1
|
Shi P, Tang B, Xie W, Li K, Guo D, Li Y, Yao Y, Cheng X, Xu C, Wang QK. LncRNA-induced lysosomal localization of NHE1 promotes increased lysosomal pH in macrophages leading to atherosclerosis. J Biol Chem 2025:110246. [PMID: 40383150 DOI: 10.1016/j.jbc.2025.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
ANRIL, also referred to as CDKN2B-AS1, is a lncRNA gene implicated in the pathogenesis of multiple human diseases including atherosclerotic coronary artery disease, however, definitive in vivo evidence is lacking and the underlying molecular mechanism is largely unknown. In this study, we show that ANRIL overexpression causes atherosclerosis in vivo as transgenic mouse overexpression of full-length ANRIL (NR_003529) increases inflammation and aggravates atherosclerosis under ApoE-/- background (ApoE-/-ANRIL mice). Mechanistically, ANRIL reduces the expression of miR-181b-5p, which leads to increased TMEM106B expression. TMEM106B is significantly up-regulated in atherosclerotic lesions of both human CAD patients and ApoE-/-ANRIL mice. TMEM106B interacts and co-localizes with Na+-H+ exchanger NHE1, which results in mis-localization of NHE1 from cell membranes to lysosomal membranes, leading to increased lysosomal pH in macrophages. Large truncation and point mutation analyses define the critical amino acids for TMEM106B-NHE1 interaction and lysosomal pH regulation as F115 and F117 on TMEM106B and I537, C538, and G539 on NHE1. Topological analysis suggests that both N-terminus and C-terminus of NHE1 are located inside lysosomal lumen, and NHE1 is an important new proton efflux channel involved in raising lysosomal pH. A short TMEM106B peptide (YGRKKRRQRRR-L111A112V113F114F115L116F117) disrupting the TMEM106B-NHE1 interaction normalized lysosomal pH in macrophages with ANRIL overexpression. Our data demonstrate that ANRIL promotes atherosclerosis in vivo and identify the ANRIL/miR-181b-5p/TMEM106B-NHE1/lysosomal pH axis as the underlying molecular pathogenic mechanism for the chromosome 9p21.3 genetic locus for coronary artery disease.
Collapse
Affiliation(s)
- Pengcheng Shi
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Bo Tang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Wen Xie
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Ke Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Di Guo
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Yining Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology; Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
2
|
Perneel J, Lastra Osua M, Alidadiani S, Peeters N, De Witte L, Heeman B, Manzella S, De Rycke R, Brooks M, Perkerson RB, Calus E, De Coster W, Neumann M, Mackenzie IRA, Van Dam D, Asselbergh B, Ellender T, Zhou X, Rademakers R. Increased TMEM106B levels lead to lysosomal dysfunction which affects synaptic signaling and neuronal health. Mol Neurodegener 2025; 20:45. [PMID: 40269985 PMCID: PMC12016085 DOI: 10.1186/s13024-025-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Genetic variation in Transmembrane protein 106B (TMEM106B) is known to influence the risk and presentation in several neurodegenerative diseases and modifies healthy aging. While evidence from human studies suggests that the risk allele is associated with higher levels of TMEM106B, the contribution of elevated levels of TMEM106B to neurodegeneration and aging has not been assessed and it remains unclear how TMEM106B modulates disease risk. METHODS To study the effect of increased TMEM106B levels, we generated Cre-inducible transgenic mice expressing human wild-type TMEM106B. We evaluated lysosomal and neuronal health using in vitro and in vivo assays including transmission electron microscopy, immunostainings, behavioral testing, electrophysiology, and bulk RNA sequencing. RESULTS We created the first transgenic mouse model that successfully overexpresses TMEM106B, with a 4- to 8-fold increase in TMEM106B protein levels in heterozygous (hTMEM106B(+)) and homozygous (hTMEM106B(++)) animals, respectively. We showed that the increase in TMEM106B protein levels induced lysosomal dysfunction and age-related downregulation of genes associated with neuronal plasticity, learning, and memory. Increased TMEM106B levels led to altered synaptic signaling in 12-month-old animals which further exhibited an anxiety-like phenotype. Finally, we observed mild neuronal loss in the hippocampus of 21-month-old animals. CONCLUSION Characterization of the first transgenic mouse model that overexpresses TMEM106B suggests that higher levels of TMEM106B negatively impacts brain health by modifying brain aging and impairing the resilience of the brain to the pathomechanisms of neurodegenerative disorders. This novel model will be a valuable tool to study the involvement and contribution of increased TMEM106B levels to aging and will be essential to study the many age-related diseases in which TMEM106B was genetically shown to be a disease- and risk-modifier.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Miranda Lastra Osua
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sara Alidadiani
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nele Peeters
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Linus De Witte
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bavo Heeman
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Simona Manzella
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Riet De Rycke
- VIB Bioimaging Core, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elke Calus
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
- Neurochemistry and Behaviour Group, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Debby Van Dam
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
- Neurochemistry and Behaviour Group, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
| | - Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,, Guangzhou, 510060, China.
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Mirza SS, Pasternak M, Paterson AD, Rogaeva E, Tartaglia MC, Mitchell SB, Black SE, Freedman M, Tang-Wai D, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, Bocchetta M, Cash DM, Zetterberg H, Sogorb-Esteve A, van Swieten J, Jiskoot LC, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler C, Le Ber I, Finger E, Rowe JB, Synofzik M, Moreno F, Borroni B, Rohrer JD, Masellis M. Disease-modifying effects of TMEM106B in genetic frontotemporal dementia: a longitudinal GENFI study. Brain 2025:awaf019. [PMID: 40260680 DOI: 10.1093/brain/awaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/14/2024] [Indexed: 04/24/2025] Open
Abstract
Common variants within TMEM106B are associated with risk for frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). The G allele of the top single nucleotide polymorphism, rs1990622, confers protection against FTLD-TDP, including genetic cases due to GRN mutations or C9orf72 hexanucleotide repeat expansions. However, the effects of interaction between TMEM106B-rs1990622 and frontotemporal dementia (FTD) mutations on disease endophenotypes in genetic FTD are unknown. This longitudinal cohort study was embedded within the GENetic Frontotemporal dementia Initiative (GENFI). We included 518 participants from 222 families [209 non-carriers; 222 presymptomatic carriers (C9orf72 = 79; GRN = 101, MAPT = 42); 87 symptomatic carriers (C9orf72 = 45; GRN = 29; MAPT = 13)] followed for up to 7 years. Using linear mixed-effects models, we examined the effects of a triple interaction between TMEM106B-rs1990622G allele dosage (additive model: 0, 1 or 2 alleles) and autosomal dominant FTD mutations with clinical status, and time from baseline on (i) grey matter volume using a voxel-based analysis; (ii) serum neurofilament light chain (NfL) levels; and (iii) cognitive and behavioural measures. Mean age of participants was 47.9 ± 13.8 years, 58.1% were female and 61% had at least one G allele. C9orf72: rs1990622G allele dosage was associated with less atrophy within the right occipital region in presymptomatic carriers at baseline, and reduced atrophy rate within putamen and caudate nucleus, right frontotemporal regions, left cingulate and bilateral insular cortices in symptomatic carriers over time; lower NfL levels in presymptomatic carriers at baseline; better executive functions and language abilities in presymptomatic carriers; and maintained overall cognitive functions and behaviour in symptomatic carriers over time. GRN: rs1990622G allele dosage was associated with reduced grey matter atrophy rate within the right temporal and occipital regions in presymptomatic carriers, and within the right frontal cortex and insula over time in symptomatic carriers; lower serum NfL levels over time in presymptomatic carriers and lower NfL levels at both baseline and over time in symptomatic carriers; and better global cognitive performance at baseline and higher attention/processing speed scores over time in symptomatic carriers. MAPT: rs1990622G allele dosage was associated with reduced grey matter atrophy rate within the right inferior frontal gyrus in symptomatic carriers, but no effects on serum NfL or cognitive/behavioural measures. TMEM106B-rs1990622G allele dosage showed protective effects on multiple endophenotypes predominantly in GRN and C9orf72 groups. Therefore, TMEM106B genotype should be assessed in clinical trials, particularly of GRN- and C9orf72-related genetic FTD, due to its modifying effects on biomarker, imaging, cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Saira S Mirza
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
