1
|
Taha SR, Boulos F. E-cadherin staining in the diagnosis of lobular versus ductal neoplasms of the breast: the emperor has no clothes. Histopathology 2025; 86:327-340. [PMID: 39138705 PMCID: PMC11707503 DOI: 10.1111/his.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
Collapse
MESH Headings
- Female
- Humans
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Cadherins/metabolism
- Cadherins/analysis
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Lobular/diagnosis
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Immunohistochemistry
Collapse
Affiliation(s)
- Seyed R Taha
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Fouad Boulos
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Sun X, Gao H, Lu L, Wang Q, Li Y, Gu Y. Tumor necrosis factor receptor-associated factor 5 enhances perianal fistulizing Crohn's disease through epithelial-mesenchymal transition. Cytojournal 2024; 21:82. [PMID: 39917000 PMCID: PMC11801662 DOI: 10.25259/cytojournal_148_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 02/09/2025] Open
Abstract
Objective Crohn's disease (CD) is a chronic inflammatory condition of the bowel that remarkably impairs a patient's quality of life and often has a poor prognosis. Perianal fistulizing CD (PFCD) is one of the most common parenteral symptoms of CD and a huge challenge for the management of this illness. This study aimed to elucidate the molecular mechanisms underlying PFCD and identify potential biomarkers to advance our understanding and management of this condition. Material and Methods Transcriptome sequencing was performed using the control and PFCD groups to investigate the mechanisms of PFCD development. The expression of tumor necrosis factor receptor-associated factor 5 (TRAF5), nuclear factor-kappa B (NF-κB), and interleukin 13 (IL-13) messenger ribonucleic acid (mRNAs) was detected by quantitative polymerase chain reaction (qPCR). Pathological morphology was observed using hematoxylin and eosin staining. The expression of TRAF5, Epithelial Cadherin (E-cadherin), Snail family transcriptional repressor 1 (SNAIL1), and vimentin protein was detected by immunohistochemistry. Following the knockdown of TRAF5 in human tumor-29 (HT-29) cells, the effects on cell proliferation and migration were assessed using the cell counting kit-8 and Transwell assays. The expression levels of crucial markers were analyzed by qPCR, Western blot, and immunohistochemistry. Results Transcriptomic sequencing revealed a significant upregulation of TRAF5 in the PFCD group, accompanied by elevated mRNA levels of NF-κB and IL-13 compared with those in the control group. In addition, the PFCD group exhibited increased expression of TRAF5, SNAIL, and vimentin and marked reduction in E-cadherin levels, indicating that PFCD may facilitate epithelial-mesenchymal transition (EMT). Knocking down TRAF5 in HT-29 cells reduced cell proliferation and migration; inhibited NF-κB and IL-13 mRNAs, SNAIL1, and vimentin levels; and promoted E-cadherin levels. Conclusions The development of PFCD was associated with EMT, and TRAF5 was a key gene of PFCD. Knocking down TRAF5 alleviated the EMT promotion of PFCD, indicating that TRAF5 drove the development of PFCD through EMT.
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Hairui Gao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Lu
- Department of Gastroenterology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Qianqian Wang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Youran Li
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Yunfei Gu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Wu P, Liang X, Wang H, Wang Z, Niu Y, Dong Z, Yin L, He C, Xu F, Li H, Tang H. Structurally diverse design and synthesis of novel 2-phenylindole amide derivatives with anti-canine breast cancer activity. Bioorg Chem 2024; 153:107788. [PMID: 39265524 DOI: 10.1016/j.bioorg.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Breast cancer stands as the cancer with the highest incidence and mortality rates among women globally, in which triple-negative breast cancer has been ranked as the most difficult one. Bazedoxifene (BZA), a third-generation selective estrogen receptor modulator (SERM), has been exhibited notable inhibitory effect on both hormone-dependent breast cancer cells and triple-negative breast cancer cells, but showing very low in vivo effeacy. In order to obtain more effective antitumor derivatives than BZA, we have employed a structurally diverse design and synthesis of 57 novel 2-phenylindole amides for detecting their cytotoxities against triple-negative mammary cancer cell line, CMT-7364. Among them, 21 compounds demonstrated significant inhibitory activity against CMT-7364 cells (IC50 < 20 μM). Notably, compound 49 stood out, displaying both similar tumor cell inhibition (20 % reduce in IC50 value) and higher selectivity (4.6 times higher in SI value), compared to Bazedoxifene. Additionally, compound 49 exhibited desirable antitumor effects in a CMT-7364 cell-derived mouse in vivo model, achieving the best inhibition rate of 43.1 % and establishing strong molecular bonding with GP130. Our findings are also supported by comprehensive SAR and 3D-QSAR analyses. Furthermore, the best potent compound 49 was determined to block the cell cycle of canine breast cancer cells in the G0G1 phase in a time-dependent manner, by inducing apoptosis and autophagy. In conclusion, this work presents a valuable lead compound as a potential GP130 inhibitor against triple-negative breast cancer cell lines, laying the foundation for further antitumor drug development.
