1
|
Vroman R, de Lichtervelde L, Singh Dolt K, Robertson G, Kriek M, Barbato M, Cholewa-Waclaw J, Kunath T, Downey P, Zagnoni M. A high-fidelity microfluidic platform reveals retrograde propagation as the main mechanism of α-Synuclein spread in human neurons. NPJ Parkinsons Dis 2025; 11:80. [PMID: 40254612 PMCID: PMC12009960 DOI: 10.1038/s41531-025-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
α-Synuclein (αSyn) is a major component of Lewy bodies and Lewy neurites, which are a pathological hallmark of Parkinson's disease (PD). Pathologically aggregated forms of αSyn can spread along neurites and induce the misfolding of normal αSyn. To elucidate how αSyn pathology propagates between brain areas, we developed a novel in vitro microfluidic platform to study the intracellular transport of preformed fibrils and the induction and spread of αSyn aggregates. Patient-derived midbrain dopaminergic (mDA) neurons were cultured in microfluidic devices designed to maintain unidirectional axonal connections between fluidically isolated mDA neuronal cultures for over 3 months. Using αSyn preformed fibrils to induce Lewy-like pathology, we found that anterograde spread of αSyn fibrils was slow and occurred at low levels, while retrograde spread was significantly more efficient. This is in line with observations in animal models and shows that the platform provides an innovative new tool for studying PD in vitro.
Collapse
Affiliation(s)
- Rozan Vroman
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Graham Robertson
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Michela Barbato
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Patrick Downey
- UCB Biopharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Michele Zagnoni
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Sampson TR, Tansey MG, West AB, Liddle RA. Lewy body diseases and the gut. Mol Neurodegener 2025; 20:14. [PMID: 39885558 PMCID: PMC11783828 DOI: 10.1186/s13024-025-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Malú Gámez Tansey
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Normal Fixel Institute of Neurological Diseases, Gainesville, FL, 32608, USA
| | - Andrew B West
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Center for Neurodegeneration and Neurotherapeutic Research, Department of Pharmacology and Cancer Biology, Durham, NC, 27710, USA.
| | - Rodger A Liddle
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University and Department of Veterans Affairs Health Care System, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Marques CR, Campos J, Sampaio-Marques B, Antunes FF, Dos Santos Cunha RM, Silva D, Barata-Antunes S, Lima R, Fernandes-Platzgummer A, da Silva CL, Sousa RA, Salgado AJ. Secretome of bone marrow mesenchymal stromal cells cultured in a dynamic system induces neuroprotection and modulates microglial responsiveness in an α-synuclein overexpression rat model. Cytotherapy 2024; 26:700-713. [PMID: 38483360 DOI: 10.1016/j.jcyt.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AIMS Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.
Collapse
Affiliation(s)
- Cláudia Raquel Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Ferreira Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raquel Medina Dos Santos Cunha
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Amandi Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., Barco, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
4
|
Çamoğlu T, Yurttaş Z, Kına ÜY, Akkuş Süt P, Sahin F, Dursun E, Gezen-Ak D. Fibrillar Alpha-Synuclein Alters the Intracellular Chaperone Levels within Hours of Its Internalization. ACS OMEGA 2024; 9:17185-17194. [PMID: 38645348 PMCID: PMC11025075 DOI: 10.1021/acsomega.3c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide. According to the Braak hypothesis, the disease spreads along specific neuroanatomical pathways. Studies indicate that fibrillar alpha-synuclein (F-αSyn) can propagate from cell-to-cell by following intercellular connections, leading to the selective death of certain cell groups like substantia nigra dopaminergic neurons and advancing the pathology. Internalized F-αSyn can be eliminated by lysosomes, proteasomes, or chaperones before it replicates inside the cell. Research has shown that F-αSyn can somehow escape from endosomes, lysosomes, and proteasomes and replicate itself. However, the impact of chaperones on intracellular levels during the initial hours of their internalization remains unknown. The present study investigates the effect of F-αSyn on chaperone levels within the first 6 and 12 h after internalization. Our findings showed that within the first 6 h, Hsc70 and Hsp90 levels were increased, while within 12 h, F-αSyn leads to a decrease or suppression of numerous intracellular chaperone levels. Exploring the pathological effects of PD on cells will contribute to identifying more targets for therapeutic interventions.
Collapse
Affiliation(s)
- Tugay Çamoğlu
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Zuhal Yurttaş
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Ümit Yaşar Kına
- Beykoz
Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Pınar Akkuş Süt
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Fikrettin Sahin
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Erdinç Dursun
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Duygu Gezen-Ak
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
5
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
6
|
Reyes-Resina I, Lillo J, Raïch I, Rebassa JB, Navarro G. The Expression and Functionality of CB 1R-NMDAR Complexes Are Decreased in A Parkinson's Disease Model. Int J Mol Sci 2024; 25:3021. [PMID: 38474266 PMCID: PMC10931566 DOI: 10.3390/ijms25053021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Girardi G, Zumpano D, Raybould H, Seker E. Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis. Bioelectron Med 2024; 10:3. [PMID: 38378575 PMCID: PMC10880301 DOI: 10.1186/s42234-023-00140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Vagal afferent neurons represent the key neurosensory branch of the gut-brain axis, which describes the bidirectional communication between the gastrointestinal system and the brain. These neurons are important for detecting and relaying sensory information from the periphery to the central nervous system to modulate feeding behavior, metabolism, and inflammation. Confounding variables complicate the process of isolating the role of the vagal afferents in mediating these physiological processes. Therefore, we developed a microfluidic model of the sensory branch of the gut-brain axis. We show that this microfluidic model successfully compartmentalizes the cell body and neurite terminals of the neurons, thereby simulates the anatomical layout of these neurons to more accurately study physiologically-relevant processes. METHODS We implemented a primary rat vagal afferent neuron culture into a microfluidic platform consisting of two concentric chambers interconnected with radial microchannels. The microfluidic platform separated cell bodies from neurite terminals of vagal afferent neurons. We then introduced physiologically-relevant gastrointestinal effector molecules at the nerve terminals and assessed their retrograde transport along the neurite or capacity to elicit an electrophysiological response using live cell calcium imaging. RESULTS The angle of microchannel outlets dictated the probability of neurites growing into a chamber versus tracking along chamber walls. When the neurite terminals were exposed to fluorescently-labeled cholera toxin subunit B, the proteins were taken up and retrogradely transported along the neurites over the course of 24 h. Additionally, mechanical perturbation (e.g., rinsing) of the neurite terminals significantly increased intracellular calcium concentration in the distal soma. Finally, membrane-displayed receptor for capsaicin was expressed and trafficked along newly projected neurites, as revealed by confocal microscopy. CONCLUSIONS In this work, we developed a microfluidic device that can recapitulate the anatomical layout of vagal afferent neurons in vitro. We demonstrated two physiologically-relevant applications of the platforms: retrograde transport and electrophysiological response. We expect this tool to enable controlled studies on the role of vagal afferent neurons in the gut-brain axis.
