1
|
Darlix A, Bady P, Deverdun J, Lefort K, Rigau V, Le Bars E, Meriadec J, Carrière M, Coget A, Santarius T, Matys T, Duffau H, Hegi ME. Clinical value of the MGMT promoter methylation score in IDHmt low-grade glioma for predicting benefit from temozolomide treatment. Neurooncol Adv 2025; 7:vdae224. [PMID: 40041202 PMCID: PMC11877643 DOI: 10.1093/noajnl/vdae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background Diffuse IDH mutant low-grade gliomas (IDHmt LGG) (World Health Organization grade 2) typically affect young adults. The outcome is variable, with survival ranging from 5 to over 20 years. The timing and choice of initial treatments after surgery remain controversial. In particular, radiotherapy is associated with early and late cognitive toxicity. Over 90% of IDHmt LGG exhibit some degree of promoter methylation of the repair gene O(6)-methylguanine-DNA methytransferase (MGMTp) that when expressed blunts the effect of alkylating agent chemotherapy, for example, temozolomide (TMZ). However, the clinical value of MGMTp methylation predicting benefit from TMZ in IDHmt LGG is unclear. Methods Patients treated in the EORTC-22033 phase III trial comparing TMZ versus radiotherapy served as training set to establish a cutoff based on the MGMT-STP27 methylation score. A validation cohort was established with patients treated in a single-center first-line with TMZ after surgery/surgeries. Results The MGMT-STP27 methylation score was associated with better progression-free survival (PFS) in the training cohort treated with TMZ, but not radiotherapy. In the validation cohort, an association with next treatment-free survival (P = .045) after TMZ was observed, and a trend using RANO criteria (P = .07). A cutoff value set above the 95% confidence interval of being methylated was significantly associated with PFS in the TMZ-treated training cohort, but not in the radiotherapy arm. However, this cutoff could not be confirmed in the test cohort. Conclusions While the MGMTp methylation score was associated with better outcomes in TMZ-treated IDHmt LGG, a cutoff could not be established to guide treatment decisions.
Collapse
Affiliation(s)
- Amélie Darlix
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Pierre Bady
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Translational Data Science & Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémy Deverdun
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Karine Lefort
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie Rigau
- Department of Neuropathology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuelle Le Bars
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Justine Meriadec
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Mathilde Carrière
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Monika E Hegi
- Departments of Oncology and Clinical Neurosciences, L. Lundin and Family Brain Tumor Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Ma S, Pan X, Gan J, Guo X, He J, Hu H, Wang Y, Ning S, Zhi H. DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma. Epigenetics 2024; 19:2318506. [PMID: 38439715 PMCID: PMC10936651 DOI: 10.1080/15592294.2024.2318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.
Collapse
Affiliation(s)
- Shuangyue Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaxin Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoyu Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Hu X, Hu Z, Zhang H, Zhang N, Feng H, Jia X, Zhang C, Cheng Q. Deciphering the tumor-suppressive role of PSMB9 in melanoma through multi-omics and single-cell transcriptome analyses. Cancer Lett 2024; 581:216466. [PMID: 37944578 DOI: 10.1016/j.canlet.2023.216466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Skin cutaneous melanoma (SKCM) poses a significant challenge in skin cancers. Recent immunotherapy breakthroughs have revolutionized melanoma treamtment, yet tumor heterogeneity persists as an obstacle. Epigenetic modifications orchestrated by DNA methylation contributed to tumorigenesis, thus potentially unveiling melanoma prognosis. Here, we identified an interferon-gamma (IFN-g) sensitive subtype, which possesses favorable outcomes, robust infiltration CD8+T cells, and IFN-g score in bulk RNA-seq profile. Subsequently, we established an IFN-g sensitivity signature based on machine learning. We validated that PSMB9 is strongly correlated with immunotherapy response in both methylation and expression cohorts in this 10-probe signature. We assumed that PSMB9 acts as a putative melanoma suppressor, for its activation of CD8+T cell; capacity to modulate IFN-γ secretion; and dynamics altering IFN-g receptors in bulk tissue. We performed single-cell RNA-seq on immunotherapy patients' tissue to uncover the nuanced role of PSMB9 in activating CD8T + cells, enhancing IFN-g, and influencing malignant cells receptors and transcriptional factors. Overexpress PSMB9 in two SKCM cell lines to mimic the hypomethylated state to approve our conjecture. Strong cell proliferation and migration inhibition were detected on both cells, indicating that PSMB9 is present in tumor cells and that high expression is detrimental to tumor growth and migration. Overall, comprehensive integrated analysis shows that PSMB9 emerges as a vital prognostic marker, acting predictive potential regarding immunotherapy in melanoma. This evidence not only reveals the multifaceted impact of PSMB9 on both malignant and immune cells but also serves as a prospective target for undergoing immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Nan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region, 850001, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Esparragosa Vazquez I, Sanson M, Chinot OL, Fontanilles M, Rivoirard R, Thomas-Maisonneuve L, Cartalat S, Tabouret E, Appay R, Bonneville-Levard A, Darlix A, Meyronet D, Barritault M, Gueyffier F, Remontet L, Maucort-Boulch D, Honnorat J, Dehais C, Ducray F. Olaparib in recurrent isocitrate dehydrogenase mutant high-grade glioma: A phase 2 multicenter study of the POLA Network. Neurooncol Adv 2024; 6:vdae078. [PMID: 38855053 PMCID: PMC11157627 DOI: 10.1093/noajnl/vdae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Background Based on preclinical studies showing that IDH-mutant (IDHm) gliomas could be vulnerable to PARP inhibition we launched a multicenter phase 2 study to test the efficacy of olaparib monotherapy in this population. Methods Adults with recurrent IDHm high-grade gliomas (HGGs) after radiotherapy and at least one line of alkylating chemotherapy were enrolled. The primary endpoint was a 6-month progression-free survival rate (PFS-6) according to response assessment in neuro-oncology criteria. Pre-defined threshold for study success was a PFS-6 of at least 50%. Results Thirty-five patients with recurrent IDHm HGGs were enrolled, 77% at ≥ 2nd recurrence. Median time since diagnosis and radiotherapy were 7.5 years and 33 months, respectively. PFS-6 was 31.4% (95% CI [16.9; 49.3%]). Two patients (6%) had an objective response and 14 patients (40%) had a stable disease as their best response. Median PFS and median overall survival were 2.05 and 15.9 months, respectively. Oligodendrogliomas (1p/19q codeleted) had a higher PFS-6 (53.4% vs. 15.7%, P = .05) than astrocytomas while an initial diagnosis of grade 4 astrocytoma tended to be associated with a lower PFS-6 compared to grade 2/3 gliomas (0% vs 31.4%, P = .16). A grade 2 or 3 treatment-related adverse event was observed in 15 patients (43%) and 5 patients (14%), respectively. No patient definitively discontinued treatment due to side effects. Conclusions Although it did not meet its primary endpoint, the present study shows that in this heavily pretreated population, olaparib monotherapy was well tolerated and resulted in some activity, supporting further PARP inhibitors evaluation in IDHm HGGs, especially in oligodendrogliomas.
Collapse
Affiliation(s)
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Olivier L Chinot
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Maxime Fontanilles
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rouen, France
- UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine, Normandie university, Rouen University Hospital, Rouen, France
| | - Romain Rivoirard
- Oncology Department, CHU de Saint-Etienne, Saint Etienne, France
| | | | - Stéphanie Cartalat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Romain Appay
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Pathology, AP-HM, University Hospital Timone, Marseille, France
| | | | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, Institut de Génomique Fonctionnelle, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Marc Barritault
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Remontet
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Delphine Maucort-Boulch
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284-INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Dehais
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
7
|
Wang B, Feng Y, Li Z, Zhou F, Luo J, Yang B, Long S, Li X, Liu Z, Li X, Chen J, Wang L, Wei W. Identification and validation of chromatin regulator-related signatures as a novel prognostic model for low-grade gliomas using translational bioinformatics. Life Sci 2024; 336:122312. [PMID: 38042284 DOI: 10.1016/j.lfs.2023.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
AIMS The purpose of this study is to explore the potential biological role and prognostic significance of chromatin regulators (CRs) in low-grade gliomas (LGGs). MAIN METHODS CRs were obtained from the FACER database. Transcription profiles of LGG patients were collected from the TCGA and CGGA databases. Differentially expressed CRs (DECRs) between LGGs and normal controls were identified using DESeq2. The consensus clustering algorithm was employed to distinguish subtypes of LGGs based on prognosis-related DECRs. The differences in clinical and molecular characteristics between different subtypes were explored. R packages, GSVA, ssGSEA, and ESTIMATE were utilized to elucidate the tumor microenvironment and activated pathways in different subtypes. Subsequently, a CRs-related signature was developed using LASSO Cox regression. Its performance was evaluated by Kaplan-Meier curve and ROC curve analyses. In vitro experiments were performed to explore the function of JADE3 in LGGs, which predominantly expressed in glioma cells. KEY FINDINGS We identified 43 DECRs and two CRs-related subtypes of LGGs. The subtype characterized by shorter survival displayed significant enrichment for pathways associated with DNA damage response and repair, along with heightened immune cell infiltration. Furthermore, the CRs-based signature exhibited excellent prognostic performance in both the TCGA and CGGA databases. Knockdown of JADE3 significantly increased the invasion, migration, and proliferation abilities of Hs683. SIGNIFICANCE Our study reveals the aberrant expression and prognostic value of CRs in LGGs. It emphasizes the potential regulatory role of CRs in the microenvironment and DNA damage repair in LGGs. JADE3 could be a possible therapeutic target for LGGs.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fan Zhou
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Jie Luo
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Bin Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhenyuan Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China.