Collapse
Affiliation(s)
- Pan Wu
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaoxia Liang
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Han Wang
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhenyu Wang
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Niu
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhenghua Dong
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Funeng Xu
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Haohuan Li
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huaqiao Tang
- Natural Medicine Research Center, Pharmacy department, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
4
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Quinsgaard EMB, Korsnes MS, Korsnes R, Moestue SA. Single-cell tracking as a tool for studying EMT-phenotypes. Exp Cell Res 2024; 437:113993. [PMID: 38485079 DOI: 10.1016/j.yexcr.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
This article demonstrates that label-free single-cell video tracking is a useful approach for in vitro studies of Epithelial-Mesenchymal Transition (EMT). EMT is a highly heterogeneous process, involved in wound healing, embryogenesis and cancer. The process promotes metastasis, and increased understanding can aid development of novel therapeutic strategies. The role of EMT-associated biomarkers depends on biological context, making it challenging to compare and interpret data from different studies. We demonstrate single-cell video tracking for comprehensive phenotype analysis. In this study we performed single-cell video tracking on 72-h long recordings. We quantified several behaviours at a single-cell level during induced EMT in MDA-MB-468 cells. This revealed notable variations in migration speed, with different dose-response patterns and varying distributions of speed. By registering cell morphologies during the recording, we determined preferred paths of morphological transitions. We also found a clear association between migration speed and cell morphology. We found elevated rates of cell death, diminished proliferation, and an increase in mitotic failures followed by re-fusion of sister-cells. The method allows tracking of phenotypes in cell lineages, which can be particularly useful in epigenetic studies. Sister-cells were found to have significant similarities in their speeds and morphologies, illustrating the heritability of these traits.
Collapse
Affiliation(s)
- Ellen Marie Botne Quinsgaard
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.
| | - Mónica Suárez Korsnes
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway; Korsnes Biocomputing (KoBio), Trondheim, Norway
| | | | - Siver Andreas Moestue
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway; Department of Pharmacy, Nord University, Bodø, Norway
| |
Collapse
|
6
|
Sun K, Liao S, Yao X, Yao F. USP30 promotes the progression of breast cancer by stabilising Snail. Cancer Gene Ther 2024; 31:472-483. [PMID: 38146008 PMCID: PMC10940155 DOI: 10.1038/s41417-023-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Breast cancer (BC) is the most prevalent tumour in women worldwide. USP30 is a deubiquitinase that has been previously reported to promote tumour progression and lipid synthesis in hepatocellular carcinoma. However, the role of USP30 in breast cancer remains unclear. Therefore, we investigated its biological action and corresponding mechanisms in vitro and in vivo. In our study, we found that USP30 was highly expressed in breast cancer samples and correlated with a poor patient prognosis. Knockdown of USP30 significantly suppressed the proliferation, invasion and migration abilities of BC cells in vitro and tumour growth in vivo, whereas overexpression of USP30 exhibited the opposite effect. Mechanistically, we verified that USP30 interacts with and stabilises Snail to promote its protein expression through deubiquitination by K48-linked polyubiquitin chains and then accelerates the EMT program. More importantly, USP30 reduced the chemosensitivity of BC cells to paclitaxel (PTX). Collectively, these data demonstrate that USP30 promotes the BC cell EMT program by stabilising Snail and attenuating chemosensitivity to PTX and may be a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Kai Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shichong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinrui Yao
- School of Science, University of Sydney, Sydney, Australia
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
7
|
Siqueira PB, de Sousa Rodrigues MM, de Amorim ÍSS, da Silva TG, da Silva Oliveira M, Rodrigues JA, de Souza da Fonseca A, Mencalha AL. The APE1/REF-1 and the hallmarks of cancer. Mol Biol Rep 2024; 51:47. [PMID: 38165468 DOI: 10.1007/s11033-023-08946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain's role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.
