1
|
Toader C, Eva L, Costea D, Corlatescu AD, Covache-Busuioc RA, Bratu BG, Glavan LA, Costin HP, Popa AA, Ciurea AV. Low-Grade Gliomas: Histological Subtypes, Molecular Mechanisms, and Treatment Strategies. Brain Sci 2023; 13:1700. [PMID: 38137148 PMCID: PMC10741942 DOI: 10.3390/brainsci13121700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Low-Grade Gliomas (LGGs) represent a diverse group of brain tumors originating from glial cells, characterized by their unique histopathological and molecular features. This article offers a comprehensive exploration of LGGs, shedding light on their subtypes, histological and molecular aspects. By delving into the World Health Organization's grading system, 5th edition, various specificities were added due to an in-depth understanding of emerging laboratory techniques, especially genomic analysis. Moreover, treatment modalities are extensively discussed. The degree of surgical resection should always be considered according to postoperative quality of life and cognitive status. Adjuvant therapies focused on chemotherapy and radiotherapy depend on tumor grading and invasiveness. In the current literature, emerging targeted molecular therapies are well discussed due to their succinctly therapeutic effect; in our article, those therapies are summarized based on posttreatment results and possible adverse effects. This review serves as a valuable resource for clinicians, researchers, and medical professionals aiming to deepen their knowledge on LGGs and enhance patient care.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Andrei Adrian Popa
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (A.D.C.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (A.A.P.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
2
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
3
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
4
|
Abedalthagafi M, Mobark N, Al-Rashed M, AlHarbi M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. NPJ Precis Oncol 2021; 5:34. [PMID: 33931704 PMCID: PMC8087701 DOI: 10.1038/s41698-021-00173-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brain tumors are the leading cause of childhood cancer-related deaths. Similar to adult brain tumors, pediatric brain tumors are classified based on histopathological evaluations. However, pediatric brain tumors are often histologically inconsistent with adult brain tumors. Recent research findings from molecular genetic analyses have revealed molecular and genetic changes in pediatric tumors that are necessary for appropriate classification to avoid misdiagnosis, the development of treatment modalities, and the clinical management of tumors. As many of the molecular-based therapies developed from clinical trials on adults are not always effective against pediatric brain tumors, recent advances have improved our understanding of the molecular profiles of pediatric brain tumors and have led to novel epigenetic and immunotherapeutic treatment approaches currently being evaluated in clinical trials. In this review, we focus on primary malignant brain tumors in children and genetic, epigenetic, and molecular characteristics that differentiate them from brain tumors in adults. The comparison of pediatric and adult brain tumors highlights the need for treatments designed specifically for pediatric brain tumors. We also discuss the advancements in novel molecularly targeted drugs and how they are being integrated with standard therapy to improve the classification and outcomes of pediatric brain tumors in the future.
Collapse
Affiliation(s)
- Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia.
| | - Nahla Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musa AlHarbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Ray-Gallet D, Almouzni G. The Histone H3 Family and Its Deposition Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:17-42. [PMID: 33155135 DOI: 10.1007/978-981-15-8104-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries. The histone variants have important roles during early development, cell differentiation, and chromosome segregation. Recent progress has also shed light on how mutations and transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we introduce the organization of the genome in chromatin with a focus on the basic unit, the nucleosome, which contains histones as the major protein component. Then we review our current knowledge on the histone H3 family and its variants-in particular H3.3 and CenH3CENP-A-focusing on their deposition pathways and their dedicated histone chaperones that are key players in histone dynamics.
Collapse
Affiliation(s)
- Dominique Ray-Gallet
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.
| |
Collapse
|
6
|
Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Faury D, Jawhar W, Dali R, Suzuki H, Pathania M, A D, Dubois F, Woodward E, Hébert S, Coutelier M, Karamchandani J, Albrecht S, Brandner S, De Jay N, Gayden T, Bajic A, Harutyunyan AS, Marchione DM, Mikael LG, Juretic N, Zeinieh M, Russo C, Maestro N, Bassenden AV, Hauser P, Virga J, Bognar L, Klekner A, Zapotocky M, Vicha A, Krskova L, Vanova K, Zamecnik J, Sumerauer D, Ekert PG, Ziegler DS, Ellezam B, Filbin MG, Blanchette M, Hansford JR, Khuong-Quang DA, Berghuis AM, Weil AG, Garcia BA, Garzia L, Mack SC, Beroukhim R, Ligon KL, Taylor MD, Bandopadhayay P, Kramm C, Pfister SM, Korshunov A, Sturm D, Jones DTW, Salomoni P, Kleinman CL, Jabado N. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020; 183:1617-1633.e22. [PMID: 33259802 DOI: 10.1016/j.cell.2020.11.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.