- L. C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Maurice Pasternak
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
- Memory Clinic, University Health Network, Toronto, ON M5T 2S8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Sara B Mitchell
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Sandra E Black
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
- L. C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Morris Freedman
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - David Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Henrik Zetterberg
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 405 30, Sweden
- Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
- DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999 077, China
| | - Aitana Sogorb-Esteve
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- UK Dementia Research Institute at University College London, London NW1 3BT, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona 08036, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna 171 65, Sweden
- Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan 20122, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan 20122, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3001, Belgium
- Neurology Service, University Hospitals Leuven, Leuven 3000, Belgium
| | | | - Pietro Tiraboschi
- Dipartimento Diagnostica e Tecnologia - Neurologia V, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-531, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen 45147, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich 80802, Germany
- Clinical Study Unit, German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence 50139, Italy
- Department of Neurology, IRCCS Fondazione Don Carlo Gnocchi, Florence 50139, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, ULM 45 89081, Germany
| | - Florence Pasquier
- Division of Neurology, Faculty of Medicine, Univ Lille, Lille 59000, France
- Lille Neurosciences and Cognition, Inserm 1172, Lille 59000, France
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Chris Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 7JX, UK
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau-ICM, Inserm U1127, CNRS UMR 7225, AP-HP-Hôpital Pitié-Salpêtrière, Paris 75013, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON N6A 3K7, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen 72076, Germany
- Faculty of Medicine, Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, Donostia, Gipuzkoa 20014, Spain
- Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid 28029, Spain
- Biogipuzkoa Health Research Institute, Neurosciences Area, Group of Neurodegenerative Diseases, San Sebastian 20014, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 15-25121, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Mario Masellis
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
- L. C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
4
|
Gomes KB. Risk and progression of frontotemporal dementia in carriers of the TMEM106B protective genotype and its relationship with TDP-43 pathology. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:119. [PMID: 39817242 PMCID: PMC11729803 DOI: 10.21037/atm-24-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/25/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
De Houwer JFH, Dopper EGP, Rajicic A, van Buuren R, Arcaro M, Galimberti D, Breedveld GJ, Wilke M, van Minkelen R, Jiskoot LC, van Swieten JC, Donker Kaat L, Seelaar H. Two novel variants in GRN: the relevance of CNV analysis and genetic screening in FTLD patients with a negative family history. J Neurol 2024; 272:64. [PMID: 39680222 PMCID: PMC11649753 DOI: 10.1007/s00415-024-12758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is one of the leading causes of early onset dementia. Pathogenic variants in GRN have been reported to cause 5-25% of familial and 5% of sporadic FTLD. Here, we present two novel, likely pathogenic variants in GRN. METHODS Four patients from four different families underwent whole exome sequencing (WES) with additional copy-number variance (CNV) analysis in a clinical setting. TMEM106B rs1990622 and rs3173615 SNPs and 3'UTR insertion were tested in one presymptomatic carrier. In three probands and one presymptomatic carrier, plasma progranulin (PGRN) levels were measured using a specific ELISA kit. In two probands, neuropathological diagnosis was established using current neuropathological criteria. RESULTS Through CNV analysis on WES data, we identified a partial deletion, NM_002087.2 (GRN):c.1179 + 104_1536delinsCTGA, p.(?), in three patients with primary progressive aphasia and/or corticobasal syndrome. Haplotype analysis revealed a shared haplotype block, suggesting that the deletion represents a founder mutation. Additionally, we found a novel, missense variant, NM_002087.2 (GRN):c.23 T > A, p.(Val8Glu), in one proband with a negative family history. The proband's unaffected parent-in their 80 s-carried the same variant, yet was homozygous for the TMEM106B risk haplotype. The pathogenicity of both GRN variants was supported by typical neuropathological features and reduced PGRN levels. CONCLUSION We recommend a thorough genetic screening, including CNV analysis, for both familial and apparent sporadic FTLD patients. Furthermore, the presymptomatic carrier homozygous for the TMEM106B risk haplotype exemplifies the presence of other protective factors that modify disease onset and urges caution in genetic counselling based on the TMEM106B haplotype.
Collapse
Affiliation(s)
- Julie F H De Houwer
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Ana Rajicic
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Renee van Buuren
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre (Erasmus MC), Dr. Molenwaterplein 40, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Grodstein F, Lemos B, Yang J, de Paiva Lopes K, Vialle RA, Seyfried N, Wang Y, Shireby G, Hannon E, Thomas A, Brookes K, Mill J, De Jager PL, Bennett DA. Genetic architecture of epigenetic cortical clock age in brain tissue from older individuals: alterations in CD46 and other loci. Epigenetics 2024; 19:2392050. [PMID: 39169872 PMCID: PMC11346548 DOI: 10.1080/15592294.2024.2392050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We leveraged postmortem cortex tissue and genotyping array data from 694 participants of the Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 overlapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expression), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was rs4244620 (p = 1.29 × 10-7), which also exhibited FDR-significant cis-eQTL effects for CD46 in bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). In ROSMAP alone, the top SNP was rs4721030 (p = 8.64 × 10-8) annotated to TMEM106B and THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential roles in cortical epigenetic clock age.
Collapse
Affiliation(s)
- Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Bernardo Lemos
- Coit Center for Longevity and Neurotherapeutics, Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ricardo A. Vialle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas Seyfried
- Department of Biochemistry, and Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gemma Shireby
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Keeley Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. RESEARCH SQUARE 2024:rs.3.rs-5306005. [PMID: 39606446 PMCID: PMC11601866 DOI: 10.21203/rs.3.rs-5306005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | - Joshua Lee
- Johns Hopkins University School of Medicine
| | | |
Collapse
|
8
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618765. [PMID: 39464100 PMCID: PMC11507888 DOI: 10.1101/2024.10.16.618765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C. Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M. Fare
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Linhao Ruan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lyudmila Mamedova
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joshua Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Bacioglu M, Schweighauser M, Gray D, Lövestam S, Katsinelos T, Quaegebeur A, van Swieten J, Jaunmuktane Z, Davies SW, Scheres SHW, Goedert M, Ghetti B, Spillantini MG. Cleaved TMEM106B forms amyloid aggregates in central and peripheral nervous systems. Acta Neuropathol Commun 2024; 12:99. [PMID: 38886865 PMCID: PMC11181561 DOI: 10.1186/s40478-024-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Filaments made of residues 120-254 of transmembrane protein 106B (TMEM106B) form in an age-dependent manner and can be extracted from the brains of neurologically normal individuals and those of subjects with a variety of neurodegenerative diseases. TMEM106B filament formation requires cleavage at residue 120 of the 274 amino acid protein; at present, it is not known if residues 255-274 form the fuzzy coat of TMEM106B filaments. Here we show that a second cleavage appears likely, based on staining with an antibody raised against residues 263-274 of TMEM106B. We also show that besides the brain TMEM106B inclusions form in dorsal root ganglia and spinal cord, where they were mostly found in non-neuronal cells. We confirm that in the brain, inclusions were most abundant in astrocytes. No inclusions were detected in heart, liver, spleen or hilar lymph nodes. Based on their staining with luminescent conjugated oligothiophenes, we confirm that TMEM106B inclusions are amyloids. By in situ immunoelectron microscopy, TMEM106B assemblies were often found in structures resembling endosomes and lysosomes.
