted the vulnerability of structures close to the CSF.
Collapse
Affiliation(s)
- Britta Krieger
- Institute of Neuroradiology, St. Josef Hospital, Ruhr University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Anna Katharina Roenneke
- Institute of Neuroradiology, St. Josef Hospital, Ruhr University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Zainab Abbas
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité-University Hospital Berlin, 10117, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité-University Hospital Berlin, 10117, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, NeuroCure Clinical Research Center, Department of Psychiatry and Neurosciences, Charité-University Hospital Berlin, 10117, Berlin, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité-University Hospital Berlin, 10117, Berlin, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| |
Collapse
|
2
|
Fialova L, Barilly P, Stetkarova I, Bartos A, Noskova L, Zimova D, Zido M, Hoffmanova I. Impaired intestinal permeability in patients with multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025; 169:37-43. [PMID: 37581230 DOI: 10.5507/bp.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND A number of recent studies have shown that the intestinal microbiome, part of the brain-gut axis, is implicated in the pathophysiology of multiple sclerosis. An essential part of this axis, is the intestinal barrier and gastrointestinal disorders with intestinal barrier dysregulation appear to be linked to CNS demyelination, and hence involved in the etiopathogenesis of multiple sclerosis (MS). OBJECTIVE The aim of this study was to evaluate the integrity of the intestinal barrier in patients with clinically definite multiple sclerosis (CDMS) and clinically isolated syndrome (CIS) using two serum biomarkers, claudin-3 (CLDN3), a component of tight epithelial junctions, and intestinal fatty acid binding protein (I-FABP), a cytosolic protein in enterocytes. METHODS Serum levels of CLDN3 in 37 MS patients and 22 controls, and serum levels of I-FABP in 46 MS patients and 51 controls were measured using commercial ELISA kits. Complete laboratory tests excluded the presence of gluten-related disorders in all subjects. Thirty MS patients received either disease-modifying drugs (DMD), immunosuppression (IS) or corticosteroid treatment. RESULTS CLDN3 levels were only significantly higher in the MS patients treated with DMD or IS compared to the control group (P=0.006). There were no differences in I-FABP serum levels between the groups. Serum CLDN3 levels did not correlate with serum I-FABP levels in CDMS, in CIS patients or controls. CONCLUSIONS In multiple sclerosis patients, the intestinal epithelium may be impaired with increased permeability, but without significant enterocyte damage characterized by intracellular protein leakage. Based on our data, CLDN3 serum levels appear to assess intestinal dysfunction in MS patients but mainly in treated ones.
Collapse
Affiliation(s)
- Lenka Fialova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavla Barilly
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Denisa Zimova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Michal Zido
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
3
|
Rodrigues ABM, Passetti F, Guimarães ACR. Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis. Neuroinformatics 2025; 23:10. [PMID: 39836313 DOI: 10.1007/s12021-024-09713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.
Collapse
Affiliation(s)
| | - Fabio Passetti
- Instituto Carlos Chagas - Fiocruz/Paraná, Curitiba, PR, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Courtney Y, Hochstetler A, Lehtinen MK. Choroid Plexus Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:193-220. [PMID: 39383438 PMCID: PMC11884907 DOI: 10.1146/annurev-pathmechdis-051222-114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
This review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.
Collapse
Affiliation(s)
- Ya'el Courtney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Hochstetler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhu L, Bai Y, Li A, Wan J, Sun M, Lou X, Duan X, Sheng Y, Lei N, Qin Z. IFN-γ-responsiveness of lymphatic endothelial cells inhibits melanoma lymphatic dissemination via AMPK-mediated metabolic control. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167314. [PMID: 38936516 DOI: 10.1016/j.bbadis.2024.167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
The integrity of the lymphatic system is critical for preventing the dissemination of tumor cells, such as melanoma, to distant parts of the body. IFN-γ is well studied as a negative regulator for lymphangiogenesis, which is strongly associated with cancer metastasis. However, the exact mechanisms underlying this process remain unclear. In the present study, we investigated whether IFN-γ signaling in lymphatic endothelial cells (LECs) affects tumor cell dissemination by regulating the barrier function of tumor-associated lymphatic vessels. Using LEC-specific IFN-γ receptor (IFN-γR) knockout mice, we found that the loss of IFN-γR in LECs increased the dissemination of melanoma cells into the draining lymph nodes. Notably, IFN-γ signaling in LECs inhibited trans-lymphatic endothelial cell migration of melanoma cells, indicating its regulation of lymphatic barrier function. Further investigations revealed that IFN-γ upregulated the expression of the tight junction protein Claudin-3 in LECs, while knockdown of Claudin-3 in LECs abolished IFN-γ-induced inhibition of trans-lymphatic endothelial migration activity. Mechanistically, IFN-γ inhibits AMPK signaling activation, which is involved in the regulation of fatty acid metabolism. Modulating fatty acid metabolism and AMPK activation in LECs also affected the lymphatic dissemination of melanoma cells, further confirming that this process is involved in IFN-γ-induced regulation of lymphatic barrier function. These results provide novel insights into how IFN-γ modulates tight junctions in LECs, inhibiting the dissemination of melanoma cells via the lymphatic vessels.
