1
|
Karatzetzou S, Ioannidis S, Konstantinopoulou E, Parisis D, Afrantou T, Ioannidis P. Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer's Disease, Creutzfeldt-Jakob Disease and Cerebral Amyloid Angiopathy. Biomolecules 2025; 15:522. [PMID: 40305264 PMCID: PMC12025122 DOI: 10.3390/biom15040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Within the phenotypic spectrum of Alzheimer's disease (AD), Creutzfeldt-Jakob disease (CJD) and cerebral amyloid angiopathy (CAA), dementia that is attributed to iatrogenic transmission has increasingly gained scientific attention recently. Newly recognized, this treatment-induced form of dementia may result from exposure to certain medical or surgical procedures. The present review aims to explore the distinct features of acquired dementia encompassing a history of potential exposure and relatively early age of onset, highlighting transmission potential with a rather prion-like pattern. Having reviewed all available relevant literature, dementia of iatrogenic etiology represents a new disease entity that requires an individualized investigation process and poses a great clinical challenge as far as patients with AD, CJD and CAA are concerned. Understanding the underlying pathophysiology of these rare forms of dementia may significantly enhance awareness within clinical field of neurodegenerative diseases and facilitate their prompt management.
Collapse
Affiliation(s)
- Stella Karatzetzou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Serafeim Ioannidis
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Konstantinopoulou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Dimitrios Parisis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.K.); (E.K.); (D.P.); (T.A.)
| |
Collapse
|
2
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Pikija S, Toma A, Radlberger R, Griessenauer CJ, Hecker C, Trinka E, Ki PH, Kraus T, Weis S, Wermer MJH, van Etten ES, Kaushik K. Iatrogenic Cerebral Amyloid Angiopathy in Patients Treated With Cadaveric Dura Mater During Childhood Neurosurgery: A Retrospective Cohort Study. Eur J Neurol 2025; 32:e70091. [PMID: 40047134 PMCID: PMC11883419 DOI: 10.1111/ene.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Iatrogenic cerebral amyloid angiopathy (iCAA) is a recently identified clinico-neuroradiological syndrome associated with medical procedures, particularly neurosurgical treatments involving cadaveric dura mater (e.g., Lyodura). iCAA can manifest as intracerebral hemorrhages, focal seizures, and cognitive impairment, with the risk following exposure currently unknown. We aim to evaluate the risk of developing iCAA in patients who underwent childhood neurosurgical treatment with Lyodura compared to those who did not. METHODS This retrospective cohort study analyzed hospital records from the Christian-Doppler University Hospital in Salzburg, along with mortality data provided by the Austrian Federal Institute of Statistics (Statistik Austria). The study included all patients aged 0-18 who underwent neurosurgical procedures between January 1970 and January 1996. The primary endpoint was the diagnosis of iCAA and iCAA-related death. RESULTS Of 569 pediatric neurosurgical patients, 388 (68%) were further analyzed. Four patients (1%) were diagnosed with probable iCAA at a median age of 42 years (IQR 40-47), with a median latency from surgery to symptom onset of 38 years (IQR 36-41). Only Lyodura recipients developed iCAA, with an incidence rate of 12% (OR 56, 95% CI: 6-2667). The overall incidence of symptomatic iCAA among recipients of any dura material was 5% (OR 19, 95% CI: 2-903). CONCLUSIONS Cadaveric dura mater, especially Lyodura, poses a long-term risk for developing iCAA. Further research is needed to determine susceptibility factors in Lyodura-exposed individuals.
Collapse
Affiliation(s)
- Slaven Pikija
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Andreea Toma
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Christian Doppler University Hospital SalzburgCentre for Cognitive Neuroscience Paracelsus Medical UniversitySalzburgAustria
| | - Richard Radlberger
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Christoph J. Griessenauer
- Department of Neurosurgery, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Constantin Hecker
- Neuroscience Institute, Christian Doppler University Hospital SalzburgCentre for Cognitive Neuroscience Paracelsus Medical UniversitySalzburgAustria
- Institute of NeurointerventionParacelus Medical UniversitySalzburgAustria
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
- Neuroscience Institute, Christian Doppler University Hospital SalzburgCentre for Cognitive Neuroscience Paracelsus Medical UniversitySalzburgAustria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT – University for Health SciencesMedical Informatics and TechnologyHall in TirolAustria
| | - Park Hyon Ki
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Member of the European Reference Network EpiCARE, Christian Doppler University Hospital SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Theo Kraus
- Department of PathologyGeneral University Hospital SalzburgSalzburgAustria
| | - Serge Weis
- Department of PathologyKeppler University CentreLinzAustria
| | - Marieke J. H. Wermer
- Department of NeurologyUniversity Medical Center Groningen (UMCG)the Netherlands
| | - Ellis S. van Etten
- Department of NeurologyLeiden University Medical Centre (LUMC)the Netherlands
| | - Kanishk Kaushik
- Department of NeurologyLeiden University Medical Centre (LUMC)the Netherlands
| |
Collapse
|
4
|
Fułek M, Hachiya N, Gachowska M, Beszłej JA, Bartoszewska E, Kurpas D, Kurpiński T, Adamska H, Poręba R, Urban S, Fułek K, Leszek J. Cellular Prion Protein and Amyloid-β Oligomers in Alzheimer's Disease-Are There Connections? Int J Mol Sci 2025; 26:2097. [PMID: 40076721 PMCID: PMC11900156 DOI: 10.3390/ijms26052097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxin proteins within the brain, such as amyloid-β and hyperphosphorylated tau tangles, are prominent features in AD. The prion protein (PrP) is involved in neurodegeneration via its conversion from the normal cellular form (PrPC) to the infection prion protein scrapie (PrPSc) form. Some studies indicated that post-translationally modified PrPC isoforms play a fundamental role in AD pathological progression. Several studies have shown that the interaction of Aβ oligomers (Aβos) with the N-terminal residues of the PrPC protein region appears critical for neuronal toxicity. PrPC-Aβ binding always occurs in AD brains and is never detected in non-demented controls, and the binding of Aβ aggregates to PrPC is restricted to the N-terminus of PrPC. In this study, we aimed to gather all of the recent information about the connections between PrPC and AD, with potential clinical implications.
Collapse
Affiliation(s)
- Michał Fułek
- Department and Clinic of Diabetology, Hypertension and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Naomi Hachiya
- Shonan Research Center, New-STEP Research Center, Central Glass Co., Ltd., Shonan Health Innovation Park 26-1, Muraoka Higashi, Fujisawa 251-8555, Kanagawa, Japan;
| | - Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Jan Aleksander Beszłej
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Donata Kurpas
- Division of Research Methodology, Department of Nursing, Faculty of Nursing and Midwifery, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Tomasz Kurpiński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.G.); (E.B.); (T.K.)
| | - Hanna Adamska
- Department of Rheumatology and Internal Medicine, Marciniak Lower Silesian Specialist Hospital, 54-049 Wroclaw, Poland;
| | - Rafał Poręba
- Department of Biological Principles of Physical Activity, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Szymon Urban
- Department of Cardiology, The Copper Health Center, 59-301 Lubin, Poland;
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
5
|
Saw G, Yi LX, Tan EK, Zhou ZD. Evidence Suggesting That Alzheimer's Disease May Be a Transmissible Disorder. Int J Mol Sci 2025; 26:508. [PMID: 39859223 PMCID: PMC11765254 DOI: 10.3390/ijms26020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neurodegeneration with the formation of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain parenchyma. The causes of AD have been attributed to a combination of age-related changes within the brain as well as genetic, environmental and lifestyle factors. However, a recent study by Banerjee et al. highlights the possibility that AD may be a transmissible disease and that iatrogenic AD could be environmentally acquired, similar to iatrogenic Creutzfeldt-Jakob disease (iCJD). The study reports that contaminated Aβ in cadaver-derived pituitary growth hormone (c-hGH) therapy, which patients received during childhood inoculation, may accidentally transmit into their brains, triggering neurodegeneration and AD onset in older age. Furthermore, corroborating evidence from various animal model studies and human case reports suggests that AD can be potentially transmissible.