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Zhu L, Yuan F, Wang X, Zhu R, Guo W. Cuproptosis-related gene-located DNA methylation in lower-grade glioma: Prognosis and tumor microenvironment. Cancer Biomark 2024; 40:185-198. [PMID: 38578883 PMCID: PMC11307024 DOI: 10.3233/cbm-230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Cuproptosis a novel copper-dependent cell death modality, plays a crucial part in the oncogenesis, progression and prognosis of tumors. However, the relationships among DNA-methylation located in cuproptosis-related genes (CRGs), overall survival (OS) and the tumor microenvironment remain undefined. In this study, we systematically assessed the prognostic value of CRG-located DNA-methylation for lower-grade glioma (LGG). Clinical and molecular data were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We employed Cox hazard regression to examine the associations between CRG-located DNA-methylation and OS, leading to the development of a prognostic signature. Kaplan-Meier survival and time-dependent receiver operating characteristic (ROC) analyses were utilized to gauge the accuracy of the signature. Gene Set Enrichment Analysis (GSEA) was applied to uncover potential biological functions of differentially expressed genes between high- and low-risk groups. A three CRG-located DNA-methylation prognostic signature was established based on TCGA database and validated in GEO dataset. The 1-year, 3-year, and 5-year area under the curve (AUC) of ROC curves in the TCGA dataset were 0.884, 0.888, and 0.859 while those in the GEO dataset were 0.943, 0.761 and 0.725, respectively. Cox-regression-analyses revealed the risk signature as an independent risk factor for LGG patients. Immunogenomic profiling suggested that the signature was associated with immune infiltration level and immune checkpoints. Functional enrichment analysis indicated differential enrichment in cell differentiation in the hindbrain, ECM receptor interactions, glycolysis and reactive oxygen species pathway across different groups. We developed and verified a novel CRG-located DNA-methylation signature to predict the prognosis in LGG patients. Our findings emphasize the potential clinical implications of CRG-located DNA-methylation indicating that it may serve as a promising therapeutic target for LGG patients.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fa Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
10
|
McCord M, Jamshidi P, Thirunavu V, Santana-Santos L, Vormittag-Nocito E, Dittman D, Parker S, Baczkowski J, Jennings L, Walshon J, McCortney K, Galbraith K, Zhang H, Lukas RV, Stupp R, Dixit K, Kumthekar P, Heimberger AB, Snuderl M, Horbinski C. Variant allelic frequencies of driver mutations can identify gliomas with potentially false-negative MGMT promoter methylation results. Acta Neuropathol Commun 2023; 11:175. [PMID: 37919784 PMCID: PMC10623846 DOI: 10.1186/s40478-023-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
MGMT promoter methylation testing is required for prognosis and predicting temozolomide response in gliomas. Accurate results depend on sufficient tumor cellularity, but histologic estimates of cellularity are subjective. We sought to determine whether driver mutation variant allelic frequency (VAF) could serve as a more objective metric for cellularity and identify possible false-negative MGMT samples. Among 691 adult-type diffuse gliomas, MGMT promoter methylation was assessed by pyrosequencing (N = 445) or DNA methylation array (N = 246); VAFs of TERT and IDH driver mutations were assessed by next generation sequencing. MGMT results were analyzed in relation to VAF. By pyrosequencing, 56% of all gliomas with driver mutation VAF ≥ 0.325 had MGMT promoter methylation, versus only 37% with VAF < 0.325 (p < 0.0001). The mean MGMT promoter pyrosequencing score was 19.3% for samples with VAF VAF ≥ 0.325, versus 12.7% for samples with VAF < 0.325 (p < 0.0001). Optimal VAF cutoffs differed among glioma subtypes (IDH wildtype glioblastoma: 0.12-0.18, IDH mutant astrocytoma: ~0.33, IDH mutant and 1p/19q co-deleted oligodendroglioma: 0.3-0.4). Methylation array was more sensitive for MGMT promoter methylation at lower VAFs than pyrosequencing. Microscopic examination tended to overestimate tumor cellularity when VAF was low. Re-testing low-VAF cases with methylation array and droplet digital PCR (ddPCR) confirmed that a subset of them had originally been false-negative. We conclude that driver mutation VAF is a useful quality assurance metric when evaluating MGMT promoter methylation tests, as it can help identify possible false-negative cases.
Collapse
Affiliation(s)
- Matthew McCord
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Vineeth Thirunavu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Erica Vormittag-Nocito
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - David Dittman
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Stephanie Parker
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Joseph Baczkowski
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jordain Walshon
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Kristyn Galbraith
- Department of Pathology, New York University Langone Health, New York, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
| | - Karan Dixit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA.
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA.
- Feinberg School of Medicine, Northwestern University, 303 E Superior Street, 6-518, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Yang X, Hu C, Xing Z, Lin Y, Su Y, Wang X, Cao D. Prediction of Ki-67 labeling index, ATRX mutation, and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI, SWI, DWI, and DSC-PWI. Eur Radiol 2023; 33:7003-7014. [PMID: 37133522 DOI: 10.1007/s00330-023-09695-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Noninvasive detection of molecular status of astrocytoma is of great clinical significance for predicting therapeutic response and prognosis. We aimed to evaluate whether morphological MRI (mMRI), SWI, DWI, and DSC-PWI could predict Ki-67 labeling index (LI), ATRX mutation, and MGMT promoter methylation status in IDH mutant (IDH-mut) astrocytoma. METHODS We retrospectively analyzed mMRI, SWI, DWI, and DSC-PWI in 136 patients with IDH-mut astrocytoma.The features of mMRI and intratumoral susceptibility signals (ITSS) were compared using Fisher exact test or chi-square tests. Wilcoxon rank sum test was used to compare the minimum ADC (ADCmin), and minimum relative ADC (rADCmin) of IDH-mut astrocytoma in different molecular markers status. Mann-Whitney U test was used to compare the rCBVmax of IDH-mut astrocytoma with different molecular markers status. Receiver operating characteristic curves was performed to evaluate their diagnostic performances. RESULTS ITSS, ADCmin, rADCmin, and rCBVmax were significantly different between high and low Ki-67 LI groups. ITSS, ADCmin, and rADCmin were significantly different between ATRX mutant and wild-type groups. Necrosis, edema, enhancement, and margin pattern were significantly different between low and high Ki-67 LI groups. Peritumoral edema was significantly different between ATRX mutant and wild-type groups. Grade 3 IDH-mut astrocytoma with unmethylated MGMT promoter was more likely to show enhancement compared to the methylated group. CONCLUSIONS mMRI, SWI, DWI, and DSC-PWI were shown to have the potential to predict Ki-67 LI and ATRX mutation status in IDH-mut astrocytoma. A combination of mMRI and SWI may improve diagnostic performance for predicting Ki-67 LI and ATRX mutation status. CLINICAL RELEVANCE STATEMENT Conventional MRI and functional MRI (SWI, DWI, and DSC-PWI) can predict Ki-67 expression and ATRX mutation status of IDH mutant astrocytoma, which may help clinicians determine personalized treatment plans and predict patient outcomes. KEY POINTS • A combination of multimodal MRI may improve the diagnostic performance to predict Ki-67 LI and ATRX mutation status. • Compared with IDH-mutant astrocytoma with low Ki-67 LI, IDH-mutant astrocytoma with high Ki-67 LI was more likely to show necrosis, edema, enhancement, poorly defined margin, higher ITSS levels, lower ADC, and higher rCBV. • ATRX wild-type IDH-mutant astrocytoma was more likely to show edema, higher ITSS levels, and lower ADC compared to ATRX mutant IDH-mutant astrocytoma.