Collapse
Affiliation(s)
- Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Derrick Gray
- IUSM Center for Electron Microscopy (ICEM), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Annelies Quaegebeur
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust and the Cambridge Brain Bank, Cambridge, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Stephen W Davies
- Department of Cell and Developmental Biology, University College, London, UK
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
10
|
Riordan R, Saxton A, McMillan PJ, Kow RL, Liachko NF, Kraemer BC. TMEM106B C-terminal fragments aggregate and drive neurodegenerative proteinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598478. [PMID: 38915598 PMCID: PMC11195232 DOI: 10.1101/2024.06.11.598478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for a diverse range of neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD) with progranulin (PGRN) haplo-insufficiency, although the molecular mechanisms involved are not yet understood. Through advances in cryo-electron microscopy (cryo-EM), homotypic aggregates of the C-Terminal domain of TMEM106B (TMEM CT) were discovered as a previously unidentified cytosolic proteinopathy in the brains of FTLD, Alzheimer's disease, progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB) patients. While it remains unknown what role TMEM CT aggregation plays in neuronal loss, its presence across a range of aging related dementia disorders indicates involvement in multi-proteinopathy driven neurodegeneration. To determine the TMEM CT aggregation propensity and neurodegenerative potential, we characterized a novel transgenic C. elegans model expressing the human TMEM CT fragment constituting the fibrillar core seen in FTLD cases. We found that pan-neuronal expression of human TMEM CT in C. elegans causes neuronal dysfunction as evidenced by behavioral analysis. Cytosolic aggregation of TMEM CT proteins accompanied the behavioral dysfunction driving neurodegeneration, as illustrated by loss of GABAergic neurons. To investigate the molecular mechanisms driving TMEM106B proteinopathy, we explored the impact of PGRN loss on the neurodegenerative effect of TMEM CT expression. To this end, we generated TMEM CT expressing C. elegans with loss of pgrn-1, the C. elegans ortholog of human PGRN. Neither full nor partial loss of pgrn-1 altered the motor phenotype of our TMEM CT model suggesting TMEM CT aggregation occurs downstream of PGRN loss of function. We also tested the ability of genetic suppressors of tauopathy to rescue TMEM CT pathology. We found that genetic knockout of spop-1, sut-2, and sut-6 resulted in weak to no rescue of proteinopathy phenotypes, indicating that the mechanistic drivers of TMEM106B proteinopathy may be distinct from tauopathy. Taken together, our data demonstrate that TMEM CT aggregation can kill neurons. Further, expression of TMEM CT in C. elegans neurons provides a useful model for the functional characterization of TMEM106B proteinopathy in neurodegenerative disease.
Collapse
Affiliation(s)
- Ruben Riordan
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Zhu M, Zhang G, Meng L, Xiao T, Fang X, Zhang Z. Physiological and pathological functions of TMEM106B in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:209. [PMID: 38710967 PMCID: PMC11074223 DOI: 10.1007/s00018-024-05241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
13
|
Vandebergh M, Ramos EM, Corriveau-Lecavalier N, Ramanan VK, Kornak J, Mester C, Kolander T, Brushaber D, Staffaroni AM, Geschwind D, Wolf A, Kantarci K, Gendron TF, Petrucelli L, Van den Broeck M, Wynants S, Baker MC, Borrego – Écija S, Appleby B, Barmada S, Bozoki A, Clark D, Darby RR, Dickerson BC, Domoto-Reilly K, Fields JA, Galasko DR, Ghoshal N, Graff-Radford N, Grant IM, Honig LS, Hsiung GYR, Huey ED, Irwin D, Knopman DS, Kwan JY, Léger GC, Litvan I, Masdeu JC, Mendez MF, Onyike C, Pascual B, Pressman P, Ritter A, Roberson ED, Snyder A, Sullivan AC, Tartaglia MC, Wint D, Heuer HW, Forsberg LK, Boxer AL, Rosen HJ, Boeve BF, Rademakers R. Gene specific effects on brain volume and cognition of TMEM106B in frontotemporal lobar degeneration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305253. [PMID: 38633784 PMCID: PMC11023674 DOI: 10.1101/2024.04.05.24305253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background and Objectives TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.
Collapse
Affiliation(s)
- Marijne Vandebergh
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Carly Mester
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tyler Kolander
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Daniel Geschwind
- Institute for Precision Health, Departments of Neurology, Psychiatry and Human Genetics at David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sergi Borrego – Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David Clark
- Department of Neurology, Indiana University, Indianapolis, IN, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Douglas R. Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | | | - Ian M Grant
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David Irwin
- Department of Neurology and Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Knopman
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel C Léger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allison Snyder
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anna Campbell Sullivan
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, UT Health San Antonio
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Wint
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Leah K Forsberg
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | | | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
14
|
Edwards GA, Wood CA, He Y, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Xu Y, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. Acta Neuropathol 2024; 147:61. [PMID: 38526616 DOI: 10.1007/s00401-024-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.
Collapse
Affiliation(s)
- George A Edwards
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yang He
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Quynh Nguyen
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Peter J Kim
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ruben Gomez-Gutierrez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yong Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cody Zurhellen
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN, 37934, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Marks JD, Ayuso VE, Carlomagno Y, Yue M, Todd TW, Hao Y, Li Z, McEachin ZT, Shantaraman A, Duong DM, Daughrity LM, Jansen-West K, Shao W, Calliari A, Bejarano JG, DeTure M, Rawlinson B, Casey MC, Lilley MT, Donahue MH, Jawahar VM, Boeve BF, Petersen RC, Knopman DS, Oskarsson B, Graff-Radford NR, Wszolek ZK, Dickson DW, Josephs KA, Qi YA, Seyfried NT, Ward ME, Zhang YJ, Prudencio M, Petrucelli L, Cook CN. TMEM106B core deposition associates with TDP-43 pathology and is increased in risk SNP carriers for frontotemporal dementia. Sci Transl Med 2024; 16:eadf9735. [PMID: 38232138 PMCID: PMC10841341 DOI: 10.1126/scitranslmed.adf9735] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.
Collapse
Affiliation(s)
- Jordan D. Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Virginia Estades Ayuso
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Hao
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary T. McEachin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
- Department for Human Genetics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bailey Rawlinson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Megan H. Donahue
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Dennis W. Dickson
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong-Jie Zhang
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N. Cook
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
16
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
17
|
T. Vicente C, Perneel J, Wynants S, Heeman B, Van den Broeck M, Baker M, Cheung S, Faura J, Mackenzie IRA, Rademakers R. C-terminal TMEM106B fragments in human brain correlate with disease-associated TMEM106B haplotypes. Brain 2023; 146:4055-4064. [PMID: 37100087 PMCID: PMC10545506 DOI: 10.1093/brain/awad133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Transmembrane protein 106B (TMEM106B) is a tightly regulated glycoprotein predominantly localized to endosomes and lysosomes. Genetic studies have implicated TMEM106B haplotypes in the development of multiple neurodegenerative diseases with the strongest effect in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), especially in progranulin (GRN) mutation carriers. Recently, cryo-electron microscopy studies showed that a C-terminal fragment (CTF) of TMEM106B (amino acid residues 120-254) forms amyloid fibrils in the brain of patients with FTLD-TDP, but also in brains with other neurodegenerative conditions and normal ageing brain. The functional implication of these fibrils and their relationship to the disease-associated TMEM106B haplotype remain unknown. We performed immunoblotting using a newly developed antibody to detect TMEM106B CTFs in the sarkosyl-insoluble fraction of post-mortem human brain tissue from patients with different proteinopathies (n = 64) as well as neuropathologically normal individuals (n = 10) and correlated the results with age and TMEM106B haplotype. We further compared the immunoblot results with immunohistochemical analyses performed in the same study population. Immunoblot analysis showed the expected ∼30 kDa band in the sarkosyl-insoluble fraction of frontal cortex tissue in at least some individuals with each of the conditions evaluated. Most patients with GRN mutations showed an intense band representing TMEM106B CTF, whereas in most neurologically normal individuals it was absent or much weaker. In the overall cohort, the presence of TMEM106B CTFs correlated strongly with both age (rs = 0.539, P < 0.001) and the presence of the TMEM106B risk haplotype (rs = 0.469, P < 0.001). Although there was a strong overall correlation between the results of immunoblot and immunohistochemistry (rs = 0.662, P < 0.001), 27 cases (37%) were found to have higher amounts of TMEM106B CTFs detected by immunohistochemistry, including most of the older individuals who were neuropathologically normal and individuals who carried two protective TMEM106B haplotypes. Our findings suggest that the formation of sarkosyl-insoluble TMEM106B CTFs is an age-related feature which is modified by TMEM106B haplotype, potentially underlying its disease-modifying effect. The discrepancies between immunoblot and immunohistochemistry in detecting TMEM106B pathology suggests the existence of multiple species of TMEM106B CTFs with possible biological relevance and disease implications.
