1
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Kapadia A, Mirrahimi A, Dmytriw AA. Intersection between sleep and neurovascular coupling as the driving pathophysiology of Alzheimer’s disease. Med Hypotheses 2020; 144:110283. [DOI: 10.1016/j.mehy.2020.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
|
3
|
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27:736-750. [PMID: 32210695 PMCID: PMC6997863 DOI: 10.1016/j.sjbs.2019.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.
Collapse
Key Words
- AAV, Adeno-associated virus
- ABCA1, ATP binding cassette subfamily A member 1
- AD, Alzheimer’s disease
- ADAMTS9, ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9
- AGPAT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
- Alzheimer’s disease
- Anti-diabetic drugs
- ApoE, Apolipoprotein E
- Arab population
- Aβ, Amyloid-beta
- BACE1, Beta-secretase 1
- BBB, Blood-Brain Barrier
- BMI, Body mass index
- CALR, calreticulin gene
- CIP2A, Cancerous Inhibitor Of Protein Phosphatase 2A
- COX-2, Cyclooxygenase 2
- CSF, Cerebrospinal fluid
- DM, Diabetes mellitus
- DUSP9, Dual Specificity Phosphatase 9
- Diabetes mellitus
- ECE-1, Endotherin converting enzyme 1
- FDG-PET, Fluorodeoxyglucose- positron emission tomography
- FRMD4A, FERM Domain Containing 4A
- FTO, Fat Mass and Obesity Associated Gene
- GLP-1, Glucagon like peptide
- GNPDA2, Glucosamine-6-phosphate deaminase 2
- GSK-3β, Glycogen synthase kinase 3 beta
- IDE, Insulin degrading enzyme
- IGF-1, Insulin-like growth factor 1
- IR, Insulin receptor
- IR, Insulin resistance
- Insulin signaling
- LPA, Lipophosphatidic acid
- MC4R, Melanocortin 4 receptor
- MCI, Myocardial infarction
- MENA, Middle East North African
- MG-H1, Methylglyoxal-hydroimidazolone isomer trifluoroactic acid salt
- MRI, Magnetic resonance imaging
- NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFT, Neurofibrillary tangles
- NOTCH4, Neurogenic locus notch homolog protein 4
- PI3K, Phosphoinositide-3
- PP2A, Protein phosphatase 2
- PPAR-γ2, Peroxisome proliferator-activated receptor gamma 2
- Pit-PET, Pittsburgh compound B- positron emission tomography
- RAB1A, Ras-related protein 1A
- SORT, Sortilin
- STZ, Streptozotocin
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 Diabetes Mellitus
- TCF7L2, Transcription Factor 7 Like 2
- TFAP2B, Transcription Factor AP-2 Beta
Collapse
Affiliation(s)
| | | | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Yamadera M, Fujimura H, Shimizu Y, Matsui M, Nakamichi I, Yokoe M, Sakoda S. Increased number of mitochondria in capillaries distributed in stroke‐like lesions of two patients with MELAS. Neuropathology 2019; 39:404-410. [DOI: 10.1111/neup.12593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/14/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Misaki Yamadera
- Department of PathologyOsaka Police Hospital Osaka Japan
- Department of NeurologyNational Hospital Organization Toneyama National Hospital Toyonaka Japan
| | - Harutoshi Fujimura
- Department of NeurologyNational Hospital Organization Toneyama National Hospital Toyonaka Japan
| | - Yuri Shimizu
- Department of Diabetes, Metabolism and EndocrinologyMinoh City Hospital Minoh Japan
| | - Misa Matsui
- Department of NeurologyNational Hospital Organization Toneyama National Hospital Toyonaka Japan
| | | | - Masaru Yokoe
- Department of NeurologyMinoh City Hospital Minoh Japan
| | - Saburo Sakoda
- Department of NeurologyNational Hospital Organization Toneyama National Hospital Toyonaka Japan
| |
Collapse
|
5
|
Abstract
BACKGROUND the maternally inherited MTTL1 A3243G mutation in the mitochondrial genome causes MelaS (Mitochondrial encephalopathy lactic acidosis with Stroke-like episodes), a condition that is multisystemic but affects primarily the nervous system. Significant intra-familial variation in phenotype and severity of disease is well recognized. METHODS retrospective and ongoing study of an extended family carrying the MTTL1 A3243G mutation with multiple symptomatic individuals. tissue heteroplasmy is reviewed based on the clinical presentations, imaging studies, laboratory findings in affected individuals and pathological material obtained at autopsy in two of the family members. RESULTS there were seven affected individuals out of thirteen members in this three generation family who each carried the MTTL1 A3243G mutation. the clinical presentations were varied with symptoms ranging from hearing loss, migraines, dementia, seizures, diabetes, visual manifestations, and stroke like episodes. three of the family members are deceased from MelaS or to complications related to MelaS. CONCLUSIONS the results of the clinical, pathological and radiological findings in this family provide strong support to the current concepts of maternal inheritance, tissue heteroplasmy and molecular pathogenesis in MelaS. neurologists (both adult and paediatric) are the most likely to encounter patients with MelaS in their practice. genetic counselling is complex in view of maternal inheritance and heteroplasmy. newer therapeutic options such as arginine are being used for acute and preventative management of stroke like episodes.