Collapse
Affiliation(s)
- Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Chengcong Hu
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yu Lin
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yan Su
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Xingfu Wang
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China.
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|
12
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Molecular landscapes of glioblastoma cell lines revealed a group of patients that do not benefit from WWOX tumor suppressor expression. Front Neurosci 2023; 17:1260409. [PMID: 37781246 PMCID: PMC10540236 DOI: 10.3389/fnins.2023.1260409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. METHODS U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. RESULTS Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. CONCLUSION Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.
Collapse
Affiliation(s)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Ng S, Duffau H. Brain Plasticity Profiling as a Key Support to Therapeutic Decision-Making in Low-Grade Glioma Oncological Strategies. Cancers (Basel) 2023; 15:3698. [PMID: 37509359 PMCID: PMC10378506 DOI: 10.3390/cancers15143698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The ability of neural circuits to compensate for damage to the central nervous system is called postlesional plasticity. In diffuse low-grade gliomas (LGGs), a crosstalk between the brain and the tumor activates modulations of plasticity, as well as tumor proliferation and migration, by means of paracrine and electrical intercommunications. Such adaptative mechanisms have a major impact on the benefits and risks of oncological treatments but are still disregarded by current neuro-oncological guidelines. In this review, the authors first aimed to highlight clinical, radiological, and oncological markers that robustly reflect the plasticity potentials and limitations in LGG patients, including the location of the tumor and the degree of critical white matter tract infiltration, the velocity of tumor expansion, and the reactional changes of neuropsychological performances over time. Second, the interactions between the potential/limitations of cerebral plasticity and the efficacy/tolerance of treatment options (i.e., surgery, chemotherapy, and radiotherapy) are reviewed. Finally, a longitudinal and multimodal treatment approach accounting for the evolutive profiles of brain plasticity is proposed. Such an approach integrates personalized predictive models of plasticity potentials with a step-by-step therapeutic decision making and supports onco-functional balanced strategies in patients with LGG, with the ultimate aim of optimizing overall survival and quality of life.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| |
Collapse
|
14
|
Barciszewska AM, Belter A, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Juglone in Combination with Temozolomide Shows a Promising Epigenetic Therapeutic Effect on the Glioblastoma Cell Line. Int J Mol Sci 2023; 24:ijms24086998. [PMID: 37108161 PMCID: PMC10138991 DOI: 10.3390/ijms24086998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor and one of the human malignancies with the highest mortality. Standard approaches for GBM, including gross total resection, radiotherapy, and chemotherapy, cannot destroy all the cancer cells, and despite advances in its treatment, the prognosis for GBM remains poor. The problem is that we still do not understand what triggers GBM. Until now, the most successful chemotherapy with temozolomide for brain gliomas is not effective, and therefore new therapeutic strategies for GBM are needed. We found that juglone (J), which exhibits cytotoxic, anti-proliferative, and anti-invasive effects on various cells, could be a promising agent for GBM therapy. In this paper, we present the effects of juglone alone and in combination with temozolomide on glioblastoma cells. In addition to the analysis of cell viability and the cell cycle, we looked at the epigenetics effects of these compounds on cancer cells. We showed that juglone induces strong oxidative stress, as identified by a high increase in the amount of 8-oxo-dG, and decreases m5C in the DNA of cancer cells. In combination with TMZ, juglone modulates the level of both marker compounds. Our results strongly suggest that a combination of juglone and temozolomide can be applied for better GBM treatment.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
15
|
Duffau H. Oncological and functional neurosurgery: Perspectives for the decade regarding diffuse gliomas. Rev Neurol (Paris) 2023; 179:437-448. [PMID: 36907710 DOI: 10.1016/j.neurol.2023.01.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 03/12/2023]
Abstract
For decades, diffuse glioma (DG) studies mostly focused on oncological considerations, whereas functional outcomes received less attention. Currently, because overall survival has increased in DG, especially in low-grade glioma (overall survival > 15 years), quality of life including neurocognitive and behavioral aspects should be assessed and preserved more systematically, particularly regarding surgery. Indeed, early maximal tumor removal results in greater survival in both high-grade and low-grade gliomas, leading to propose "supra-marginal" resection, with excision of the peritumoral zone in diffuse neoplasms. To minimize functional risks while maximizing the extent of resection, traditional "tumor-mass resection" is replaced by "connectome-guided resection" conducted under awake mapping, taking into account inter-individual brain anatomo-functional variability. A better understanding of the dynamic interplay between DG progression and reactional neuroplastic mechanisms is critical to adapt a personalized multistage therapeutic strategy, with integration of functional neurooncological (re)operation(s) in a multimodal management scheme including repeated medical therapies. Because the therapeutic armamentarium remains limited, the aims of this paradigmatic shift are to predict one/several step(s) ahead glioma behavior, its modifications, and compensatory neural networks reconfiguration over time in order to optimize the onco-functional benefit of each treatment - either in isolation or in combination with others - in human beings bearing a chronic tumoral disease while enjoying an active familial and socio-professional life as close as possible to their expectations. Thus, new ecological endpoints such as return to work should be incorporated into future DG trials. "Preventive neurooncology" might also be envisioned, by proposing a screening policy to discover and treat incidental glioma earlier.
Collapse
Affiliation(s)
- H Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui-de-Chauliac Hospital, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", National Institute for Health and Medical Research (Inserm), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France.
| |
Collapse
|
16
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:1342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| |
Collapse
|
17
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Chai R, Fang S, Pang B, Liu Y, Wang Y, Zhang W, Jiang T. Molecular pathology and clinical implications of diffuse glioma. Chin Med J (Engl) 2022; 135:2914-2925. [PMID: 36728558 PMCID: PMC10106158 DOI: 10.1097/cm9.0000000000002446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT The prognosis for diffusely infiltrating gliomas at World Health Organization (WHO) grade 2-4 remains dismal due to their heterogeneity. The rapid development of genome-wide molecular-profiling-associated studies has greatly promoted the accuracy of glioma classification. Thus, the latest version of the WHO classification of the central nervous system tumors published in 2021 has incorporated more molecular biomarkers together with histological features for the diagnosis of gliomas. Advanced usage of molecular pathology in clinical diagnostic practice provides also new opportunities for the therapy of patients with glioma, including surgery, radiotherapy and chemotherapy, targeted therapy, immunotherapy, and more precision clinical trials. Herein, we highlight the updates in the classification of gliomas according to the latest WHO guidelines and summarize the clinically relevant molecular markers by focusing on their applications in clinical practice. We also review the advances in molecular features of gliomas, which can facilitate the development of glioma therapies, thereby discussing the challenges and future directions of molecular pathology toward precision medicine for patients with glioma.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| |
Collapse
|
19
|
Bou Zerdan M, Atoui A, Hijazi A, Basbous L, Abou Zeidane R, Alame SM, Assi HI. Latest updates on cellular and molecular biomarkers of gliomas. Front Oncol 2022; 12:1030366. [PMID: 36425564 PMCID: PMC9678906 DOI: 10.3389/fonc.2022.1030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common central nervous system malignancies, compromising almost 80% of all brain tumors and is associated with significant mortality. The classification of gliomas has shifted from basic histological perspective to one that is based on molecular biomarkers. Treatment of this type of tumors consists currently of surgery, chemotherapy and radiation therapy. During the past years, there was a limited development of effective glioma diagnostics and therapeutics due to multiple factors including the presence of blood-brain barrier and the heterogeneity of this type of tumors. Currently, it is necessary to highlight the advantage of molecular diagnosis of gliomas to develop patient targeted therapies based on multiple oncogenic pathway. In this review, we will evaluate the development of cellular and molecular biomarkers for the diagnosis of gliomas and the impact of these diagnostic tools for better tailored and targeted therapies.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Ali Atoui
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Hijazi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lynn Basbous
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Reine Abou Zeidane
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada M Alame
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Hazem I Assi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
21
|
Jia Y, Cheng X, Liang W, Lin S, Li P, Yan Z, Zhang M, Ma W, Hu C, Wang B, Liu Z. CLSPN is a potential biomarker associated with poor prognosis in low-grade gliomas based on a multi-database analysis. Curr Res Transl Med 2022; 70:103345. [PMID: 35487167 DOI: 10.1016/j.retram.2022.103345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The oncogene CLSPN, also known as claspin, has regulatory effects in a variety of tumours; however, it is not clear whether CLSPN is a therapeutic target in low-grade gliomas (LGG). In this study, the prognostic value of CLSPN in LGG and its role as an immunotherapeutic target were evaluated. METHODS Transcriptome and methylation data for thousands of patients with glioma were collected from various databases, including The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and Gene Expression Omnibus. Subsequently, a series of bioinformatics methods were used to evaluate the relationships between CLSPN and prognosis, clinical features, methylation status, immune cells, and molecular signaling pathways in LGG. RESULTS CLSPN expression levels were positively correlated with major malignant characteristics of LGG, and low expression of CLSPN was associated with a better prognosis. The methylation sites cg04263115 and cg06100291 negatively regulated the expression of CLSPN, and increased methylation levels at these sites were related to a longer survival time in patients with LGG. CLSPN was positively correlated with tumour-infiltrating immune cells and showed high copy number variation in these cells. There was a positive regulatory relationship between CLSPN expression and programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1). A gene set enrichment analysis revealed that CLSPN activates a variety of cancer signaling pathways. CONCLUSION CLSPN was identified as an independent risk factor for LGG with excellent prognostic value.