Collapse
Affiliation(s)
- Gregory Girardi
- Department of Biomedical Engineering, University of California - Davis, Davis, CA, 95616, USA
| | - Danielle Zumpano
- Department of Anatomy, Physiology, and Cell Biology, University of California - Davis, Davis, CA, 95616, USA
| | - Helen Raybould
- Department of Anatomy, Physiology, and Cell Biology, University of California - Davis, Davis, CA, 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California - Davis, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
9
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Courte J, Le NA, Pan T, Bousset L, Melki R, Villard C, Peyrin JM. Synapses do not facilitate prion-like transfer of alpha-synuclein: a quantitative study in reconstructed unidirectional neural networks. Cell Mol Life Sci 2023; 80:284. [PMID: 37688644 PMCID: PMC10492778 DOI: 10.1007/s00018-023-04915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/11/2023]
Abstract
Alpha-synuclein (aSyn) aggregation spreads between cells and underlies the progression of neuronal lesions in the brain of patients with synucleinopathies such as Parkinson's diseases. The mechanisms of cell-to-cell propagation of aggregates, which dictate how aggregation progresses at the network level, remain poorly understood. Notably, while prion and prion-like spreading is often simplistically envisioned as a "domino-like" spreading scenario where connected neurons sequentially propagate protein aggregation to each other, the reality is likely to be more nuanced. Here, we demonstrate that the spreading of preformed aSyn aggregates is a limited process that occurs through molecular sieving of large aSyn seeds. We further show that this process is not facilitated by synaptic connections. This was achieved through the development and characterization of a new microfluidic platform that allows reconstruction of binary fully oriented neuronal networks in vitro with no unwanted backward connections, and through the careful quantification of fluorescent aSyn aggregates spreading between neurons. While this allowed us for the first time to extract quantitative data of protein seeds dissemination along neural pathways, our data suggest that prion-like dissemination of proteinopathic seeding aggregates occurs very progressively and leads to highly compartmentalized pattern of protein seeding in neural networks.
Collapse
Affiliation(s)
- Josquin Courte
- Faculté des Sciences et Technologie, Institut de Biologie Paris Seine, Sorbonne Universités, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, 75005 Paris, France
- Institut Curie, CNRS UMR 168, Université PSL, Sorbonne Universités, 75005 Paris, France
| | - Ngoc Anh Le
- Faculté des Sciences et Technologie, Institut de Biologie Paris Seine, Sorbonne Universités, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, 75005 Paris, France
| | - Teng Pan
- Faculté des Sciences et Technologie, Institut de Biologie Paris Seine, Sorbonne Universités, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, 75005 Paris, France
| | - Luc Bousset
- Institut François Jacob, (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 92260 Fontenay-Aux-Roses, France
| | - Ronald Melki
- Institut François Jacob, (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 92260 Fontenay-Aux-Roses, France
| | - Catherine Villard
- Institut Curie, CNRS UMR 168, Université PSL, Sorbonne Universités, 75005 Paris, France
| | - Jean-Michel Peyrin
- Faculté des Sciences et Technologie, Institut de Biologie Paris Seine, Sorbonne Universités, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, 75005 Paris, France
| |
Collapse
|
11
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
12
|
Liu Z, Lemus J, Smirnova IV, Liu W. Rehabilitation for non-motor symptoms for patients with Parkinson's disease from an α-synuclein perspective: a narrative review. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:235-257. [PMID: 37920444 PMCID: PMC10621781 DOI: 10.37349/ent.2023.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting aged population around the world. PD is characterized by neuronal Lewy bodies present in the substantia nigra of the midbrain and the loss of dopaminergic neurons with various motor and non-motor symptoms associated with the disease. The protein α-synuclein has been extensively studied for its contribution to PD pathology, as α-synuclein aggregates form the major component of Lewy bodies, a hallmark of PD. In this narrative review, the authors first focus on a brief explanation of α-synuclein aggregation and circumstances under which aggregation can occur, then present a hypothesis for PD pathogenesis in the peripheral nervous system (PNS) and how PD can spread to the central nervous system from the PNS via the transport of α-synuclein aggregates. This article presents arguments both for and against this hypothesis. It also presents various non-pharmacological rehabilitation approaches and management techniques for both motor and non-motor symptoms of PD and the related pathology. This review seeks to examine a possible hypothesis of PD pathogenesis and points to a new research direction focus on rehabilitation therapy for patients with PD. As various non-motor symptoms of PD appear to occur earlier than motor symptoms, more focus on the treatment of non-motor symptoms as well as a better understanding of the biochemical mechanisms behind those non-motor symptoms may lead to better long-term outcomes for patients with PD.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Lemus
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Irina V. Smirnova
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Carceles-Cordon M, Weintraub D, Chen-Plotkin AS. Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron 2023; 111:1531-1546. [PMID: 37028431 PMCID: PMC10198897 DOI: 10.1016/j.neuron.2023.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Cognitive impairment occurs in most individuals with Parkinson's disease (PD), exacting a high toll on patients, their caregivers, and the healthcare system. In this review, we begin by summarizing the current clinical landscape surrounding cognition in PD. We then discuss how cognitive impairment and dementia may develop in PD based on the spread of the pathological protein alpha-synuclein (aSyn) from neurons in brainstem regions to those in the cortical regions of the brain responsible for higher cognitive functions, as first proposed in the Braak hypothesis. We appraise the Braak hypothesis from molecular (conformations of aSyn), cell biological (cell-to-cell spread of pathological aSyn), and organ-level (region-to-region spread of aSyn pathology at the whole brain level) viewpoints. Finally, we argue that individual host factors may be the most poorly understood aspect of this pathological process, accounting for substantial heterogeneity in the pattern and pace of cognitive decline in PD.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Tu WY, Xu W, Zhang J, Qi S, Bai L, Shen C, Zhang K. C9orf72 poly-GA proteins impair neuromuscular transmission. Zool Res 2023; 44:331-340. [PMID: 36799225 PMCID: PMC10083233 DOI: 10.24272/j.issn.2095-8137.2022.356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease, in which lower motoneurons lose control of skeletal muscles. Degeneration of neuromuscular junctions (NMJs) occurs at the initial stage of ALS. Dipeptide repeat proteins (DPRs) from G4C2 repeat-associated non-ATG (RAN) translation are known to cause C9orf72-associated ALS (C9-ALS). However, DPR inclusion burdens are weakly correlated with neurodegenerative areas in C9-ALS patients, indicating that DPRs may exert cell non-autonomous effects, in addition to the known intracellular pathological mechanisms. Here, we report that poly-GA, the most abundant form of DPR in C9-ALS, is released from cells. Local administration of poly-GA proteins in peripheral synaptic regions causes muscle weakness and impaired neuromuscular transmission in vivo. The NMJ structure cannot be maintained, as evidenced by the fragmentation of postsynaptic acetylcholine receptor (AChR) clusters and distortion of presynaptic nerve terminals. Mechanistic study demonstrated that extracellular poly-GA sequesters soluble Agrin ligands and inhibits Agrin-MuSK signaling. Our findings provide a novel cell non-autonomous mechanism by which poly-GA impairs NMJs in C9-ALS. Thus, targeting NMJs could be an early therapeutic intervention for C9-ALS.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Wentao Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Jianmin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Shuyuan Qi