Collapse
Affiliation(s)
- Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil.
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil.
| | - Ísis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
- Laboratório de Alimentos Funcionais, Universidade Federal do Rio de Janeiro, Instituto de Nutrição Josué de Castro, Rio de Janeiro, Brasil
| | - Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Laboratório de Biofotônica, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Matheus da Silva Oliveira
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Laboratório de Biofotônica, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| |
Collapse
|
8
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
9
|
Turchi R, Tortolici F, Benvenuto M, Punziano C, De Luca A, Rufini S, Faraonio R, Bei R, Lettieri-Barbato D, Aquilano K. Low Sulfur Amino Acid, High Polyunsaturated Fatty Acid Diet Inhibits Breast Cancer Growth. Int J Mol Sci 2022; 24:ijms24010249. [PMID: 36613691 PMCID: PMC9820692 DOI: 10.3390/ijms24010249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.
Collapse
Affiliation(s)
- Riccardo Turchi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Benvenuto
- Departmental Faculty of Medicine, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS Santa Lucia, 00179 Rome, Italy
- Correspondence: (D.L.-B.); (K.A.)
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (D.L.-B.); (K.A.)
| |
Collapse
|
10
|
Brown MS, Abdollahi B, Wilkins OM, Lu H, Chakraborty P, Ognjenovic NB, Muller KE, Jolly MK, Christensen BC, Hassanpour S, Pattabiraman DR. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. SCIENCE ADVANCES 2022; 8:eabj8002. [PMID: 35921406 PMCID: PMC9348802 DOI: 10.1126/sciadv.abj8002] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/16/2022] [Indexed: 05/04/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma types, where the intermediate EMT state plays a critical tumor-initiating role. We isolate multiple distinct single-cell clones from the SUM149PT human breast cell line spanning the EMT spectrum having diverse migratory, tumor-initiating, and metastatic qualities, including three unique intermediates. Using a multiomics approach, we identify CBFβ as a key regulator of metastatic ability in the intermediate state. To quantify epithelial-mesenchymal heterogeneity within tumors, we develop an advanced multiplexed immunostaining approach using SUM149-derived orthotopic tumors and find that the EMT state and epithelial-mesenchymal heterogeneity are predictive of overall survival in a cohort of stage III breast cancer. Our model reveals previously unidentified insights into the complex EMT spectrum and its regulatory networks, as well as the contributions of epithelial-mesenchymal plasticity (EMP) in tumor heterogeneity in breast cancer.
Collapse
Affiliation(s)
- Meredith S. Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Behnaz Abdollahi
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Owen M. Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Nevena B. Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Brock C. Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Saeed Hassanpour
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| |
Collapse
|
11
|
Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, Liu C, Gao S. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol 2021; 11:641399. [PMID: 33968740 PMCID: PMC8100313 DOI: 10.3389/fonc.2021.641399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients. Methods GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell proliferation and migration capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients. Results GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, downregulation of GLYAT promoted the migratory properties of BC cells, likely through the activation of PI3K/AKT/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses. Conclusion Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/AKT/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Shengjing Hospital, China Medical University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Xu G, Zhao