Collapse
Affiliation(s)
- Genevieve Saw
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
| | - Ling-Xiao Yi
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (G.S.); (L.-X.Y.)
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
Furutsuka K, Murakami A, Iwamura H, Miyake K, Asai A, Yakushiji Y. [A case of young onset cerebral amyloid angiopathy associated with dural grafting]. Rinsho Shinkeigaku 2024; 64:736-741. [PMID: 39313365 DOI: 10.5692/clinicalneurol.cn-002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A 47-year-old man was admitted to our hospital because of sudden-onset motor aphasia and right hemiplegia. His past medical history was notable for left craniotomy and hematoma evacuation following a traumatic brain hemorrhage approximately 40 years earlier, for which dural grafting was performed. He also had a history of three lobar hemorrhages in the left hemisphere since the age of 42 years. Brain CT imaging revealed an acute left frontal lobar hemorrhage. His initial brain MRI conducted at our hospital demonstrated hemorrhagic findings with left hemisphere dominance, including acute and old lobar hemorrhage, cortical superficial siderosis, and cerebral microbleeds. Cerebrospinal fluid analyses demonstrated reduced levels of cerebral amyloid-β 42, and elevated total tau. His apolipoprotein E genotype was ε3/ε3. Whole-exome sequencing did not detect mutations in genes associated with Alzheimer's disease, including presenilin 1, presenilin 2, and amyloid precursor protein. These findings led to a clinical diagnosis of iatrogenic cerebral amyloid angiopathy (CAA) using recently proposed diagnostic criteria, which do not require pathological evaluation of the brain. Iatrogenic CAA should be considered as a cause of lobar hemorrhage in young patients, especially those with a past history of neurosurgery.
Collapse
Affiliation(s)
| | - Aya Murakami
- Department of Neurology, Kansai Medical University
| | | | | | - Akio Asai
- Department of Neurosurgery, Kansai Medical University
| | | |
Collapse
|
7
|
Suzuki K, Ataka T, Kimura N, Matsubara E. Cognitive Impairment and Early-onset Cerebral Amyloid Angiopathy in a Middle-aged Man with a History of Childhood Traumatic Brain Injury. Intern Med 2024; 63:2547-2550. [PMID: 38346743 PMCID: PMC11473271 DOI: 10.2169/internalmedicine.2681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 09/18/2024] Open
Abstract
We herein report the a 42-year-old man with early-onset cerebral amyloid angiopathy (CAA) and a history of traumatic brain injury and neurosurgery in childhood. Computed tomography revealed cognitive impairment and recurrent lobar intracerebral hemorrhaging. Magnetic resonance imaging indicated cerebral microbleeds, and Pittsburgh compound B positron emission tomography detected brain amyloid deposition, mainly in the region of trauma and occipital lobes. Interestingly, the patient had no genetic predispositions or relevant family history. This case suggests that a single traumatic brain injury or neurosurgery in childhood can cause early-onset CAA.
Collapse
Affiliation(s)
- Kosuke Suzuki
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Takuya Ataka
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Noriyuki Kimura
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Etsuro Matsubara
- Department of Neurology, Oita University Faculty of Medicine, Japan
| |
Collapse
|
8
|
Pikija S, Pretnar-Oblak J, Frol S, Malojcic B, Gattringer T, Rak-Frattner K, Staykov D, Salmaggi A, Milani R, Magdic J, Iglseder S, Trinka E, Kraus T, Toma A, DiFrancesco JC, Tabaee Damavandi P, Fabin N, Bersano A, de la Riva Juez P, Albajar Gomez I, Storti B, Fandler-Höfler S. Iatrogenic cerebral amyloid angiopathy: A multinational case series and individual patient data analysis of the literature. Int J Stroke 2024; 19:314-321. [PMID: 37700397 DOI: 10.1177/17474930231203133] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND The transmission of amyloid β (Aβ) in humans leading to iatrogenic cerebral amyloid angiopathy (iCAA) is a novel concept with analogies to prion diseases. However, the number of published cases is low, and larger international studies are missing. AIMS We aimed to build a large multinational collaboration on iCAA to better understand the clinical spectrum of affected patients. METHODS We collected clinical data on patients with iCAA from Austria, Croatia, Italy, Slovenia, and Spain. Patients were included if they met the proposed Queen Square diagnostic criteria (QSC) for iCAA. In addition, we pooled data on disease onset, latency, and cerebrospinal fluid (CSF) biomarkers from previously published iCAA cases based on a systematic literature review. RESULTS Twenty-seven patients (22% women) were included in this study. Of these, 19 (70%) met the criteria for probable and 8 (30%) for possible iCAA. Prior neurosurgical procedures were performed in all patients (93% brain surgery, 7% spinal surgery) at median age of 8 (interquartile range (IQR) = 4-18, range = 0-26 years) years. The median symptom latency was 39 years (IQR = 34-41, range = 28-49). The median age at symptom onset was 49 years (IQR = 43-55, range = 32-70). Twenty-one patients (78%) presented with intracranial hemorrhage and 3 (11%) with seizures. CONCLUSIONS Our large international case series of patients with iCAA confirms a wide age boundary for the diagnosis of iCAA. Dissemination of awareness of this rare condition will help to identify more affected patients.
Collapse
Affiliation(s)
- Slaven Pikija
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Janja Pretnar-Oblak
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Branko Malojcic
- Department of Neurology, Zagreb School of Medicine, University Hospital Center, Zagreb, Croatia
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Kinga Rak-Frattner
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Dimitre Staykov
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Andrea Salmaggi
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Riccardo Milani
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Jozef Magdic
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Sarah Iglseder
- Department of Vascular Neurology, University Medical Centre Innsbruck, Innsbruck, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria
- Department of Public Health, Health Services Research, and Health Technology Assessment, Hall in Tirol, Austria
| | - Theo Kraus
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Andreea Toma
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Natalia Fabin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Patricia de la Riva Juez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Ines Albajar Gomez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
9
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
10
|
Storti B, Gabriel MM, Sennfält S, Canavero I, Rifino N, Gatti L, Bersano A. Rare forms of cerebral amyloid angiopathy: pathogenesis, biological and clinical features of CAA-ri and iCAA. Front Neurosci 2023; 17:1219025. [PMID: 37492402 PMCID: PMC10363735 DOI: 10.3389/fnins.2023.1219025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Thanks to a more widespread knowledge of the disease, and improved diagnostic techniques, the clinical spectrum of cerebral amyloid angiopathy (CAA) is now broad. Sporadic CAA, hereditary CAA, CAA-related inflammation (CAA-ri) and iatrogenic CAA (iCAA) create a clinical and radiological continuum which is intriguing and only partially discovered. Despite being relatively rare, CAA-ri, an aggressive subtype of CAA with vascular inflammation, has gained growing attention also because of the therapeutic efficacy of anti-inflammatory and immunomodulating drugs. More recently, diagnostic criteria have been proposed for an unusual variant of CAA, probably related to an iatrogenic origin (iCAA), toward which there is mounting scientific interest. These atypical forms of CAA are still poorly known, and their recognition can be challenging and deserve to be pursued in specialized referral centres. The aim of this brief review is to focus current developments in the field of rare forms of CAA, its pathogenesis as well as clinical and biological features in order to increase awareness of these rare forms.