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Lei Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Chengyong Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
- MOE Frontier Science, Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail:
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China. E-mail:
| |
Collapse
|
16
|
Pietracupa S, Belvisi D, Piervincenzi C, Tommasin S, Pasqua G, Petsas N, De Bartolo MI, Fabbrini A, Costanzo M, Manzo N, Berardelli A, Pantano P. White and gray matter alterations in de novo PD patients: which matter most? J Neurol 2023; 270:2734-2742. [PMID: 36773059 DOI: 10.1007/s00415-023-11607-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES This paper aimed to identify white matter (WM) and gray matter (GM) abnormalities in a sample of early PD patients, and their correlations with motor and non-motor symptom severity. METHODS We enrolled 62 de novo PD patients and 31 healthy subjects. Disease severity and non-motor symptom burden were assessed by the Unified Parkinson's Disease Rating Scale part III and the Non-Motor Symptoms Scale, respectively. Cognitive performance was assessed using Montreal Cognitive Assessment and Frontal Assessment Battery. All subjects underwent a 3-Tesla MRI protocol. MRI analyses included tract-based spatial statistics, cortical thickness, and subcortical and cerebellar volumetry. RESULTS In comparison to control subjects, PD patients exhibited lower fractional anisotropy and higher mean, axial, and radial diffusivity in most WM bundles, including corticospinal tracts, the internal and external capsule, the anterior and posterior thalamic radiations, the genu and body of the corpus callosum, cerebellar peduncles, and superior and inferior longitudinal and fronto-occipital fasciculi. Correlations between Montreal Cognitive Assessment scores and fractional anisotropy values in the right posterior thalamic radiation, left superior corona radiata, right inferior-fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral anterior thalamic radiations, and bilateral superior longitudinal fasciculi were found. Smaller cerebellar volumes in early PD patients in the left and right crus I were also found. No GM changes were present in subcortical or cortical regions. CONCLUSION The combined evaluation of WM and GM in the same patient sample demonstrates that WM microstructural abnormalities precede GM structural changes in early PD patients.
Collapse
Affiliation(s)
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Silvia Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Gabriele Pasqua
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Andrea Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Spitz S, Ko E, Ertl P, Kamm RD. How Organ-on-a-Chip Technology Can Assist in Studying the Role of the Glymphatic System in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:2171. [PMID: 36768495 PMCID: PMC9916687 DOI: 10.3390/ijms24032171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The lack of a conventional lymphatic system that permeates throughout the entire human brain has encouraged the identification and study of alternative clearance routes within the cerebrum. In 2012, the concept of the glymphatic system, a perivascular network that fluidically connects the cerebrospinal fluid to the lymphatic vessels within the meninges via the interstitium, emerged. Although its exact mode of action has not yet been fully characterized, the key underlying processes that govern solute transport and waste clearance have been identified. This review briefly describes the perivascular glial-dependent clearance system and elucidates its fundamental role in neurodegenerative diseases. The current knowledge of the glymphatic system is based almost exclusively on animal-based measurements, but these face certain limitations inherent to in vivo experiments. Recent advances in organ-on-a-chip technology are discussed to demonstrate the technology's ability to provide alternative human-based in vitro research models. Herein, the specific focus is on how current microfluidic-based in vitro models of the neurovascular system and neurodegenerative diseases might be employed to (i) gain a deeper understanding of the role and function of the glymphatic system and (ii) to identify new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eunkyung Ko
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife 2023; 12:e85837. [PMID: 36626307 PMCID: PMC9876576 DOI: 10.7554/elife.85837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Alpha-synuclein (α-syn), a major component of Lewy bodies found in Parkinson's disease (PD) patients, has been found exported outside of cells and may mediate its toxicity via cell-to-cell transmission. Here, we reconstituted soluble, monomeric α-syn secretion by the expression of DnaJ homolog subfamily C member 5 (DNAJC5) in HEK293T cells. DNAJC5 undergoes palmitoylation and anchors on the membrane. Palmitoylation is essential for DNAJC5-induced α-syn secretion, and the secretion is not limited by substrate size or unfolding. Cytosolic α-syn is actively translocated and sequestered in an endosomal membrane compartment in a DNAJC5-dependent manner. Reduction of α-syn secretion caused by a palmitoylation-deficient mutation in DNAJC5 can be reversed by a membrane-targeting peptide fusion-induced oligomerization of DNAJC5. The secretion of endogenous α-syn mediated by DNAJC5 is also found in a human neuroblastoma cell line, SH-SY5Y, differentiated into neurons in the presence of retinoic acid, and in human-induced pluripotent stem cell-derived midbrain dopamine neurons. We propose that DNAJC5 forms a palmitoylated oligomer to accommodate and export α-syn.
Collapse
Affiliation(s)
- Shenjie Wu
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | | | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Iona Thomas-Wright
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
19
|
Petersen I, Ali MI, Petrovic A, Ytterberg AJ, Staxäng K, Hodik M, Rofo F, Bondza S, Hultqvist G. Multivalent design of the monoclonal SynO2 antibody improves binding strength to soluble α-Synuclein aggregates. MAbs 2023; 15:2256668. [PMID: 37737124 PMCID: PMC10519360 DOI: 10.1080/19420862.2023.2256668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Soluble aggregates are reported to be the most neurotoxic species of α-Synuclein (αSyn) in Parkinson's disease (PD) and hence are a promising target for diagnosis and treatment of PD. However, the predominantly intracellular location of αSyn limits its accessibility, especially for antibody-based molecules and prompts the need for exceptionally strong soluble αSyn aggregate binders to enhance their sensitivity and efficacy for targeting the extracellular αSyn pool. In this study, we have created the multivalent antibodies TetraSynO2 and HexaSynO2, derived from the αSyn oligomer-specific antibody SynO2, to increase avidity binding to soluble αSyn aggregate species through more binding sites in close proximity. The multivalency was achieved through recombinant fusion of single-chain variable fragments of SynO2 to the antibodies' original N-termini. Our ELISA results indicated a 20-fold increased binding strength of the multivalent formats to αSyn aggregates, while binding to αSyn monomers and unspecific binding to amyloid β protofibrils remained low. Kinetic analysis using LigandTracer revealed that only 80% of SynO2 bound bivalently to soluble αSyn aggregates, whereas the proportion of TetraSynO2 and HexaSynO2 binding bi- or multivalently to soluble αSyn aggregates was increased to ~ 95% and 100%, respectively. The overall improved binding strength of TetraSynO2 and HexaSynO2 implies great potential for immunotherapeutic and diagnostic applications with targets of limited accessibility, like extracellular αSyn aggregates. The ability of the multivalent antibodies to bind a wider range of αSyn aggregate species, which are not targetable by conventional bivalent antibodies, thus could allow for an earlier and more effective intervention in the progression of PD.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Alex Petrovic
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Anders Jimmy Ytterberg
- Department of Pharmacy, SciLifeLab Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | - Karin Staxäng
- TEM Laboratory, BioVis Platform, Uppsala University, Uppsala, Sweden
| | - Monika Hodik
- TEM Laboratory, BioVis Platform, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Sina Bondza
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Neupane S, De Cecco E, Aguzzi A. The Hidden Cell-to-Cell Trail of α-Synuclein Aggregates. J Mol Biol 2022:167930. [PMID: 36566800 DOI: 10.1016/j.jmb.2022.167930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.