Collapse
Affiliation(s)
- Yulong Jia
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Shaochong Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7, Weiwu Road, Henan, Zhengzhou 450003, China
| | - Wen Ma
- Department of Medical Imaging, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, No. 7, WeiWu Road, Zhengzhou, Henan 450003, China
| | - Chenchen Hu
- Intensive Care Unit, Hubei Cancer Hospital, No. 116 South Zhuodanquan Road, Wuhan, Henan 430079, China.
| | - Baoya Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's, Hospital of Henan University, Zhengzhou, Henan 450003, China.
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
22
|
Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022; 144:129-142. [PMID: 35660939 PMCID: PMC9217840 DOI: 10.1007/s00401-022-02443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) derived from the “stem cell” rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35–4.58], p = 0.004 vs. 1.83 [1.0–3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81–5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24–7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM– and gains on chromosome 19 in SVZM– tumors. SVZM– tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Sebastian Adeberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Denise Bernhardt
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laila König
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center Houston, Houston, TX, USA
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Angelika Lautenschläger Children's Hospital, University Medical Center for Children and Adolescents, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christine Jungk
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurooncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Tang J, Li Z, Wu Q, Irfan M, Li W, Liu X. Role of Paralogue of XRCC4 and XLF in DNA Damage Repair and Cancer Development. Front Immunol 2022; 13:852453. [PMID: 35309348 PMCID: PMC8926060 DOI: 10.3389/fimmu.2022.852453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.
Collapse
Affiliation(s)
- Jialin Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhongxia Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Muhammad Irfan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weili Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
24
|
Bady P, Marosi C, Weller M, Grønberg BH, Schultz H, Taphoorn MJB, Gijtenbeek JMM, van den Bent MJ, von Deimling A, Stupp R, Malmström A, Hegi ME. DNA methylation-based age acceleration observed in IDH wild-type glioblastoma is associated with better outcome-including in elderly patients. Acta Neuropathol Commun 2022; 10:39. [PMID: 35331339 PMCID: PMC8944086 DOI: 10.1186/s40478-022-01344-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Elderly patients represent a growing proportion of individuals with glioblastoma, who however, are often excluded from clinical trials owing to poor expected prognosis. We aimed at identifying age-related molecular differences that would justify and guide distinct treatment decisions in elderly glioblastoma patients. The combined DNA methylome (450 k) of four IDH wild-type glioblastoma datasets, comprising two clinical trial cohorts, was interrogated for differences based on the patients' age, DNA methylation (DNAm) age acceleration (DNAm age "Horvath-clock" minus patient age), DNA methylation-based tumor classification (Heidelberg), entropy, and functional methylation of DNA damage response (DDR) genes. Age dependent methylation included 19 CpGs (p-value ≤ 0.1, Bonferroni corrected), comprising a CpG located in the ELOVL2 gene that is part of a 13-gene forensic age predictor. Most of the age related CpGs (n = 16) were also associated with age acceleration that itself was associated with a large number of CpGs (n = 50,551). Over 70% age acceleration-associated CpGs (n = 36,348) overlapped with those associated with the DNA methylation based tumor classification (n = 170,759). Gene set enrichment analysis identified associated pathways, providing insights into the biology of DNAm age acceleration and respective commonalities with glioblastoma classification. Functional methylation of several DDR genes, defined as correlation of methylation with gene expression (r ≤ -0.3), was associated with age acceleration (n = 8), tumor classification (n = 12), or both (n = 4), the latter including MGMT. DNAm age acceleration was significantly associated with better outcome in both clinical trial cohorts, whereof one comprised only elderly patients. Multivariate analysis included treatment (RT, RT/TMZ→TMZ; TMZ, RT), MGMT promoter methylation status, and interaction with treatment. In conclusion, DNA methylation features of age acceleration are an integrative part of the methylation-based tumor classification (RTK I, RTK II, MES), while patient age seems hardly reflected in the glioblastoma DNA methylome. We found no molecular evidence justifying other treatments in elderly patients, not owing to frailty or co-morbidities.
Collapse
|
25
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Guo W, Ma S, Zhang Y, Liu H, Li Y, Xu JT, Yang B, Guan F. Genome-wide methylomic analyses identify prognostic epigenetic signature in lower grade glioma. J Cell Mol Med 2021; 26:449-461. [PMID: 34894053 PMCID: PMC8743658 DOI: 10.1111/jcmm.17101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most malignant and aggressive type of brain tumour with high heterogeneity and mortality. Although some clinicopathological factors have been identified as prognostic biomarkers, the individual variants and risk stratification in patients with lower grade glioma (LGG) have not been fully elucidated. The primary aim of this study was to identify an efficient DNA methylation combination biomarker for risk stratification and prognosis in LGG. We conducted a retrospective cohort study by analysing whole genome DNA methylation data of 646 patients with LGG from the TCGA and GEO database. Cox proportional hazard analysis was carried out to screen and construct biomarker model that predicted overall survival (OS). The Kaplan‐Meier survival curves and time‐dependent ROC were constructed to prove the efficiency of the signature. Then, another independent cohort was used to further validate the finding. A two‐CpG site DNA methylation signature was identified by multivariate Cox proportional hazard analysis. Further analysis indicated that the signature was an independent survival predictor from other clinical factors and exhibited higher predictive accuracy compared with known biomarkers. This signature was significantly correlated with immune‐checkpoint blockade, immunotherapy‐related signatures and ferroptosis regulator genes. The expression pattern and functional analysis showed that these two genes corresponding with two methylation sites contained in the model were correlated with immune infiltration level, and involved in MAPK and Rap1 signalling pathway. The signature may contribute to improve the risk stratification of patients and provide a more accurate assessment for precision medicine in the clinic.
Collapse
Affiliation(s)
- Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Tian Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Duffau H. Dynamic Interplay between Lower-Grade Glioma Instability and Brain Metaplasticity: Proposal of an Original Model to Guide the Therapeutic Strategy. Cancers (Basel) 2021; 13:4759. [PMID: 34638248 PMCID: PMC8507523 DOI: 10.3390/cancers13194759] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The behavior of lower-grade glioma (LGG) is changing over time, spontaneously, and in reaction to treatments. First, due to genomic instability and clonal expansion, although LGG progresses slowly during the early period of the disease, its growth velocity will accelerate when this tumor will transform to a higher grade of malignancy. Furthermore, its pattern of progression may change following therapy, e.g., by switching from a proliferative towards a more diffuse profile, in particular after surgical resection. In parallel to this plasticity of the neoplasm, the brain itself is constantly adapting to the tumor and possible treatment(s) thanks to reconfiguration within and between neural networks. Furthermore, the pattern of reallocation can also change, especially by switching from a perilesional to a contrahemispheric functional reorganization. Such a reorientation of mechanisms of cerebral reshaping, related to metaplasticity, consists of optimizing the efficiency of neural delocalization in order to allow functional compensation by adapting over time the profile of circuits redistribution to the behavioral modifications of the glioma. This interplay between LGG mutations and reactional connectomal instability leads to perpetual modulations in the glioma-neural equilibrium, both at ultrastructural and macroscopic levels, explaining the possible preservation of quality of life despite tumor progression. Here, an original model of these dynamic interactions across LGG plasticity and the brain metanetwork is proposed to guide a tailored step-by-step individualized therapeutic strategy over years. Integration of these new parameters, not yet considered in the current guidelines, might improve management of LGG patients.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12
- Institute of Functional Genomics, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
28
|
Singh O, Pratt D, Aldape K. Immune cell deconvolution of bulk DNA methylation data reveals an association with methylation class, key somatic alterations, and cell state in glial/glioneuronal tumors. Acta Neuropathol Commun 2021; 9:148. [PMID: 34496929 PMCID: PMC8425010 DOI: 10.1186/s40478-021-01249-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
It is recognized that the tumor microenvironment (TME) plays a critical role in the biology of cancer. To better understand the role of immune cell components in CNS tumors, we applied a deconvolution approach to bulk DNA methylation array data in a large set of newly profiled samples (n = 741) as well as samples from external data sources (n = 3311) of methylation-defined glial and glioneuronal tumors. Using the cell-type proportion data as input, we used dimensionality reduction to visualize sample-wise patterns that emerge from the cell type proportion estimations. In IDH-wildtype glioblastomas (n = 2,072), we identified distinct tumor clusters based on immune cell proportion and demonstrated an association with oncogenic alterations such as EGFR amplification and CDKN2A/B homozygous deletion. We also investigated the immune cluster-specific distribution of four malignant cellular states (AC-like, OPC-like, MES-like and NPC-like) in the IDH-wildtype cohort. We identified two major immune-based subgroups of IDH-mutant gliomas, which largely aligned with 1p/19q co-deletion status. Non-codeleted gliomas showed distinct proportions of a key genomic aberration (CDKN2A/B loss) among immune cell-based groups. We also observed significant positive correlations between monocyte proportion and expression of PD-L1 and PD-L2 (R = 0.54 and 0.68, respectively). Overall, the findings highlight specific roles of the TME in biology and classification of CNS tumors, where specific immune cell admixtures correlate with tumor types and genomic alterations.