Collapse
Affiliation(s)
- Cristina T. Vicente
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Bavo Heeman
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32233, USA
| | - Simon Cheung
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC V5Z1M9, Canada
| | - Júlia Faura
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC V5Z1M9, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32233, USA
| |
Collapse
|
18
|
Shafit-Zagardo B, Sidoli S, Goldman JE, DuBois JC, Corboy JR, Strittmatter SM, Guzik H, Edema U, Arackal AG, Botbol YM, Merheb E, Nagra RM, Graff S. TMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS Injury. Cells 2023; 12:1734. [PMID: 37443768 PMCID: PMC10340176 DOI: 10.3390/cells12131734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During inflammatory, demyelinating diseases such as multiple sclerosis (MS), inflammation and axonal damage are prevalent early in the course. Axonal damage includes swelling, defects in transport, and failure to clear damaged intracellular proteins, all of which affect recovery and compromise neuronal integrity. The clearance of damaged cell components is important to maintain normal turnover and restore homeostasis. In this study, we used mass spectrometry to identify insoluble proteins within high-speed/mercaptoethanol/sarcosyl-insoluble pellets from purified white matter plaques isolated from the brains of individuals with relapsing-remitting MS (RRMS). We determined that the transmembrane protein 106B (TMEM106B), normally lysosome-associated, is insoluble in RRMS plaques relative to normal-appearing white matter from individuals with Alzheimer's disease and non-neurologic controls. Relative to wild-type mice, hypomorphic mice with a reduction in TMEM106B have increased axonal damage and lipid droplet accumulation in the spinal cord following myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis. Additionally, the corpora callosa from cuprizone-challenged hypomorphic mice fail to clear lipid droplets efficiently during remyelination, suggesting that when TMEM106B is compromised, protein and lipid clearance by the lysosome is delayed. As TMEM106B contains putative lipid- and LC3-binding sites, further exploration of these sites is warranted.
Collapse
Affiliation(s)
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Juwen C DuBois
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - John R Corboy
- Rocky Mountain MS Brain Bank, Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen M Strittmatter
- Departments of Neurology and Neuroscience, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06510, USA
| | - Hillary Guzik
- Analytic Imaging Facility, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ukuemi Edema
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Anita G Arackal
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Emilio Merheb
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rashed M Nagra
- UCLA Brain Bank, VA Healthcare System, Los Angeles, CA 90073, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
19
|
Perneel J, Manoochehri M, Huey ED, Rademakers R, Goldman J. Case report: TMEM106B haplotype alters penetrance of GRN mutation in frontotemporal dementia family. Front Neurol 2023; 14:1160248. [PMID: 37077569 PMCID: PMC10106611 DOI: 10.3389/fneur.2023.1160248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second-most common young-onset dementia. Variants in the TMEM106B gene have been proposed as modifiers of FTD disease risk, especially in progranulin (GRN) mutation carriers. A patient in their 50s presented to our clinic with behavioral variant FTD (bvFTD). Genetic testing revealed the disease-causing variant c.349 + 1G > C in GRN. Family testing revealed that the mutation was inherited from an asymptomatic parent in their 80s and that the sibling also carries the mutation. Genetic analyses showed that the asymptomatic parent and sibling carry two copies of the protective TMEM106B haplotype (defined as c.554C > G, p.Thr185Ser), whereas the patient is heterozygous. This case report illustrates that combining TMEM106B genotyping with GRN mutation screening may provide more appropriate genetic counseling on disease risk in GRN families. Both the parent and sibling were counseled to have a significantly reduced risk for symptomatic disease. Implementing TMEM106B genotyping may also promote the collection of biosamples for research studies to improve our understanding of the risk-and disease-modifying effect of this important modifier gene.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Masood Manoochehri
- Department of Neurology, Columbia University, New York, NY, United States
| | - Edward D. Huey
- Department of Neurology, Columbia University, New York, NY, United States
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Edwards GA, Wood CA, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533978. [PMID: 36993574 PMCID: PMC10055407 DOI: 10.1101/2023.03.23.533978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
TMEM106B is a risk modifier for a growing list of age-associated dementias including Alzheimer’s and frontotemporal dementia, yet its function remains elusive. Two key questions that emerge from past work are whether the conservative T185S coding variant found in the minor haplotype contributes to protection, and whether the presence of TMEM106B is helpful or harmful in the context of disease. Here we address both issues while extending the testbed for study of TMEM106B from models of TDP to tauopathy. We show that TMEM106B deletion accelerates cognitive decline, hindlimb paralysis, neuropathology, and neurodegeneration. TMEM106B deletion also increases transcriptional overlap with human AD, making it a better model of disease than tau alone. In contrast, the coding variant protects against tau-associated cognitive decline, neurodegeneration, and paralysis without affecting tau pathology. Our findings show that the coding variant contributes to neuroprotection and suggest that TMEM106B is a critical safeguard against tau aggregation.
Collapse
|
21
|
Labadorf A, Agus F, Aytan N, Cherry J, Mez J, McKee A, Stein TD. Inflammation and neuronal gene expression changes differ in early versus late chronic traumatic encephalopathy brain. BMC Med Genomics 2023; 16:49. [PMID: 36895005 PMCID: PMC9996917 DOI: 10.1186/s12920-023-01471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Our understanding of the molecular underpinnings of chronic traumatic encephalopathy (CTE) and its associated pathology in post-mortem brain is incomplete. Factors including years of play and genetic risk variants influence the extent of tau pathology associated with disease expression, but how these factors affect gene expression, and whether those effects are consistent across the development of disease, is unknown. METHODS To address these questions, we conducted an analysis of the largest post-mortem brain CTE mRNASeq whole-transcriptome dataset available to date. We examined the genes and biological processes associated with disease by comparing individuals with CTE with control individuals with a history of repetitive head impacts that lack CTE pathology. We then identified genes and biological processes associated with total years of play as a measure of exposure, amount of tau pathology present at time of death, and the presence of APOE and TMEM106B risk variants. Samples were stratified into low and high pathology groups based on McKee CTE staging criteria to model early versus late changes in response to exposure, and the relative effects associated with these factors were compared between these groups. RESULTS Substantial gene expression changes were associated with severe disease for most of these factors, primarily implicating diverse, strongly involved neuroinflammatory and neuroimmune processes. In contrast, low pathology groups had many fewer genes and processes implicated and show striking differences for some factors when compared with severe disease. Specifically, gene expression associated with amount of tau pathology showed a nearly perfect inverse relationship when compared between these two groups. CONCLUSIONS Together, these results suggest the early CTE disease process may be mechanistically different than what occurs in late stages, that total years of play and tau pathology influence disease expression differently, and that related pathology-modifying risk variants may do so via distinct biological pathways.
Collapse
Affiliation(s)
- Adam Labadorf
- Neurology, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, Boston University, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, Boston, MA USA
| | - Filisia Agus
- Neurology, Boston University School of Medicine, Boston, MA USA
| | - Nurgul Aytan
- Neurology, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, Boston, MA USA
| | - Jonathan Cherry
- Neurology, Boston University School of Medicine, Boston, MA USA
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
| | - Jesse Mez
- Neurology, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
| | - Ann McKee
- Neurology, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- Department of Veterans Affairs Medical Center, Medford, MA USA
| | - Thor D. Stein
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA USA
- Department of Veterans Affairs Medical Center, Medford, MA USA
| |
Collapse
|
22
|
Perneel J, Neumann M, Heeman B, Cheung S, Van den Broeck M, Wynants S, Baker M, Vicente CT, Faura J, Rademakers R, Mackenzie IRA. Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol 2023; 145:285-302. [PMID: 36527486 DOI: 10.1007/s00401-022-02531-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany.,Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bavo Heeman
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Simon Cheung
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cristina T Vicente
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Júlia Faura
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Lack of a protective effect of the Tmem106b "protective SNP" in the Grn knockout mouse model for frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:21. [PMID: 36707901 PMCID: PMC9881268 DOI: 10.1186/s40478-023-01510-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/28/2023] Open
Abstract
Genetic variants in TMEM106B are a common risk factor for frontotemporal lobar degeneration and the most important modifier of disease risk in patients with progranulin (GRN) mutations (FTLD-GRN). TMEM106B is encoding a lysosomal transmembrane protein of unknown molecular function. How it mediates its disease-modifying function remains enigmatic. Several TMEM106B single nucleotide polymorphisms (SNPs) are significantly associated with disease risk in FTLD-GRN carriers, of which all except one are within intronic sequences of TMEM106B. Of note, the non-coding SNPs are in high linkage disequilibrium with the coding SNP rs3173615 located in exon six of TMEM106B, resulting in a threonine to serine change at amino acid 185 in the minor allele, which is protective in FTLD-GRN carriers. To investigate the functional consequences of this variant in vivo, we generated and characterized a knockin mouse model harboring the Tmem106bT186S variant. We analyzed the effect of this protective variant on FTLD pathology by crossing Tmem106bT186S mice with Grn-/- knockout mice, a model for GRN-mediated FTLD. We did not observe the amelioration of any of the investigated Grn-/- knockout phenotypes, including transcriptomic changes, lipid alterations, or microgliosis in Tmem106bT186S/T186S × Grn-/- mice, indicating that the Tmem106bT186S variant is not protective in the Grn-/- knockout mouse model. These data suggest that effects of the associated SNPs not directly linked to the amino acid exchange in TMEM106B are critical for the modifying effect.