Collapse
Affiliation(s)
- Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shriya Deshmukh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 2A7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Véronique Lisi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rola Dali
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Hiromichi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Manav Pathania
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge CB2 0RE, UK
| | - Deli A
- Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Frank Dubois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Eleanor Woodward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Marie Coutelier
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Ashot S Harutyunyan
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nicola Maestro
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Peter Hauser
- Second Department of Paediatrics, Semmelweis University, Budapest 1094, Hungary
| | - József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary; Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Katerina Vanova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Paul G Ekert
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Jordan R Hansford
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Center, The Royal Children's Hospital; and Murdoch Children's Research Institute; Parkville, VIC 3052, Australia
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pathology, Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ) and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg 69120, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominik Sturm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David T W Jones
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg 69120, Germany
| | - Paolo Salomoni
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
7
|
Straehla JP, Warren KE. Pharmacokinetic Principles and Their Application to Central Nervous System Tumors. Pharmaceutics 2020; 12:pharmaceutics12100948. [PMID: 33036139 PMCID: PMC7601100 DOI: 10.3390/pharmaceutics12100948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023] Open
Abstract
Despite increasing knowledge of the biologic drivers of central nervous system tumors, most targeted agents trialed to date have not shown activity against these tumors in clinical trials. To effectively treat central nervous system tumors, an active drug must achieve and maintain an effective exposure at the tumor site for a long enough period of time to exert its intended effect. However, this is difficult to assess and achieve due to the constraints of drug delivery to the central nervous system. To address this complex problem, an understanding of pharmacokinetic principles is necessary. Pharmacokinetics is classically described as the quantitative study of drug absorption, distribution, metabolism, and elimination. The innate chemical properties of a drug, its administration (dose, route and schedule), and host factors all influence these four key pharmacokinetic phases. The central nervous system adds a level of complexity to standard plasma pharmacokinetics as it is a coupled drug compartment. This review will discuss special considerations of pharmacokinetics in the context of therapeutic development for central nervous system tumors.
Collapse
Affiliation(s)
- Joelle P. Straehla
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Katherine E. Warren
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-632-2680
| |
Collapse
|
8
|
Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers (Basel) 2020; 12:cancers12102813. [PMID: 33007840 PMCID: PMC7600397 DOI: 10.3390/cancers12102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas (MG) are among the most prevalent and lethal primary intrinsic brain tumors. Although radiotherapy (RT) is the most effective nonsurgical therapy, recurrence is universal. Dysregulated DNA damage response pathway (DDR) signaling, rampant genomic instability, and radio-resistance are among the hallmarks of MGs, with current therapies only offering palliation. A subgroup of pediatric high-grade gliomas (pHGG) is characterized by H3K27M mutation, which drives global loss of di- and trimethylation of histone H3K27. Here, we review the most recent literature and discuss the key studies dissecting the molecular biology of H3K27M-mutated gliomas in children. We speculate that the aberrant activation and/or deactivation of some of the key components of DDR may be synthetically lethal to H3K27M mutation and thus can open novel avenues for effective therapeutic interventions for patients suffering from this deadly disease.