Collapse
Affiliation(s)
- Sandesh Neupane
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. https://twitter.com/neuron_sandesh
| | - Elena De Cecco
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
21
|
Brás IC, Khani MH, Vasili E, Möbius W, Riedel D, Parfentev I, Gerhardt E, Fahlbusch C, Urlaub H, Zweckstetter M, Gollisch T, Outeiro TF. Molecular Mechanisms Mediating the Transfer of Disease-Associated Proteins and Effects on Neuronal Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2397-2422. [PMID: 36278361 DOI: 10.3233/jpd-223516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Various cellular pathways have been implicated in the transfer of disease-related proteins between cells, contributing to disease progression and neurodegeneration. However, the overall effects of protein transfer are still unclear. OBJECTIVE Here, we performed a systematic comparison of basic molecular mechanisms involved in the release of alpha-synuclein, Tau, and huntingtin, and evaluated functional effects upon internalization by receiving cells. METHODS Evaluation of protein release to the extracellular space in a free form and in extracellular vesicles using an optimized ultracentrifugation protocol. The extracellular effects of the proteins and extracellular vesicles in primary neuronal cultures were assessed using multi-channel electrophysiological recordings combined with a customized spike sorting framework. RESULTS We demonstrate cells differentially release free-forms of each protein to the extracellular space. Importantly, neuronal activity is distinctly modulated upon protein internalization in primary cortical cultures. In addition, these disease-related proteins also occur in extracellular vesicles, and are enriched in ectosomes. Internalization of ectosomes and exosomes by primary microglial or astrocytic cells elicits the production of pro-inflammatory cytokines, and modifies spontaneous electrical activity in neurons. OBJECTIVE Overall, our study demonstrates that released proteins can have detrimental effects for surrounding cells, and suggests protein release pathways may be exploited as therapeutic targets in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Iwan Parfentev
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom.,Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
22
|
Dadgar-Kiani E, Bieri G, Melki R, Gitler AD, Lee JH. Mesoscale connections and gene expression empower whole-brain modeling of α-synuclein spread, aggregation, and decay dynamics. Cell Rep 2022; 41:111631. [PMID: 36351406 PMCID: PMC10840492 DOI: 10.1016/j.celrep.2022.111631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads to widespread pathology. However, the mechanisms by which misfolded proteins seed distinct brain regions and cause differential whole-brain pathology remain elusive. We used whole-brain tissue clearing and high-resolution imaging to longitudinally map pathology in an α-synuclein pre-formed fibril injection model of Parkinson's disease. Cleared brains at different time points of disease progression were quantitatively segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. We then fit a computational model with parameters that represent α-synuclein pathology spreading, aggregation, decay, and gene expression pattern to this longitudinal dataset. Remarkably, our model can generalize to predicting α-synuclein spreading patterns from several distinct brain regions and can even estimate their origins. This model empowers mechanistic understanding and accurate prediction of disease progression, paving the way for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Gregor Bieri
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, 92265 Fontenay-Aux-Roses, France
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Goshi N, Girardi G, da Costa Souza F, Gardner A, Lein PJ, Seker E. Influence of microchannel geometry on device performance and electrophysiological recording fidelity during long-term studies of connected neural populations. LAB ON A CHIP 2022; 22:3961-3975. [PMID: 36111641 PMCID: PMC9639432 DOI: 10.1039/d2lc00683a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Compartmentalized microfluidic neural cell culture platforms, which physically separate axons from the neural soma using a series of microchannels, have been used for studying a wide range of pathological conditions and basic neuroscience questions. While each study has different experimental needs, the fundamental design of these devices has largely remained unchanged and a systematic study to establish long-term neural cultures in this format is lacking. Here, we investigate the influence of microchannel geometry and cell seeding density on device performance particularly in the context of long-term studies of synaptically-connected, yet fluidically-isolated neural populations of neurons and glia. Of the different experimental parameters, the microchannel height was the principal determinant of device performance, where the other parameters offer additional degrees of freedom in customizing such devices for specific applications. We condense the effects of these parameters into design rules and demonstrate their utility in engineering a microfluidic neural culture platform with integrated microelectrode arrays. The engineered device successfully recorded from primary rat cortical cells for 59 days in vitro with more than on order of magnitude enhancement in signal-to-noise ratio in the microchannels.
Collapse
Affiliation(s)
- Noah Goshi
- Department of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA
| | - Gregory Girardi
- Department of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA
| | - Felipe da Costa Souza
- Department of Molecular Biosciences, University of California - Davis, Davis, CA 95616, USA
| | - Alexander Gardner
- Department of Electrical and Computer Engineering, University of California - Davis, Davis, CA 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California - Davis, Davis, CA 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Gezen-Ak D, Yurttaş Z, Çamoǧlu T, Dursun E. Could Amyloid-β 1-42 or α-Synuclein Interact Directly with Mitochondrial DNA? A Hypothesis. ACS Chem Neurosci 2022; 13:2803-2812. [PMID: 36125124 PMCID: PMC9542719 DOI: 10.1021/acschemneuro.2c00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The amyloid β (Aβ) and the α-synuclein (α-syn) are shown to be translocated into mitochondria. Even though their roles are widely investigated in pathological conditions, information on the presence and functions of Aβ and α-syn in mitochondria in endogenous levels is somewhat limited. We hypothesized that endogenous Aβ fragments or α-syn could interact with mitochondrial DNA (mtDNA) directly or influence RNAs or transcription factors in mitochondria and change the mtDNA transcription profile. In this review, we summarized clues of these possible interactions.