Collapse
|
24
|
Carlos AF, Machulda MM, Rutledge MH, Nguyen AT, Reichard RR, Baker MC, Rademakers R, Dickson DW, Petersen RC, Josephs KA. Comparison of Clinical, Genetic, and Pathologic Features of Limbic and Diffuse Transactive Response DNA-Binding Protein 43 Pathology in Alzheimer's Disease Neuropathologic Spectrum. J Alzheimers Dis 2023; 93:1521-1535. [PMID: 37182869 PMCID: PMC10923399 DOI: 10.3233/jad-221094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Increasing evidence suggests that TAR DNA-binding protein 43 (TDP-43) pathology in Alzheimer's disease (AD), or AD-TDP, can be diffuse or limbic-predominant. Understanding whether diffuse AD-TDP has genetic, clinical, and pathological features that differ from limbic AD-TDP could have clinical and research implications. OBJECTIVE To better characterize the clinical and pathologic features of diffuse AD-TDP and differentiate it from limbic AD-TDP. METHODS 363 participants from the Mayo Clinic Study of Aging, Alzheimer's Disease Research Center, and Neurodegenerative Research Group with autopsy confirmed AD and TDP-43 pathology were included. All underwent genetic, clinical, neuropsychologic, and neuropathologic evaluations. AD-TDP pathology distribution was assessed using the Josephs 6-stage scale. Stages 1-3 were classified as Limbic, those 4-6 as Diffuse. Multivariable logistic regression was used to identify clinicopathologic features that independently predicted diffuse pathology. RESULTS The cohort was 61% female and old at onset (median: 76 years [IQR:70-82]) and death (median: 88 years [IQR:82-92]). Fifty-four percent were Limbic and 46% Diffuse. Clinically, ∼10-20% increases in odds of being Diffuse associated with 5-year increments in age at onset (p = 0.04), 1-year longer disease duration (p = 0.02), and higher Neuropsychiatric Inventory scores (p = 0.03), while 15-second longer Trailmaking Test-B times (p = 0.02) and higher Block Design Test scores (p = 0.02) independently decreased the odds by ~ 10-15%. There was evidence for association of APOEɛ4 allele with limbic AD-TDP and of TMEM106B rs3173615 C allele with diffuse AD-TDP. Pathologically, widespread amyloid-β plaques (Thal phases: 3-5) decreased the odds of diffuse TDP-43 pathology by 80-90%, while hippocampal sclerosis increased it sixfold (p < 0.001). CONCLUSION Diffuse AD-TDP shows clinicopathologic and genetic features different from limbic AD-TDP.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew C. Baker
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Flanders 2000, Belgium
| | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
25
|
Perneel J, Rademakers R. Identification of TMEM106B amyloid fibrils provides an updated view of TMEM106B biology in health and disease. Acta Neuropathol 2022; 144:807-819. [PMID: 36056242 PMCID: PMC9547799 DOI: 10.1007/s00401-022-02486-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Since the initial identification of TMEM106B as a risk factor for frontotemporal lobar degeneration (FTLD), multiple genetic studies have found TMEM106B variants to modulate disease risk in a variety of brain disorders and healthy aging. Neurodegenerative disorders are typically characterized by inclusions of misfolded proteins and since lysosomes are an important site for cellular debris clearance, lysosomal dysfunction has been closely linked to neurodegeneration. Consequently, many causal mutations or genetic risk variants implicated in neurodegenerative diseases encode proteins involved in endosomal-lysosomal function. As an integral lysosomal transmembrane protein, TMEM106B regulates several aspects of lysosomal function and multiple studies have shown that proper TMEM106B protein levels are crucial for maintaining lysosomal health. Yet, the precise function of TMEM106B at the lysosomal membrane is undetermined and it remains unclear how TMEM106B modulates disease risk. Unexpectedly, several independent groups recently showed that the C-terminal domain (AA120-254) of TMEM106B forms amyloid fibrils in the brain of patients with a diverse set of neurodegenerative conditions. The recognition that TMEM106B can form amyloid fibrils and is present across neurodegenerative diseases sheds new light on TMEM106B as a central player in neurodegeneration and brain health, but also raises important new questions. In this review, we summarize current knowledge and place a decade's worth of TMEM106B research into an exciting new perspective.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
26
|
Viral Clearance and Neuroinflammation in Acute TMEV Infection Vary by Host Genetic Background. Int J Mol Sci 2022; 23:ijms231810482. [PMID: 36142395 PMCID: PMC9501595 DOI: 10.3390/ijms231810482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.
Collapse
|
27
|
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 2022; 87:101166. [PMID: 35513161 PMCID: PMC9059347 DOI: 10.1016/j.plipres.2022.101166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023]
Abstract
The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
28
|
Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry 2022; 27:2849-2857. [PMID: 35296807 DOI: 10.1038/s41380-022-01507-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWASs) have identified numerous risk genes for depression. Nevertheless, genes crucial for understanding the molecular mechanisms of depression and effective antidepressant drug targets are largely unknown. Addressing this, we aimed to highlight potentially causal genes by systematically integrating the brain and blood protein and expression quantitative trait loci (QTL) data with a depression GWAS dataset via a statistical framework including Mendelian randomization (MR), Bayesian colocalization, and Steiger filtering analysis. In summary, we identified three candidate genes (TMEM106B, RAB27B, and GMPPB) based on brain data and two genes (TMEM106B and NEGR1) based on blood data with consistent robust evidence at both the protein and transcriptional levels. Furthermore, the protein-protein interaction (PPI) network provided new insights into the interaction between brain and blood in depression. Collectively, four genes (TMEM106B, RAB27B, GMPPB, and NEGR1) affect depression by influencing protein and gene expression level, which could guide future researches on candidate genes investigations in animal studies as well as prioritize antidepressant drug targets.
Collapse
|
29
|
Koçoğlu C, Van Broeckhoven C, van der Zee J. How network-based approaches can complement gene identification studies in frontotemporal dementia. Trends Genet 2022; 38:944-955. [DOI: 10.1016/j.tig.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
30
|
Schweighauser M, Arseni D, Bacioglu M, Huang M, Lövestam S, Shi Y, Yang Y, Zhang W, Kotecha A, Garringer HJ, Vidal R, Hallinan GI, Newell KL, Tarutani A, Murayama S, Miyazaki M, Saito Y, Yoshida M, Hasegawa K, Lashley T, Revesz T, Kovacs GG, van Swieten J, Takao M, Hasegawa M, Ghetti B, Spillantini MG, Ryskeldi-Falcon B, Murzin AG, Goedert M, Scheres SHW. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 2022; 605:310-314. [PMID: 35344985 PMCID: PMC9095482 DOI: 10.1038/s41586-022-04650-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.