Collapse
|
9
|
Pearson AD, Stegmaier K, Bourdeaut F, Reaman G, Heenen D, Meyers ML, Armstrong SA, Brown P, De Carvalho D, Jabado N, Marshall L, Rivera M, Smith M, Adamson PC, Barone A, Baumann C, Blackman S, Buenger V, Donoghue M, Duncan AD, Fox E, Gadbaw B, Hattersley M, Ho P, Jacobs I, Kelly MJ, Kieran M, Lesa G, Ligas F, Ludwinski D, McDonough J, Nikolova Z, Norga K, Senderowicz A, Taube T, Weiner S, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2020; 139:135-148. [PMID: 32992153 DOI: 10.1016/j.ejca.2020.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
The fifth multistakeholder Paediatric Strategy Forum focussed on epigenetic modifier therapies for children and adolescents with cancer. As most mutations in paediatric malignancies influence chromatin-associated proteins or transcription and paediatric cancers are driven by developmental gene expression programs, targeting epigenetic mechanisms is predicted to be a very important therapeutic approach in paediatric cancer. The Research to Accelerate Cures and Equity (RACE) for Children Act FDARA amendments to section 505B of the FD&C Act was implemented in August 2020, and as there are many epigenetic targets on the FDA Paediatric Molecular Targets List, clinical evaluation of epigenetic modifiers in paediatric cancers should be considered early in drug development. Companies are also required to submit to the EMA paediatric investigation plans aiming to ensure that the necessary data to support the authorisation of a medicine for children in EU are of high quality and ethically researched. The specific aims of the forum were i) to identify epigenetic targets or mechanisms of action associated with epigenetic modification relevant to paediatric cancers and ii) to define the landscape for paediatric drug development of epigenetic modifier therapies. DNA methyltransferase inhibitors/hypomethylating agents and histone deacetylase inhibitors were largely excluded from discussion as the aim was to discuss those targets for which therapeutic agents are currently in early paediatric and adult development. Epigenetics is an evolving field and could be highly relevant to many paediatric cancers; the biology is multifaceted and new targets are frequently emerging. Targeting epigenetic mechanisms in paediatric malignancy has in most circumstances yet to reach or extend beyond clinical proof of concept, as many targets do not yet have available investigational drugs developed. Eight classes of medicinal products were discussed and prioritised based on the existing level of science to support early evaluation in children: inhibitors of menin, DOT1L, EZH2, EED, BET, PRMT5 and LSD1 and a retinoic acid receptor alpha agonist. Menin inhibitors should be moved rapidly into paediatric development, in view of their biological rationale, strong preclinical activity and ability to fulfil an unmet clinical need. A combination approach is critical for successful utilisation of any epigenetic modifiers (e.g. EZH2 and EED) and exploration of the optimum combination(s) should be supported by preclinical research and, where possible, molecular biomarker validation in advance of clinical translation. A follow-up multistakeholder meeting focussing on BET inhibitors will be held to define how to prioritise the multiple compounds in clinical development that could be evaluated in children with cancer. As epigenetic modifiers are relatively early in development in paediatrics, there is a clear opportunity to shape the landscape of therapies targeting the epigenome in order that efficient and optimum plans for their evaluation in children and adolescents are developed in a timely manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lynley Marshall
- Royal Marsden NHS Foundation Trust/Institute of Cancer Research, UK
| | | | | | - Peter C Adamson
- Sanofi US, Emeritus Professor of Paediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | | | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products, Belgium
| | | | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | |
Collapse
|
10
|
de Blank P, Fouladi M, Huse JT. Molecular markers and targeted therapy in pediatric low-grade glioma. J Neurooncol 2020; 150:5-15. [PMID: 32399739 DOI: 10.1007/s11060-020-03529-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recently discovered molecular alterations in pediatric low-grade glioma have helped to refine the classification of these tumors and offered novel targets for therapy. Genetic aberrations may combine with histopathology to offer new insights into glioma classification, gliomagenesis and prognosis. Therapies targeting common genetic aberrations in the MAPK pathway offer a novel mechanism of tumor control that is currently under study. METHODS We have reviewed common molecular alterations found in pediatric low-grade glioma as well as recent clinical trials of MEK and BRAF inhibitors. RESULTS In this topic review, we examine the current understanding of molecular alterations in pediatric low-grade glioma, as well as their role in diagnosis, prognosis and therapy. We summarize current data on the efficacy of targeted therapies in pediatric low-grade gliomas, as well as the many unanswered questions that these new discoveries and therapies raise. CONCLUSIONS The identification of driver alterations in pediatric low-grade glioma and the development of targeted therapies have opened new therapeutic avenues for patients with low-grade gliomas.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Maryam Fouladi
- Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Kabir TF, Kunos CA, Villano JL, Chauhan A. Immunotherapy for Medulloblastoma: Current Perspectives. Immunotargets Ther 2020; 9:57-77. [PMID: 32368525 PMCID: PMC7182450 DOI: 10.2147/itt.s198162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Immune-mediated therapies have transformed the treatment of metastatic melanoma and renal, bladder, and both small and non-small cell lung carcinomas. However, immunotherapy is yet to demonstrate dramatic results in brain tumors like medulloblastoma for a variety of reasons. Recent pre-clinical and early phase human trials provide encouraging results that may overcome the challenges of central nervous system (CNS) tumors, which include the intrinsic immunosuppressive properties of these cancers, a lack of antigen targets, antigenic variability, and the immune-restrictive site of the CNS. These studies highlight the growing potential of immunotherapy to treat patients with medulloblastoma, a disease that is a frequent cause of morbidity and mortality to children and young adults. Methods We conducted an inclusive review of the PubMed-indexed literature and studies listed in clinicaltrials.gov using combinations of the keywords medulloblastoma, immunotherapy, CNS tumors, brain tumors, vaccines, oncolytic virus, natural killer, and CAR T to identify trials evaluating immunotherapy in preclinical experiments or in patients with medulloblastoma. Given a limited number of investigations using immunotherapy to treat patients with medulloblastoma, 24 studies were selected for final analysis and manuscript citation. Results This review presents results from pre-clinical studies in medulloblastoma cell lines, animal models, and the limited trials involving human patients. Conclusion From our review, we suggest that cancer vaccines, oncolytic viral therapy, natural killer cells, and CAR T therapy hold promise against the innate immunosuppressive properties of medulloblastoma in order to prolong survival. There is an unmet need for immunotherapy regimens that target overexpressed antigens in medulloblastoma tumors. We advocate for more combination treatment clinical trials using conventional surgical and radiochemotherapy approaches in the near-term clinical development.