Collapse
Affiliation(s)
| | | | | | - Erdinç Dursun
- E.D.: email, ; phone, +90 212 414 30 00/68025, +90 533 339
98 82
| |
Collapse
|
25
|
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022; 16:946822. [PMID: 36090278 PMCID: PMC9448931 DOI: 10.3389/fnins.2022.946822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell-to-cell in the brain in a manner akin to infectious prions has gained substantial momentum due to an explosion of research in the past 10–15 years. Here, we review current evidence supporting the existence of prion-like mechanisms in Huntington’s disease (HD), an autosomal dominant neurodegenerative disease caused by expansion of a CAG repeat tract in exon 1 of the huntingtin (HTT) gene. We summarize information gained from human studies and in vivo and in vitro models of HD that strongly support prion-like features of the mutant HTT (mHTT) protein, including potential involvement of molecular features of mHTT seeds, synaptic structures and connectivity, endocytic and exocytic mechanisms, tunneling nanotubes, and nonneuronal cells in mHTT propagation in the brain. We discuss mechanisms by which mHTT aggregate spreading and neurotoxicity could be causally linked and the potential benefits of targeting prion-like mechanisms in the search for new disease-modifying therapies for HD and other fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirby M. Donnelly
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Cevannah M. Coleman
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Madison L. Fuller
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Victoria L. Reed
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Dayna Smerina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - David S. Tomlinson
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Margaret M. Panning Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
- Department of Biology, Saint Joseph’s University, Philadelphia, PA, United States
- *Correspondence: Margaret M. Panning Pearce,
| |
Collapse
|
26
|
Atarod D, Mamashli F, Ghasemi A, Moosavi-Movahedi F, Pirhaghi M, Nedaei H, Muronetz V, Haertlé T, Tatzelt J, Riazi G, Saboury AA. Bivalent metal ions induce formation of α-synuclein fibril polymorphs with different cytotoxicities. Sci Rep 2022; 12:11898. [PMID: 35831343 PMCID: PMC9279330 DOI: 10.1038/s41598-022-15472-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
α-Synuclein (α-Syn) aggregates are key components of intracellular inclusion bodies characteristic of Parkinson’s disease (PD) and other synucleinopathies. Metal ions have been considered as the important etiological factors in PD since their interactions with α-Syn alter the kinetics of fibrillation. In the present study, we have systematically explored the effects of Zn2+, Cu2+, Ca2+, and Mg2+ cations on α-Syn fibril formation. Specifically, we determined fibrillation kinetics, size, morphology, and secondary structure of the fibrils and their cytotoxic activity. While all cations accelerate fibrillation, we observed distinct effects of the different ions. For example, Zn2+ induced fibrillation by lower tlag and higher kapp and formation of shorter fibrils, while Ca2+ ions lead to formation of longer fibrils, as evidenced by dynamic light scattering and atomic force microscopy studies. Additionally, the morphology of formed fibrils was different. Circular dichroism and attenuated total reflection-Fourier transform infrared spectroscopies revealed higher contents of β-sheets in fibrils. Interestingly, cell viability studies indicated nontoxicity of α-Syn fibrils formed in the presence of Zn2+ ions, while the fibrils formed in the presence of Cu2+, Ca2+, and Mg2+ were cytotoxic. Our results revealed that α-Syn fibrils formed in the presence of different divalent cations have distinct structural and cytotoxic features.
Collapse
Affiliation(s)
- Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hadi Nedaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,National Institute of Agronomic and Environmental Research, 44316, Nantes, France
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany.,Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
27
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
28
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Impact of α-Synuclein Fibrillar Strains and β-Amyloid Assemblies on Mouse Cortical Neurons Endo-Lysosomal Logistics. eNeuro 2022; 9:ENEURO.0227-21.2022. [PMID: 35470226 PMCID: PMC9118757 DOI: 10.1523/eneuro.0227-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Endosomal transport and positioning cooperate in the establishment of neuronal compartment architecture, dynamics, and function, contributing to neuronal intracellular logistics. Furthermore, dysfunction of endo-lysosomal has been identified as a common mechanism in neurodegenerative diseases. Here, we analyzed endo-lysosomal transport when α-synuclein (α-syn) fibrillar polymorphs, β-amyloid (Aβ) fibrils, and oligomers were externally applied on primary cultures of mouse cortical neurons. To measure this transport, we used a simple readout based on the spontaneous endocytosis in cultured neurons of fluorescent nanodiamonds (FNDs), a perfectly stable nano-emitter, and the subsequent automatic extraction and quantification of their directed motions at high-throughput. α-Syn fibrillar polymorphs, Aβ fibrils, and oligomers induce a 2-fold decrease of the fraction of nanodiamonds transported along microtubules, while only slightly reducing their interaction with cortical neurons. This important decrease in moving endosomes is expected to have a huge impact on neuronal homeostasis. We next assessed lysosomes dynamics, using LysoTracker. Neurons exposure to Aβ oligomers led to an increase in the number of lysosomes, a decrease in the fraction of moving lysosome and an increase in their size, reminiscent of that found in APP transgenic model of Alzheimer’s disease. We then analyzed the effect of α-syn fibrillar polymorphs, Aβ fibrils, and oligomers on endosomal and lysosomal transport and quantified directed transport of those assemblies within cortical neurons. We report different impacts on endosomal and lysosomal transport parameters and differences in the trajectory lengths of cargoes loaded with pathogenic protein assemblies. Our results suggest that intraneuronal pathogenic protein aggregates internalization and transport may represent a target for novel neuroprotective therapeutic strategies.
Collapse
|
30
|
Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol Life Sci 2022; 79:174. [PMID: 35244787 PMCID: PMC8897347 DOI: 10.1007/s00018-022-04166-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a general hallmark of protein deposition diseases, such as Alzheimer’s disease or Parkinson’s disease, in which different types of aggregated species (oligomers, protofibrils and fibrils) are generated by the cells. Despite widespread interest, the relationship between oligomers and fibrils in the aggregation process and spreading remains elusive. A large variety of experimental evidences supported the idea that soluble oligomeric species of different proteins might be more toxic than the larger fibrillar forms. Furthermore, the lack of correlation between the presence of the typical pathological inclusions and disease sustained this debate. However, recent data show that the β-sheet core of the α-Synuclein (αSyn) fibrils is unable to establish persistent interactions with the lipid bilayers, but they can release oligomeric species responsible for an immediate dysfunction of the recipient neurons. Reversibly, such oligomeric species could also contribute to pathogenesis via neuron-to-neuron spreading by their direct cell-to-cell transfer or by generating new fibrils, following their neuronal uptake. In this Review, we discuss the various mechanisms of cellular dysfunction caused by αSyn, including oligomer toxicity, fibril toxicity and fibril spreading.