Collapse
Affiliation(s)
| | - Diana Arseni
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melissa Huang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wenjuan Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London, London, UK
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeo Murayama
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Masayuki Miyazaki
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Kazuko Hasegawa
- Division of Neurology, Sagamihara National Hospital, Sagamihara, Japan
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Tamas Revesz
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
31
|
Mao D, Yan F, Zhang X, Gao G. TMEM106A inhibits enveloped virus release from cell surface. iScience 2022; 25:103843. [PMID: 35198896 PMCID: PMC8844723 DOI: 10.1016/j.isci.2022.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses pose constant threat to hosts from ocean to land. Virion particle release from cell surface is a critical step in the viral life cycle for most enveloped viruses, making it a common antiviral target for the host defense system. Here we report that host factor TMEM106A inhibits the release of enveloped viruses from the cell surface. TMEM106A is a type II transmembrane protein localized on the plasma membrane and can be incorporated into HIV-1 virion particles. Through intermolecular interactions of its C-terminal domains on virion particle and plasma membrane, TMEM106A traps virion particles to the cell surface. HIV-1 Env interacts with TMEM106A to interfere with the intermolecular interactions and partially suppresses its antiviral activity. TMEM106A orthologs from various species displayed potent antiviral activity against multiple enveloped viruses. These results suggest that TMEM106A is an evolutionarily conserved antiviral factor that inhibits the release of enveloped viruses from the cell surface. Type II transmembrane protein TMEM106A can be incorporated into virion particles TMEM106A inhibits enveloped virion release through C-terminal molecular interactions HIV-1 envelope protein interacts with TMEM106A and suppresses its antiviral activity TMEM106A is an evolutionarily conserved antiviral factor against multiple viruses
Collapse
Affiliation(s)
- Dexin Mao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixiang Yan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence
| |
Collapse
|
32
|
Sainouchi M, Tada M, Fitrah YA, Hara N, Tanaka K, Idezuka J, Aida I, Nakajima T, Miyashita A, Akazawa K, Ikeuchi T, Onodera O, Kakita A. Brain TDP-43 pathology in corticobasal degeneration: topographical correlation with neuronal loss. Neuropathol Appl Neurobiol 2021; 48:e12786. [PMID: 34913181 DOI: 10.1111/nan.12786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS Neuronal and glial inclusions comprising transactive response DNA-binding protein of 43 kDa (TDP-43) have been identified in the brains of patients with corticobasal degeneration (CBD), and a possible correlation between the presence of these inclusions and clinical phenotypes has been speculated. However, the significance of TDP-43 pathology in the pathomechanism of CBD has remained unclear. Here we investigated the topographical relationship between TDP-43 inclusions and neuronal loss in CBD. METHODS We estimated semi-quantitatively neuronal loss and TDP-43 pathology in the form of neuronal cytoplasmic inclusions (NCIs), astrocytic inclusions (AIs), oligodendroglial cytoplasmic inclusions (GCIs), and dystrophic neurites in 22 CNS regions in 10 patients with CBD. Then, the degree of correlation between the severity of neuronal loss and the quantity of each type of TDP-43 inclusion was assessed. We also investigated tau pathology in a similar manner. RESULTS TDP-43 pathology was evident in 9 patients. The putamen and globus pallidus were the regions most frequently affected (80%). NCIs were the most prominent form, and their quantity was significantly correlated with the severity of neuronal loss in more than half of the regions examined. The quantities of TDP-43 NCIs and tau NCIs were correlated in only a few regions. The number of regions where the quantities of TDP-43 AIs and GCIs were correlated with the severity of neuronal loss was apparently small in comparison with that of NCIs. CONCLUSIONS TDP-43 alterations in neurons, not closely associated with tau pathology, may be involved in the pathomechanism underlying neuronal loss in CBD.
Collapse
Affiliation(s)
- Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yusran Ady Fitrah
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kou Tanaka
- Department of Psychiatry, Mishima Hospital, Nagaoka, Niigata, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Ojiya, Niigata, Japan
| | - Izumi Aida
- Department of Neurology, National Hospital Organization Niigata National Hospital, Kashiwazaki, Niigata, Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital, Kashiwazaki, Niigata, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kohei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
33
|
Abstract
Throughout the viral life cycle, interplays between cellular host factors and virus determine the infectious capacity of the virus. The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a great threat to human life and health. Extensive studies identified a number of host proviral and antiviral factors for SARS-CoV-2. In this review, we summarize the current understanding of the interplay between SARS-CoV-2 and cellular factors during virus entry and replication. Our review will highlight the future direction of study on the infection and pathogenesis of SARS-CoV-2, as well as novel therapeutic strategies and effective antiviral targets for COVID-19.
Collapse
Affiliation(s)
- Lu Lv
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Leiliang Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
34
|
Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem 2021; 297:101159. [PMID: 34480901 PMCID: PMC8477193 DOI: 10.1016/j.jbc.2021.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer's disease (AD), deposition of pathological tau and amyloid-β (Aβ) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aβ copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aβ, and the Aβ coinjection caused a redistribution of Aβ aggregates in mutant AD model mice. The injection-induced Aβ phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aβ from tau extracts. These data suggest that Aβ and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aβ-oligomer–induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.
Collapse
|
35
|
Monereo-Sánchez J, Schram MT, Frei O, O’Connell K, Shadrin AA, Smeland OB, Westlye LT, Andreassen OA, Kaufmann T, Linden DEJ, van der Meer D. Genetic Overlap Between Alzheimer's Disease and Depression Mapped Onto the Brain. Front Neurosci 2021; 15:653130. [PMID: 34290577 PMCID: PMC8288283 DOI: 10.3389/fnins.2021.653130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) and depression are debilitating brain disorders that are often comorbid. Shared brain mechanisms have been implicated, yet findings are inconsistent, reflecting the complexity of the underlying pathophysiology. As both disorders are (partly) heritable, characterising their genetic overlap may provide aetiological clues. While previous studies have indicated negligible genetic correlations, this study aims to expose the genetic overlap that may remain hidden due to mixed directions of effects. Methods: We applied Gaussian mixture modelling, through MiXeR, and conjunctional false discovery rate (cFDR) analysis, through pleioFDR, to genome-wide association study (GWAS) summary statistics of AD (n = 79,145) and depression (n = 450,619). The effects of identified overlapping loci on AD and depression were tested in 403,029 participants of the UK Biobank (UKB) (mean age 57.21, 52.0% female), and mapped onto brain morphology in 30,699 individuals with brain MRI data. Results: MiXer estimated 98 causal genetic variants overlapping between the 2 disorders, with 0.44 concordant directions of effects. Through pleioFDR, we identified a SNP in the TMEM106B gene, which was significantly associated with AD (B = -0.002, p = 9.1 × 10-4) and depression (B = 0.007, p = 3.2 × 10-9) in the UKB. This SNP was also associated with several regions of the corpus callosum volume anterior (B > 0.024, p < 8.6 × 10-4), third ventricle volume ventricle (B = -0.025, p = 5.0 × 10-6), and inferior temporal gyrus surface area (B = 0.017, p = 5.3 × 10-4). Discussion: Our results indicate there is substantial genetic overlap, with mixed directions of effects, between AD and depression. These findings illustrate the value of biostatistical tools that capture such overlap, providing insight into the genetic architectures of these disorders.
Collapse
Affiliation(s)
- Jennifer Monereo-Sánchez
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Miranda T. Schram
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Internal Medicine, School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, Netherlands
- Heart and Vascular Centre, Maastricht University Medical Center, Maastricht, Netherlands
| | - Oleksandr Frei
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Kevin O’Connell
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B. Smeland
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - David E. J. Linden
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dennis van der Meer
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
37
|
Bludau I, Frank M, Dörig C, Cai Y, Heusel M, Rosenberger G, Picotti P, Collins BC, Röst H, Aebersold R. Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nat Commun 2021; 12:3810. [PMID: 34155216 PMCID: PMC8217233 DOI: 10.1038/s41467-021-24030-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Max Frank
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christian Dörig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yujia Cai
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Division of Infection Medicine (BMC), Department of Clinical Sciences, Lund University, Lund, Sweden
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Columbia University, New York, NY, USA
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Baggen J, Persoons L, Vanstreels E, Jansen S, Van Looveren D, Boeckx B, Geudens V, De Man J, Jochmans D, Wauters J, Wauters E, Vanaudenaerde BM, Lambrechts D, Neyts J, Dallmeier K, Thibaut HJ, Jacquemyn M, Maes P, Daelemans D. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat Genet 2021; 53:435-444. [PMID: 33686287 DOI: 10.1038/s41588-021-00805-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
The ongoing COVID-19 pandemic has caused a global economic and health crisis. To identify host factors essential for coronavirus infection, we performed genome-wide functional genetic screens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E. These screens uncovered virus-specific as well as shared host factors, including TMEM41B and PI3K type 3. We discovered that SARS-CoV-2 requires the lysosomal protein TMEM106B to infect human cell lines and primary lung cells. TMEM106B overexpression enhanced SARS-CoV-2 infection as well as pseudovirus infection, suggesting a role in viral entry. Furthermore, single-cell RNA-sequencing of airway cells from patients with COVID-19 demonstrated that TMEM106B expression correlates with SARS-CoV-2 infection. The present study uncovered a collection of coronavirus host factors that may be exploited to develop drugs against SARS-CoV-2 infection or future zoonotic coronavirus outbreaks.
Collapse
Affiliation(s)
- Jim Baggen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium.