Collapse
Affiliation(s)
- Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueyue Bai
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Anqi Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyao Sun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Radványi Z, Schnitzbauer U, Pastor-Arroyo EM, Hölker S, Himmerkus N, Bleich M, Müller D, Breiderhoff T, Hernando N, Wagner CA. Absence of claudin-3 does not alter intestinal absorption of phosphate in mice. Pflugers Arch 2024; 476:1597-1612. [PMID: 39115555 PMCID: PMC11381482 DOI: 10.1007/s00424-024-02998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Collapse
Affiliation(s)
- Zsuzsa Radványi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hölker
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Toubasi AA, Xu J, Eisma JJ, AshShareef S, Gheen C, Vinarsky T, Adapa P, Shah S, Eaton J, Dortch RD, Donahue MJ, Bagnato F. Watershed regions are more susceptible to tissue microstructural injury in multiple sclerosis. Brain Commun 2024; 6:fcae299. [PMID: 39372138 PMCID: PMC11452773 DOI: 10.1093/braincomms/fcae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Histopathologic studies report higher concentrations of multiple sclerosis white matter lesions in watershed areas of the brain, suggesting that areas with relatively lower oxygen levels may be more vulnerable to disease. However, it is unknown at what point in the disease course lesion predilection for watershed territories begins. Accordingly, we studied a cohort of people with newly diagnosed disease and asked whether (1) white matter lesions disproportionally localize to watershed-regions and (2) the degree of microstructural injury in watershed-lesions is more severe. Fifty-four participants, i.e. 38 newly diagnosed people with multiple sclerosis, clinically isolated syndrome or radiologically isolated syndrome, and 16 age- and sex-matched healthy controls underwent brain magnetic resonance imaging. T1-weighted and T2-weighted fluid-attenuated inversion recovery sequences, selective inversion recovery quantitative magnetisation transfer images, and the multi-compartment diffusion imaging with the spherical mean technique were acquired. We computed the macromolecular-to-free pool size ratio, and the apparent axonal volume fraction maps to indirectly estimate myelin and axonal integrity, respectively. We produced a flow territory atlas in each subject's native T2-weighted fluid-attenuated inversion recovery images using a T1-weighted magnetic resonance imaging template in the Montreal Neurological Institute 152 space. Lesion location relative to the watershed, non-watershed and mixed brain vascular territories was annotated. The same process was performed on the T2-weighted fluid-attenuated inversion recovery images of the healthy controls using 294 regions of interest. Generalized linear mixed models for continuous outcomes were used to assess differences in size, pool size ratio and axonal volume fraction between lesions/regions of interests (in healthy controls) situated in different vascular territories. In patients, we assessed 758 T2-lesions and 356 chronic black holes (cBHs). The watershed-territories had higher relative and absolute concentrations of T2-lesions (P≤0.041) and cBHs (P≤0.036) compared to either non-watershed- or mixed-zones. T2-lesions in watershed-areas also had lower pool size ratio relative to T2-lesions in either non-watershed- or mixed-zones (P = 0.039). These results retained significance in the sub-cohort of people without vascular comorbidities and when accounting for periventricular lesions. In healthy controls, axonal volume fraction was higher only in mixed-areas regions of interest compared to non-watershed-ones (P = 0.008). No differences in pool size ratio were seen. We provide in vivo evidence that there is an association between arterial vascularisation of the brain and multiple sclerosis-induced tissue injury as early as the time of disease diagnosis. Our findings underline the importance of oxygen delivery and healthy arterial vascularisation to prevent lesion formation and foster a better outcome in multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad A Toubasi
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, VUMC, Nashville, TN 37232, USA
| | - Jarrod J Eisma
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Salma AshShareef
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Caroline Gheen
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Taegan Vinarsky
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Pragnya Adapa
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Shailee Shah
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - James Eaton
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - Richard D Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Manus J Donahue
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, VUMC, Nashville, TN 37232, USA
| | - Francesca Bagnato
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Neurology, TN Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
9
|
Storelli L, Pagani E, Rubin M, Margoni M, Filippi M, Rocca MA. A Fully Automatic Method to Segment Choroid Plexuses in Multiple Sclerosis Using Conventional MRI Sequences. J Magn Reson Imaging 2024; 59:1643-1652. [PMID: 37530734 DOI: 10.1002/jmri.28937] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Choroid plexus (CP) volume has been recently proposed as a proxy for brain neuroinflammation in multiple sclerosis (MS). PURPOSE To develop and validate a fast automatic method to segment CP using routinely acquired brain T1-weighted and FLAIR MRI. STUDY TYPE Retrospective. POPULATION Fifty-five MS patients (33 relapsing-remitting, 22 progressive; mean age = 46.8 ± 10.2 years; 31 women) and 60 healthy controls (HC; mean age = 36.1 ± 12.6 years, 33 women). FIELD STRENGTH/SEQUENCE 3D T2-weighted FLAIR and 3D T1-weighted gradient echo sequences at 3.0 T. ASSESSMENT Brain tissues were segmented on T1-weighted sequences and a Gaussian Mixture Model (GMM) was fitted to FLAIR image intensities obtained from the ventricle masks of the SIENAX. A second GMM was then applied on the thresholded and filtered ventricle mask. CP volumes were automatically determined and compared with those from manual segmentation by two raters (with 3 and 10 years' experience; reference standard). CP volumes from previously published automatic segmentation methods (freely available Freesurfer [FS] and FS-GMM) were also compared with reference standard. Expanded Disability Status Scale (EDSS) score was assessed within 3 days of MRI. Computational time was assessed for each automatic technique and manual segmentation. STATISTICAL TESTS Comparisons of CP volumes with reference standard were evaluated with Bland Altman analysis. Dice similarity coefficients (DSC) were computed to assess automatic CP segmentations. Volume differences between MS and HC for each method were assessed with t-tests and correlations of CP volumes with EDSS were assessed with Pearson's correlation coefficients (R). A P value <0.05 was considered statistically significant. RESULTS Compared to manual segmentation, the proposed method had the highest segmentation accuracy (mean DSC = 0.65 ± 0.06) compared to FS (mean DSC = 0.37 ± 0.08) and FS-GMM (0.58 ± 0.06). The percentage CP volume differences relative to manual segmentation were -0.1% ± 0.23, 4.6% ± 2.5, and -0.48% ± 2 for the proposed method, FS, and FS-GMM, respectively. The Pearson's correlations between automatically obtained CP volumes and the manually obtained volumes were 0.70, 0.54, and 0.56 for the proposed method, FS, and FS-GMM, respectively. A significant correlation between CP volume and EDSS was found for the proposed automatic pipeline (R = 0.2), for FS-GMM (R = 0.3) and for manual segmentation (R = 0.4). Computational time for the proposed method (32 ± 2 minutes) was similar to the manual segmentation (20 ± 5 minutes) but <25% of the FS (120 ± 15 minutes) and FS-GMM (125 ± 15 minutes) methods. DATA CONCLUSION This study developed an accurate and easily implementable method for automatic CP segmentation in MS using T1-weighted and FLAIR MRI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Raghib MF, Bao F, Elkhooly M, Bernitsas E. Choroid plexus volume as a marker of retinal atrophy in relapsing remitting multiple sclerosis. J Neurol Sci 2024; 457:122884. [PMID: 38237367 DOI: 10.1016/j.jns.2024.122884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.
Collapse
Affiliation(s)
- Muhammad F Raghib
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Mahmoud Elkhooly
- Department of Neurology, Wayne State University School of Medicine, United States of America; Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States of America; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, United States of America; Detroit Medical Center, Detroit, MI, United States of America.