Collapse
|
31
|
Holloway PM. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. Methods Mol Biol 2022; 2492:193-224. [PMID: 35733046 DOI: 10.1007/978-1-0716-2289-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of microfluidic chips is now allowing for more advanced modelling of the blood-brain barrier (BBB) in vitro, recapitulating heterotypic interactions, 3D architecture, and physiological flow. This chapter will give an introduction to these new technologies and how they are being applied to model the BBB and neurovascular unit (NVU). A foundational understanding of the fluid dynamics germane to the effective use of these chips will be set and an overview of how physical phenomena at the microscale can be exploited to enable new possibilities to control the cell culture environment. The four main approaches to construct microfluidic blood vessel mimetics will be discussed with examples of how these techniques are being applied to model the BBB and more recently to study specific neurovascular disease processes. Finally, practical guidance will be given for researchers wishing to adopt these new techniques along with a summary of the challenges, limitations faced, and new opportunities opened up by these advanced cell culture systems.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Alpaugh M, Denis HL, Cicchetti F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol Psychiatry 2022; 27:269-280. [PMID: 34711942 DOI: 10.1038/s41380-021-01350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
34
|
Jiang J, Liu Y, Wu Q. Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Front Neurosci 2021; 15:781722. [PMID: 34867177 PMCID: PMC8636772 DOI: 10.3389/fnins.2021.781722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s diseases (AD and PD) are amongst top of the prevalent neurodegenerative disease. One-third of PD patients are diagnosed with dementia, a pre-symptom of AD, but the underlying mechanism is elusive. Amyloid beta (Aβ) and α-synuclein are two of the most investigated proteins, whose pathological aggregation and spreading are crucial to the pathogenesis of AD and PD, respectively. Transcriptomic studies of the mammalian central nervous system shed light on gene expression profiles at molecular levels, regarding the complexity of neuronal morphologies and electrophysiological inputs/outputs. In the last decade, the booming of the single-cell RNA sequencing technique helped to understand gene expression patterns, alternative splicing, novel transcripts, and signal pathways in the nervous system at single-cell levels, providing insight for molecular taxonomy and mechanistic targets of the degenerative nervous system. Here, we re-visited the cell-cell transmission mechanisms of Aβ and α-synuclein in mediating disease propagation, and summarized recent single-cell transcriptome sequencing from different perspectives and discussed its understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinwen Jiang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Bindas AJ, Kulkarni S, Koppes RA, Koppes AN. Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomater 2021; 132:325-344. [PMID: 33857691 DOI: 10.1016/j.actbio.2021.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a progressive loss of fine motor function that impacts 1-2 out of 1,000 people. PD occurs predominately late in life and lacks a definitive biomarker for early detection. Recent cross-disciplinary progress has implicated the gut as a potential origin of PD pathogenesis. The gut-origin hypothesis has motivated research on gut PD pathology and transmission to the brain, especially during the prodromal stage (10-20 years before motor symptom onset). Early findings have revealed several possible triggers for Lewy pathology - the pathological hallmark of PD - in the gut, suggesting that microbiome and epithelial interactions may play a greater than appreciated role. But the mechanisms driving Lewy pathology and gut-brain transmission in PD remain unknown. Development of artificial α-Synuclein aggregates (α-Syn preformed fibrils) and animal disease models have recapitulated features of PD progression, enabling for the first time, controlled investigation of the gut-origin hypothesis. However, the role of specific cells in PD transmission, such as neurons, remains limited and requires in vitro models for controlled evaluation and perturbation. Human cell populations, three-dimensional organoids, and microfluidics as discovery platforms inch us closer to improving existing treatment for patients by providing platforms for discovery and screening. This review includes a discussion of PD pathology, conventional treatments, in vivo and in vitro models, and future directions. STATEMENT OF SIGNIFICANCE: Parkinson's Disease remains a common neurodegenerative disease with palliative versus causal treatments. Recently, the gut-origin hypothesis, where Parkinson's disease is thought to originate and spread from the gut to the brain, has gained traction as a field of investigation. However, despite the wealth of studies and innovative approaches to accelerate the field, there remains a need for in vitro tools to enable fundamental biological understanding of disease progression, and compound screening and efficacy. In this review, we present a historical perspective of Parkinson's Disease pathogenesis, detection, and conventional therapy, animal and human models investigating the gut-origin hypothesis, in vitro models to enable controlled discovery, and future outlooks for this blossoming field.
Collapse
Affiliation(s)
- Adam J Bindas
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins University, 720 Rutland Avenue., Baltimore, MD 21205, USA.
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA; Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Teixeira M, Sheta R, Idi W, Oueslati A. Alpha-Synuclein and the Endolysosomal System in Parkinson's Disease: Guilty by Association. Biomolecules 2021; 11:biom11091333. [PMID: 34572546 PMCID: PMC8472725 DOI: 10.3390/biom11091333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Abnormal accumulation of the protein α- synuclein (α-syn) into proteinaceous inclusions called Lewy bodies (LB) is the neuropathological hallmark of Parkinson's disease (PD) and related disorders. Interestingly, a growing body of evidence suggests that LB are also composed of other cellular components such as cellular membrane fragments and vesicular structures, suggesting that dysfunction of the endolysosomal system might also play a role in LB formation and neuronal degeneration. Yet the link between α-syn aggregation and the endolysosomal system disruption is not fully elucidated. In this review, we discuss the potential interaction between α-syn and the endolysosomal system and its impact on PD pathogenesis. We propose that the accumulation of monomeric and aggregated α-syn disrupt vesicles trafficking, docking, and recycling, leading to the impairment of the endolysosomal system, notably the autophagy-lysosomal degradation pathway. Reciprocally, PD-linked mutations in key endosomal/lysosomal machinery genes (LRRK2, GBA, ATP13A2) also contribute to increasing α-syn aggregation and LB formation. Altogether, these observations suggest a potential synergistic role of α-syn and the endolysosomal system in PD pathogenesis and represent a viable target for the development of disease-modifying treatment for PD and related disorders.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
37
|
Barth M, Bacioglu M, Schwarz N, Novotny R, Brandes J, Welzer M, Mazzitelli S, Häsler LM, Schweighauser M, Wuttke TV, Kronenberg-Versteeg D, Fog K, Ambjørn M, Alik A, Melki R, Kahle PJ, Shimshek DR, Koch H, Jucker M, Tanriöver G. Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures. Mol Neurodegener 2021; 16:54. [PMID: 34380535 PMCID: PMC8356412 DOI: 10.1186/s13024-021-00471-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression. METHODS Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed. RESULTS To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions. CONCLUSION The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments.