Collapse
Affiliation(s)
- Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Magdalena Gabriel
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Gatti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Muller C. Case report of iatrogenic cerebral amyloid angiopathy after exposure to Lyodura: an Australian perspective. Front Neurosci 2023; 17:1185267. [PMID: 37214406 PMCID: PMC10196053 DOI: 10.3389/fnins.2023.1185267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Background Recently proposed diagnostic criteria for iatrogenic cerebral amyloid angiopathy (iCAA) have sparked increased recognition of cases across the globe. Whilst these patients tend to have a tumultuous course, much like sporadic CAA, there is a high degree of variability. What is unique in this case is the breadth of clinicoradiological data available, including handwritten surgical notes from 1985. In retrospect, early imaging changes of what would ultimately lead to profound morbidity, were apparent 30 years after inoculation with cadaveric dural tissue. Aim In this case study we examine the clinicoradiological features of a case of probable iCAA and draw awareness to the presence of this disease in Australia. Methods This case was admitted under the care of the author at the Royal Brisbane and Women's Hospital (RBWH). Clinical details and data were gathered during the patient's care and consent for publication provided by the enduring power of attorney. Results This 56-year-old female presented in 2018 with left hemiparesis, neglect, and dysarthria secondary to a large right frontal lobe intracerebral hemorrhage (ICH) without an underlying macrovascular cause. MRI brain demonstrated diffuse superficial siderosis assumed related to previous surgical interventions during the mid-1980s for a Chiari malformation and cervical syrinx. There was evidence of extensive white matter disease, discordant with her lack of cerebrovascular disease risk factors. Brain biopsy confirmed CAA. Archived surgical notes confirmed exposure to Lyodura in 1985 and 1986. Two decades of MRI data were available for review and illustrate the evolution of CAA, from normal post-operative findings to marked and unrecognized abnormalities 4 years prior to her first ICH. Discussion This is the first Australian case of probable iatrogenic CAA (iCAA) to have such extensive documentation of clinicoradiological evolution. It demonstrates the aggressive course iCAA can take and provides insights into early disease manifestations, relevant to the more common sporadic cases. A brief review of the history of commercial cadaveric tissue use in Australia highlights enormous changes in medical practice over the last 50 years. Awareness within Australia should be raised for this clinical phenomenon, and cases collated to contribute to the growing international pool of evidence.
Collapse
Affiliation(s)
- Claire Muller
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| |
Collapse
|
12
|
Kaushik K, van Etten ES, Siegerink B, Kappelle LJ, Lemstra AW, Schreuder FH, Klijn CJ, Peul WC, Terwindt GM, van Walderveen MA, Wermer MJ. Iatrogenic Cerebral Amyloid Angiopathy Post Neurosurgery: Frequency, Clinical Profile, Radiological Features, and Outcome. Stroke 2023; 54:1214-1223. [PMID: 37035916 PMCID: PMC10121246 DOI: 10.1161/strokeaha.122.041690] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Prion-like transmission of amyloid-ß through cadaveric dura, decades after neurosurgical procedures, has been hypothesized as an iatrogenic cause of cerebral amyloid angiopathy (CAA). We investigated new and previously described patients to assess the clinical profile, radiological features, and outcome of this presumed iatrogenic CAA-subtype (iCAA). METHODS Patients were collected from our prospective lobar hemorrhage and CAA database (n=251) with patients presenting to our hospital between 2008 and 2022. In addition, we identified patients with iCAA from 2 other Dutch CAA-expertise hospitals and performed a systematic literature-search for previously described patients. We classified patients according to the previously proposed diagnostic criteria for iCAA, assessed clinical and radiological disease features, and calculated intracerebral hemorrhage (ICH)-recurrence rates. We evaluated the spatial colocalization of cadaveric dura placement and CAA-associated magnetic resonance imaging markers. RESULTS We included 49 patients (74% men, mean age 43 years [range, 27-84]); 15 from our database (6% [95% CI, 3%-10%]; 45% of patients <55 years), 3 from the 2 other CAA-expertise hospitals, and 31 from the literature. We classified 43% (n=21; 1 newly identified patient) as probable and 57% (n=28) as possible iCAA. Patients presented with lobar ICH (57%), transient focal neurological episodes (12%), or seizures (8%). ICH-recurrence rate in the new patients (16/100 person-years [95% CI, 7-32], median follow-up 18 months) was lower than in the previously described patients (77/100 person-years [95% CI, 59-99], median follow-up 18 months). One patient had a 10 year interlude without ICH-recurrence. We identified no clear spatial relationship between dura placement and CAA-associated magnetic resonance imaging markers. During follow-up (median, 18 months), 20% of the patients developed transient focal neurological episodes and 20% cognitively declined. CONCLUSIONS iCAA seems common in patients presenting with nonhereditary CAA under the age of 55. Clinical and radiological features are comparable with sCAA. After diagnosis, multiple ICH-recurrences but also long symptom-free intervals can occur. Harmonized registries are necessary to identify and understand this potentially underrecognized CAA-subtype.
Collapse
Affiliation(s)
- Kanishk Kaushik
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Ellis S. van Etten
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Bob Siegerink
- Department of Clinical Epidemiology (B.S.), Leiden University Medical Center, the Netherlands
| | - L. Jaap Kappelle
- Department of Neurology, University Medical Center Utrecht, the Netherlands (L.J.K.)
| | - Afina W. Lemstra
- Department of Neurology, Alzheimer center Amsterdam, Amsterdam University Medical Center, the Netherlands (A.W.L.)
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, the Netherlands (F.H.B.M.S., C.J.M.K.)
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, the Netherlands (F.H.B.M.S., C.J.M.K.)
| | - Wilco C. Peul
- University Neurosurgical Center Holland, LUMC|HMC|HAGA Leiden & The Hague, the Netherlands (W.C.P.)
| | - Gisela M. Terwindt
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | | | - Marieke J.H. Wermer
- Department of Neurology (K.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
13
|
Milani R, Mazzeo LA, Vismara D, Salemi I, Dainese E, Maderna E, Pellencin E, Catania M, Campanella N, Di Fede G, Giaccone G, Salmaggi A. Spontaneous intracerebral haemorrhage associated with early-onset cerebral amyloid angiopathy and Alzheimer's disease neuropathological changes five decades after cadaveric dura mater graft. Acta Neuropathol Commun 2023; 11:30. [PMID: 36829252 PMCID: PMC9960390 DOI: 10.1186/s40478-023-01528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a small vessel disease, causing spontaneous intracerebral hemorrhage (ICH) in the elderly. It is strongly associated with Alzheimer disease (AD), as most CAA patients show deposition of Aβ-i.e. the basic component of parenchymal Alzheimer amyloid deposits-in the cerebral vessels. Iatrogenic early-onset CAA has been recently identified in patients with a history of traumatic brain injury or other cerebral as well as extra-cerebral lesions that led to neurosurgery or other medical procedures as intravascular embolization by cadaveric dura mater extracts many years before the first ICH event. In those patients, a transmission of Aβ seeds from neurosurgical instruments or from cadaveric dura mater exposure was suggested. We report a 51-year-old woman with unremarkable family history who presented abruptly with aphasia and right hemiparesis. A cerebral left lobar haemorrhagic stroke was documented by neuroimaging. Accurate anamnesis revealed a neurosurgical procedure with cadaveric dura mater graft at the age of 2 years for an arachnoid cyst. The neuropathological examination of the cerebral parietal biopsy showed severe amyloid angiopathy in many leptomeningeal and cortical vessels, as well as abundant parenchymal Aβ deposits, neurofibrillary tangles and neuropil threads. The mechanism involved in the human-to-human transmission of the Aβ proteinopathy remains to be clarified. In our patient the cadaver derived dura used for grafting is a very strong candidate as the source of the transmission. A systematic monitoring of individuals who have had neurosurgical procedures in early life, especially those involving cadaveric dural grafts, is required to determine the ratio of those affected by CAA many years later and unaffected. Moreover, our report confirms that in addition to vascular and parenchymal Aβ pathology, neurofibrillary changes indistinguishable from AD may develop in specific conditions with long latency period from the neurosurgical or embolization procedure.