| |
Collapse
|
12
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Buch S, Subramanian K, Chen T, Chen Y, Larvie M, Bernitsas E, Haacke EM. Characterization of white matter lesions in multiple sclerosis using proton density and T1-relaxation measures. Magn Reson Imaging 2024; 106:110-118. [PMID: 38145698 DOI: 10.1016/j.mri.2023.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Although lesion dissemination in time is a defining characteristic of multiple sclerosis (MS), there is a limited understanding of lesion heterogeneity. Currently, conventional sequences such as fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W) data are used to assess MS lesions qualitatively. Estimating water content could provide a measure of local tissue rarefaction, or reduced tissue density, resulting from chronic inflammation. Our goal was to utilize the proton spin density (PD), derived from a rapid, multi-contrast STAGE (strategically acquired gradient echo) protocol to characterize white matter (WM) lesions seen on T2W, FLAIR and T1W data. MATERIALS AND METHODS Twenty (20) subjects with relapsing-remitting MS were scanned at 3 T using T1W, T2-weighted, FLAIR and strategically acquired gradient echo (STAGE) sequences. PD and T1 maps were derived from the STAGE data. Disease severity scores, including Extended Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC), were correlated with total, high PD and high T1 lesion volumes. A probability map of high PD regions and all lesions across all subjects was generated. Five perilesional normal appearing WM (NAWM) bands surrounding the lesions were generated to compare the median PD and T1 values in each band with the lesional values and the global WM. RESULTS T1W intensity was negatively correlated with PD as expected (R = -0.87, p < 0.01, R2 = 0.756) and the FLAIR signal was suppressed for high PD volumes within the lesions, roughly for PD ≥ 0.85. The threshold for high PD and T1 regions was set to 0.909 and 1953.6 ms, respectively. High PD regions showed a high probability of occurrence near the boundary of the lateral ventricles. EDSS score and nine-hole peg test (dominant and non-dominant hand) were significantly correlated with the total lesion volume and the volumes of high PD and T1 regions (p < 0.05). There was a significant difference in PD/T1 values between the high PD/T1 regions within the lesions and the remaining lesional tissue (p < 0.001). In addition, the PD values of the first NAWM perilesional band directly adjacent to the lesional boundary displayed a significant difference (p < 0.05) compared to the global WM. CONCLUSION Lesions with high PD and T1s had the highest probability of occurrence at the boundary of the lateral ventricles and likely represent chronic lesions with significant local tissue rarefaction. Moreover, the perilesional NAWM exhibited subtly increasing PD and T1 values from the NAWM up to the lesion boundary. Unlike on the T1 maps, the perilesional band adjacent to the lesion boundary possessed a significantly higher PD value than the global WM PD values. This shows that PD maps were sensitive to the subtle changes in NAWM surrounding the lesions.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | | | - Teresa Chen
- College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Mykol Larvie
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - E Mark Haacke
- Department of Neurology, Wayne State University, Detroit, MI, USA; Department of Radiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
14
|
Mak S, Hammes A. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development. Int J Mol Sci 2024; 25:1426. [PMID: 38338705 PMCID: PMC10855338 DOI: 10.3390/ijms25031426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.
Collapse
Affiliation(s)
- Shermin Mak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute for Biology, Free University of Berlin, 14159 Berlin, Germany
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
| |
Collapse
|
15
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
16
|
Margoni M, Gueye M, Meani A, Pagani E, Moiola L, Preziosa P, Filippi M, Rocca MA. Choroid plexus enlargement in paediatric multiple sclerosis: clinical relevance and effect of sex. J Neurol Neurosurg Psychiatry 2023; 94:181-188. [PMID: 36351790 DOI: 10.1136/jnnp-2022-330343] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Choroid plexus (CP) enlargement has been suggested as a reliable marker of neuroinflammation in adult multiple sclerosis (MS). We investigated CP volume in patients with paediatric MS compared with matched healthy controls (HC), possible sex-related effect, and the associations with clinical and structural MRI variables. METHODS Brain 3.0 T dual-echo and three-dimensional (3D) T1-weighted sequences were selected retrospectively from 69 patients with paediatric MS and 23 age-matched and sex-matched HC. CP volume was manually obtained from 3D T1-weighted scans by two expert raters. RESULTS CP segmentation was highly reproducible (intraobserver agreement: rater I=0.963, rater II=0.958; interobserver agreement=0.968). Compared with HC, patients with paediatric MS showed higher normalised CP volume (p<0.001). Both female and male patients with paediatric MS showed higher normalised CP volume compared with sex-matched HC (women: p<0.001 and men: p=0.021), with a significant disease×sex interaction (p=0.040). In patients with MS, a higher normalised CP volume was significantly associated with higher brain lesional volume (β=0.252, p=0.017), larger lateral ventricle volume (β=0.470, false discovery rate (FDR)-p<0.001), lower normalised brain volume (β=-0.413, FDR-p=0.002) and lower normalised thalamic volume (β=0.291, FDR-p=0.046). No associations with disease duration, Expanded Disability Status Scale score, normalised cortical and white matter volumes were found (FDR-p≥0.172). A significant effect of the disease in the negative association between normalised volumes of CP and thalami was observed (FDR-p=0.046). CONCLUSIONS CP enlargement occurs in paediatric MS, suggesting its early involvement in the pathophysiology of the disease. The higher CP volume, which is found especially in female patients, supports the hypothesis of sex-related differences occurring already in paediatric MS.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mor Gueye
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurophysiology Service, IRCCS Osepdale San raffaele, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy .,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Muthuraman M, Oshaghi M, Fleischer V, Ciolac D, Othman A, Meuth S, Gonzalez-Escamilla G, Groppa S. Choroid plexus imaging to track neuroinflammation – a translational model for mouse and human studies. Neural Regen Res 2023; 18:521-522. [DOI: 10.4103/1673-5374.346471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Claudin-3 inhibits tumor-induced lymphangiogenesis via regulating the PI3K signaling pathway in lymphatic endothelial cells. Sci Rep 2022; 12:17440. [PMID: 36261482 PMCID: PMC9581975 DOI: 10.1038/s41598-022-22156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Claudin-3 is a tight junction protein that has often been associated with the progression and metastasis of various tumors. Here, the role of claudin-3 in tumor-induced lymphangiogenesis is investigated. We found an increased lymphangiogenesis in the B16F10 tumor in claudin-3 knockout mice, accompanied by augmented melanoma cell metastasis into sentinel lymph nodes. In vitro, the overexpression of claudin-3 on lymphatic endothelial cells inhibited tube formation by suppressing cell migration, resulting in restricted lymphangiogenesis. Further experiments showed that claudin-3 inhibited lymphatic endothelial cell migration by regulating the PI3K signaling pathway. Interestingly, the expression of claudin-3 in lymphatic endothelial cells is down-regulated by vascular endothelial growth factor C that is often present in the tumor microenvironment. This study indicates that claudin-3 plays an important role as a signaling molecule in lymphatic endothelial cell activity associated with tumor lymphangiogenesis, which may further contribute to melanoma metastasis.
Collapse
|
20
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
21
|
Grund SC, Wu XX, Müller D, Wennemuth G, Grümmer R. Impact of endometrial claudin-3 deletion on murine implantation, decidualization and embryo development. Biol Reprod 2022; 107:984-997. [PMID: 35863769 DOI: 10.1093/biolre/ioac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from 6.5 dpc onwards. To evaluate the role if this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 KO mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on 6.5 and 8.5 dpc as well as the weight of the embryos on 17.5 dpc, but not of the placentas, was significantly reduced in claudin-3 KO mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 KO mice. The fact that claudin-3 KO mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.