Collapse
Affiliation(s)
- Omkar Singh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Zhang H, Xu L, Zhong Z, Liu Y, Long Y, Zhou S. Lower-Grade Gliomas: Predicting DNA Methylation Subtyping and its Consequences on Survival with MR Features. Acad Radiol 2021; 28:e199-e208. [PMID: 32241714 DOI: 10.1016/j.acra.2020.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To explore associations between MR imaging features, DNA methylation subtyping, and survival in lower-grade gliomas (LGG). MATERIALS AND METHODS The MR data from 170 patients generated with the Cancer Imaging Archive were reviewed. The correlation was evaluated by Fisher's Exact Test, Pearson Chi-Square and binary regression analysis. Survival analysis was conducted by using time-dependent ROC analysis and the Kaplan-Meier method (the worst prognosis subgroup). RESULTS Identified were 9 (5.3%) M1-subtype, 18 (10.6%) M2-subtype, 48 (28.2%) M3-subtype, 31 (18.2%) M4-subtype and 64 (37.6%) M5-subtype. Patients with M4-subtype had the shortest median OS (49.3 vs. 28.4) months(p < 0.05). The time-dependent ROC for the M4-subtype was 0.83 (95% confidence interval 0.72-0.95) for survival at 12 months, 0.82 (95% confidence interval 0.70-0.94) for survival at 24 months, and 0.74 (95% confidence interval 0.62-0.86) for survival at 36 months. After uni- and multivariate analysis, a nomogram was built based on proportion contrast-enhanced (CE) tumor, extranodular growth, volume_cutoff_median, and location. For the prediction of M4-subtype, the nomogram showed good discrimination, with an area under the curve (AUC) of 0.886 (95% CI: 0.820-952) and was well calibrated. On multivariate logistic regression analysis, volume ≥60cm3 (OR: 0.200; p < 0.001; 95%CI: 0.048-0.834) was associated with M1-subtype (AUC: 0.690). Hemorrhage (OR: 5.443; p = 0.002; 95%CI: 1.844-16.069) and volume > median (OR: 3.256; p = 0.05; 95%CI: 0.992-10.686) were associated with M2-subtype (AUC: 0.733). Proportion CE tumor<=5% (OR: 3.968; P=0.002; 95%CI: 1.634-9.635) was associated with M3-subtype (AUC: 0.632). Poorly-defined (OR: 2.258; p = 0.05; 95%CI: 1.000-5.101) and volume > median (OR: 2.447; p = 0.01; 95%CI: 1.244-4.813) were associated with M5-subtype (AUC: 0.645). Decision curve analysis indicated predictions for all models were clinically useful. CONCLUSION This preliminary radiogenomics analysis of lower-grade gliomas demonstrated associations between MR features and DNA methylation subtyping. The shortest survival was observed in patients with M4-subtype. And we have constructed nomogram that enables more accurate predictions of M4-subtype.
Collapse
|
30
|
Albuquerque LAF, Almeida JP, de Macêdo Filho LJM, Joaquim AF, Duffau H. Extent of resection in diffuse low-grade gliomas and the role of tumor molecular signature-a systematic review of the literature. Neurosurg Rev 2021; 44:1371-1389. [PMID: 32770298 DOI: 10.1007/s10143-020-01362-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
There is a lack of class I evidence concerning the impact of surgery in the treatment of diffuse low-grade glioma; the early maximal resection with preservation of eloquent brain areas has been accepted as the first therapeutic option. We performed a systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and protocol. Inclusion criteria: only case series with at least 100 patients containing supratentorial hemispheric diffuse low-grade glioma (according to any of the WHO classification used in papers published between 2000 to 2019), with pre- and postoperative MRI study were included in the qualitative and quantitative analyses. The extent of resection should be defined based on MRI at least in two categories and correlated with patients' outcomes (with univariate or multivariate analyses) using overall survival (OS) or malignant progression-free survival (MPFS). A total of 18 series with 4386 patients, published in 20 papers, were included in this systematic review. All the series that evaluates the relation between the extent of resection (EOR) and OS showed a statistically significant improvement of OS at univariate and/or multivariate analyzes with a greater EOR. Six studies showed a statistically significant improvement of MPFS with a greater EOR. We demonstrate that when a more rigorous analysis of EOR is performed, a benefit of a more aggressive resection on OS and MPFS is observed. Our review about EOR in different molecular groups of DLGG also suggests a benefit of maximum safe resection for all different subtypes, even though "radical surgery" may be associated with better OS and MPFS in tumors with a more aggressive signature.
Collapse
Affiliation(s)
- Lucas Alverne F Albuquerque
- Department of Neurosurgery, General Hospital of Fortaleza, Fortaleza, Ceará, Brazil.
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Paulo Almeida
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Andrei F Joaquim
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
31
|
Horbinski C, McCortney K, Stupp R. MGMT promoter methylation is associated with patient age and 1p/19q status in IDH-mutant gliomas. Neuro Oncol 2021; 23:858-860. [PMID: 33830235 DOI: 10.1093/neuonc/noab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, Illinois, USA.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA.,Department of Neurology, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Ye X, Liu X, Gao M, Gong L, Tian F, Shen Y, Hu H, Sun G, Zou Y, Gong Y. CUL4B Promotes Temozolomide Resistance in Gliomas by Epigenetically Repressing CDNK1A Transcription. Front Oncol 2021; 11:638802. [PMID: 33869025 PMCID: PMC8050354 DOI: 10.3389/fonc.2021.638802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 01/10/2023] Open
Abstract
Resistance to temozolomide (TMZ), the first-line chemotherapeutic drug for glioblastoma (GBM) and anaplastic gliomas, is one of the most significant obstacles in clinical treatment. TMZ resistance is regulated by complex genetic and epigenetic networks. Understanding the mechanisms of TMZ resistance can help to identify novel drug targets and more effective therapies. CUL4B has been shown to be upregulated and promotes progression and chemoresistance in several cancer types. However, its regulatory effect and mechanisms on TMZ resistance have not been elucidated. The aim of this study was to decipher the role and mechanism of CUL4B in TMZ resistance. Western blot and public datasets analysis showed that CUL4B was upregulated in glioma specimens. CUL4B elevation positively correlated with advanced pathological stage, tumor recurrence, malignant molecular subtype and poor survival in glioma patients receiving TMZ treatment. CUL4B expression was correlated with TMZ resistance in GBM cell lines. Knocking down CUL4B restored TMZ sensitivity, while upregulation of CUL4B promoted TMZ resistance in GBM cells. By employing senescence β-galactosidase staining, quantitative reverse transcription PCR and Chromatin immunoprecipitation experiments, we found that CUL4B coordinated histone deacetylase (HDAC) to co-occupy the CDKN1A promoter and epigenetically silenced CDKN1A transcription, leading to attenuation of TMZ-induced senescence and rendering the GBM cells TMZ resistance. Collectively, our findings identify a novel mechanism by which GBM cells develop resistance to TMZ and suggest that CUL4B inhibition may be beneficial for overcoming resistance.