H, Xu J, Zhang Y, Qi X, Shi A. Hard antler extract inhibits invasion and epithelial-mesenchymal transition of triple-negative and Her-2 + breast cancer cells by attenuating nuclear factor-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113705. [PMID: 33346025 DOI: 10.1016/j.jep.2020.113705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hard antler extract (HAE) is a traditional Chinese medicine and has potent antitumor, antioxidative, anti-inflammatory, and immunomodulatory activities. Previous studies have demonstrated that HAE can inhibit human prostate cancer metastasis and murine breast cancer proliferation. However, the effect of HAE on human breast cancer cells has not been clarified. AIM OF THE STUDY To investigate the effects and underlying mechanism of HAE on self-renewal of stem-like cells and spontaneous and transforming growth factor (TGF)-β1-enhanced wound healing, invasion and epithelial-mesenchymal transition (EMT) in breast cancer cells. METHODS HAE was prepared from sika deer by sequential enzymatic digestions and the active compounds were determined by HPLC. The effects of HAE on the viability, mammosphere formation, wound healing and invasion of MDA-MB-231 and SK-BR3 cells were determined. The impact of HAE treatment on spontaneous and TGF-β1-promoted EMT and the nuclear factor (NF)-κB signaling in breast cancer cells was examined by quantitative RT-PCR and western blotting. RESULTS Treatment with HAE at varying concentrations did not change the viability of breast cancer cells. However, HAE at 0.25 or 0.5 mg/mL significantly reduced the number and size of formed mammospheres, and inhibited spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in MDA-MB-231 and SK-BR3 cells in a dose-dependent manner. TGF-β1 treatment significantly decreased IκBα expression and increased NF-kBp65 phosphorylation in breast cancer cells, indicating that TGF-β1 enhanced NF-κB signaling. In contrast, HAE treatment attenuated the spontaneous and TGF-β1-enhanced NF-κB signaling in breast cancer cells. CONCLUSION Our data indicated that HAE inhibited the self-renewal of stem-like cells and spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in breast cancer cells by attenuating the NF-κB signaling in vitro.
Collapse
Affiliation(s)
- Gege Xu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haiping Zhao
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Jingdong Xu
- Biology Major, the University of Texas at Austin, Austin, TX, 78705, USA
| | - Yu Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoyan Qi
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Zhu L, Zhou D, Guo T, Chen W, Ding Y, Li W, Huang Y, Huang J, Pan X. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer 2021; 12:3291-3298. [PMID: 33976738 PMCID: PMC8100807 DOI: 10.7150/jca.56218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Lung cancer is a malignant tumor in mammary gland epithelium with high morbidity and mortality among women worldwide. Long noncoding RNA GAS5 (GAS5) has been proved to be closely related with tumor progression. However, the influence of GAS5 on lung cancer and the specific mechanism remain unclear. Methods: Cell invasion, cell migration, cell apoptosis and cell cycle were investigated after transfection with pcDNA-GAS5 and sh-GAS5. Sizes of tumors were measured by establishing transplanted tumor model in vivo. E-cadherin and N-cadherin expressions were investigated. Results: Cell invasion and migration were inhibited markedly in GAS5 overexpressed cell line. Cell cycle results indicated that the percentage of S-phase cells was increased, and G2-phase was reduced in the GAS5 overexpression cell line. Tumor size was suppressed obviously after GAS5 overexpression treatment. GAS5 markedly inhibited the expression of E-cadherin and induced the expression of N-cadherin. GAS5 overexpression significantly inhibited lung cancer cell proliferation by increasing the E-cadherin and decreasing N-cadherin. Conclusions: These findings provide novel evidence that GAS5 can be viewed as an anti-lung cancer agent through affecting EMT pathway.