Collapse
Affiliation(s)
- Susanne C Grund
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xin Xin Wu
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Grümmer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
22
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules 2022; 12:biom12060800. [PMID: 35740925 PMCID: PMC9221446 DOI: 10.3390/biom12060800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) known for the manifestation of demyelinated lesions throughout the CNS, leading to neurodegeneration. To date, not all pathological mechanisms that drive disease progression are known, but the clinical benefits of anti-CD20 therapies have put B cells in the spotlight of MS research. Besides their pathological effects in the periphery in MS, B cells gain access to the CNS where they can contribute to disease pathogenesis. Specifically, B cells accumulate in perivascular infiltrates in the brain parenchyma and the subarachnoid spaces of the meninges, but are virtually absent from the choroid plexus. Hence, the possible migration of B cells over the blood-brain-, blood-meningeal-, and blood-cerebrospinal fluid (CSF) barriers appears to be a crucial step to understanding B cell-mediated pathology. To gain more insight into the molecular mechanisms that regulate B cell trafficking into the brain, we here provide a comprehensive overview of the different CNS barriers in health and in MS and how they translate into different routes for B cell migration. In addition, we review the mechanisms of action of diverse therapies that deplete peripheral B cells and/or block B cell migration into the CNS. Importantly, this review shows that studying the different routes of how B cells enter the inflamed CNS should be the next step to understanding this disease.
Collapse
|
24
|
Engelhardt B, Comabella M, Chan A. Multiple sclerosis: Immunopathological heterogeneity and its implications. Eur J Immunol 2022; 52:869-881. [PMID: 35476319 PMCID: PMC9324211 DOI: 10.1002/eji.202149757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.
Collapse
Affiliation(s)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Constant O, Maarifi G, Blanchet FP, Van de Perre P, Simonin Y, Salinas S. Role of Dendritic Cells in Viral Brain Infections. Front Immunol 2022; 13:862053. [PMID: 35529884 PMCID: PMC9072653 DOI: 10.3389/fimmu.2022.862053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
26
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Nishihara H, Engelhardt B. Brain Barriers and Multiple Sclerosis: Novel Treatment Approaches from a Brain Barriers Perspective. Handb Exp Pharmacol 2022; 273:295-329. [PMID: 33237504 DOI: 10.1007/164_2020_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.
Collapse
|
28
|
de Fraga LS, Tassinari ID, Jantsch J, Guedes RP, Bambini-Junior V. 'A picture is worth a thousand words': The use of microscopy for imaging neuroinflammation. Clin Exp Immunol 2021; 206:325-345. [PMID: 34596237 DOI: 10.1111/cei.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy has come a long way to the most recent techniques that make it possible to perform images in live cells and animals in health and disease. Many pathological conditions of the central nervous system have already been linked to inflammatory responses. In this scenario, several available markers and techniques can help imaging and unveil the neuroinflammatory process. Moreover, microscopy imaging techniques have become even more necessary to validate the large quantity of data generated in the era of 'omics'. This review aims to highlight how to assess neuroinflammation by using microscopy as a tool to provide specific details about the cell's architecture during neuroinflammatory conditions. First, we describe specific markers that have been used in light microscopy studies and that are widely applied to unravel and describe neuroinflammatory mechanisms in distinct conditions. Then, we discuss some important methodologies that facilitate the imaging of these markers, such as immunohistochemistry and immunofluorescence techniques. Emphasis will be given to studies using two-photon microscopy, an approach that revolutionized the real-time assessment of neuroinflammatory processes. Finally, some studies integrating omics with microscopy will be presented. The fusion of these techniques is developing, but the high amount of data generated from these applications will certainly improve comprehension of the molecular mechanisms involved in neuroinflammation.
Collapse
Affiliation(s)
- Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, UK
| |
Collapse
|
29
|
Greiner T, Kipp M. What Guides Peripheral Immune Cells into the Central Nervous System? Cells 2021; 10:cells10082041. [PMID: 34440810 PMCID: PMC8392645 DOI: 10.3390/cells10082041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS), an immune-mediated demyelinating disease of the central nervous system (CNS), initially presents with a relapsing-remitting disease course. During this early stage of the disease, leukocytes cross the blood–brain barrier to drive the formation of focal demyelinating plaques. Disease-modifying agents that modulate or suppress the peripheral immune system provide a therapeutic benefit during relapsing-remitting MS (RRMS). The majority of individuals with RRMS ultimately enter a secondary progressive disease stage with a progressive accumulation of neurologic deficits. The cellular and molecular basis for this transition is unclear and the role of inflammation during the secondary progressive disease stage is a subject of intense and controversial debate. In this review article, we discuss the following main hypothesis: during both disease stages, peripheral immune cells are triggered by CNS-intrinsic stimuli to invade the brain parenchyma. Furthermore, we outline the different neuroanatomical routes by which peripheral immune cells might migrate from the periphery into the CNS.
Collapse
|
30
|
Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, Bottlaender M, Gervais P, Louapre C, Bodini B, Stankoff B. Choroid Plexus Enlargement in Inflammatory Multiple Sclerosis: 3.0-T MRI and Translocator Protein PET Evaluation. Radiology 2021; 301:166-177. [PMID: 34254858 DOI: 10.1148/radiol.2021204426] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Choroid plexuses (CPs) have been suggested as a key gateway for inflammation in experimental autoimmune encephalitis, but in vivo evidence of their involvement in multiple sclerosis (MS) is lacking. Purpose To assess CP volumetric and inflammatory changes in patients with MS versus healthy control participants. Materials and Methods This was a secondary analysis of 97 patients (61 with relapsing-remitting MS [RRMS] and 36 with progressive MS) and 44 healthy control participants who participated in three prospective 3.0-T brain MRI studies between May 2009 and September 2017. A subgroup of 37 patients and 19 healthy control participants also underwent translocator protein fluorine 18 (18F)-DPA-714 PET for neuroinflammation. Relapses and disability scores were collected at baseline and over 2 years. CPs were manually segmented on three-dimensional T1-weighted images; other brain volumes were additionally segmented. Volumes were expressed as a ratio of intracranial volume. The 18F-DPA-714 distribution volume ratio was quantified in parenchymal regions, whereas standardized uptake value was used for CP inflammation. Multivariable linear regression analyses were performed to assess CP volumetric and inflammatory differences between patients with MS and healthy control participants and correlations between CP volume and lesion load, brain volumes, 18F-DPA-714 uptake, and annualized relapse rate. Results Ninety-seven patients with MS (mean age, 42 years ± 12 [standard deviation]; 49 women) and 44 healthy control participants (mean