Collapse
Affiliation(s)
- Tanvir F Kabir
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - John L Villano
- Department of Internal Medicine-Medical Oncology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Aman Chauhan
- Department of Internal Medicine-Medical Oncology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Malbari F, Lindsay H. Genetics of Common Pediatric Brain Tumors. Pediatr Neurol 2020; 104:3-12. [PMID: 31948735 DOI: 10.1016/j.pediatrneurol.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Central nervous system tumors are the most common solid tumors in pediatrics and represent the largest cause of childhood cancer-related mortality. Improvements have occurred in the management of these patients leading to better survival, but significant morbidity persists. With the era of next generation sequencing, considerable advances have occurred in the understanding of these tumors both biologically and clinically. This information has impacted diagnosis and management. Subgroups have been identified, improving risk stratification. Novel therapeutic approaches, specifically targeting the biology of these tumors, are being investigated to improve overall survival and decrease treatment-related morbidity. The intent of this review is to discuss the genetics of common pediatric brain tumors and the clinical implications. This review will include known genetic disorders associated with central nervous system tumors, neurofibromatosis, tuberous sclerosis, Li-Fraumeni syndrome, Gorlin syndrome, and Turcot syndrome, as well as somatic mutations of glioma, medulloblastoma, and ependymoma.
Collapse
Affiliation(s)
- Fatema Malbari
- Division of Pediatric Neurology and Developmental Neurosciences, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas.
| | - Holly Lindsay
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Abstract
Pediatric brain tumors are the leading cause of cancer-related death in children. Recent advances in sequencing techniques, and collaborative efforts to encode the mutational landscape of various tumor subtypes, have resulted in the identification of recurrent mutations that may present as actionable targets in these tumors. A number of molecularly targeted agents are approved or in development for the treatment of various tumor types in adult patients. Similarly, these agents are increasingly being incorporated into pediatric clinical trials, allowing for a targeted approach to treatment. However, due to the genetic heterogeneity of these tumors, focused clinical trials in pediatric patients are challenging and regulatory hurdles may delay access to therapeutic compounds that are in regular use in adult patients. The tumor site-agnostic clinical development of TRK inhibitors for pediatric solid tumors is a current example of how the combination of genetic testing and innovative clinical trial design can accelerate the clinical development of targeted agents for pediatric patients.
Collapse
Affiliation(s)
- Miriam Bornhorst
- Department of Pediatric Hematology-Oncology, Center for Cancer and Immunology Research and Neuroscience Research, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC, 20010, USA.,Center for Cancer and Immunology Research and Neuroscience Research, The Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Center for Cancer and Immunology Research and Neuroscience Research, Gilbert Family Neurofibromatosis Institute, Children's National Medical Center, Washington, DC, USA
| | - Eugene I Hwang
- Department of Pediatric Hematology-Oncology, Center for Cancer and Immunology Research and Neuroscience Research, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC, 20010, USA. .,Center for Cancer and Immunology Research and Neuroscience Research, The Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
14
|
Jones DT, Bandopadhayay P, Jabado N. The Power of Human Cancer Genetics as Revealed by Low-Grade Gliomas. Annu Rev Genet 2019; 53:483-503. [DOI: 10.1146/annurev-genet-120417-031642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.
Collapse
Affiliation(s)
- David T.W. Jones
- Pediatric Glioma Research Group, Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02215, USA
- The Broad Institute of MIT and Harvard, Boston, Massachusetts 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nada Jabado
- Departments of Pediatric and Human Genetics, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
15
|
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, Poreau B, De Jay N, Hébert S, Monlong J, Farmer WT, Donovan LK, Hu Y, McConechy MK, Cavalli FMG, Mikael LG, Ellezam B, Richer M, Allaire A, Weil AG, Atkinson J, Farmer JP, Dudley RWR, Larouche V, Crevier L, Albrecht S, Filbin MG, Sartelet H, Lutz PE, Nagy C, Turecki G, Costantino S, Dirks PB, Murai KK, Bourque G, Ragoussis J, Garzia L, Taylor MD, Jabado N, Kleinman CL. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51:1702-1713. [PMID: 31768071 PMCID: PMC6885128 DOI: 10.1038/s41588-019-0531-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage, embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while Group 2a/b atypical teratoid/rhabdoid tumors may originate outside of the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies mirroring transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.