Collapse
Affiliation(s)
| | | | | | - Ilaria Salemi
- Ospedale Alessandro Manzoni, ASST di Lecco, Lecco, Italy
| | | | - Emanuela Maderna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Elisa Pellencin
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Marcella Catania
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Nicole Campanella
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Giuseppe Di Fede
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy.
| | | |
Collapse
|
14
|
Xu G, Fromholt S, Borchelt DR. Modeling the Competition between Misfolded Aβ Conformers That Produce Distinct Types of Amyloid Pathology in Alzheimer's Disease. Biomolecules 2022; 12:886. [PMID: 35883442 PMCID: PMC9313290 DOI: 10.3390/biom12070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
The amyloid pathology characteristic of Alzheimer's disease (AD) can be broadly classified as either fibrillary amyloid or diffuse amyloid. Fibrillary amyloid is found in cored-neuritic deposits, fibrillar deposits, and vascular deposits, and binds strongly to the amyloid revealing dyes Thioflavin-S or Congo Red. Diffuse amyloid can appear as wispy dispersed deposits or compact tufted deposits dispersed in neuropil, and binds amyloid dyes weakly if at all. In AD brains, both types of pathology are detected. Homogenates from AD brains, or the brains of transgenic mice modeling AD-amyloidosis, have been used to seed pathology in vulnerable host transgenic models. These studies suggest that pathologies may arise from distinct conformers or strains of misfolded Aβ, similar to propagating prions. Using Aβ strains sourced from four different AD-amyloidosis models, we injected pathological seeds into the brains of newborn mice from three different transgenic hosts with distinctive Aβ pathologies. Two of the seeding sources were from mice that primarily develop cored-neuritic Aβ deposits (cored strain) while the other two seeding sources were from mice that develop diffuse Aβ deposits (diffuse strain). These seeds were injected into host APP mice in which the resident strain was either diffuse or cored-neuritic pathology. Seeding-homogenates were injected into the brains of newborn mice to initiate propagation as early as possible. Depending upon the level of transgene expression in the host, we show that the injected strains of misfolded Aβ from the seeding homogenate were able to outcompete the resident strain of the APP host model. In serial passaging experiments, it appeared that the diffuse strain was more easily propagated than the cored strain. Collectively, our studies align with the idea that different types of Aβ pathology in AD brains arise from different populations of Aβ conformers that compete to populate the brain.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David R. Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
16
|
Banerjee G, Samra K, Adams ME, Jaunmuktane Z, Parry-Jones AR, Grieve J, Toma AK, Farmer SF, Sylvester R, Houlden H, Rudge P, Mead S, Brandner S, Schott JM, Collinge J, Werring DJ. Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328792. [PMID: 35577510 DOI: 10.1136/jnnp-2022-328792] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aβ seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ahmed K Toma
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Richard Sylvester
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Hamaguchi T, Ono K, Yamada M. Transmission of Cerebral β-Amyloidosis Among Individuals. Neurochem Res 2022; 47:2469-2477. [PMID: 35277809 DOI: 10.1007/s11064-022-03566-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
Deposition of amyloid β protein (Aβ) in the brain (cerebral β-amyloidosis) is a hallmark of Alzheimer's disease (AD). So far, there have been increasing number of experimental studies using AD mouse model that cerebral β-amyloidosis could be transmitted among individuals as prion-like mechanism. Furthermore, several pathological studies using autopsied patients with iatrogenic Creutzfeldt-Jakob disease (CJD) showed that cerebral β-amyloidosis in addition to the CJD pathology could be transmitted among humans via medical procedures, such as human growth hormone derived from cadaver injection and cadaveric dura mater graft. In addition, although cerebral amyloid angiopathy (CAA), which is Aβ deposition in the cerebral vessels, related cerebral hemorrhage rarely develops in young people, several patients with CAA-related cerebral hemorrhage under the age of 55 with histories of neurosurgeries with and without dura mater graft in early childhood have been reported. These patients might show that Aβ pathology is often recognized as Aβ-CAA rather than parenchymal Aβ deposition in the transmission of cerebral β-amyloidosis in humans, and we proposed an emerging concept, "acquired CAA". Considering that there have been several patients with acquired CAA with an incubation period from neurosurgery and the onset of CAA related cerebral hemorrhage of longer than 40 years, the number of cases is likely to increase in the future, and detailed epidemiological investigation is required. It is necessary to continue to elucidate the pathomechanisms of acquired CAA and urgently establish a method for preventing the transmission of cerebral β-amyloidosis among individuals.
Collapse
Affiliation(s)
- Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Neurology, Department of Internal Medicine, Kudanzaka Hospital, Tokyo, Japan.
| |
Collapse
|
18
|
Nakano H, Hamaguchi T, Ikeda T, Watanabe‐Nakayama T, Ono K, Yamada M. Inactivation of seeding activity of amyloid β‐protein aggregates in vitro. J Neurochem 2021; 160:499-516. [DOI: 10.1111/jnc.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Nakano
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Neurology Ishikawa Prefectural Central Hospital Kanazawa Japan
| | - Takahiro Watanabe‐Nakayama
- World Premier International Research Center Initiative (WPI)‐Nano Life Science Institute Kanazawa University Kanazawa Japan
| | - Kenjiro Ono
- Division of Neurology Department of Internal Medicine Showa University Tokyo Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Internal Medicine Department of Neurology Kudanzaka Hospital Tokyo Japan
| |
Collapse
|
19
|
Morales R, Bravo-Alegria J, Moreno-Gonzalez I, Duran-Aniotz C, Gamez N, Edwards Iii G, Soto C. Transmission of cerebral amyloid pathology by peripheral administration of misfolded Aβ aggregates. Mol Psychiatry 2021; 26:5690-5701. [PMID: 34002023 PMCID: PMC8595465 DOI: 10.1038/s41380-021-01150-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023]
Abstract
Previous reports showed that brain Aβ amyloidosis can be induced in animal models by exogenous administration of pre-formed aggregates. To date, only intra-peritoneal and intra-venous administrations are described as effective means to peripherally accelerate brain Aβ amyloidosis by seeding. Here, we show that cerebral accumulation of Aβ can be accelerated after exposing mouse models of Alzheimer's disease (AD) to Aβ seeds by different peripheral routes of administration, including intra-peritoneal and intra-muscular. Interestingly, animals receiving drops of brain homogenate laden with Aβ seeds in the eyes were efficiently induced. On the contrary, oral administration of large quantities of brain extracts from aged transgenic mice and AD patients did not have any effect in brain pathology. Importantly, pathological induction by peripheral administration of Aβ seeds generated a large proportion of aggregates in blood vessels, suggesting vascular transport. This information highlights the role of peripheral tissues and body fluids in AD-related pathological changes.
Collapse
Affiliation(s)
- Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Javiera Bravo-Alegria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Claudia Duran-Aniotz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nazaret Gamez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - George Edwards Iii
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile.
| |
Collapse
|
20
|
Abstract
Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Caihong Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Zürich, CH-8091, Switzerland
| |
Collapse
|
21
|
Zielinski M, Röder C, Schröder GF. Challenges in sample preparation and structure determination of amyloids by cryo-EM. J Biol Chem 2021; 297:100938. [PMID: 34224730 PMCID: PMC8335658 DOI: 10.1016/j.jbc.2021.100938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023] Open
Abstract
Amyloids share a common architecture but play disparate biological roles in processes ranging from bacterial defense mechanisms to protein misfolding diseases. Their structures are highly polymorphic, which makes them difficult to study by X-ray diffraction or NMR spectroscopy. Our understanding of amyloid structures is due in large part to recent advances in the field of cryo-EM, which allows for determining the polymorphs separately. In this review, we highlight the main stepping stones leading to the substantial number of high-resolution amyloid fibril structures known today as well as recent developments regarding automation and software in cryo-EM. We discuss that sample preparation should move closer to physiological conditions to understand how amyloid aggregation and disease are linked. We further highlight new approaches to address heterogeneity and polymorphism of amyloid fibrils in EM image processing and give an outlook to the upcoming challenges in researching the structural biology of amyloids.