age, 39 years ± 14; 23 women) underwent MRI. Thirty-seven patients with MS and 19 healthy control participants underwent PET. CPs were 35% larger in patients with MS (mean value, 15.9 × 10-4 ± 4.5) than in healthy control participants (mean value, 11.8 × 10-4 ± 3.8; P = .004). Subgroup analysis confirmed greater CP volume in patients with RRMS (mean value, 15.5 × 10-4 ± 4.6; P = .008) than in healthy control participants. CP enlargement was greater in patients with active lesions at MRI (mean volume, 18.2 × 10-4 ± 4.9 in patients with lesions that enhanced with gadolinium vs 14.9 × 10-4 ± 4 in patients with lesions that did not enhance with gadolinium; P < .001) and correlated with white matter lesion load (r = 0.39; 95% CI: 0.20, 0.55; P < .001) and 18F-DPA-714 binding in the thalami (r = 0.44; 95% CI: 0.22, 0.72; P = .04) and normal-appearing white matter (r = 0.5; 95% CI: 0.20, 0.71; P = .005). Moreover, it correlated with annualized relapse rate in patients with RRMS (r = 0.37; 95% CI: 0.1, 0.55; P = .005). Finally, patients with MS showed 18.5% higher CP 18F-DPA-714 uptake than control participants (mean value, 0.778 ± 0.23 vs 0.635 ± 0.15, respectively; P = .01). CP volume in patients with RRMS (r = 0.57; 95% CI: 0.37, 0.73; P = .009) correlated with higher 18F-DPA-714 uptake. Conclusion Choroid plexuses (CPs) are enlarged and inflamed in patients with multiple sclerosis (MS), particularly in those with relapsing-remitting MS with inflammatory profiles; CP volumetric analysis could represent an MS imaging marker. © RSNA, 2021 EudraCT no. 2008-004174-40; clinical trial registration nos. NCT02305264 and NCT01651520 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Emanuele Morena
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Annalisa Colombi
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Matteo Tonietto
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Mariem Hamzaoui
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Emilie Poirion
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Michel Bottlaender
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Philippe Gervais
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Céline Louapre
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Benedetta Bodini
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| | - Bruno Stankoff
- From the Sorbonne Université, Paris Brain Institute, Institut du Cerveau, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.G.R., E.M., A.C., M.T., M.H., E.P., C.L., B.B., B.S.); Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France (M.T., M.B., P.G.); Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France (E.P.); Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France (C.L.); and Department of Neurology, St Antoine Hospital, 184, rue du Faubourg St Antoine, Assistance Publique des Hôpitaux de Paris, 75571 Paris, France (B.B., B.S.)
| |
Collapse
|
31
|
Ayub M, Jin HK, Bae JS. The blood cerebrospinal fluid barrier orchestrates immunosurveillance, immunoprotection, and immunopathology in the central nervous system. BMB Rep 2021. [PMID: 33298242 PMCID: PMC8093941 DOI: 10.5483/bmbrep.2021.54.4.205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Once characterized as an immune privileged area, recent scientific advances have demonstrated that the central nervous system (CNS) is both immunologically active and a specialized site. The anatomical and cellular features of the brain barriers, the glia limitans, and other superficial coverings of the CNS endow the brain with specificity for immune cell entry and other macro- and micro-elements to the brain. Cellular trafficking via barriers comprised of tightly junctioned non-fenestrated endothelium or tightly regulated fenestrated epithelium results in different phenotypic and cellular changes in the brain, that is, inflammatory versus regulatory changes. Based on emerging evidence, we described the unique ability of the blood cerebrospinal fluid barrier (BCSFB) to recruit, skew, and suppress immune cells. Additionally, we sum up the current knowledge on both cellular and molecular mechanisms governed by the choroid plexus and the cerebrospinal fluid at the BCSFB for immunosurveillance, immunoprotection, and immunopathology.
Collapse
Affiliation(s)
- Maria Ayub
- KNU Alzheimer’s disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-sung Bae
- KNU Alzheimer’s disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
32
|
Pardini M, Brown JWL, Magliozzi R, Reynolds R, Chard DT. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain 2021; 144:1646-1654. [PMID: 33876200 DOI: 10.1093/brain/awab025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/12/2022] Open
Abstract
While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this 'surface-in' spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.
Collapse
Affiliation(s)
- Matteo Pardini
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - J William L Brown
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,Department of Clinical Neurosciences, University of Cambridge, Box 165, Cambridge Biomedical Campus, Cambridge, UK.,Clinical Outcomes Research Unit (CORe), University of Melbourne, Melbourne, Australia
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy.,Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Declan T Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, UK
| |
Collapse
|
33
|
Ivan DC, Walthert S, Locatelli G. Central Nervous System Barriers Impact Distribution and Expression of iNOS and Arginase-1 in Infiltrating Macrophages During Neuroinflammation. Front Immunol 2021; 12:666961. [PMID: 33936108 PMCID: PMC8082146 DOI: 10.3389/fimmu.2021.666961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
In multiple sclerosis (MS) and other neuroinflammatory diseases, monocyte-derived cells (MoCs) traffic through distinct central nervous system (CNS) barriers and gain access to the organ parenchyma exerting detrimental or beneficial functions. How and where these MoCs acquire their different functional commitments during CNS invasion remains however unclear, thus hindering the design of MS treatments specifically blocking detrimental MoC actions. To clarify this issue, we investigated the distribution of iNOS+ pro-inflammatory and arginase-1+ anti-inflammatory MoCs at the distinct border regions of the CNS in a mouse model of MS. Interestingly, MoCs within perivascular parenchymal spaces displayed a predominant pro-inflammatory phenotype compared to MoCs accumulating at the leptomeninges and at the intraventricular choroid plexus (ChP). Furthermore, in an in vitro model, we could observe the general ability of functionally-polarized MoCs to migrate through the ChP epithelial barrier, together indicating the ChP as a potential CNS entry and polarization site for MoCs. Thus, pro- and anti-inflammatory MoCs differentially accumulate at distinct CNS barriers before reaching the parenchyma, but the mechanism for their phenotype acquisition remains undefined. Shedding light on this process, we observed that endothelial (BBB) and epithelial (ChP) CNS barrier cells can directly regulate transcription of Nos2 (coding for iNOS) and Arg1 (coding for arginase-1) in interacting MoCs. More specifically, while TNF-α+IFN-γ stimulated BBB cells induced Nos2 expression in MoCs, IL-1β driven activation of endothelial BBB cells led to a significant upregulation of Arg1 in MoCs. Supporting this latter finding, less pro-inflammatory MoCs could be found nearby IL1R1+ vessels in the mouse spinal cord upon neuroinflammation. Taken together, our data indicate differential distribution of pro- and anti-inflammatory MoCs at CNS borders and highlight how the interaction of MoCs with CNS barriers can significantly affect the functional activation of these CNS-invading MoCs during autoimmune inflammation.