Collapse
|
6
|
Laßek M, Weingarten J, Wegner M, Volknandt W. The Amyloid Precursor Protein-A Novel Player within the Molecular Array of Presynaptic Nanomachines. Front Synaptic Neurosci 2016; 7:21. [PMID: 26834621 PMCID: PMC4719097 DOI: 10.3389/fnsyn.2015.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022] Open
Abstract
More than 20 years ago the amyloid precursor protein (APP) was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer’s disease (AD). The pathophysiology of AD, characterized by a massive loss of synapses, cognitive decline, and behavioral changes was in principle attributed to the accumulation of Aβ. Within the last decades, much effort has gone into understanding the molecular basis of the progression of AD. However, little is known about the actual physiological function of APPs. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone (PAZ) highlights APP as a hitherto unknown player within the setting of the presynapse. The molecular array of presynaptic nanomachines comprising the life cycle of synaptic vesicles, exo- and endocytosis, cytoskeletal rearrangements, and mitochondrial activity provides a balance between structural and functional maintenance and diversity. The generation of genetically designed mouse models further deciphered APP as an essential player in synapse formation and plasticity. Deletion of APP causes an age-dependent phenotype: while younger mice revealed almost no physiological impairments, this condition was changed in the elderly mice. Interestingly, the proteomic composition of neurotransmitter release sites already revealed substantial changes at young age. These changes point to a network that incorporates APP into a cluster of nanomachines. Currently, the underlying mechanism of how APP acts within these machines is still elusive. Within the scope of this review, we shall construct a network of APP interaction partners within the PAZ. Furthermore, we intend to outline how deletion of APP affects this network during space and time leading to impairments in learning and memory. These alterations may provide a molecular link to the pathogenesis of AD and the physiological function of APP in the central nervous system.
Collapse
Affiliation(s)
- Melanie Laßek
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Jens Weingarten
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Martin Wegner
- Department of Molecular Bioinformatics, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Walter Volknandt
- Department of Molecular and Cellular Neurobiology, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
7
|
Leuner K, Müller WE, Reichert AS. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer's disease. Mol Neurobiol 2012; 46:186-93. [PMID: 22833458 DOI: 10.1007/s12035-012-8307-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/12/2012] [Indexed: 12/26/2022]
Abstract
The non-Mendelian sporadic Alzheimer's disease (AD) is the most frequent form of dementia diagnosed worldwide. The most important risk factor to develop sporadic AD is aging itself. Next to hyperphosphorylated Tau, intracellular amyloid beta (Aß) oligomers are known to initiate a cascade of pathological events ranging from mitochondrial dysfunction, synaptic dysfunction, oxidative stress, and loss of calcium regulation, to inflammation. All these events are considered to play an important role in the progressive loss of neurons. The molecular mechanisms determining the balance between Aß production and clearance during the progression of the disease are not well understood. Furthermore, there is cumulating evidence that Aß formation impairs mitochondrial function and that mitochondrial dysfunction is an early event in the pathogenesis of AD. On the other hand, mitochondrial dysfunction, in particular increased formation of mitochondrially derived reactive oxygen species, promote Aß formation. Here, we review these latest findings linking mitochondrial dysfunction and Aß formation. We propose that mitochondrial dysfunction, which is well-known to increase with age, is an initial trigger for Aß production. As Aß itself further accelerates mitochondrial dysfunction and oxidative stress, its formation is self-stimulated. Taken together, a vicious cycle is initiated that originates from mitochondrial dysfunction, implying that AD can be viewed as an age-associated mitochondrial disorder. The proposed mechanism sheds new light on the pathophysiological changes taking place during the progression of AD as well as in the aging process.