Collapse
Affiliation(s)
- Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Christine Röder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Physics Department, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Jaunmuktane Z, Banerjee G, Paine S, Parry-Jones A, Rudge P, Grieve J, Toma AK, Farmer SF, Mead S, Houlden H, Werring DJ, Brandner S. Alzheimer's disease neuropathological change three decades after iatrogenic amyloid-β transmission. Acta Neuropathol 2021; 142:211-215. [PMID: 34047818 PMCID: PMC8217014 DOI: 10.1007/s00401-021-02326-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Simon Paine
- Neuropathology Laboratory, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Adrian Parry-Jones
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, University of Manchester, Manchester, M13 9PL, UK
- Division of Cardiovascular Sciences, School of Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Joan Grieve
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ahmed K Toma
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Simon F Farmer
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David J Werring
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
23
|
Thomzig A, Wagenführ K, Pinder P, Joncic M, Schulz-Schaeffer WJ, Beekes M. Transmissible α-synuclein seeding activity in brain and stomach of patients with Parkinson's disease. Acta Neuropathol 2021; 141:861-879. [PMID: 33895878 PMCID: PMC8068459 DOI: 10.1007/s00401-021-02312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 02/02/2023]
Abstract
Cerebral deposition of abnormally aggregated α-synuclein (αSyn) is a neuropathological hallmark of Parkinson’s disease (PD). PD-associated αSyn (αSynPD) aggregates can act as proteinaceous nuclei (“seeds”) able of self-templated propagation. Since this is strikingly reminiscent to properties of proteinaceous infectious particles (prions), lessons learned from prion diseases suggest to test whether transferred αSynPD can propagate and induce neurological impairments or disease in a new host. Two studies that addressed this question provided divergent results. Intracerebral (i.c.) injection of Lewy body extracts from PD patients caused cerebral αSyn pathology, as well as nigrostriatal neurodegeneration, of wild-type mice and macaques, with the mice also showing motor impairments (Recasens et al. 2014, Ann Neurol 75:351–362). In contrast, i.c. transmission of homogenates from PD brains did not stimulate, after “> 360” days post-injection (dpi), pathological αSyn conversion or clinical symptoms in transgenic TgM83+/− mice hemizygously expressing mutated (A53T) human αSyn (Prusiner et al. 2015, PNAS 112:E5308–E5317). To advance the assessment of possible αSynPD hazards by providing further data, we examined neuropathological and clinical effects upon i.c. transmission of brain, stomach wall and muscle tissue as well as blood from PD patients in TgM83+/− mice up to 612 dpi. This revealed a subtle, yet distinctive stimulation of localized αSyn aggregation in the somatodendritic compartment and dystrophic neurites of individual or focally clustered cerebral neurons after challenge with brain and stomach wall homogenates. No such effect was observed with transmitted blood or homogenized muscle tissue. The detected stimulation of αSyn aggregation was not accompanied by apparent motor impairments or overt neurological disease in TgM83+/− mice. Our study substantiated that transmitted αSynPD seeds, including those from the stomach wall, are able to propagate in new mammalian hosts. The consequences of such propagation and potential safeguards need to be further investigated.
Collapse
|
24
|
Ruiz-Riquelme A, Mao A, Barghash MM, Lau HHC, Stuart E, Kovacs GG, Nilsson KPR, Fraser PE, Schmitt-Ulms G, Watts JC. Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathol Commun 2021; 9:83. [PMID: 33971978 PMCID: PMC8112054 DOI: 10.1186/s40478-021-01187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
When injected into genetically modified mice, aggregates of the amyloid-β (Aβ) peptide from the brains of Alzheimer’s disease (AD) patients or transgenic AD mouse models seed cerebral Aβ deposition in a prion-like fashion. Within the brain, Aβ exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aβ variants to the seeding behavior of Aβ aggregates remains unknown. Here, we have investigated the relative seeding activities of Aβ aggregates composed exclusively of recombinant Aβ38, Aβ40, Aβ42, or Aβ43. Cerebral Aβ42 levels were not increased in AppNL−F knock-in mice injected with Aβ38 or Aβ40 aggregates and were only increased in a subset of mice injected with Aβ42 aggregates. In contrast, significant accumulation of Aβ42 was observed in the brains of all mice inoculated with Aβ43 aggregates, and the extent of Aβ42 induction was comparable to that in mice injected with brain-derived Aβ seeds. Mice inoculated with Aβ43 aggregates exhibited a distinct pattern of cerebral Aβ pathology compared to mice injected with brain-derived Aβ aggregates, suggesting that recombinant Aβ43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aβ C-terminal variants are more potent inducers of cerebral Aβ deposition and highlight the potential role of Aβ43 seeds as a crucial factor in the initial stages of Aβ pathology in AD.
Collapse
|
25
|
Yoshiki K, Hirose G, Kumahashi K, Kohda Y, Ido K, Shioya A, Misaki K, Kasuga K. Follow-up study of a patient with early onset cerebral amyloid angiopathy following childhood cadaveric dural graft. Acta Neurochir (Wien) 2021; 163:1451-1455. [PMID: 33586018 DOI: 10.1007/s00701-021-04751-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
We retrospectively studied the T2 star (T2*)-weighted magnetic resonance imaging (MRI) of a 40-year-old patient diagnosed with symptomatic early-onset cerebral amyloid angiopathy (CAA), occurring 34 years following childhood neurosurgery using a cadaveric dural patch. Our findings revealed that CAA associated with cadaveric dural transplantation could progress rapidly, sometimes with bilateral bleeding. This microbleed evolution is suggestive of water-soluble amyloid-β transmission via cerebrospinal fluid alongside perivascular drainage pathways with deposition in the cerebral artery walls due to clearance disturbances. Multiple intracerebral hemorrhages associated with CAA with a childhood cadaveric dural graft should be considered a life-threatening medical complication.
Collapse
|
26
|
Asher DM, Belay E, Bigio E, Brandner S, Brubaker SA, Caughey B, Clark B, Damon I, Diamond M, Freund M, Hyman BT, Jucker M, Keene CD, Lieberman AP, Mackiewicz M, Montine TJ, Morgello S, Phelps C, Safar J, Schneider JA, Schonberger LB, Sigurdson C, Silverberg N, Trojanowski JQ, Frosch MP. Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. J Neuropathol Exp Neurol 2021; 79:1141-1146. [PMID: 33000167 PMCID: PMC7577514 DOI: 10.1093/jnen/nlaa109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.