Collapse
Affiliation(s)
- Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexis Blanchet-Cohen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maria Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marie Coutelier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Brice Poreau
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.,Service de Génétique et Procréation, Centre Hospitalier Universitaire, Grenoble-Alpes, Grenoble, France
| | - Nicolas De Jay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - W Todd Farmer
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Laura K Donovan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yixing Hu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Maxime Richer
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andréa Allaire
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeffrey Atkinson
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Jean-Pierre Farmer
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Valerie Larouche
- Department of Pediatrics, Centre mère-enfant Soleil du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Louis Crevier
- Department of Surgery, Université de Laval, Quebec City, Quebec, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Hervé Sartelet
- Department of Pathology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Department of Ophthalmology, Université de Montréal, Montreal, Quebec, Canada
| | - Peter B Dirks
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.,Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, Quebec, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,Department of Pediatrics, McGill University, Montreal, Quebec, Canada. .,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Liu H, Sun Y, Qi X, Gordon RE, O'Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y, Yu C, Gu C. EZH2 Phosphorylation Promotes Self-Renewal of Glioma Stem-Like Cells Through NF-κB Methylation. Front Oncol 2019; 9:641. [PMID: 31380279 PMCID: PMC6652807 DOI: 10.3389/fonc.2019.00641] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs) is a cell population in glioma with capacity of self-renewal and is critical in glioma tumorigenesis. Parallels between CSCs and normal stem cells suggest that CSCs give rise to tumors. Oncogenic roles of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) have been reported to play a crucial role in glioma tumorigenesis. Herein, we focus on mechanistic contributions of downstream molecules to maintaining stemness of glioma stem-like cells (GSCs). Transcriptional factor, NF-κB, co-locates with MELK/EZH2 complex. Clinically, we observe that the proportion of MELK/EZH2/NF-κB complex is elevated in high-grade gliomas, which is associated with poor prognosis in patients and correlates negatively with survival. We describe the interaction between these three proteins. Specifically, MELK induces EZH2 phosphorylation, which subsequently binds to and methylates NF-κB, leading to tumor proliferation and persistence of stemness. Furthermore, the interaction between MELK/EZH2 complex and NF-κB preferentially occurs in GSCs compared with non-stem-like tumor cells. Conversely, loss of this signaling dramatically suppresses the self-renewal capability of GSCs. In conclusion, our findings suggest that the GSCs depend on EZH2 phosphorylation to maintain the immature status and promote self-proliferation through NF-κB methylation, and represent a novel therapeutic target in this difficult to treat malignancy.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China.,Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xueling Qi
- Department of Neuropathology, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jenny A O'Brien
- Department of Internal Medicine, Temple University Health System, Philadelphia, PA, United States
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junping Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Chunyu Gu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 2019; 10:1262. [PMID: 30890717 PMCID: PMC6425035 DOI: 10.1038/s41467-019-09140-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 01/16/2023] Open
Abstract
Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.
Collapse
Affiliation(s)
- Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | | | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Shriya Deshmukh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Jad Belle
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Gael Cagnone
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Warren A Cheung
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | | | - Denise Bechet
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Damien Faury
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Melissa K McConechy
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Manav Pathania
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, London, WCE1 6DD, United Kingdom
| | - Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | - Alexandre Montpetit
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, London, WCE1 6DD, United Kingdom
- Nuclear Function in CNS pathophysiology, German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
18
|
Jaramillo S, Grosshans DR, Philip N, Varan A, Akyüz C, McAleer MF, Mahajan A, McGovern SL. Radiation for ETMR: Literature review and case series of patients treated with proton therapy. Clin Transl Radiat Oncol 2018; 15:31-37. [PMID: 30582019 PMCID: PMC6297264 DOI: 10.1016/j.ctro.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Background and purpose Embryonal tumors with multilayered rosettes (ETMRs) are aggressive tumors that typically occur in young children. Radiation is often deferred or delayed for these patients due to late effects; proton therapy may mitigate some of these concerns. This study reviews the role of radiation in ETMR and describes initial results with proton therapy. Materials and methods Records of patients with embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma (MEP), and ependymoblastoma (EPL) treated with proton therapy at our institution were retrospectively reviewed. A literature review of cases of CNS ETANTR, MEP, and EPL published since 1990 was also conducted. Results Seven patients were treated with proton therapy. Their median age at diagnosis was 33 months (range 10-57 months) and their median age at radiation start was 42 months (range 17-58 months). Their median overall survival (OS) was 16 months (range 8-64 months), with three patients surviving 36 months or longer. Five patients had disease progression prior to starting radiation; all 5 of these patients failed in the tumor bed. A search of the literature identified 204 cases of ETMR with a median OS of 10 months (range 0.03-161 months). Median OS of 18 long-term survivors (≥36 months) in the literature was 77 months (range 37-184 months). Of these 18 long-term survivors, 17 (94%) received radiotherapy as part of their initial treatment; 14 of them were treated with craniospinal irradiation. Conclusions Outcomes of patients with ETMR treated with proton therapy are encouraging compared to historical results. Further study of this rare tumor is warranted to better define the role of radiotherapy.