Collapse
Affiliation(s)
- Kristina Leuner
- Molecular and Clinical Pharmacy, FAU Erlangen/Nürnberg, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
8
|
Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Dröse S, Wittig I, Willem M, Haass C, Reichert AS, Müller WE. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 2012; 16:1421-33. [PMID: 22229260 PMCID: PMC3329950 DOI: 10.1089/ars.2011.4173] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. RESULTS Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. INNOVATION We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. CONCLUSION Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Kristina Leuner
- Department of Pharmacology, ZAFES, Biocenter, University of Frankfurt, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. Eur Psychiatry 2010; 26:45-56. [PMID: 20980130 DOI: 10.1016/j.eurpsy.2010.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/17/2010] [Accepted: 08/22/2010] [Indexed: 11/16/2022] Open
Abstract
The poorly understood aetiology of schizophrenia is known to involve a major genetic contribution even though the genetic factors remain elusive. Most genetic studies are based on Mendelian rules and focus on the nuclear genome, but current studies indicate that other genetic mechanisms are probably involved. This review focuses on mitochondrial DNA (mtDNA), a maternally inherited, 16.6-Kb molecule crucial for energy production that is implicated in numerous human traits and disorders. The aim of this review is to summarise the studies that have explored mtDNA in schizophrenia patients and those which provide evidence for its implication in this illness. Alterations in mitochondrial morphometry, brain energy metabolism, and enzymatic activity in the mitochondrial respiratory chain suggest a mitochondrial dysfunction in schizophrenia that could be related to the genetic characteristics of mtDNA. Moreover, evidence of maternal inheritance and the presence of schizophrenia symptoms in patients suffering from a mitochondrial disorder related to an mtDNA mutation suggest that mtDNA is involved in schizophrenia. The association of specific variants has been reported at the molecular level; however, additional studies are needed to determine whether the mitochondrial genome is involved in schizophrenia.
Collapse
Affiliation(s)
- B Verge
- Unitat de Psiquiatria, Facultat de Medicina i Ciències de la Salut, Hospital Psiquiàtric, Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Swerdlow RH. Is aging part of Alzheimer's disease, or is Alzheimer's disease part of aging? Neurobiol Aging 2006; 28:1465-80. [PMID: 16876913 DOI: 10.1016/j.neurobiolaging.2006.06.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/05/2006] [Accepted: 06/22/2006] [Indexed: 01/11/2023]
Abstract
For 70 years after Alois Alzheimer described a disorder of tangle-and-plaque dementia, Alzheimer's disease was a condition of the relatively young. Definitions of Alzheimer's disease (AD) have, however, changed over the past 30 years and under the revised view AD has truly become an age-related disease. Most now diagnosed with AD are elderly and would not have been diagnosed with AD as originally conceived. Accordingly, younger patients that qualify for a diagnosis of AD under both original and current Alzheimer's disease constructs now represent an exceptionally small percentage of the diagnosed population. The question of whether pathogenesis of the "early" and "late" onset cases is similar enough to qualify as a single disease was previously raised although not conclusively settled. Interestingly, debate on this issue has not kept pace with advancing knowledge about the molecular, biochemical and clinical underpinnings of tangle-and-plaque dementias. Since the question of whether both forms of AD share a common pathogenesis could profoundly impact diagnostic and treatment development efforts, it seems worthwhile to revisit this debate.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia Health System, McKim Hall, 1 Hospital Drive, P.O. Box 800394, Charlottesville, VA 22908, United States.