Collapse
Affiliation(s)
- David M Asher
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ermias Belay
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eileen Bigio
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London
| | - Scott A Brubaker
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brychan Clark
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Freund
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Miroslaw Mackiewicz
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Creighton Phelps
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina Sigurdson
- Department of Pathology, University of California - San Diego, San Diego, California
| | - Nina Silverberg
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, University of Washington, Seattle, Washington.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
28
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
29
|
Abstract
Aβ plaques are one of the two lesions in the brain that define the neuropathological diagnosis of Alzheimer's disease. Plaques are highly diverse structures; many of them include massed, fibrillar polymers of the Aβ protein referred to as Aβ-amyloid, but some lack the defining features of amyloid. Cellular elements in 'classical' plaques include abnormal neuronal processes and reactive glial cells, but these are not present in all plaques. Plaques have been given various names since their discovery in 1892, including senile plaques, amyloid plaques, and neuritic plaques. However, with the identification in the 1980s of Aβ as the obligatory and universal component of plaques, the term 'Aβ plaques' has become a unifying term for these heterogeneous formations. Tauopathy, the second essential lesion of the Alzheimer's disease diagnostic dyad, is downstream of Aβ-proteopathy, but it is critically important for the manifestation of dementia. The etiologic link between Aβ-proteopathy and tauopathy in Alzheimer's disease remains largely undefined. Aβ plaques develop and propagate via the misfolding, self-assembly and spread of Aβ by the prion-like mechanism of seeded protein aggregation. Partially overlapping sets of risk factors and sequelae, including inflammation, genetic variations, and various environmental triggers have been linked to plaque development and idiopathic Alzheimer's disease, but no single factor has emerged as a requisite cause. The value of Aβ plaques per se as therapeutic targets is uncertain; although some plaques are sites of focal gliosis and inflammation, the complexity of inflammatory biology presents challenges to glia-directed intervention. Small, soluble, oligomeric assemblies of Aβ are enriched in the vicinity of plaques, and these probably contribute to the toxic impact of Aβ aggregation on the brain. Measures designed to reduce the production or seeded self-assembly of Aβ can impede the formation of Aβ plaques and oligomers, along with their accompanying abnormalities; given the apparent long timecourse of the emergence, maturation and proliferation of Aβ plaques in humans, such therapies are likely to be most effective when begun early in the pathogenic process, before significant damage has been done to the brain. Since their discovery in the late 19th century, Aβ plaques have, time and again, illuminated fundamental mechanisms driving neurodegeneration, and they should remain at the forefront of efforts to understand, and therefore treat, Alzheimer's disease.
Collapse
Affiliation(s)
- Lary C. Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University
| |
Collapse
|
30
|
Gomez-Gutierrez R, Morales R. The prion-like phenomenon in Alzheimer's disease: Evidence of pathology transmission in humans. PLoS Pathog 2020; 16:e1009004. [PMID: 33119726 PMCID: PMC7595341 DOI: 10.1371/journal.ppat.1009004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ruben Gomez-Gutierrez
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
- * E-mail:
| |
Collapse
|
31
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
32
|
Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19:872-878. [PMID: 32949547 DOI: 10.1016/s1474-4422(20)30238-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.
Collapse
Affiliation(s)
- Elsa Lauwers
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giovanna Lalli
- UK Dementia Research Institute, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Gustaf Edgren
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Stéphane Haïk
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France; Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Adel Helmy
- Department of Clinical Neuroscience, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adrian J Ivinson
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Richard Knight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK; National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Western General Hospital, Edinburgh, UK
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - I-Chun Lin
- UK Dementia Research Institute, University College London, London, UK
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK
| | - James Pickett
- Alzheimer's Society, London, London, UK; Epilepsy Research UK, London, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, Southampton, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; Unité Mixte de Recherche, INSERM, Université de Franche-Comté, Besançon, France
| | - Peter van den Burg
- European Blood Alliance, Brussels, Belgium; Department of Transfusion Medicine, Sanquin, Amsterdam, Netherlands
| | - Philippe Vandekerckhove
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Clare Walton
- Alzheimer's Society, London, London, UK; Multiple Sclerosis International Federation, London, UK
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
33
|
Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Brown D, Sinka K, Andrews N, Dabaghian R, Simmons M, Edwards P, Bellerby P, Everest DJ, McCall M, McCardle LM, Linehan J, Mead S, Hilton DA, Ironside JW, Brandner S. Prevalence in Britain of abnormal prion protein in human appendices before and after exposure to the cattle BSE epizootic. Acta Neuropathol 2020; 139:965-976. [PMID: 32232565 PMCID: PMC7244468 DOI: 10.1007/s00401-020-02153-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Widespread dietary exposure of the population of Britain to bovine spongiform encephalopathy (BSE) prions in the 1980s and 1990s led to the emergence of variant Creutzfeldt-Jakob Disease (vCJD) in humans. Two previous appendectomy sample surveys (Appendix-1 and -2) estimated the prevalence of abnormal prion protein (PrP) in the British population exposed to BSE to be 237 per million and 493 per million, respectively. The Appendix-3 survey was recommended to measure the prevalence of abnormal PrP in population groups thought to have been unexposed to BSE. Immunohistochemistry for abnormal PrP was performed on 29,516 samples from appendices removed between 1962 and 1979 from persons born between 1891 through 1965, and from those born after 1996 that had been operated on from 2000 through 2014. Seven appendices were positive for abnormal PrP, of which two were from the pre-BSE-exposure era and five from the post BSE-exposure period. None of the seven positive samples were from appendices removed before 1977, or in patients born after 2000 and none came from individuals diagnosed with vCJD. There was no statistical difference in the prevalence of abnormal PrP across birth and exposure cohorts. Two interpretations are possible. Either there is a low background prevalence of abnormal PrP in human lymphoid tissues that may not progress to vCJD. Alternatively, all positive specimens are attributable to BSE exposure, a finding that would necessitate human exposure having begun in the late 1970s and continuing through the late 1990s.
Collapse
Affiliation(s)
- O Noel Gill
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Yvonne Spencer
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom
| | - Carole Kelly
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - David Brown
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Katy Sinka
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Nick Andrews
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Reza Dabaghian
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Marion Simmons
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Philip Edwards
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - Peter Bellerby
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - David J Everest
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Mark McCall
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Linda M McCardle
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - David A Hilton
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom.
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
34
|
Chuan D, Wang Y, Fan R, Zhou L, Chen H, Xu J, Guo G. Fabrication and Properties of a Biomimetic Dura Matter Substitute Based on Stereocomplex Poly(Lactic Acid) Nanofibers . Int J Nanomedicine 2020; 15:3729-3740. [PMID: 32547025 PMCID: PMC7266401 DOI: 10.2147/ijn.s248998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Duraplasty is one of the most critical issues in neurosurgical procedures because the defect of dura matter will cause many complications. Electrospinning can mimic the 3D structure of the natural extracellular matrix whose structure is similar to that of dura matter. Poly(L-lactic acid) (PLLA) has been used to fabricate dura matter substitutes and showed compatibility to dural tissue. However, the mechanical properties of the PLLA substitute cannot match the mechanical properties of the human dura mater. Methods and Results We prepared stereocomplex nanofiber membranes based on enantiomeric poly(lactic acid) and poly(D-lactic acid)-grafted tetracalcium phosphate via electrospinning. X-ray diffraction results showed the formation of stereocomplex crystallites (SC) in the composite nanofiber membranes. Scanning electron microscope observation images showed that composites nanofibers with higher SC formation can keep its original morphologies after heat treatment, suggesting the heat resistance of composite nanofiber membranes. Differential scanning calorimeter tests confirmed that the melting temperature of composite nanofiber membranes was approximately 222°C, higher than that of PLLA. Tensile testing indicated that the ultimate tensile strength and the elongation break of the stereocomplex nanofiber membranes were close to human dura matter. In vitro cytotoxicity studies proved that the stereocomplex nanofiber membranes were non-toxic. The neuron-like differentiation of marrow stem cells on the stereocomplex nanofiber membranes indicated its neuron compatibility. Conclusion The stereocomplex nanofiber membranes have the potential to serve as a dura mater substitute.