Collapse
Affiliation(s)
- Xiang Ye
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yangli Shen
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongping Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
33
|
Pang B, Chai RC, Zhang YW, Chang YZ, Liu WH, Jia WQ, Wang YZ. A comprehensive model including preoperative peripheral blood inflammatory markers for prediction of the prognosis of diffuse spinal cord astrocytoma following surgery. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2857-2866. [PMID: 33495960 DOI: 10.1007/s00586-021-06724-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Due to the rarity of diffuse spinal cord astrocytoma, an effective model is still lacking to stratify their prognosis. Here, we aimed to establish a prognostic model through comprehensively evaluating clinicopathological features and preoperative peripheral blood inflammatory markers in 89 cases. METHODS We performed univariate and multivariate Cox regression to identify prognosis factors. The Kaplan-Meier curves and ROC curves were employed to compare the prognostic value of selected factors. RESULTS In addition to clinicopathological factors, we revealed the preoperative peripheral blood leukocyte count, neutrophils-to-lymphocytes ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were also significantly correlated with overall survival of spinal cord astrocytoma in univariate Cox regression, and NLR was still significant in multivariate Cox analysis. Further, we demonstrated that NLR ≤ 3.65 and preoperative McCormick score (MMS) ≤ 3 were independently correlated with better survival of WHO grade IV tumors. Meanwhile, Ki-67 < 10% and resection extent ≥ 90% were independent prognostic factors in WHO grade II/III tumors. Finally, we developed a prognostic model that had better predictive efficiencies than WHO grade and histological grade for 1-year (AUC = 76.6), 2- year (AUC = 80.9), and 3-year (AUC = 80.3) survival. This model could classify tumors into 4 classifications with increasingly poor prognosis: 1, WHO grade II/III, with Ki-67 < 10% and resection extent ≥ 90%; 2, WHO grade II/III, Ki-67 ≥ 10% or resection < 90%; 3, WHO grade IV, NLR ≤ 3.65 and MMS ≤ 3; 4, WHO grade IV, with NRL > 3.65 or MMS = 4. CONCLUSION We successfully constructed a comprehensive prognostic model including preoperative peripheral blood inflammatory markers, which can stratify diffuse spinal cord astrocytoma into 4 subgroups.
Collapse
Affiliation(s)
- Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yao-Wu Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Yu-Zhou Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wei-Hao Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wen-Qing Jia
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| |
Collapse
|
34
|
Majd NK, Yap TA, Koul D, Balasubramaniyan V, Li X, Khan S, Gandy KS, Yung WKA, de Groot JF. The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neurooncol Adv 2021; 3:vdab015. [PMID: 33738447 PMCID: PMC7954093 DOI: 10.1093/noajnl/vdab015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive primary brain tumor, has a dismal prognosis. Despite our growing knowledge of genomic and epigenomic alterations in GBM, standard therapies and outcomes have not changed significantly in the past two decades. There is therefore an urgent unmet need to develop novel therapies for GBM. The inter- and intratumoral heterogeneity of GBM, inadequate drug concentrations in the tumor owing to the blood-brain barrier, redundant signaling pathways contributing to resistance to conventional therapies, and an immunosuppressive tumor microenvironment, have all hindered the development of novel therapies for GBM. Given the high frequency of DNA damage pathway alterations in GBM, researchers have focused their efforts on pharmacologically targeting key enzymes, including poly(ADP-ribose) polymerase (PARP), DNA-dependent protein kinase, ataxia telangiectasia-mutated, and ataxia telangiectasia and Rad3-related. The mainstays of GBM treatment, ionizing radiation and alkylating chemotherapy, generate DNA damage that is repaired through the upregulation and activation of DNA damage response (DDR) enzymes. Therefore, the use of PARP and other DDR inhibitors to render GBM cells more vulnerable to conventional treatments is an area of intense investigation. In this review, we highlight the growing body of data behind DDR inhibitors in GBM, with a focus on putative predictive biomarkers of response. We also discuss the challenges involved in the successful development of DDR inhibitors for GBM, including the intracranial location and predicted overlapping toxicities of DDR agents with current standards of care, and propose promising strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xiaolong Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katilin S Gandy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Chai R, Li G, Liu Y, Zhang K, Zhao Z, Wu F, Chang Y, Pang B, Li J, Li Y, Jiang T, Wang Y. Predictive value of MGMT promoter methylation on the survival of TMZ treated IDH-mutant glioblastoma. Cancer Biol Med 2021; 18:272-282. [PMID: 33628600 PMCID: PMC7877176 DOI: 10.20892/j.issn.2095-3941.2020.0179] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Objective O6methylguanine-DNA methyltransferase (MGMT) promoter methylation is a biomarker widely used to predict the sensitivity of IDH-wildtype glioblastoma to temozolomide therapy. Given that the IDH status has critical effects on the survival and epigenetic features of glioblastoma, we aimed to assess the role of MGMT promoter methylation in IDH-mutant glioblastoma. Methods This study included 187 IDH-mutant glioblastomas and used 173 IDH-wildtype glioblastomas for comparison. Kaplan-Meier curves and multivariate Cox regression were used to study the predictive effects. Results Compared with IDH-wildtype glioblastomas, IDH-mutant glioblastomas showed significantly higher (P < 0.0001) MGMT promoter methylation. We demonstrated that MGMT promoter methylation status, as determined by a high cutoff value (≥30%) in pyrosequencing, could be used to significantly stratify the survival of 50 IDH-mutant glioblastomas receiving temozolomide therapy (cohort A); this result was validated in another cohort of 25 IDH-mutant glioblastomas (cohort B). The median progression-free survival and median overall survival in cohort A were 9.33 and 13.76 months for unmethylated cases, and 18.37 and 41.61 months for methylated cases, and in cohort B were 6.97 and 9.10 months for unmethylated cases, and 23.40 and 26.40 months for methylated cases. In addition, we confirmed that the MGMT promoter methylation was significantly (P = 0.0001) correlated with longer OS in IDH-mutant patients with GBM, independently of age, gender distribution, tumor type (primary or recurrent/secondary), and the extent of resection. Conclusions MGMT promoter methylation has predictive value in IDH-mutant glioblastoma, but its cutoff value should be higher than that for IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yuzhou Chang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Jingjun Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yangfang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
36
|
Brar K, Hachem LD, Badhiwala JH, Mau C, Zacharia BE, de Moraes FY, Pirouzmand F, Mansouri A. Management of Diffuse Low-Grade Glioma: The Renaissance of Robust Evidence. Front Oncol 2020; 10:575658. [PMID: 33117714 PMCID: PMC7560299 DOI: 10.3389/fonc.2020.575658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
The surgical management of diffuse low-grade gliomas (DLGGs) has undergone a paradigm shift toward striving for maximal safe resection when feasible. While extensive observational data supports this transition, unbiased evidence in the form of high quality randomized-controlled trials (RCTs) is lacking. Furthermore, despite a high volume of molecular, genetic, and imaging data, the field of neuro-oncology lacks personalized care algorithms for individuals with DLGGs based on a robust foundation of evidence. In this manuscript, we (1) discuss the logistical and philosophical challenges hindering the development of surgical RCTs for DLGGs, (2) highlight the potential impact of well-designed international prospective observational registries, (3) discuss ways in which cutting-edge computational techniques can be harnessed to generate maximal insight from high volumes of multi-faceted data, and (4) outline a comprehensive plan of action that will enable a multi-disciplinary approach to future DLGG management, integrating advances in clinical medicine, basic molecular research and large-scale data mining.
Collapse
Affiliation(s)
- Karanbir Brar
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Laureen D Hachem
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Christine Mau
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| | - Fabio Ynoe de Moraes
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Farhad Pirouzmand
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
37
|
Obara T, Blonski M, Brzenczek C, Mézières S, Gaudeau Y, Pouget C, Gauchotte G, Verger A, Vogin G, Moureaux JM, Duffau H, Rech F, Taillandier L. Adult Diffuse Low-Grade Gliomas: 35-Year Experience at the Nancy France Neurooncology Unit. Front Oncol 2020; 10:574679. [PMID: 33194684 PMCID: PMC7656991 DOI: 10.3389/fonc.2020.574679] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background To report survival, spontaneous prognostic factors, and treatment efficacy in a French monocentric cohort of diffuse low-grade glioma (DLGG) patients over 35 years of follow-up. Methods A monocentric retrospective study of 339 patients diagnosed with a new DLGG between 01/01/1982 and 01/01/2017 was created. Inclusion criteria were patient age ≥18 years at diagnosis and histological diagnosis of WHO grade II glioma (according to 1993, 2007, and 2016 WHO classifications). The survival parameters were estimated using the Kaplan-Meier method with a 95% confidence interval. Differences in survival were tested for statistical significance by the log-rank test. Factors were considered significant when p ≤ 0.1 and p ≤ 0.05 in the univariate and multivariate analyses, respectively. Results A total of 339 patients were included with a median follow-up of 8.7 years. The Kaplan-Meier median overall survival was 15.7 years. At the time of radiological diagnosis, Karnofsky Performance Status score and initial tumor volume were significant independent prognostic factors. Oncological prognostic factors were the extent of resection for patients who underwent surgery and the timing of radiotherapy for those concerned. In this study, patients who had delayed radiotherapy (provided remaining low grade) did not have worse survival compared with patients who had early radiotherapy. The functional capabilities of the patients were preserved enough so that they could remain independent during at least three quarters of the follow-up. Conclusion This large monocentric series spread over a long time clarifies the effects of different therapeutic strategies and their combination in the management of DLGG.