Collapse
Affiliation(s)
- Sergio Jaramillo
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States
| | - David R Grosshans
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy Philip
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Varan
- Department of Pediatric Oncology, Hacettepe University, Institute of Oncology, Ankara, Turkey
| | - Canan Akyüz
- Department of Pediatric Oncology, Hacettepe University, Institute of Oncology, Ankara, Turkey
| | - Mary Frances McAleer
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Susan L McGovern
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Haase S, Garcia-Fabiani MB, Carney S, Altshuler D, Núñez FJ, Méndez FM, Núñez F, Lowenstein PR, Castro MG. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22:599-613. [PMID: 29889582 PMCID: PMC6044414 DOI: 10.1080/14728222.2018.1487953] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION ATRX is a chromatin remodeling protein whose main function is the deposition of the histone variant H3.3. ATRX mutations are widely distributed in glioma, and correlate with alternative lengthening of telomeres (ALT) development, but they also affect other cellular functions related to epigenetic regulation. Areas covered: We discuss the main molecular characteristics of ATRX, from its various functions in normal development to the effects of its loss in ATRX syndrome patients and animal models. We focus on the salient consequences of ATRX mutations in cancer, from a clinical to a molecular point of view, focusing on both adult and pediatric glioma. Finally, we will discuss the therapeutic opportunities future research perspectives. Expert opinion: ATRX is a major component of various essential cellular pathways, exceeding its functions as a histone chaperone (e.g. DNA replication and repair, chromatin higher-order structure regulation, gene transcriptional regulation, etc.). However, it is unclear how the loss of these functions in ATRX-null cancer cells affects cancer development and progression. We anticipate new treatments and clinical approaches will emerge for glioma and other cancer types as mechanistic and molecular studies on ATRX are only just beginning to reveal the many critical functions of this protein in cancer.
Collapse
Affiliation(s)
- Santiago Haase
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - María Belén Garcia-Fabiani
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Stephen Carney
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - David Altshuler
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Flor M Méndez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Fernando Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
20
|
Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas-current management and new biologic insights. Is there a glimmer of hope? Neuro Oncol 2018; 19:1025-1034. [PMID: 28371920 DOI: 10.1093/neuonc/nox021] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) has proven to be one of the most challenging of all pediatric cancers. Owing to a historical reticence to obtain tumor tissue for study, and based on an erroneous assumption that the biology of DIPG would mirror that of supratentorial high-grade astrocytomas, innumerable studies have been undertaken-all of which have had a negligible impact on the natural history of this disease. More recently, improvements in neurosurgical techniques have allowed for the safe upfront biopsy of DIPG, which, together with a wider use of autopsy tissue, has led to an evolving understanding of the biology of this tumor. The discovery of a recurrent somatic gain-of-function mutation leading to lysine 27 to methionine (p.Lys27Met, K27M) substitution in histone 3 variants characterizes more than 85% of DIPG, suggesting for the first time the role of the epigenome and histones in the pathogenesis of this disease, and more unified diagnostic criteria. Along with further molecular insights into the pathogenesis of DIPG, rational targets are being identified and studied in the hopes of improving the otherwise dismal outcome for children with DIPG.