Collapse
Affiliation(s)
- Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Haifeng Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Jianguo Xu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu610041, People’s Republic of China
- Correspondence: Gang Guo; Liangxue Zhou State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu610041, People’s Republic of ChinaTel +86 28-8516 4063Fax +86 28 85164060 Email ;
| |
Collapse
|
35
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Thierry M, Boluda S, Delatour B, Marty S, Seilhean D, Potier MC, Duyckaerts C. Human subiculo-fornico-mamillary system in Alzheimer's disease: Tau seeding by the pillar of the fornix. Acta Neuropathol 2020; 139:443-461. [PMID: 31822997 DOI: 10.1007/s00401-019-02108-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD), Tau and Aβ aggregates involve sequentially connected regions, sometimes distantly separated. These alterations were studied in the pillar of the fornix (PoF), an axonal tract, to analyse the role of axons in their propagation. The PoF axons mainly originate from the subicular neurons and project to the mamillary body. Forty-seven post-mortem cases at various Braak stages (Tau) and Thal phases (Aβ) were analysed by immunohistochemistry. The distribution of the lesions showed that the subiculum was affected before the mamillary body, but neither Tau aggregation nor Aβ deposition was consistently first. The subiculum and the mamillary body contained Gallyas positive neurofibrillary tangles, immunolabelled by AT8, TG3, PHF1, Alz50 and C3 Tau antibodies. In the PoF, only thin and fragmented threads were observed, exclusively in the cases with neurofibrillary tangles in the subiculum. The threads were made of Gallyas negative, AT8 and TG3 positive Tau. They were intra-axonal and devoid of paired helical filaments at electron microscopy. We tested PoF homogenates containing Tau AT8 positive axons in a Tau P301S biosensor HEK cell line and found a seeding activity. There was no Aβ immunoreactivity detected in the PoF. We could follow microcryodissected AT8 positive axons entering the mamillary body; contacts between Tau positive endings and Aβ positive diffuse or focal deposits were observed in CLARITY-cleared mamillary body. In conclusion, we show that non-fibrillary, hyperphosphorylated Tau is transported by the axons of the PoF from the subiculum to the mamillary body and has a seeding activity. Either Tau aggregation or Aβ accumulation may occur first in this system: this inconstant order is incompatible with a cause-and-effects relationship. However, both pathologies were correlated and intimately associated, indicating an interaction of the two processes, once initiated.
Collapse
Affiliation(s)
- Manon Thierry
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Susana Boluda
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Benoît Delatour
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Serge Marty
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Danielle Seilhean
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marie-Claude Potier
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Charles Duyckaerts
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France.
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France.
| |
Collapse
|
37
|
McAllister BB, Lacoursiere SG, Sutherland RJ, Mohajerani MH. Intracerebral seeding of amyloid-β and tau pathology in mice: Factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 2020; 112:1-27. [PMID: 31996301 DOI: 10.1016/j.neubiorev.2020.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aβ) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aβ and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aβ, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aβ and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.
Collapse
Affiliation(s)
- Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
38
|
Gelpi E, Visanji NP, Hönigschnabl S, Reiner A, Fischer P, Lang AE, Budka H, Kovacs GG. Deposits of disease-associated alpha-synuclein may be present in the dura mater in Lewy body disorders: implications for potential inadvertent transmission by surgery. FREE NEUROPATHOLOGY 2020; 1:6. [PMID: 37283680 PMCID: PMC10210003 DOI: 10.17879/freeneuropathology-2020-2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 06/08/2023]
Abstract
Deposition of alpha-synuclein in the brain is a hallmark of Lewy body disorders. Alpha-synuclein has been considered to show prion-like properties. Prion diseases can be transmitted by the transplantation of cadaveric dura mater causing iatrogenic Creutzfeldt-Jakob disease. Recent observations of amyloid-β deposition in dural grafts support the seeding properties of amyloid-β. Here we assessed the presence of alpha-synuclein in dura mater samples as a potential transmissible seed source. We immunostained 32 postmortem dura mater samples; 16 cases with Lewy-body disorder (LBD) showing different pathology stages and 16 non-LBD cases for phosphorylated (Ser129) and disease-associated (5G4) alpha-synuclein. Disease-associated alpha-synuclein aggregates were identified in intradural nerve fibres and associated with a vessel in a single LBD-Braak stage 4 case. We conclude that alpha-synuclein is detectable, although rarely, in dura mater samples in patients with LBD. The risk of potential transmissibility of dural alpha-synuclein deserves assessment by complementary experimental studies.
Collapse
Affiliation(s)
- Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Selma Hönigschnabl
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Peter Fischer
- Institute of Pathology, Danube Hospital of Vienna, Austria
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto
| |
Collapse
|
39
|
Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of Cell-to-Cell Transmission of Pathological Tau: A Review. JAMA Neurol 2019; 76:101-108. [PMID: 30193298 DOI: 10.1001/jamaneurol.2018.2505] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Intracellular tau protein aggregates are a pathological hallmark of neurodegenerative tauopathies, including Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease. Emerging evidence supports a model of cell-to-cell transmission of proteinaceous pathological tau seeds, which leads to recruitment and templated fibrillization of endogenous cellular tau followed by the spread of abnormal tau throughout the brain. These findings lead to the strain hypothesis, which predicts that distinct conformational strains or polymorphs of tau may underlie the clinical and neuropathological heterogeneity and cell-type specificity of tauopathies. In this review, we describe the evidence for propagation of distinct tau strains in cell culture and animal models of AD and mechanistic insights into cell-to-cell transmission of pathological tau. Observations Intracranial injections of synthetic tau-preformed fibrils and human brain-derived pathological tau into nontransgenic wild-type mice and transgenic mouse models of AD expressing β-amyloid and tau-amyloid deposits yield widespread pathological tau aggregates observed in neuroanatomically connected brain regions distant from the site of injection. Furthermore, when human brain-derived pathological tau obtained from distinct tauopathies (ie, brains with AD, PSP, and CBD) were injected into the brains of wild-type mice, they seeded tau pathology and faithfully recapitulated cell-type specific tau inclusions characteristic of each tauopathy in a time-dependent, dose-dependent, and injection site-dependent spread reflective of the connectome of the injection site. Conclusions and Relevance These findings provide compelling evidence that misfolded or pathological conformers of tau undergo cell-to-cell spread in a tauopathy strain-specific manner. Importantly, evidence to date supports that pathological tau strains do not behave like infectious agents, despite growing evidence that these tau strains undergo templated propagation and spread linked to the neuroanatomical connectome of the injection site.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia.,Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia.,Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia.,Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia.,Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia.,Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
40
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
41
|
Gary C, Lam S, Hérard AS, Koch JE, Petit F, Gipchtein P, Sawiak SJ, Caillierez R, Eddarkaoui S, Colin M, Aujard F, Deslys JP, Brouillet E, Buée L, Comoy EE, Pifferi F, Picq JL, Dhenain M. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol Commun 2019; 7:126. [PMID: 31481130 PMCID: PMC6724379 DOI: 10.1186/s40478-019-0771-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/28/2023] Open
Abstract
Alzheimer’s disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated β-amyloid peptides (Aβ) and tau proteins. Iatrogenic induction of Aβ is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aβ. Induction of Aβ and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer’s disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aβ or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aβ depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer’s disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.