Collapse
Affiliation(s)
- Melanie Barth
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Mehtap Bacioglu
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Renata Novotny
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Janine Brandes
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marc Welzer
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Graduate Training Center of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sonia Mazzitelli
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lisa M. Häsler
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Manuel Schweighauser
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurosurgery, University of Tuebingen, 72076 Tuebingen, Germany
| | - Deborah Kronenberg-Versteeg
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Karina Fog
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Malene Ambjørn
- Division of Neuroscience, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Ania Alik
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France
| | - Philipp J. Kahle
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Derya R. Shimshek
- Neuroscience Research, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Mathias Jucker
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gaye Tanriöver
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
38
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
39
|
Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun Biol 2021; 4:613. [PMID: 34021258 PMCID: PMC8139990 DOI: 10.1038/s42003-021-02126-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is closely linked to Parkinson's disease (PD) and the related synucleinopathies. Aggregates spread through the brain during the progression of PD, but the mechanism by which this occurs is still not known. One possibility is a self-propagating, templated-seeding mechanism, but this cannot be established without quantitative information about the efficiencies and rates of the key steps in the cellular process. To address this issue, we imaged the uptake and seeding of unlabeled exogenous α-syn fibrils by SH-SY5Y cells and the resulting secreted aggregates, using super-resolution microscopy. Externally-applied fibrils very inefficiently induced self-assembly of endogenous α-syn in a process accelerated by the proteasome. Seeding resulted in the increased secretion of nanoscopic aggregates (mean 35 nm diameter), of both α-syn and Aβ. Our results suggest that cells respond to seed-induced disruption of protein homeostasis predominantly by secreting nanoscopic aggregates; this mechanism may therefore be an important protective response by cells to protein aggregation.
Collapse
|
40
|
Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, Chiti F, Cremades N, Cecchi C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun 2021; 12:1814. [PMID: 33753734 PMCID: PMC7985515 DOI: 10.1038/s41467-021-21937-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Serene W Chen
- Department of Life Science, Imperial College London, London, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - José D Camino
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain.
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
41
|
Wang XT, Sun H, Chen NH, Yuan YH. Tunneling nanotubes: A novel pharmacological target for neurodegenerative diseases? Pharmacol Res 2021; 170:105541. [PMID: 33711434 DOI: 10.1016/j.phrs.2021.105541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
Diversiform ways of intercellular communication are vital links in maintaining homeostasis and disseminating physiological states. Among intercellular bridges, tunneling nanotubes (TNTs) discovered in 2004 were recognized as potential pharmacology targets related to the pathogenesis of common or infrequent neurodegenerative disorders. The neurotoxic aggregates in neurodegenerative diseases including scrapie prion protein (PrPSc), mutant tau protein, amyloid-beta (Aβ) protein, alpha-synuclein (α-syn) as well as mutant Huntington (mHTT) protein could promote TNT formation via certain physiological mechanisms, in turn, mediating the intercellular transmission of neurotoxicity. In this review, we described in detail the skeleton, the formation, the physicochemical properties, and the functions of TNTs, while paying particular attention to the key role of TNTs in the transport of pathological proteins during neurodegeneration.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
42
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
43
|
Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021; 99:1276-1307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure-prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro-engineer cell-scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to "Organ-on-chip" models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and "Organ-on-chip" systems have enabled new understanding of metabolic coupling and blood-brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro-pathophysiological systems, moving from "Organ-on-chip" to "Disease-on-chip." This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Melissa Barber
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Róisín M Owens
- Department Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anup D Sharma
- New Orleans BioInnovation Center, AxoSim Inc., New Orleans, LA, USA
| | - Wendy Rowan
- Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Eric Hill
- School of Life and Health sciences, Aston University, Birmingham, UK
| | - Michele Zagnoni
- Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
44
|
Brás IC, Outeiro TF. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021; 10:cells10020375. [PMID: 33673034 PMCID: PMC7917664 DOI: 10.3390/cells10020375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Inês C. Brás
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693
| |
Collapse
|
45
|
Castonguay AM, Gravel C, Lévesque M. Treating Parkinson's Disease with Antibodies: Previous Studies and Future Directions. JOURNAL OF PARKINSONS DISEASE 2021; 11:71-92. [PMID: 33104039 PMCID: PMC7990466 DOI: 10.3233/jpd-202221] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder mainly characterized by the degeneration of dopaminergic neurons in the substantia nigra. Degenerating neurons contain abnormal aggregates called Lewy bodies, that are predominantly composed of the misfolded and/or mutated alpha-synuclein protein. Post-translational modifications, cellular stress, inflammation and gene mutations are thought to trigger its pathological misfolding and aggregation. With alpha-synuclein pathology being strongly associated with dopaminergic neuronal toxicity, strategies aimed to reduce its burden are expected to be beneficial in slowing disease progression. Moreover, multiple sources of evidence suggest a cell-to-cell transmission of pathological alpha-synuclein in a prion-like manner. Therefore, antibodies targeting extra- or intracellular alpha-synuclein could be efficient in limiting the aggregation and transmission. Several active and passive immunization strategies have been explored to target alpha-synuclein. Here, we summarize immunotherapeutic approaches that were tested in pre-clinical or clinical studies in the last two decades in an attempt to treat Parkinson's disease.
Collapse
Affiliation(s)
- Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, 2601, chemin de la Canardière, Québec, QC, Canada
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, 2601, chemin de la Canardière, Québec, QC, Canada
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, 2601, chemin de la Canardière, Québec, QC, Canada
| |
Collapse
|
46
|
Marshall MS, Issa Y, Heller G, Nguyen D, Bongarzone ER. AAV-Mediated GALC Gene Therapy Rescues Alpha-Synucleinopathy in the Spinal Cord of a Leukodystrophic Lysosomal Storage Disease Mouse Model. Front Cell Neurosci 2021; 14:619712. [PMID: 33424556 PMCID: PMC7785790 DOI: 10.3389/fncel.2020.619712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Krabbe's disease (KD) is primarily a demyelinating disorder, but recent studies have identified the presence of neuronal protein aggregates in the brain, at least partially composed by alpha-synuclein (α-syn). The role of this protein aggregation in the pathogenesis of KD is largely unknown, but it has added KD to a growing list of lysosomal storage diseases that can be also be considered as proteinopathies. While the presence of these protein aggregates within the KD brain is now appreciated, the remainder of the central nervous system (CNS) remains uncharacterized. This study is the first to report the presence of thioflavin-S reactive inclusions throughout the spinal cord of both murine and human spinal tissue. Stereological analysis revealed the temporal and spatial accumulation of these inclusions within the neurons of the ventral spinal cord vs. those located in the dorsal cord. This study also confirmed that these thio-S positive accumulations are present within neuronal populations and are made up at least in part by α-syn in both the twitcher mouse and cord autopsied material from affected human patients. Significantly, neonatal gene therapy for galactosylceramidase, a treatment that strongly improves the survival and health of KD mice, but not bone marrow transplantation prevents the formation of these inclusions in spinal neurons. These results expand the understanding of α-syn protein aggregation within the CNS of individuals afflicted with KD and underlines the tractability of this problem via early gene therapy, with potential impact to other synucleinopathies such as PD.