Collapse
Affiliation(s)
- Daniela C Ivan
- Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | | |
Collapse
|
34
|
Abstract
From the viewpoint of drug discovery, it is an important issue to elucidate the drug permeability at the human central nervous system (CNS) barriers and the molecular mechanisms in the cells forming CNS barriers especially during CNS diseases. I introduced quantitative proteomics techniques into the blood-brain barrier (BBB) study, then quantitatively investigated the transport system at the human BBB and clarified the quantitative differences in protein expression levels and functions of transporters and receptors between animals and humans, or in vitro and in vivo. Based on the difference in the absolute expression level of transporters between in vitro and in vivo, I demonstrated that the drug efflux activity of P-glycoprotein (P-gp) at in vivo BBB can be accurately reconstructed from the in vitro system, not only in mouse models but also monkeys similar to humans and pathological conditions. Furthermore, I discovered Claudin-11 as another tight junction molecule expressed at the CNS barriers, and clarified that it contributes to the disruption of the CNS barriers in multiple sclerosis. Furthermore, it was also elucidated that the P-gp dysfunction causes excessive brain entry of glucocorticoid which causes a nerve damage in cerebral infarct, and it can be suppressed by targeting Abl/Src kinases. These suggest that targeting the tight junctions and transporters, which are important molecules at the CNS barriers, would potentially lead to the treatment of CNS diseases. In this review, I would like to introduce a new CNS barrier study opened by quantitative proteomics research.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
35
|
Poirion E, Tonietto M, Lejeune FX, Ricigliano VAG, Boudot de la Motte M, Benoit C, Bera G, Kuhnast B, Bottlaender M, Bodini B, Stankoff B. Structural and Clinical Correlates of a Periventricular Gradient of Neuroinflammation in Multiple Sclerosis. Neurology 2021; 96:e1865-e1875. [PMID: 33737372 PMCID: PMC8105971 DOI: 10.1212/wnl.0000000000011700] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives To explore in vivo innate immune cell activation as a function of the distance from ventricular CSF in patients with multiple sclerosis (MS) using [18F]-DPA714 PET and to investigate its relationship with periventricular microstructural damage, evaluated by magnetization transfer ratio (MTR), and with trajectories of disability worsening. Methods Thirty-seven patients with MS and 19 healthy controls underwent MRI and [18F]-DPA714 TSPO dynamic PET, from which individual maps of voxels characterized by innate immune cell activation (DPA+) were generated. White matter (WM) was divided in 3-mm-thick concentric rings radiating from the ventricular surface toward the cortex, and the percentage of DPA+ voxels and mean MTR were extracted from each ring. Two-year trajectories of disability worsening were collected to identify patients with and without recent disability worsening. Results The percentage of DPA+ voxels was higher in patients compared to controls in the periventricular WM (p = 6.10e-6) and declined with increasing distance from ventricular surface, with a steeper gradient in patients compared to controls (p = 0.001). This gradient was found in both periventricular lesions and normal-appearing WM. In the total WM, it correlated with a gradient of microstructural tissue damage measured by MTR (rs = −0.65, p = 1.0e-3). Compared to clinically stable patients, patients with disability worsening were characterized by a higher percentage of DPA+ voxels in the periventricular normal-appearing WM (p = 0.025). Conclusions Our results demonstrate that in MS the innate immune cell activation predominates in periventricular regions and is associated with microstructural damage and disability worsening. This could result from the diffusion of proinflammatory CSF-derived factors into surrounding tissues.
Collapse
Affiliation(s)
- Emilie Poirion
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Matteo Tonietto
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - François-Xavier Lejeune
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Vito A G Ricigliano
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Marine Boudot de la Motte
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Charline Benoit
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Géraldine Bera
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bertrand Kuhnast
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Michel Bottlaender
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Benedetta Bodini
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bruno Stankoff
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France.
| |
Collapse
|
36
|
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021; 12:622615. [PMID: 33746770 PMCID: PMC7973205 DOI: 10.3389/fphys.2021.622615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss in vitro engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma.
Collapse
Affiliation(s)
- Joris Guyon
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France
| | - Candice Chapouly
- INSERM, Biology of Cardiovascular Diseases, U1034, University Bordeaux, Pessac, France
| | - Laetitia Andrique
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France.,VoxCell 3D Plateform, UMS TBMcore 3427, Bordeaux, France
| | | | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
37
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
38
|
Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Möbius W, Odoardi F, Thal DR, Chang M, Opdenakker G, Bennett JL, Nessler S, Stadelmann C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Invest 2021; 131:141694. [PMID: 33645550 DOI: 10.1172/jci141694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael Haberl
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Theres Weil
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
39
|
Haas J, Rudolph H, Costa L, Faller S, Libicher S, Würthwein C, Jarius S, Ishikawa H, Stump-Guthier C, Tenenbaum T, Schwerk C, Schroten H, Wildemann B. The Choroid Plexus Is Permissive for a Preactivated Antigen-Experienced Memory B-Cell Subset in Multiple Sclerosis. Front Immunol 2021; 11:618544. [PMID: 33574821 PMCID: PMC7870993 DOI: 10.3389/fimmu.2020.618544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The role of B cells in multiple sclerosis (MS) is increasingly recognized. B cells undergo compartmentalized redistribution in blood and cerebrospinal fluid (CSF) during active MS, whereby memory B cells accumulate in the CSF. While B-cell trafficking across the blood-brain barrier has been intensely investigated, cellular diapedesis through the blood-CSF barrier (BCSFB) is incompletely understood. To investigate how B cells interact with the choroid plexus to transmigrate into the CSF we isolated circulating B cells from healthy donors (HC) and MS patients, utilized an inverted cell culture filter system of human choroid plexus papilloma (HIBCPP) cells to determine transmigration rates of B-cell subsets, immunofluorescence, and electron microscopy to analyze migration routes, and qRT-PCR to determine cytokines/chemokines mediating B-cell diapedesis. We also screened the transcriptome of intrathecal B cells from MS patients. We found, that spontaneous transmigration of HC- and MS-derived B cells was scant, yet increased significantly in response to B-cell specific chemokines CXCL-12/CXCL-13, was further boosted upon pre-activation and occurred via paracellular and transcellular pathways. Migrating cells exhibited upregulation of several genes involved in B-cell activation/migration and enhanced expression of chemokine receptors CXCR4/CXCR5, and were predominantly of isotype class switched memory phenotype. This antigen-experienced migratory subset displayed more pronounced chemotactic activities in MS than in HC and was retrieved in intrathecal B cells from patients with active MS. Trafficking of class-switched memory B cells was downscaled in a small cohort of natalizumab-exposed MS patients and the proportions of these phenotypes were reduced in peripheral blood yet were enriched intrathecally in patients who experienced recurrence of disease activity after withdrawal of natalizumab. Our findings highlight the relevance of the BCSFB as important gate for the entry of potentially harmful activated B cells into the CSF.