Collapse
|
42
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
44
|
Ezpeleta J, Baudouin V, Arellano-Anaya ZE, Boudet-Devaud F, Pietri M, Baudry A, Haeberlé AM, Bailly Y, Kellermann O, Launay JM, Schneider B. Production of seedable Amyloid-β peptides in model of prion diseases upon PrP Sc-induced PDK1 overactivation. Nat Commun 2019; 10:3442. [PMID: 31371707 PMCID: PMC6672003 DOI: 10.1038/s41467-019-11333-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
The presence of amyloid beta (Aβ) plaques in the brain of some individuals with Creutzfeldt-Jakob or Gertsmann-Straussler-Scheinker diseases suggests that pathogenic prions (PrPSc) would have stimulated the production and deposition of Aβ peptides. We here show in prion-infected neurons and mice that deregulation of the PDK1-TACE α-secretase pathway reduces the Amyloid Precursor Protein (APP) α-cleavage in favor of APP β-processing, leading to Aβ40/42 accumulation. Aβ predominates as monomers, but is also found as trimers and tetramers. Prion-induced Aβ peptides do not affect prion replication and infectivity, but display seedable properties as they can deposit in the mouse brain only when seeds of Aβ trimers are co-transmitted with PrPSc. Importantly, brain Aβ deposition accelerates death of prion-infected mice. Our data stress that PrPSc, through deregulation of the PDK1-TACE-APP pathway, provokes the accumulation of Aβ, a prerequisite for the onset of an Aβ seeds-induced Aβ pathology within a prion-infectious context. Aβ plaques have been detected in brains of patients with prion diseases. Here, using mice, the authors show that prion infection enhances Aβ production via a PDK1-TACE mechanism and that brain deposition of Aβ induced by Aβ seeds co-transmitted with PrPSc contributes to mortality in prion disease.
Collapse
Affiliation(s)
- Juliette Ezpeleta
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Vincent Baudouin
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Zaira E Arellano-Anaya
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - François Boudet-Devaud
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Mathéa Pietri
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Anne Baudry
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Anne-Marie Haeberlé
- Trafic Membranaire dans les Cellules du Système Nerveux, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67000, Strasbourg, France
| | - Yannick Bailly
- Trafic Membranaire dans les Cellules du Système Nerveux, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67000, Strasbourg, France
| | - Odile Kellermann
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Jean-Marie Launay
- Assistance Publique des Hôpitaux de Paris, INSERM UMR 942, Hôpital Lariboisière, 75010, Paris, France. .,Pharma Research Department, Hoffmann La Roche Ltd, 4070, Basel, Switzerland.
| | - Benoit Schneider
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France. .,INSERM, UMR 1124, 75006, Paris, France.
| |
Collapse
|
45
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
46
|
The amyloid cascade and Alzheimer's disease therapeutics: theory versus observation. J Transl Med 2019; 99:958-970. [PMID: 30760863 DOI: 10.1038/s41374-019-0231-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of amyloid-β precursor protein (APP) pathogenic mutations in familial early onset Alzheimer's disease (AD), along with knowledge that amyloid-β (Aβ) was the principle protein component of senile plaques, led to the establishment of the amyloid cascade hypothesis. Down syndrome substantiated the hypothesis, given an extra copy of the APP gene and invariable AD pathology hallmarks that occur by middle age. An abundance of support for the amyloid cascade hypothesis followed. Prion-like protein misfolding and non-Mendelian transmission of neurotoxicity are among recent areas of investigation. Aβ-targeted clinical trials have been disappointing, with negative results attributed to inadequacies in patient selection, challenges in pharmacology, and incomplete knowledge of the most appropriate target. There is evidence, however, that proof of concept has been achieved, i.e., clearance of Aβ during life, but with no significant changes in cognitive trajectory in AD. Whether the time, effort, and expense of Aβ-targeted therapy will prove valuable will be determined over time, as Aβ-centered clinical trials continue to dominate therapeutic strategies. It seems reasonable to hypothesize that the amyloid cascade is intimately involved in AD, in parallel with disease pathogenesis, but that removal of toxic Aβ is insufficient for an effective disease modification.
Collapse
|
47
|
Yamada M, Hamaguchi T, Sakai K. Acquired cerebral amyloid angiopathy: An emerging concept. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:85-95. [PMID: 31699330 DOI: 10.1016/bs.pmbts.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is commonly found in older people and in patients with Alzheimer's disease (AD) accompanying cerebrovascular disorders and dementia. Early-onset CAA cases generally have been found only in rare genetic forms of CAA. Interestingly, however, CAA-related hemorrhages have been recently reported in younger people who had histories of neurosurgery with or without evidence of cadaveric dura mater grafts in childhood. It has been established in experimental settings that amyloid β-protein (Aβ) pathology can be transmitted inter-individually with Aβ seeds. Incidental Aβ pathology, predominantly Aβ-CAA, has been recognized in recipients of cadaveric dura mater grafts or cadaveric human growth hormone. These findings suggest that transmission of Aβ seeds through dura mater grafts and other contaminated materials could lead to development of CAA. In addition, neurosurgery or brain injury may contribute to cerebrovascular Aβ deposition through the disturbance of vascular Aβ drainage pathways. Thus, a novel concept, "acquired CAA," has emerged.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Tsuyoshi Hamaguchi
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
48
|
Guo J, He S, Tu Y, Zhang Y, Wang Z, Wu S, Huang F, He W, Li X, Xie H. A Stable Large Animal Model for Dural Defect Repair with Biomaterials and Regenerative Medicine. Tissue Eng Part C Methods 2019; 25:315-323. [PMID: 30919756 DOI: 10.1089/ten.tec.2019.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using biomaterials and regenerative medicine to repair tissue defects has been a very hot research field, during which the development of stable large animal models with appropriate biotechnology is crucial. Recently, more and more researchers are paying attention to dural defect repair. However, the lack of widely recognized stable large animal models has seriously affected the related further research. In this study, a stable large animal dural defect model is developed exactly for the first time. Therefore, the article would attract considerable attention and be highly cited after publication.
Collapse
Affiliation(s)
- Jinhai Guo
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- 3 Department of Orthopedics, The First People's Hospital of Jintang County (The Jintang Hospital of West China Hospital, Sichuan University), Chengdu, Sichuan, China
| | - Shukun He
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhu Tu
- 4 Department of Aesthetic Plastic Surgery, BRAVOU Aesthetic Plastic Hospital, Chengdu, Sichuan, China
| | - Yi Zhang
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhule Wang
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shizhou Wu
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fuguo Huang
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei He
- 5 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 6 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoming Li
- 5 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 6 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Huiqi Xie
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Giaccone G, Maderna E, Marucci G, Catania M, Erbetta A, Chiapparini L, Indaco A, Caroppo P, Bersano A, Parati E, Di Fede G, Caputi L. Iatrogenic early onset cerebral amyloid angiopathy 30 years after cerebral trauma with neurosurgery: vascular amyloid deposits are made up of both Aβ40 and Aβ42. Acta Neuropathol Commun 2019; 7:70. [PMID: 31046829 PMCID: PMC6498603 DOI: 10.1186/s40478-019-0719-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022] Open
|
50
|
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol 2019; 137:363-377. [PMID: 30483944 PMCID: PMC6514076 DOI: 10.1007/s00401-018-1941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
The inadvertent transmission of long incubating, untreatable and fatal neurodegenerative prionopathies, notably iatrogenic Creutzfeldt–Jakob disease, following transplantation of cadaver-derived corneas, pituitary growth, hormones and dura mater, constitutes a historical precedent which has underpinned the application of precautionary principles to modern day advanced cell therapies. To date these have been reflected by geographic or medical history risk-based deferral of tissue donors. Emergent understanding of other prion-like proteinopathies, their potential independence from prions as a transmissible agent and the variable capability of scalably manufacturable stem cells and derivatives to take up and clear or to propagate prions, substantiate further commitment to qualifying neurodegenerative proteinopathy transmission risks. This is especially so for those involving direct or facilitated access to a recipient’s brain or connected visual or nervous system such as for the treatment of stroke, retinal and adult onset neurodegenerative diseases, treatments for which have already commenced. In this review, we assess the prospective global dissemination of advanced cell therapies founded on transplantation or exposure to allogeneic human cells, recap lessons learned from the historical precedents of CJD transmission and review recent advances and current limits in understanding of prion and other neurodegenerative disease prion-like susceptibility and transmission. From these we propose grounds for a reassessment of the risks of emergent advanced cell therapies to transmit neuroproteinopathies and suggestions to ACT developers and regulators for risk mitigation and extension of criteria for deferrals.
Collapse
|