Collapse
Affiliation(s)
- Tiphaine Obara
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Cyril Brzenczek
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sophie Mézières
- Department of Mathematics, Elie Cartan Institute, Nancy, France.,INRIA Biology, Genetics and Statistics, Nancy, France
| | - Yann Gaudeau
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Celso Pouget
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Guillaume Gauchotte
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, France.,IADI, INSERM U1254, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Guillaume Vogin
- UMR 7365 CNRS, IMoPA Biopole Lorraine University Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiation Therapy, Baclese Radiation Therapy Centre, Esch/Alzette, Luxembourg
| | - Jean-Marie Moureaux
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1051 Laboratory, National Institute for Health and Medical Research (INSERM), Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France
| | - Fabien Rech
- Department of Neurosurgery, CHRU, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| |
Collapse
|
38
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
39
|
Li R, Chen W, Mao P, Wang J, Jing J, Sun Q, Wang M, Yu X. Identification of a three-long non-coding RNA signature for predicting survival of temozolomide-treated isocitrate dehydrogenase mutant low-grade gliomas. Exp Biol Med (Maywood) 2020; 246:187-196. [PMID: 33028081 DOI: 10.1177/1535370220962715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Temozolomide (TMZ) is the major chemotherapy agent in glioma, and isocitrate dehydrogenase (IDH) is a well-known prognostic marker in glioma. O6-methylguanine-DNA methyltransferase promoter methylation (MGMTmethyl) is a predictive biomarker in overall gliomas rather than in IDH mutant gliomas. To discover effective biomarkers that could predict TMZ efficacy in IDH mutant low-grade gliomas (LGGs), we retrieved data of IDH mutant LGGs from TMZ arm of the EORTC22033-26033 trial as the training-set (n = 83), analyzed correlations between long non-coding RNAs (lncRNAs) and progression-free survival (PFS) using Lasso-Cox regression, and created a risk score (RS) to stratify patients. We identified a three-lncRNA signature in TMZ-treated IDH mutant LGGs. All of the three lncRNAs, as well as the RS derived, were significantly correlated with PFS. Patients were classified into high-risk and low-risk groups according to RS. PFS of the high-risk group was significantly worse than that of the low-risk group (P < 0.001). AUCs of the three-, four-, and five-year survival probability predicted by RS were 0.73, 0.79, and 0.76, respectively. The predictive role of the three-lncRNA signature was further validated in an independent testing-set, the TCGA-LGGs, which resulted in a significantly worse PFS (P < 0.001) in the high-risk group. Three-, four-, and five-year survival probabilities predicted by RS were 0.65, 0.69, and 0.84, respectively. Functions of these three lncRNAs involve cell proliferation and differentiation, predicted by their targeting cancer genes. Conclusively, we created a scoring model based on the expression of three lncRNAs, which can effectively predict the survival of IDH mutant LGGs treated with TMZ.
Collapse
Affiliation(s)
- Ruichun Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Mao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiangpeng Jing
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinli Sun
- Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maode Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao Yu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
40
|
Pellerino A, Bruno F, Internò V, Rudà R, Soffietti R. Current clinical management of elderly patients with glioma. Expert Rev Anticancer Ther 2020; 20:1037-1048. [PMID: 32981392 DOI: 10.1080/14737140.2020.1828867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The incidence of gliomas is increasing in elderly patients. Clinical factors, such as age, performance status, and comorbidities contribute when choosing adequate treatment in older patients. AREAS COVERED This review covers the main pathological and molecular features of gliomas in elderly patients, as well as the neurological and geriatric assessment to select patients for surgery and antineoplastic treatments. The results from the most relevant clinical trials in both lower-grade (LGGs) and high-grade gliomas (HGGs) are reviewed. EXPERT OPINION Different clinical and biological factors need to be integrated into prognostic scales in order to better stratify the elderly population. Both Stupp and Perry regimens can be proposed to fit patients with GBM aged < 70 years. Conversely, for patients aged ≥ 70 years, the Perry regimen should be preferred. For unfit and frail patients, temozolomide alone when MGMT is methylated or hypofractionated RT alone when MGMT is unmethylated, are the optimal choice. Few data are available regarding the optimal management of elderly patients with LGGs. The benefit of an extensive resection and presence of methylation of the MGMT promoter need to be further investigated to confirm their role in improving the OS.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Francesco Bruno
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro , Bari, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| |
Collapse
|
41
|
Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr Opin Neurol 2020; 33:707-715. [DOI: 10.1097/wco.0000000000000866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Darlix A, Rigau V, Duffau H. Neoformazioni intracraniche: gliomi di grado II. Neurologia 2020. [DOI: 10.1016/s1634-7072(20)44227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
43
|
Xia D, Leon AJ, Cabanero M, Pugh TJ, Tsao MS, Rath P, Siu LLY, Yu C, Bedard PL, Shepherd FA, Zadeh G, Chetty R, Aldape K. Minimalist approaches to cancer tissue-of-origin classification by DNA methylation. Mod Pathol 2020; 33:1874-1888. [PMID: 32415265 PMCID: PMC8808378 DOI: 10.1038/s41379-020-0547-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022]
Abstract
Classification of cancers by tissue-of-origin is fundamental to diagnostic pathology. While the combination of clinical data, tissue histology, and immunohistochemistry is usually sufficient, there remains a small but not insignificant proportion of difficult-to-classify cases. These challenging cases provide justification for ancillary molecular testing, including high-throughput DNA methylation array profiling, which promises cell-of-origin information and compatibility with formalin-fixed specimens. While diagnostically powerful, methylation profiling platforms are costly and technically challenging to implement, particularly for less well-resourced laboratories. To address this, we simulated the performance of "minimalist" methylation-based tests for cancer classification using publicly-available and internal institutional profiling data. These analyses showed that small and focused sets of the most informative CpG biomarkers from the arrays are sufficient for accurate diagnoses. As an illustrative example, one classifier, using information from just 53 out of about 450,000 available CpG probes, achieved an accuracy of 94.5% on 2575 fresh primary validation cases across 28 cancer types from The Cancer Genome Atlas Network. By training minimalist classifiers on formalin-fixed primary and metastatic cases, generally high accuracies were also achieved on additional datasets. These results support the potential of minimalist methylation testing, possibly via quantitative PCR and targeted next-generation sequencing platforms, in cancer classification.
Collapse
Affiliation(s)
- Daniel Xia
- Division of Hematopathology and Transfusion Medicine, University Health Network, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | - Michael Cabanero
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | | | - Ming Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Lillian Lai-Yun Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Celeste Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Gelareh Zadeh
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Runjan Chetty
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | - Kenneth Aldape
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
44
|
Kessler T, Berberich A, Sadik A, Sahm F, Gorlia T, Meisner C, Hoffmann DC, Wick A, Kickingereder P, Rübmann P, Bendszus M, Opitz C, Weller M, van den Bent M, Stupp R, Winkler F, Brandes A, von Deimling A, Platten M, Wick W. Methylome analyses of three glioblastoma cohorts reveal chemotherapy sensitivity markers within DDR genes. Cancer Med 2020; 9:8373-8385. [PMID: 32991787 PMCID: PMC7666733 DOI: 10.1002/cam4.3447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gliomas evade current therapies through primary and acquired resistance and the effect of temozolomide is mainly restricted to methylguanin-O6-methyltransferase promoter (MGMT) promoter hypermethylated tumors. Further resistance markers are largely unknown and would help for better stratification. METHODS Clinical data and methylation profiles from the NOA-08 (104, elderly glioblastoma) and the EORTC 26101 (297, glioblastoma) studies and 398 patients with glioblastoma from the Heidelberg Neuro-Oncology center have been analyzed focused on the predictive effect of DNA damage response (DDR) gene methylation. Candidate genes were validated in vitro. RESULTS Twenty-eight glioblastoma 5'-cytosine-phosphat-guanine-3' (CpGs) from 17 DDR genes negatively correlated with expression and were used together with telomerase reverse transcriptase (TERT) promoter mutations in further analysis. CpG methylation of DDR genes shows highest association with the mesenchymal (MES) and receptor tyrosine kinase (RTK) II glioblastoma subgroup. MES tumors have lower tumor purity compared to RTK I and II subgroup tumors. CpG hypomethylation of DDR genes TP73 and PRPF19 correlated with worse patient survival in particular in MGMT promoter unmethylated tumors. TERT promoter mutation is most frequent in RTK I and II subtypes and associated with worse survival. Primary glioma cells show methylation patterns that resemble RTK I and II glioblastoma and long term established glioma cell lines do not match with glioblastoma subtypes. Silencing of selected resistance genes PRPF19 and TERT increase sensitivity to temozolomide in vitro. CONCLUSION Hypomethylation of DDR genes and TERT promoter mutations is associated with worse tumor prognosis, dependent on the methylation cluster and MGMT promoter methylation status in IDH wild-type glioblastoma.