| |
Collapse
|
11
|
Ahn MS, Sims KB, Frazier JA. Risperidone-induced psychosis and depression in a child with a mitochondrial disorder. J Child Adolesc Psychopharmacol 2005; 15:520-5. [PMID: 16092915 DOI: 10.1089/cap.2005.15.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To our knowledge, this is the first published case report of an adolescent girl with a mitochondrial disorder and depression who displayed both new-onset psychotic and increased mood symptoms during treatment with risperidone. DATA A 16-year-old girl was treated with risperidone for mood lability and impulsivity at a community hospital. Within days, she developed paranoid ideation, profound psychomotor retardation, increased depression, and fatigue. She was transferred to an inpatient psychiatric hospital, where she was taken off risperidone. Within 48 hours after discontinuation of the medication, she had complete resolution of psychotic symptoms, fatigue, and psychomotor retardation, and her depression improved. CONCLUSIONS This observation of "on-off" risperidone treatment suggests that risperidone may have worsened both psychiatric and physical manifestations of the mitochondrial disorder in this adolescent. These findings are consistent with recent in vitro literature, which implicate a series of neuroleptic medications with mitochondrial dysfunction. Furthermore, the authors provide diagnostic and treatment options that are available for mitochondrial disorders, which are of interest to child psychiatrists due to the central nervous system manifestations of these disorders.
Collapse
Affiliation(s)
- Mary S Ahn
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
12
|
Cottrell DA, Borthwick GM, Johnson MA, Ince PG, Turnbull DM. The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer's disease. Neuropathol Appl Neurobiol 2002; 28:390-6. [PMID: 12366820 DOI: 10.1046/j.1365-2990.2002.00414.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Defects of mitochondrial function have been proposed as a potential mechanism in the development and pathogenesis of Alzheimer's disease (AD) and neuronal apoptosis. Mitochondrial enzyme-deficient pyramidal neurones are found in greater quantities in the hippocampus of AD patients than in age-matched controls. The presence of these neurones indicates that high levels of mutant mtDNA (mitochondrial DNA), sufficient to cause a biochemical deficiency within individual neurones, occur more frequently in AD than in normal ageing. This study analyses the relationship of cytochrome c oxidase (COX)-deficient neurones with the neuropathological markers of AD, neurofibrillary tangles (NFTs) and amyloid plaques, as well as markers of neuronal apoptosis known to occur in AD brains. Frozen sections of hippocampi from three AD patients were used to directly colocalize in situ the presence of histochemically COX-deficient neurones with immunohistology for the classical neuropathological markers of AD, tau and beta-amyloid. In addition, we also directly colocalized these mitochondrial-enzyme deficient neurones using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and cleaved caspase-3. The distribution of amyloid plaques is anatomically distinct from the COX-deficient hippocampal pyramidal neurones and the neurones that contained NFTs or apoptotic labelling were always COX-positive. COX-deficient, succinate dehydrogenase-positive hippocampal neurones indicative of high mtDNA mutation load do not appear to be prone to apoptosis or to directly participate in the over production of tau or beta-amyloid. Biochemically significant mitochondrial defects do occur in AD and are likely to contribute to the overall central nervous system dysfunction in impairing neuronal function and possibly causing neurodegeneration via mechanisms other than apoptosis.
Collapse
Affiliation(s)
- D A Cottrell
- Department of Neurology, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
13
|
Gibson GE. Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease. Free Radic Biol Med 2002; 32:1061-70. [PMID: 12031890 DOI: 10.1016/s0891-5849(02)00802-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable evidence suggests that oxidative stress (elevated levels of reactive oxygen species), altered energy metabolism, and changes in calcium dynamics are central to Alzheimer's disease (AD). Abnormalities in each of these processes occur in AD, and they can be plausibly linked to the pathology and clinical outcome of the disease. Abnormalities in these same processes in peripheral tissues, such as fibroblasts, indicate that these are inherent properties of AD cells and are not merely a secondary response to neurodegeneration. Results in cultured cells including fibroblasts demonstrate that oxidative stress can lead to the AD-related changes in calcium and energy metabolism. Data also suggest that abnormalities in the cellular calcium stores, the ability to handle oxidative stress, and to respond to metabolic impairment link the AD-causing gene mutations to the disease process. Abnormal metabolism and oxidative stress alter the proteins and cellular processes that are modified in AD, and can be readily linked to neuronal death and brain dysfunction. Prevention and/or correction of these abnormalities are appropriate therapeutic targets.