Collapse
Affiliation(s)
- Kenneth J Cohen
- Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Université Paris-Saclay & Gustave Roussy Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique & Departement de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France
| | - Nada Jabado
- Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Université Paris-Saclay & Gustave Roussy Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique & Departement de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France
| | - Jacques Grill
- Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Université Paris-Saclay & Gustave Roussy Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique & Departement de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France
| |
Collapse
|
21
|
Fang D, Wang H, Zhang Z. Probing the Function of Oncohistones Using Mutant Transgenes and Knock-In Mutations. Methods Mol Biol 2018; 1832:339-356. [PMID: 30073537 DOI: 10.1007/978-1-4939-8663-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, frequent somatic mutations at histone genes have been detected in high grade pediatric brain tumor, chondroblastoma, and giant cell tumor of bone. These mutant histones are also termed oncohistones. Since oncohistone proteins co-exist with wild type histone proteins in cells, it is critically important to understand how they promote tumorigenesis. Here, we describe two methods to analyze the impact of these oncohistones on histone modification and epigenome, including the expression of oncohistone from a transgene and the utilization of CRISPR/Cas9 system to knock-in specific oncohistone mutations. The methods described are useful for the initial characterization of oncohistones. Other methods such as ChIP-seq and RNA-seq, which analyze the effect of oncohistone mutations genome wide, are not detailed in this protocol.
Collapse
Affiliation(s)
- Dong Fang
- Department of Pediatrics, Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhiguo Zhang
- Department of Pediatrics, Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Salloum R, McConechy MK, Mikael LG, Fuller C, Drissi R, DeWire M, Nikbakht H, De Jay N, Yang X, Boue D, Chow LML, Finlay JL, Gayden T, Karamchandani J, Hummel TR, Olshefski R, Osorio DS, Stevenson C, Kleinman CL, Majewski J, Fouladi M, Jabado N. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun 2017; 5:78. [PMID: 29084603 PMCID: PMC5663045 DOI: 10.1186/s40478-017-0479-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 03/05/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3) (K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers (ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials (e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
Collapse
|
23
|
Sayour EJ, Mitchell DA. Immunotherapy for Pediatric Brain Tumors. Brain Sci 2017; 7:brainsci7100137. [PMID: 29065490 PMCID: PMC5664064 DOI: 10.3390/brainsci7100137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Malignant brain tumors are the most common cause of solid cancer death in children. New targeted therapies are vital to improve treatment outcomes, but must be developed to enable trafficking across the blood brain barrier (BBB). Since activated T cells cross the BBB, cancer immunotherapy can be harnessed to unlock the cytotoxic potential of the immune system. However, standard of care treatments (i.e., chemotherapy and radiation) applied concomitant to pediatric brain tumor immunotherapy may abrogate induction of immunotherapeutic responses. This review will discuss the development of immunotherapies within this paradigm using emerging approaches being investigated in phase I/II trials in children with refractory brain tumors, including checkpoint inhibitors, vaccine immunotherapy, and adoptive cell therapy.
Collapse
Affiliation(s)
- Elias J Sayour
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lilian S. Wells Department of Neurosurgery, 1149 South Newell Drive, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Duane A Mitchell
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lilian S. Wells Department of Neurosurgery, 1149 South Newell Drive, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
24
|
Klonou A, Piperi C, Gargalionis AN, Papavassiliou AG. Molecular Basis of Pediatric Brain Tumors. Neuromolecular Med 2017; 19:256-270. [PMID: 28748347 DOI: 10.1007/s12017-017-8455-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|
25
|
Vanan MI, Underhill DA, Eisenstat DD. Targeting Epigenetic Pathways in the Treatment of Pediatric Diffuse (High Grade) Gliomas. Neurotherapeutics 2017; 14:274-283. [PMID: 28233220 PMCID: PMC5398987 DOI: 10.1007/s13311-017-0514-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progress in the treatment of adult high-grade gliomas (HGG), including chemoradiation with concurrent and adjuvant temozolomide for glioblastoma, has not translated into significant therapeutic advances for pediatric HGG, where overall survival has plateaued at 15% to 20%, especially when considering specialized pediatric treatment in tertiary care centers, maximal safe neurosurgical resection, optimized delivery of involved field radiation, and improvements in supportive care. However, recent advances in our understanding of pediatric HGG, including the application of next-generation sequencing and DNA methylation profiling, have identified mutations in the histone variant H3.3 and canonical H3.1 genes, respectively. These mutations are relatively specific to neuroanatomic compartments (cortex, midline structures, thalamus, brainstem) and are often associated with other mutations, especially in specific growth factor receptor tyrosine kinases. Targeting epigenetic pathways affected by these histone mutations, alone or in combination with small molecule inhibitors of growth factor receptor signaling pathways, will inform new treatment strategies for pediatric HGG and should be incorporated into novel cooperative group clinical trial designs.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Research Institute in Oncology and Hematology, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - D Alan Underhill
- Division of Experimental Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - David D Eisenstat
- Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Johung TB, Monje M. Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Curr Neuropharmacol 2017; 15:88-97. [PMID: 27157264 PMCID: PMC5327455 DOI: 10.2174/1570159x14666160509123229] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/27/2015] [Accepted: 02/08/2016] [Indexed: 01/04/2023] Open
Abstract
Abstract: Background Diffuse Intrinsic Pontine Glioma (DIPG) is the leading cause of brain tumor-related death in children, with median survival of less than one year. Despite decades of clinical trials, there has been no improvement in prognosis since the introduction of radiotherapy over thirty years ago. Objective To review the clinical features and current treatment challenges of DIPG, and discuss emerging insights into the unique genomic and epigenomic mechanisms driving DIPG pathogenesis that present new opportunities for the identification of therapeutic targets. Conclusion In recent years, an increased availability of biopsy and rapid autopsy tissue samples for preclinical investigation has combined with the advent of new genomic and epigenomic profiling tools to yield remarkable advancements in our understanding of DIPG disease mechanisms. As well, a deeper understanding of the developmental context of DIPG is shedding light on therapeutic targets in the microenvironment of the childhood brain.