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Els Vanstreels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Sander Jansen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Bram Boeckx
- KU Leuven Department of Human Genetics, Laboratory for Translational Genetics, Leuven, Belgium.,VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Vincent Geudens
- KU Leuven Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Julie De Man
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Joost Wauters
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, Leuven, Belgium
| | - Els Wauters
- KU Leuven Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Bart M Vanaudenaerde
- KU Leuven Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Diether Lambrechts
- KU Leuven Department of Human Genetics, Laboratory for Translational Genetics, Leuven, Belgium.,VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium.
| |
Collapse
|
39
|
Dall’Aglio L, Lewis CM, Pain O. Delineating the Genetic Component of Gene Expression in Major Depression. Biol Psychiatry 2021; 89:627-636. [PMID: 33279206 PMCID: PMC7886308 DOI: 10.1016/j.biopsych.2020.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Major depression (MD) is determined by a multitude of factors including genetic risk variants that regulate gene expression. We examined the genetic component of gene expression in MD by performing a transcriptome-wide association study (TWAS), inferring gene expression-trait relationships from genetic, transcriptomic, and phenotypic information. METHODS Genes differentially expressed in depression were identified with the TWAS FUSION method, based on summary statistics from the largest genome-wide association analysis of MD (n = 135,458 cases, n = 344,901 controls) and gene expression levels from 21 tissue datasets (brain; blood; thyroid, adrenal, and pituitary glands). Follow-up analyses were performed to extensively characterize the identified associations: colocalization, conditional, and fine-mapping analyses together with TWAS-based pathway investigations. RESULTS Transcriptome-wide significant differences between cases and controls were found at 94 genes, approximately half of which were novel. Of the 94 significant genes, 6 represented strong, colocalized, and potentially causal associations with depression. Such high-confidence associations include NEGR1, CTC-467M3.3, TMEM106B, LRFN5, ESR2, and PROX2. Lastly, TWAS-based enrichment analysis highlighted dysregulation of gene sets for, among others, neuronal and synaptic processes. CONCLUSIONS This study sheds further light on the genetic component of gene expression in depression by characterizing the identified associations, unraveling novel risk genes, and determining which associations are congruent with a causal model. These findings can be used as a resource for prioritizing and designing subsequent functional studies of MD.
Collapse
Affiliation(s)
- Lorenza Dall’Aglio
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom,Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands,Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
40
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Frontotemporal dementia (FTD) is a rare dementia, that accounts for about 15% of all dementia cases. Despite consensus diagnostic criteria, FTD remains difficult to diagnose in life because of its complex and variable clinical phenomenology and heterogeneous disorders. This review provides an update on the current knowledge of the main FTD syndromes -- the behavioural variant, semantic variant, and nonfluent/agrammatic variant-- their brain abnormalities and genetic profiles. RECENT FINDINGS The complexity of the clinical features in FTD has become increasingly apparent, particularly in the domain of behaviour. Such behaviour changes are now also being recognized in the language variants of FTD. Initial interest on emotion processing and social cognition is now complemented by studies on other behavioural disturbance, that spans gambling, antisocial behaviours, repetitive behaviours, and apathy. At a biological level, novel pathological subcategories continue to be identified. From a genetic viewpoint, abnormalities in three genes explain nearly three quarters of familial cases of FTD. SUMMARY In the absence of effective drug treatments, novel approaches are needed to target some of the most disabling features of FTD, such as language loss or behaviour disturbance. Recent interventions appear promising but will require confirmation.
Collapse
|
42
|
Hu Y, Sun JY, Zhang Y, Zhang H, Gao S, Wang T, Han Z, Wang L, Sun BL, Liu G. rs1990622 variant associates with Alzheimer's disease and regulates TMEM106B expression in human brain tissues. BMC Med 2021; 19:11. [PMID: 33461566 PMCID: PMC7814705 DOI: 10.1186/s12916-020-01883-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been well established that the TMEM106B gene rs1990622 variant was a frontotemporal dementia (FTD) risk factor. Until recently, growing evidence highlights the role of TMEM106B in Alzheimer's disease (AD). However, it remains largely unclear about the role of rs1990622 variant in AD. METHODS Here, we conducted comprehensive analyses including genetic association study, gene expression analysis, eQTLs analysis, and colocalization analysis. In stage 1, we conducted a genetic association analysis of rs1990622 using large-scale genome-wide association study (GWAS) datasets from International Genomics of Alzheimer's Project (21,982 AD and 41,944 cognitively normal controls) and UK Biobank (314,278 participants). In stage 2, we performed a gene expression analysis of TMEM106B in 49 different human tissues using the gene expression data in GTEx. In stage 3, we performed an expression quantitative trait loci (eQTLs) analysis using multiple datasets from UKBEC, GTEx, and Mayo RNAseq Study. In stage 4, we performed a colocalization analysis to provide evidence of the AD GWAS and eQTLs pair influencing both AD and the TMEM106B expression at a particular region. RESULTS We found (1) rs1990622 variant T allele contributed to AD risk. A sex-specific analysis in UK Biobank further indicated that rs1990622 T allele only contributed to increased AD risk in females, but not in males; (2) TMEM106B showed different expression in different human brain tissues especially high expression in cerebellum; (3) rs1990622 variant could regulate the expression of TMEM106B in human brain tissues, which vary considerably in different disease statuses, the mean ages at death, the percents of females, and the different descents of the selected donors; (4) colocalization analysis provided suggestive evidence that the same variant contributed to AD risk and TMEM106B expression in cerebellum. CONCLUSION Our comprehensive analyses highlighted the role of FTD rs1990622 variant in AD risk. This cross-disease approach may delineate disease-specific and common features, which will be important for both diagnostic and therapeutic development purposes. Meanwhile, these findings highlight the importance to better understand TMEM106B function and dysfunction in the context of normal aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Jing-Yi Sun
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Haihua Zhang
- Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shan Gao
- Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Tao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- School of Medicine, School of Pharmaceutical Sciences, THU-PKU Center for Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Department of Neurology, Second Affiliated Hospital; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, China. .,Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Department of Neurology, Second Affiliated Hospital; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China. .,National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
43
|
Borrego-Écija S, Sala-Llonch R, van Swieten J, Borroni B, Moreno F, Masellis M, Tartaglia C, Graff C, Galimberti D, Laforce R, Rowe JB, Finger E, Vandenberghe R, Tagliavini F, de Mendonça A, Santana I, Synofzik M, Ducharme S, Levin J, Danek A, Gerhard A, Otto M, Butler C, Frisoni G, Sorbi S, Heller C, Bocchetta M, Cash DM, Convery RS, Moore KM, Rohrer JD, Sanchez-Valle R. Disease-related cortical thinning in presymptomatic granulin mutation carriers. NEUROIMAGE-CLINICAL 2020; 29:102540. [PMID: 33418170 PMCID: PMC7804836 DOI: 10.1016/j.nicl.2020.102540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
No differences in cortical thickness were found between presymptomatic GRN mutation carriers and non-carriers at the group-wise comparison. Presymptomatic GRN mutations carriers present distinct age-related CTh loss in frontal areas. We do not fount influence of the TMEM106B genotype in the age-related CTh of GRN carriers.
Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.