Collapse
Affiliation(s)
- Gary E Gibson
- Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY 10605, USA.
| |
Collapse
|
14
|
Gibson GE, Zhang H, Xu H, Park LCH, Jeitner TM. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:177-89. [PMID: 11959459 DOI: 10.1016/s0925-4439(01)00091-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.
Collapse
Affiliation(s)
- Gary E Gibson
- Cornell University Medical College at Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | | | | | |
Collapse
|
15
|
Gibson GE, Park LC, Zhang H, Sorbi S, Calingasan NY. Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann N Y Acad Sci 2000; 893:79-94. [PMID: 10672231 DOI: 10.1111/j.1749-6632.1999.tb07819.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative stress and diminished metabolism occur in several neurodegenerative disorders. Brains from Alzheimer's disease (AD) patients exhibit several indicators of oxidative stress and have reduced activities of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key mitochondrial enzyme. Whether these abnormalities are secondary to neurodegenerative processes or are inherent properties of the cells cannot be determined in autopsy brain. Studies in cultured fibroblasts suggest that AD-related differences in oxidative stress and KGDHC reflect inherent properties of AD cells. KGDHC is sensitive to oxidative stress whether the enzyme is studied in cells, in purified mitochondria, or as an isolated protein. Reductions of brain KGDHC in living rodents lead to oxidative stress and selective cell death. The results suggest that KGDHC participates in a deleterious cascade of events related to oxidative stress that are critical in selective neuronal loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- G E Gibson
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | | | | | |
Collapse
|
16
|
Gibson GE, Park LC, Sheu KF, Blass JP, Calingasan NY. The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 2000; 36:97-112. [PMID: 10676873 DOI: 10.1016/s0197-0186(99)00114-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Altered energy metabolism is characteristic of many neurodegenerative disorders. Reductions in the key mitochondrial enzyme complex, the alpha-ketoglutarate dehydrogenase complex (KGDHC), occur in a number of neurodegenerative disorders including Alzheimer's Disease (AD). The reductions in KGDHC activity may be responsible for the decreases in brain metabolism, which occur in these disorders. KGDHC can be inactivated by several mechanisms, including the actions of free radicals (Reactive Oxygen Species, ROS). Other studies have associated specific forms of one of the genes encoding KGDHC (namely the DLST gene) with AD, Parkinson's disease, as well as other neurodegenerative diseases. Reductions in KGDHC activity can be plausibly linked to several aspects of brain dysfunction and neuropathology in a number of neurodegenerative diseases. Further studies are needed to assess mechanisms underlying the sensitivity of KGDHC to oxidative stress and the relation of KGDHC deficiency to selective vulnerability in neurodegenerative diseases.