Collapse
Affiliation(s)
- Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Berberich
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Ahmed Sadik
- Brain Tumor Metabolism, DKTK, DKFZ, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany
| | - Thierry Gorlia
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | | | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Antje Wick
- Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Petra Rübmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- The Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Roger Stupp
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Alba Brandes
- Department of Medical Oncology, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program of the National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
45
|
Horbinski C, Ligon KL, Brastianos P, Huse JT, Venere M, Chang S, Buckner J, Cloughesy T, Jenkins RB, Giannini C, Stupp R, Nabors LB, Wen PY, Aldape KJ, Lukas RV, Galanis E, Eberhart CG, Brat DJ, Sarkaria JN. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol 2020; 21:1498-1508. [PMID: 31276167 DOI: 10.1093/neuonc/noz119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accurate pathologic diagnoses and molecularly informed treatment decisions for a wide variety of cancers depend on robust clinical molecular testing that uses genomic, epigenomic, and transcriptomic-based tools. Nowhere is this more essential than in the workup of brain tumors, as emphasized by the incorporation of molecular criteria into the 2016 World Health Organization classification of central nervous system tumors and the updated official guidelines of the National Comprehensive Cancer Network. Despite the medical necessity of molecular testing in brain tumors, access to and utilization of molecular diagnostics is still highly variable across institutions, and a lack of reimbursement for such testing remains a significant obstacle. The objectives of this review are (i) to identify barriers to adoption of molecular testing in brain tumors, (ii) to describe the current molecular tools recommended for the clinical evaluation of brain tumors, and (iii) to summarize how molecular data are interpreted to guide clinical care, so as to improve understanding and justification for their coverage in the routine workup of adult and pediatric brain tumor cases.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Venere
- Department of Radiation Oncology and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jan Buckner
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Timothy Cloughesy
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Neurology, Northwestern University, Chicago, Illinois
| | - L Burt Nabors
- Department of Neurology, University of Alabama Birmingham, Birmingham, Alabama
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth J Aldape
- Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | | | - Charles G Eberhart
- Department of Neurology, Northwestern University, Chicago, Illinois.,Department of Pathology, Johns Hopkins, Baltimore, Maryland.,Department of Ophthalmology, Johns Hopkins, Baltimore, Maryland
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Duffau H. Why brain radiation therapy should take account of the individual structural and functional connectivity: Toward an irradiation "à la carte". Crit Rev Oncol Hematol 2020; 154:103073. [PMID: 32827878 DOI: 10.1016/j.critrevonc.2020.103073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Although radiation therapy (RT) is a main treatment of brain tumors, delayed cerebral toxicity may lead to cognitive deteriorations with adverse effects on quality of life. Despite technological advances in RT, the concept of brain connectome has not yet been incorporated in the strategy of irradiation. Because white matter tracts represent the main limitation of neuroplasticity, tumor surgery is increasingly performed with awake cortical-subcortical mapping. Here, the purpose is to reinforce the link between cognitive neurosciences and neurooncology, which is critical for neurosurgeons but also for medical oncologists, especially brain radiation oncologists. The goal is to optimize RT planning by sparing individual critical neural networks. A redefinition of "organs at risk" should be proposed, beyond the few structures (such as brainstem, optic pathway, pituitary gland, hippocampi) which are classically preserved for brain radiation, by considering the structural and functional connectivity in order to evolve toward a RT "à la carte".
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Montpellier 34295, France; Institute for Neuroscience of Montpellier, INSERM U-1051, Hôpital Saint Eloi, Montpellier 34298, France.
| |
Collapse
|
47
|
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
48
|
Mansouri A, Hachem LD, Mansouri S, Nassiri F, Laperriere NJ, Xia D, Lindeman NI, Wen PY, Chakravarti A, Mehta MP, Hegi ME, Stupp R, Aldape KD, Zadeh G. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro Oncol 2020; 21:167-178. [PMID: 30189035 DOI: 10.1093/neuonc/noy132] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a universally poor prognosis. The emergence of molecular biomarkers has had a significant impact on histological typing and diagnosis, as well as predicting patient survival and response to treatment. The methylation status of the O6-methylguanine-DNA methyl-transferase (MGMT) gene promoter is one such molecular biomarker. Despite the strong evidence supporting the role of MGMT methylation status in prognostication, its routine implementation in clinical practice has been challenging. The methods and optimal cutoff definitions for MGMT status determination remain controversial. Variation in detection methods between laboratories presents a major challenge for consensus. Moreover, consideration of other clinical and genetic/epigenetic factors must also be incorporated into treatment decision making. In this review, we distill the available evidence to summarize our position on the optimal use of available assays, and propose strategies for resolving cases with equivocal methylation status and a framework for incorporating this important assay into research and clinical practice.
Collapse
Affiliation(s)
- Alireza Mansouri
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Laureen D Hachem
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Mansouri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Normand J Laperriere
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Daniel Xia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Arnab Chakravarti
- Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Monika E Hegi
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Roger Stupp
- Malnati Brain Tumor Institute of the Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth D Aldape
- Department of Laboratory Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Di Nunno V, Franceschi E, Gatto L, Bartolini S, Brandes AA. Predictive markers of immune response in glioblastoma: hopes and facts. Future Oncol 2020; 16:1053-1063. [PMID: 32270715 DOI: 10.2217/fon-2020-0047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint inhibitors (ICI) represent a concrete hope for patients with advanced solid tumors. Indeed, patients responding to these agents may experience a long-lasting response. Recently, results of interventional clinical trials investigated the role of ICIs in patients with glioblastoma. Results of these studies suggested that only a small percentage of these patients could benefit from these agents. Research of predictive markers assumes a critical importance to adequately select patients likely to benefit from ICIs. Molecular and clinical variables associated to tumors and patients have been evaluated as potential predictive markers. Main aim of the current work is to summarize and critically evaluate current knowledge in this field.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Lidia Gatto
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
50
|
Revealing the epigenetic effect of temozolomide on glioblastoma cell lines in therapeutic conditions. PLoS One 2020; 15:e0229534. [PMID: 32101575 PMCID: PMC7043761 DOI: 10.1371/journal.pone.0229534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) is a drug of choice in glioblastoma treatment. Its therapeutic applications expand also beyond high grade gliomas. However, a significant number of recurrences and resistance to the drug is observed. The key factor in each chemotherapy is to achieve the therapeutic doses of a drug at the pathologic site. Nonetheless, the rate of temozolomide penetration from blood to cerebrospinal fluid is only 20–30%, and even smaller into brain intestinum. That makes a challenge for the therapeutic regimens to obtain effective drug concentrations with minimal toxicity and minor side effects. The aim of our research was to explore a novel epigenetic mechanism of temozolomide action in therapeutic conditions. We analyzed the epigenetic effects of TMZ influence on different glioblastoma cell lines in therapeutically achieved TMZ concentrations through total changes of the level of 5-methylcytosine in DNA, the main epigenetic marker. That was done with classical approach of radioactive nucleotide post-labelling and separation on thin-layer chromatography. In the range of therapeutically achieved temozolomide concentrations we observed total DNA hypomethylation. The significant hypermethylating effect was visible after reaching TMZ concentrations of 10–50 μM (depending on the cell line). Longer exposure time promoted DNA hypomethylation. The demethylated state of the glioblastoma cell lines was overcome by repeated TMZ applications, where dose-dependent increase in DNA 5-methylcytosine contents was observed. Those effects were not seen in non-cancerous cell line. The increase of DNA methylation resulting in global gene silencing and consecutive down regulation of gene expression after TMZ treatment may explain better glioblastoma patients’ survival.
Collapse
|