Collapse
Affiliation(s)
- Sergi Borrego-Écija
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Roser Sala-Llonch
- Departament de Biomedicina, Institute of Neuroscience, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fermín Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Mario Masellis
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Université Laval, Québec, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologica Carlo Besta, Milano, Italy
| | | | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institut, McGill University, Montreal, Québec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany; SyNergy,Munich Cluster for Systems Neurology, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Giovanni Frisoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Don Carlo Gnocchi, Florence, Italy
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - Katrina M Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Departament de Biomedicina, Institute of Neuroscience, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | | |
Collapse
|
44
|
Perez-Canamas A, Takahashi H, Lindborg JA, Strittmatter SM. Fronto-temporal dementia risk gene TMEM106B has opposing effects in different lysosomal storage disorders. Brain Commun 2020; 3:fcaa200. [PMID: 33796852 PMCID: PMC7990118 DOI: 10.1093/braincomms/fcaa200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
TMEM106B is a transmembrane protein localized to the endo-lysosomal compartment. Genome-wide association studies have identified TMEM106B as a risk modifier of Alzheimer's disease and frontotemporal lobar degeneration, especially with progranulin haploinsufficiency. We recently demonstrated that TMEM106B loss rescues progranulin null mouse phenotypes including lysosomal enzyme dysregulation, neurodegeneration and behavioural alterations. However, the reason whether TMEM106B is involved in other neurodegenerative lysosomal diseases is unknown. Here, we evaluate the potential role of TMEM106B in modifying the progression of lysosomal storage disorders using progranulin-independent models of Gaucher disease and neuronal ceroid lipofuscinosis. To study Gaucher disease, we employ a pharmacological approach using the inhibitor conduritol B epoxide in wild-type and hypomorphic Tmem106b-/- mice. TMEM106B depletion ameliorates neuronal degeneration and some behavioural abnormalities in the pharmacological model of Gaucher disease, similar to its effect on certain progranulin null phenotypes. In order to examine the role of TMEM106B in neuronal ceroid lipofuscinosis, we crossbred Tmem106b-/- mice with Ppt1-/-, a genetic model of the disease. In contrast to its conduritol B epoxide-rescuing effect, TMEM106B loss exacerbates Purkinje cell degeneration and motor deficits in Ppt1-/- mice. Mechanistically, TMEM106B is known to interact with subunits of the vacuolar ATPase and influence lysosomal acidification. In the pharmacological Gaucher disease model, the acidified lysosomal compartment is enhanced and TMEM106B loss rescues in vivo phenotypes. In contrast, gene-edited neuronal loss of Ppt1 causes a reduction in vacuolar ATPase levels and impairment of the acidified lysosomal compartment, and TMEM106B deletion exacerbates the mouse Ppt1-/- phenotype. Our findings indicate that TMEM106B differentially modulates the progression of the lysosomal storage disorders Gaucher disease and neuronal ceroid lipofuscinosis. The effect of TMEM106B in neurodegeneration varies depending on vacuolar ATPase state and modulation of lysosomal pH. These data suggest TMEM106B as a target for correcting lysosomal pH alterations, and in particular for therapeutic intervention in Gaucher disease and neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Azucena Perez-Canamas
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jane A Lindborg
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
45
|
Luukkainen L, Helisalmi S, Kytövuori L, Ahmasalo R, Solje E, Haapasalo A, Hiltunen M, Remes AM, Krüger J. Mutation Analysis of the Genes Linked to Early Onset Alzheimer's Disease and Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 69:775-782. [PMID: 31127772 DOI: 10.3233/jad-181256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lot of effort has been done to unravel the genetics underlying early-onset Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). However, many familial early-onset dementia (EOD) cases still show an unclear genetic background. The aim of this study was to evaluate the role of the known causative mutations and possible pathogenic variants associated with AD and FTLD in a Finnish EOD cohort. The cohort consisted of 39 patients (mean age at onset 54.8 years, range 39-65) with a positive family history of dementia or an atypical or rapidly progressive course of the disease. None of the patients carried the C9orf72 hexanucleotide repeat expansion. Mutations and variants in APP, PSEN1, PSEN2, MAPT, GRN, VCP, CHMP2B, FUS, TARDBP, TREM2, TMEM106B, UBQLN2, SOD1, PRNP, UBQLN1, and BIN1 were screened by using a targeted next generation sequencing panel. Two previously reported pathogenic mutations (PSEN1 p.His163Arg and MAPT p.Arg406Trp) were identified in the cohort. Both patients had familial dementia with an atypical early onset phenotype. In addition, a heterozygous p.Arg71Trp mutation in PSEN2 with an uncertain pathogenic nature was identified in a patient with neuropathologically confirmed AD. In conclusion, targeted investigation of the known dementia-linked genes is worthwhile in patients with onset age under 55 and a positive family history, as well as in patients with atypical features.
Collapse
Affiliation(s)
- Laura Luukkainen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Riitta Ahmasalo
- Department of Neurology, Lapland Central Hospital, Rovaniemi, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
46
|
Zhou X, Brooks M, Jiang P, Koga S, Zuberi AR, Baker MC, Parsons TM, Castanedes-Casey M, Phillips V, Librero AL, Kurti A, Fryer JD, Bu G, Lutz C, Dickson DW, Rademakers R. Loss of Tmem106b exacerbates FTLD pathologies and causes motor deficits in progranulin-deficient mice. EMBO Rep 2020; 21:e50197. [PMID: 32761777 DOI: 10.15252/embr.202050197] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss-of-function mutations in progranulin (GRN) are a common cause of FTLD, while TMEM106B variants have been shown to act as disease modifiers in FTLD. Overexpression of TMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal and FTLD-related pathologies in young Grn-/- mice, suggesting that lowering TMEM106B might be an attractive strategy for therapeutic treatment of FTLD-GRN. Here, we generate and characterize older Tmem106b-/- Grn-/- double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11-12 months. Compared to Grn-/- , Tmem106b-/- Grn-/- mice have exacerbated FTLD-related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho-Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulating TMEM106B levels is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aamir R Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, Bar Harbor, ME, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cathleen Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, Bar Harbor, ME, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
47
|
Yang HS, White CC, Klein HU, Yu L, Gaiteri C, Ma Y, Felsky D, Mostafavi S, Petyuk VA, Sperling RA, Ertekin-Taner N, Schneider JA, Bennett DA, De Jager PL. Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. Neuron 2020; 107:496-508.e6. [PMID: 32526197 PMCID: PMC7416464 DOI: 10.1016/j.neuron.2020.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/20/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Here, we perform a genome-wide screen for variants that regulate the expression of gene co-expression modules in the aging human brain; we discover and replicate such variants in the TMEM106B and RBFOX1 loci. The TMEM106B haplotype is known to influence the accumulation of TAR DNA-binding protein 43 kDa (TDP-43) proteinopathy, and the haplotype's large-scale transcriptomic effects include the dysregulation of lysosomal genes and alterations in synaptic gene splicing that are also seen in the pathophysiology of TDP-43 proteinopathy. Further, a variant near GRN, another TDP-43 proteinopathy susceptibility gene, shows concordant effects with the TMEM106B haplotype. Leveraging neuropathology data from the same participants, we also show that TMEM106B and APOE-amyloid-β effects converge to alter myelination and lysosomal gene expression, which then contributes to TDP-43 accumulation. These results advance our mechanistic understanding of the TMEM106B TDP-43 risk haplotype and uncover a transcriptional program that mediates the converging effects of APOE-amyloid-β and TMEM106B on TDP-43 aggregation in older adults.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles C White
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hans-Ulrich Klein
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yiyi Ma
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel Felsky
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sara Mostafavi
- Department of Statistics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | | | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
48
|
Goldman JS. Predictive Genetic Counseling for Neurodegenerative Diseases: Past, Present, and Future. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036525. [PMID: 31548223 DOI: 10.1101/cshperspect.a036525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Predictive genetic counseling for neurodegenerative diseases commenced with Huntington's disease (HD). Because the psychological issues and outcomes have been best studied in HD, the HD genetic counseling and testing protocol is still accepted as the gold standard for genetic counseling for these diseases. Yet, advances in genomic technology have produced an abundance of new information about the genetics of diseases such as Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Parkinson's disease. The resulting expansion of genetic tests together with the availability of direct-to-consumer testing and clinical trials for treatment of these diseases present new ethical and practical issues requiring modifications to the protocol for HD counseling and new demands on both physicians and genetic counselors. This work reviews the history of genetic counseling for neurodegenerative diseases, its current practice, and the future direction of genetic counseling for these conditions.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Vagelos College of Medicine, New York, New York 10032, USA
| |
Collapse
|
49
|
Doyle JJ, Parker JA, Bateman A. TMEM106B, an unexpected point of contact between FTD, ageing and a hypomyelination disorder. Brain 2020; 143:1628-1631. [PMID: 32543692 DOI: 10.1093/brain/awaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies’, by Zhou et al. (doi:10.1093/brain/awaa141).
Collapse
Affiliation(s)
- James J Doyle
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| | - J Alex Parker
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
50
|
Zhou X, Nicholson AM, Ren Y, Brooks M, Jiang P, Zuberi A, Phuoc HN, Perkerson RB, Matchett B, Parsons TM, Finch NA, Lin W, Qiao W, Castanedes-Casey M, Phillips V, Librero AL, Asmann Y, Bu G, Murray ME, Lutz C, Dickson DW, Rademakers R. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 2020; 143:1905-1919. [PMID: 32504082 PMCID: PMC7296855 DOI: 10.1093/brain/awaa141] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Hung Nguyen Phuoc
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Billie Matchett
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenlang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ariston L Librero
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Cathleen Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
- VIB Center for Molecular Neurology, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|