Collapse
Affiliation(s)
| | - Michelle Monje
- Departments of Neurology, Pediatrics, Pathology, and Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Room G3077, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Abstract
Recurrent missense mutations in histone H3 were recently reported in pediatric gliomas and soft tissue tumors. Strikingly, these mutations only affected a minority of the total cellular H3 proteins and occurred at or near lysine residues at positions 27 and 36 on the amino-terminal tail of H3 that are subject to well-characterized posttranslational modifications. Here we review recent progress in elucidating the mechanisms by which these mutations perturb the chromatin landscape in cells through their effects on chromatin-modifying machinery, particularly through inhibition of specific histone lysine methyltransferases. One common feature of histone mutations is their ability to arrest cells in a primitive state refractory to differentiation induction, highlighting the importance of studying these mutations in their proper developmental context.
Collapse
Affiliation(s)
- Daniel N Weinberg
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065
| | - Chao Lu
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
28
|
Bornhorst M, Hwang EI. Experimental Therapeutic Trial Design for Pediatric Brain Tumors. J Child Neurol 2016; 31:1421-32. [PMID: 26353880 DOI: 10.1177/0883073815604221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
Abstract
Pediatric brain tumors are the leading cause of cancer-related death during childhood. Since the first pediatric brain tumor clinical trials, the field has seen improved outcomes in some, but not all tumor types. In the past few decades, a number of promising new therapeutic agents have emerged, yet only a few of these agents have been incorporated into clinical trials for pediatric brain tumors. In this review, the authors discuss the process of and challenges in pediatric clinical trial design; this will allow for highly efficient and effective clinical trials with appropriate endpoints to ensure rapid and safe investigation of novel therapeutics for children with brain tumors.
Collapse
Affiliation(s)
- Miriam Bornhorst
- Department of Pediatric Hematology-Oncology, Children's National Medical Center, Washington, DC, USA Brain Tumor Institute, Washington, DC, USA
| | - Eugene I Hwang
- Department of Pediatric Hematology-Oncology, Children's National Medical Center, Washington, DC, USA Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research & Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
29
|
Abstract
Despite improvement in clinical treatment of childhood cancer, it remains the leading cause of disease-related mortality in children with survivors often suffering from treatment-related toxicity and premature death. Because childhood cancer is vastly different from cancer in adults, a thorough understanding of the underlying molecular mechanisms specific to childhood cancer is essential. Although childhood cancer contains much fewer mutations, a subset of cancer subtypes has a higher frequency of mutations in gene encoding epigenetic regulators. Thus, in this review, we will focus on epigenetic deregulations in childhood cancers, the use of genome-wide analysis for cancer subtype classification, prediction of clinical outcomes and the influence of folate on epigenetic mechanisms.
Collapse
Affiliation(s)
- Teresa T Yiu
- Department of Pediatrics, Texas Children's Cancer Center, 6701 Fannin St, Ste 1400, Houston, TX 77030, USA.,Dan L Duncan Cancer Center, 1 Baylor Plaza 450A, Houston, TX 77030, USA
| | - Wei Li
- Dan L Duncan Cancer Center, 1 Baylor Plaza 450A, Houston, TX 77030, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Chambers AF, Werb Z. Invasion and metastasis--recent advances and future challenges. J Mol Med (Berl) 2015; 93:361-8. [PMID: 25772709 DOI: 10.1007/s00109-015-1269-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ann F Chambers
- London Regional Cancer Program, 790 Commissioners Road East, London, Ontario, N6A 4L6, Canada,
| | | |
Collapse
|