Collapse
Affiliation(s)
- Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Henriette Rudolph
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Leonardo Costa
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Simon Faller
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Saskia Libicher
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Cornelia Würthwein
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Carolin Stump-Guthier
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Lindblad C, Thelin EP. Inflammation, Neurovascular Clearance and Associated Pathologies: A Translational Review Focusing on Traumatic Brain Injury. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, Puchkov D, Devraj K, Kaya M, Qin Z, Liebner S, Wolburg H, Andjelkovic AV, Rex A, Blasig IE, Haseloff RF. Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke - Ambivalent effects of sealing proteins. J Cereb Blood Flow Metab 2021; 41:132-145. [PMID: 32054373 PMCID: PMC7747158 DOI: 10.1177/0271678x20904687] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
The outcome of stroke is greatly influenced by the state of the blood-brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e., claudins (Cldns) and the redox regulator occludin. Functions of Cldn3 and occludin at the BBB are largely unknown, particularly after stroke. We address the effects of Cldn3 deficiency and stress factors on the BBB and its TJs. Cldn3 tightened the BBB for small molecules and ions, limited endothelial endocytosis, strengthened the TJ structure and controlled Cldn1 expression. After middle cerebral artery occlusion (MCAO) and 3-h reperfusion or hypoxia of isolated brain capillaries, Cldn1, Cldn3 and occludin were downregulated. In Cldn3 knockout mice (C3KO), the reduction in Cldn1 was even greater and TJ ultrastructure was impaired; 48 h after MCAO of wt mice, infarct volumes were enlarged and edema developed, but endothelial TJs were preserved. In contrast, junctional localization of Cldn5 and occludin, TJ density, swelling and infarction size were reduced in affected brain areas of C3KO. Taken together, Cldn3 and occludin protect TJs in stroke, and this keeps the BBB intact. However, functional Cldn3, Cldn3-regulated TJ proteins and occludin promote edema and infarction, which suggests that TJ modulation could improve the outcome of stroke.
Collapse
Affiliation(s)
- Lars Winkler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Rosel Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | | | - Philipp Berndt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Hans C Helms
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Mehmet Kaya
- School of Medicine, Department of Physiology & Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Zhihai Qin
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Universität of Tübingen, Tübingen, Germany
| | | | - Andre Rex
- Charité-Universitätsmedizin, Experimental Neurology, Berlin, Germany
| | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| | - Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin-Buch, Germany
| |
Collapse
|
42
|
Coniferyl Aldehyde Inhibits the Inflammatory Effects of Leptomeningeal Cells by Suppressing the JAK2 Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4616308. [PMID: 33015166 PMCID: PMC7512043 DOI: 10.1155/2020/4616308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Background The brain is in many ways an immunologically and pharmacologically privileged site because of the blood-brain barrier (BBB). But for chronic peripheral inflammation, inflammatory signals can be transmitted from the peripheral system into the central nervous system (CNS) through multiple channels and result in neuroinflammation. Leptomeningeal cells that form the BBB can trigger one signaling pathway by releasing cytokines to transmit inflammatory signals. Besides, the Janus kinase (JAK) family may have a certain function in the activation of leptomeninges. In the present study, we try to use coniferyl aldehyde (CA), a natural anti-inflammatory phenolic compound, to inhibit this inflammatory process and elucidate the underlying molecular mechanisms. Results Secretion of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) significantly increased after incubation with P. gingivalis. Moreover, TNF-α, IL-1β, and IL-6 levels were upregulated, and the JAK2 signaling was enhanced in leptomeningeal cells in a conditioned medium from activated macrophages, which leads to the immune response in microglia. However, this inflammatory effect of leptomeningeal cells was reversed by CA administration, accompanied by the decreased immune response in microglia. The western blot assay revealed that JAK2 phosphorylation was suppressed in leptomeningeal cells treated with CA. Conclusions This study demonstrates that activated macrophages by P. gingivalis markedly induce the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) from leptomeningeal cells, thereby activating the JAK2 signaling pathway and subsequently enhancing immune responses in microglia in the CNS. CA effectively inhibits the inflammatory effect of leptomeningeal cells via suppressing the JAK2 signaling pathway.
Collapse
|
43
|
TunÇ A, TekeŞİn A, GÜzel V, ÜnlÜbaŞ Y, SeferoĞlu M. The prognostic value of demyelinating electrophysiologic findings and cerebrospinal fluid protein levels in acute inflammatory demyelinating polyneuropathy. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:481-487. [PMID: 32844898 DOI: 10.1590/0004-282x20200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Guillain-Barre syndrome is an acute immune-mediated polyneuropathy characterized by rapidly evolving symptoms and disability. Cerebrospinal fluid analysis and electrophysiological studies are crucial in the diagnosis of this syndrome. OBJECTIVE To evaluate the prognostic value of the type and number of demyelinating findings and cerebrospinal fluid protein levels in patients with acute inflammatory demyelinating polyneuropathy. METHODS We retrospectively analyzed electrophysiological data and cerebrospinal fluid of 67 consecutive patients with acute inflammatory demyelinating polyneuropathy from Istanbul, Turkey (2011-2019) studied ≤ 24 hours post-onset. RESULTS The patients who met a higher number of demyelinating criteria had increased disability scores in the first day and first month, and higher cerebrospinal fluid protein levels were correlated with worse prognosis both on the first day and the first month. However, the disability scores did not correlate with any single specific criterion, and no significant correlation was found between the number of satisfied criteria and cerebrospinal fluid protein levels. CONCLUSIONS The number of demyelinating criteria that are met and high cerebrospinal fluid protein levels at the disease onset may be valuable prognostic markers. More systematic studies conducted with serial nerve conduction studies are required to highlight the roles of the suggested criteria in clinical practice.
Collapse
Affiliation(s)
- Abdulkadir TunÇ
- Sakarya University, Sakarya Training and Research Hospital, Department of Neurology, Sakarya, Turkey
| | - Aysel TekeŞİn
- Health Sciences University, Istanbul Training and Research Hospital, Department of Neurology, Istanbul, Turkey
| | - Vildan GÜzel
- Bezmialem Vakif University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Yonca ÜnlÜbaŞ
- Sakarya University, Sakarya Training and Research Hospital, Department of Neurology, Sakarya, Turkey
| | - Meral SeferoĞlu
- Bursa Yüksek İhtisas Education and Research Hospital, Department of Neurology, Bursa, Turkey
| |
Collapse
|
44
|
Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
The choroid plexus (CP) is located in the ventricular system of the brain (one in each ventricle), and the CP epithelial cells form an important barrier between the blood and the cerebrospinal fluid (CSF). Their main function comprises CSF secretion, maintenance of brain homeostasis, signalling, and forming a neuroprotective barrier against harmful external and internal compounds. The CPs mature early and demonstrate expressional changes of barrier-specific genes and proteins related to location and developmental stage of the CP. Important proteins for the barrier function include tight junction proteins, numerous transporters and enzymes. Natural senescence leads to structural changes in the CP cells and reduced or loss of function, while further loss of CP function and changes in immune status may be relevant in neurodegenerative diseases such as Alzheimer's disease and Multiple Sclerosis. Neuroprotective genes expressed at CPs may be unexplored targets for new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Kratzer
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CNRS UMR 5292, University Claude Bernard Lyon 1, 69008 Lyon, France; Friedensgasse 3, 8010 Graz, Austria.