Collapse
Affiliation(s)
- G E Gibson
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Inborn errors of metabolism often present with a variety of psychiatric symptoms. With improved diagnosis and treatment options, many patients have increased lifespans; consequently, issues of long-term quality of life are coming to the forefront. Mental health concerns are among these issues. To demonstrate the connection between the course of metabolic disease and its psychiatric manifestations, four different inborn errors of metabolism are reviewed: phenylketonuria, Wilson disease, acute intermittent porphyria, and metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Y Estrov
- Department of Psychiatry, University of California, San Diego, USA
| | | | | |
Collapse
|
18
|
Abstract
CONTEXT Inborn errors of metabolism cause hereditary metabolic diseases (HMD) and classically they result from the lack of activity of one or more specific enzymes or defects in the transportation of proteins. OBJECTIVES A clinical review of inborn errors of metabolism (IEM) to give a practical approach to the physician with figures and tables to help in understanding the more common groups of these disorders. DATA SOURCE A systematic review of the clinical and biochemical basis of IEM in the literature, especially considering the last ten years and a classic textbook (Scriver CR et al, 1995). SELECTION OF STUDIES A selection of 108 references about IEM by experts in the subject was made. Clinical cases are presented with the peculiar symptoms of various diseases. DATA SYNTHESIS IEM are frequently misdiagnosed because the general practitioner, or pediatrician in the neonatal or intensive care units, does not think about this diagnosis until the more common cause have been ruled out. This review includes inheritance patterns and clinical and laboratory findings of the more common IEM diseases within a clinical classification that give a general idea about these disorders. A summary of treatment types for metabolic inherited diseases is given. CONCLUSIONS IEM are not rare diseases, unlike previous thinking about them, and IEM patients form part of the clientele in emergency rooms at general hospitals and in intensive care units. They are also to be found in neurological, pediatric, obstetrics, surgical and psychiatric clinics seeking diagnoses, prognoses and therapeutic or supportive treatment.
Collapse
Affiliation(s)
- A M Martins
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Gibson GE, Zhang H, Sheu KF, Bogdanovich N, Lindsay JG, Lannfelt L, Vestling M, Cowburn RF. Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann Neurol 1998; 44:676-81. [PMID: 9778267 DOI: 10.1002/ana.410440414] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is associated with a striking reduction in the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC). The deficiency occurs in brains from AD patients of undefined etiology, and in fibroblasts from both sporadic and familial AD cases. To further assess the nature of the abnormality of KGDHC in AD, KGDHC activities and immunoreactivities were analyzed in brains from AD patients bearing the Swedish APP670/671 mutation. This gene defect causes overproduction of the amyloid beta peptide. KGDHC activities were reduced by 55 to 57% compared with control values in the mutation-bearing AD cases in the medial temporal and superior frontal cortices. The immunochemical levels of KGDHC subunits Elk (-51%) and E2k (-76%) declined, whereas E3 concentrations were unchanged. The results suggest that mitochondrial dysfunction is a part of the pathophysiological process in AD even when the primary pathogenic cause is nonmitochondrial.
Collapse
Affiliation(s)
- G E Gibson
- Burke Medical Research Institute, Cornell University Medical College, White Plains, NY 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gibson GE, Vestling M, Zhang H, Szolosi S, Alkon D, Lannfelt L, Gandy S, Cowburn RF. Abnormalities in Alzheimer's disease fibroblasts bearing the APP670/671 mutation. Neurobiol Aging 1997; 18:573-80. [PMID: 9461055 DOI: 10.1016/s0197-4580(97)00149-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormalities in cultured fibroblasts from familial Alzheimer's Disease (FAD) cases uniquely enable the determination of how gene defects alter cell biology in living tissue from affected individuals. The current study focused on measures of calcium regulation and oxidative metabolism in fibroblast lines from controls and FAD individuals with the Swedish APP670/671 mutation. Bombesin-induced elevations in calcium in APP670/671 mutation-bearing lines were reduced by 40% (p < 0.05), a striking contrast to the 100% increase seen in sporadic AD and presenilin-1 (PS1) mutation-bearing cells in previously published studies. The APP670/671 mutation-bearing lines did not exhibit the exaggerated 4-bromo-A23187 releasable pool of calcium following 10 nM bradykinin, the enhanced sensitivity of calcium stores to low concentrations of bradykinin, nor the reduced activity of alpha-ketoglutarate dehydrogenase previously reported in cells from sporadic AD and mutant PS1 FAD. Thus, an altered regulation of internal calcium stores is common to all AD lines, but the calcium pool affected and the polarity of the alteration varies, apparently in association with particular gene mutations. Comparison of signal transduction in cell lines from multiple, genetically characterized AD families will allow testing of the hypothesis that these various pathogenic FAD abnormalities that lead to AD converge at the level of abnormal signal transduction.
Collapse
Affiliation(s)
- G E Gibson
- Cornell University Medical College at Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | | | | | | | | | | | |
Collapse
|