Collapse
Affiliation(s)
- Michael S Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yazan Issa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson's Disease. Cells 2021; 10:cells10010139. [PMID: 33445653 PMCID: PMC7828121 DOI: 10.3390/cells10010139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/03/2023] Open
Abstract
We investigated α-synuclein's (αSyn) seeding activity in tissue from the brain and enteric nervous system. Specifically, we assessed the seeding propensity of pathogenic αSyn in formalin-fixed tissue from the gastric cardia and five brain regions of 29 individuals (12 Parkinson's disease, 8 incidental Lewy body disease, 9 controls) using a protein misfolding cyclic amplification assay. The structural characteristics of the resultant αSyn assemblies were determined by limited proteolysis and transmission electron microscopy. We show that fixed tissue from Parkinson's disease (PD) and incidental Lewy body disease (ILBD) seeds the aggregation of monomeric αSyn into fibrillar assemblies. Significant variations in the characteristics of fibrillar assemblies derived from different regions even within the same individual were observed. This finding suggests that fixation stabilizes seeds with an otherwise limited seeding propensity, that yield assemblies with different intrinsic structures (i.e., strains). The lag phase preceding fibril assembly for patients ≥80 was significantly shorter than in other age groups, suggesting the existence of increased numbers of seeds or a higher seeding potential of pathogenic αSyn with time. Seeding activity did not diminish in late-stage disease. No statistically significant difference in the seeding efficiency of specific regions was found, nor was there a relationship between seeding efficiency and the load of pathogenic αSyn in a particular region at a given neuropathological stage.
Collapse
|
48
|
Proteomic analysis of subcellular compartments containing disseminated alpha-synuclein seeds. Neurosci Res 2020; 170:341-349. [PMID: 33309865 DOI: 10.1016/j.neures.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022]
Abstract
The pathological form of a-synuclein (a-syn) is transmitted through neural circuits in the brains of Parkinson disease (PD) patients and amplifies misfolded a-syn, further forming intracellular deposits. However, the details of a-syn pre-formed fibrils (PFFs) transmission in vivo have not been fully elucidated. By inoculating Quantum dots (QD)-labeled a-syn PFFs (QD-a-syn PFFs) into the unilateral striatum, we detected QD-a-syn PFFs in brain homogenates obtained from the ipsilateral and contralateral sides of the inoculated site and further obtained QD-a-syn PFFs enriched-particles with fluorescence-activated organelle sorting. Proteomic analysis suggested that QD-a-syn PFFs-enriched particles in the contralateral side were associated with component proteins of synapse. In contrast, QD-a-syn PFFs-enriched particles in the ipsilateral side were associated with proteins belonging to ER components. Immunostaining of brain sections confirmed that QD-a-syn PFFs in the contralateral side were co-localized with synaptic vesicle marker proteins in the cortex and striatum. Additionally, QD-a-syn PFFs in the ipsilateral side were more co-localized with ER marker proteins compared to the contralateral side. These results correspond to proteomic analysis. This study provides potential candidates for the subcellular localization of a-syn PFFs in vivo during the dissemination phase of seeds. These subcellular compartments could be involved in the transmission of seeds.
Collapse
|
49
|
Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. J Neurosci 2020; 40:8618-8628. [PMID: 33046546 DOI: 10.1523/jneurosci.0954-20.2020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
The pathologic hallmark of Parkinson's disease is the accumulation of α-synuclein-containing Lewy bodies/neurites almost exclusively in neurons, and rarely in glial cells. However, emerging evidence suggests that glia such as astrocytes play an important role in the development of α-synuclein pathology. Using induced pluripotent stem-derived dopaminergic neurons and astrocytes from healthy subjects and patients carrying mutations in lysosomal ATP13A2, a monogenic form of synucleinopathy, we found that astrocytes rapidly internalized α-synuclein, and exhibited higher lysosomal degradation rates compared with neurons. Moreover, coculturing astrocytes and neurons led to decreased accumulation of α-synuclein in neurons and consequently diminished interneuronal transfer of α-synuclein. These protective functions of astrocytes were attenuated by ATP13A2 deficiency, suggesting that the loss of ATP13A2 function in astrocytes at least partially contributes to neuronal α-synuclein pathology. Together, our results highlight the importance of lysosomal function in astrocytes in the pathogenesis of synucleinopathies.SIGNIFICANCE STATEMENT While most neurodegenerative disorders are characterized by the accumulation of aggregated mutant proteins exclusively in neurons, the contribution of glial cells in this process remains poorly explored. Here, we demonstrate that astrocytes contribute to the removal of extracellular α-synuclein and that disruption of this pathway caused by mutations in the Parkinson's disease-linked gene ATP13A2 result in α-synuclein accumulation in human dopaminergic neurons. We found that astrocytes also protect neurons from α-synuclein propagation, whereas ATP13A2 deficiency in astrocytes compromises this protective function. These results highlight astrocyte-mediated α-synuclein clearance as a potential therapeutic target in disorders characterized by the accumulation of α-synuclein, including Parkinson's disease.
Collapse
|
50
|
Iannielli A, Ugolini GS, Cordiglieri C, Bido S, Rubio A, Colasante G, Valtorta M, Cabassi T, Rasponi M, Broccoli V. Reconstitution of the Human Nigro-striatal Pathway on-a-Chip Reveals OPA1-Dependent Mitochondrial Defects and Loss of Dopaminergic Synapses. Cell Rep 2020; 29:4646-4656.e4. [PMID: 31875567 PMCID: PMC6941223 DOI: 10.1016/j.celrep.2019.11.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/26/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Stem cell-derived neurons are generally obtained in mass cultures that lack both spatial organization and any meaningful connectivity. We implement a microfluidic system for long-term culture of human neurons with patterned projections and synaptic terminals. Co-culture of human midbrain dopaminergic and striatal medium spiny neurons on the microchip establishes an orchestrated nigro-striatal circuitry with functional dopaminergic synapses. We use this platform to dissect the mitochondrial dysfunctions associated with a genetic form of Parkinson’s disease (PD) with OPA1 mutations. Remarkably, we find that axons of OPA1 mutant dopaminergic neurons exhibit a significant reduction of mitochondrial mass. This defect causes a significant loss of dopaminergic synapses, which worsens in long-term cultures. Therefore, PD-associated depletion of mitochondria at synapses might precede loss of neuronal connectivity and neurodegeneration. In vitro reconstitution of human circuitries by microfluidic technology offers a powerful system to study brain networks by establishing ordered neuronal compartments and correct synapse identity. Long-term stable reconstitution of the human nigro-striatal neuronal circuit on-a-chip Stable synaptic connectivity of the iPSC-derived nigro-striatal neuronal connections Dopaminergic-specific synaptic identity of the iPSC-derived nigro-striatal pathway PD-OPA1 DA axons show a severe loss and impairment of mitochondria
Collapse
Affiliation(s)
- Angelo Iannielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Giovanni Stefano Ugolini
- Department of Electronics, Information & Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics "Romeo e Enrica Invernizzi" - INGM, 20122 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alicia Rubio
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Valtorta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information & Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|