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 40530 Göteborg, Sweden.
| | - Helen Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW0 1TU, UK.
| |
Collapse
|
45
|
Baumholtz AI, De Marco P, Capra V, Ryan AK. Functional Validation of CLDN Variants Identified in a Neural Tube Defect Cohort Demonstrates Their Contribution to Neural Tube Defects. Front Neurosci 2020; 14:664. [PMID: 32760237 PMCID: PMC7372130 DOI: 10.3389/fnins.2020.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that affect 1–2 individuals per 2,000 births. Their etiology is complex and involves both genetic and environmental factors. Our recent discovery that simultaneous removal of Cldn3, -4, and -8 from tight junctions results in cranial and spinal NTDs in both chick and mouse embryos suggests that claudins play a conserved role in neural tube closure in vertebrates. To determine if claudins were associated with NTDs in humans, we used a Fluidigm next generation sequencing approach to identify genetic variants in CLDN loci in 152 patients with spinal NTDs. We identified eleven rare and four novel missense mutations in ten CLDN genes. In vivo validation of variant pathogenicity using a chick embryo model system revealed that overexpression of four variants caused a significant increase in NTDs: CLDN3 A128T, CLDN8 P216L, CLDN19 I22T, and E209G. Our data implicate rare missense variants in CLDN genes as risk factors for spinal NTDs and suggest a new family of proteins involved in the pathogenesis of these malformations.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patrizia De Marco
- Laboratorio di Neurogenetica e Neuroscienze, Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genoa, Italy
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, Van Keuren-Jensen K, Bowser R, Bakkar N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2020; 8:92. [PMID: 32586411 PMCID: PMC7318439 DOI: 10.1186/s40478-020-00968-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) is a highly vascularized structure located in the ventricles that forms the blood-CSF barrier (BCSFB) and separates the blood from the cerebrospinal fluid (CSF). In addition to its role as a physical barrier, the CP functions in CSF secretion, transport of nutrients into the central nervous system (CNS) and a gated point of entry of circulating immune cells into the CNS. Aging and neurodegeneration have been reported to affect CP morphology and function and increase protein leakage from blood to the CSF. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with both upper and lower motor neuron loss, as well as altered proteomic and metabolomic signatures in the CSF. The role of the BCSFB and the CP in ALS is unknown. Here we describe a transcriptomic and ultrastructural analysis of BCSFB and CP alterations in human postmortem tissues from ALS and non-neurologic disease controls. ALS-CP exhibited widespread disruptions in tight junctional components of the CP epithelial layer and vascular integrity. In addition, we detected loss of pericytes around ALS blood vessels, accompanied by activation of platelet aggregation markers vWF and Fibrinogen, reminiscent of vascular injury. To investigate the immune component of ALS-CP, we conducted a comprehensive analysis of cytokines and chemokine panels in CP lysates and found a significant down-regulation of M-CSF and V-CAM1 in ALS, as well as up-regulation of VEGF-A protein. This phenotype was accompanied by an infiltration of MERTK positive macrophages into the parenchyma of the ALS-CP when compared to controls. Taken together, we demonstrate widespread structural and functional disruptions of the BCSFB in human ALS increasing our understanding of the disease pathology and identifying potential new targets for ALS therapeutic development.
Collapse
|
47
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
48
|
Reinhold AK, Rittner HL. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol 2020; 327:113244. [PMID: 32057794 DOI: 10.1016/j.expneurol.2020.113244] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
A variety of barriers ensures the protection of the peripheral nervous system from noxious blood-borne or surrounding stimuli. In this review, anatomy and functioning of the blood nerve barrier (BNB) and the blood DRG barrier (BDB) will be presented and key tight junction proteins described: ZO-1, claudin-1, -3, -5, -11, -12, -19, occludin, and tricellulin. Different diseases can lead to or be accompanied by nerve barrier disruption; impairment of nerve barriers in turn worsens pathology. Peripheral nerve injury, diabetic neuropathy and inflammatory polyneuropathy cause an increased permeability of BNB and BDB. Knowledge and understanding of these mechanisms might ultimately lead to the invention of drugs to control barrier function and help ameliorating neurological diseases.
Collapse
Affiliation(s)
- A K Reinhold
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany
| | - H L Rittner
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany.
| |
Collapse
|
49
|
Kage H, Flodby P, Zhou B, Borok Z. Dichotomous roles of claudins as tumor promoters or suppressors: lessons from knockout mice. Cell Mol Life Sci 2019; 76:4663-4672. [PMID: 31332482 PMCID: PMC6858953 DOI: 10.1007/s00018-019-03238-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/29/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Claudins are a family of integral tight junction proteins that regulate paracellular permeability in polarized epithelia. Overexpression or reduction of claudins can both promote and limit cancer progression, revealing complex dichotomous roles for claudins depending on cellular context. In contrast, recent studies demonstrating tumor formation in claudin knockout mouse models indicate a role for several claudin family members in suppressing tumor initiation. For example, intestine-specific claudin-7 knockout mice spontaneously develop atypical hyperplasia and intestinal adenomas, while claudin-18 knockout mice develop carcinomas in the lung and stomach. Claudin-4, -11, and -15 knockout mice show increased cell proliferation and/or hyperplasia in urothelium, Sertoli cells, and small intestinal crypts, respectively, possibly a precursor to cancer development. Pathways implicated in both cell proliferation and tumorigenesis include Yap/Taz and insulin-like growth factor-1 receptor (IGF-1R)/Akt pathways, among others. Consistent with the tumor suppressive role of claudins shown in mice, in humans, claudin-low breast cancer has been described as a distinct entity with a poor prognosis, and claudin-18-Rho GTPase activating protein 26 (CLDN18-ARHGAP26) fusion protein as a driver gene aberration in diffuse-type gastric cancer due to effects on RhoA. Paradoxically, claudins have also garnered interest as targets for therapy, as they are sometimes aberrantly expressed in cancer cells, which may or may not promote cancer progression. For example, a chimeric monoclonal antibody which targets cells expressing claudin-18.2 through antibody-dependent cell-mediated cytotoxicity has shown promise in multiple phase II studies. In this review, we focus on new findings supporting a tumor suppressive role for claudins during cancer initiation.
Collapse
Affiliation(s)
- Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA.
| |
Collapse
|
50
|
Seker M, Fernández-Rodríguez C, Martínez-Cruz LA, Müller D. Mouse Models of Human Claudin-Associated Disorders: Benefits and Limitations. Int J Mol Sci 2019; 20:ijms20215504. [PMID: 31694170 PMCID: PMC6862546 DOI: 10.3390/ijms20215504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.
Collapse
Affiliation(s)
- Murat Seker
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
| | | | | | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
- Correspondence:
| |
Collapse
|