Collapse
Affiliation(s)
- Lihuan Zhu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Dongsheng Zhou
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, China
| | - Tianxing Guo
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Wenshu Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Wujing Li
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jianyuan Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
14
|
Ghauri MA, Su Q, Ullah A, Wang J, Sarwar A, Wu Q, Zhang D, Zhang Y. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153500. [PMID: 33626427 DOI: 10.1016/j.phymed.2021.153500] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A large number of breast cancer patients perishes due to metastasis instead of primary tumor, but molecular mechanisms contributing towards cancer metastasis remain poorly understood. Therefore, prompting development of novel treatment is inevitable. A vast variety of plant derived natural substance possesses several therapeutically active constituents, e.g. alkaloids, flavonoids, tannins, resins, terpenoids etc. that exhibit various pharmacological properties e.g. anti-inflammatory, anti-microbial and anti-cancer properties. Sanguinarine (SAN) alkaloid found its place among such naturally occurring substances that exerts several pharmacological activities, including anti-cancer effects. PURPOSE Until now, role of SAN not only against epithelial-mesenchymal transition (EMT) but also against metastasis progression in breast cancer remains indistinct. Thus, aim of the present study was to investigate effects of SAN on EMT process and cancer metastasis in animal model. METHODS MTT assay was performed to assess SAN effects on proliferation in breast cancer. Scratch assay was performed to evaluate effects of SAN on migration in breast cancer. Colony formation assay was performed to determine effects of SAN on colonization characteristics of breast cancer. Western blotting was performed to measure EMT regulating protein expression as well as major pathway protein expression induced against TGF-β treatment in breast cancer. Tail vein method of injecting breast cancer cells in bulb/c mice was conducted to study metastasis progression and thereafter assessing effects of SAN against metastasis in mice. RESULTS In vivo results: MTT assay performed, demonstrated dose dependent inhibition of cell proliferation in breast cancer. Scratch assay results showed, SAN played a major role as migration inhibitor in estrogen receptor positive (ER+) breast cancer. Colony forming assay results demonstrated that SAN constrains ability of breast cancer to develop into well-defined colonies. Western blotting results for EMT regulating protein expression, after TGF-β treatment showed, SAN inhibited cadherin switch in ER+ breast cancer. Moreover, expression of pathway proteins involved in EMT process after TGF-β treatment i.e. Smad, PI3K/Akt and MAP kinase were significantly masked against SAN treatment. IN VIVO RESULTS The appearance of metastatic nodules in lung tissues of mice model, helps to study the effects of SAN against metastasis in bulb/c mice. The obtained results have confirmed that SAN impeded lung metastasis. The macroscopic examination has confirmed metastasis inhibitory role of SAN in breast cancer. The Hematoxylin and eosin (H&E) staining results further advocate anti-metastatic characteristics of SAN, presented by fewer metastatic nodule and lesions appearance in SAN treated mice compared to untreated metastasis mice. CONCLUSION In summary, SAN displayed prominent anti-metastatic effects in animal model and anti-proliferation effects together with significant inhibitory potential on EMT regulating protein expression against TGF-β treatment in ER+ breast cancer. So, overall findings of our study highlighted the pre-clinical significance of SAN in animal model therefore, further studies in humans as a part of clinical trial will be needed to establish pharmacokinetics and other effects of SAN, so that it can be a potential candidate for future treatment of metastatic breast cancer (MBC).
Collapse
Affiliation(s)
- Mohsin Ahmad Ghauri
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
15
|
Prognostic and clinicopathological values of tissue expression of MFAP5 and ITM2A in triple-negative breast cancer: an immunohistochemical study. Contemp Oncol (Pozn) 2020; 24:87-95. [PMID: 32774133 PMCID: PMC7403766 DOI: 10.5114/wo.2020.97520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is a markedly aggressive molecular subtype of breast cancer; there is an urgent need to clarify the molecular mechanisms underlying the progression and metastases of BLBC, in order to find a novel targeted therapy. Microfibrillar-associated protein 5 (MFAP5) plays an essential role in the regulation of cell behaviour and survival. Integral membrane protein 2A (ITM2A) is a type II transmembrane protein, which is a member of a family of autophagy related proteins. The aim of this study was to assess the expression of MFAP5 and ITM2A proteins in tissues of BLBC using immunohistochemistry, in order to correlate the expression with clinicopathological and prognostic parameters of such aggressive cancer. Material and methods The present study included sections from archived paraffin blocks retrieved from 120 patients with TNBC. We collected cases from three years, i.e. from 2016 to 2019. We assessed expression of MFAP5 and ITM2A using immunohistochemistry. Results High expression of MFAP5 and low expression of ITM2A was associated with advanced stage (p = 0.007), higher grade of tumour (p = 0.005 and p = 0.004, respectively), the presence of lymph nodes metastases (p < 0.001 and p = 0.002, respectively), lower three-year RFS rate (p < 0.001 and p = 0.016, respectively), and lower three-year OS rate (p < 0.001). Conclusions MFAP5 and ITM2A are novel prognostic biomarkers for breast cancer and might be considered as promising therapeutic targets for patients with breast cancer, particularly TNBC molecular subtype, in the future.
Collapse
|
16
|
Lu HY, Zhu JS, Xie J, Zhang Z, Zhu J, Jiang S, Shen WJ, Wu B, Ding T, Wang SL. Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion via Induction of Autophagy in ER-Positive Breast Cancer Cell Lines (MCF7 and T47D). Nutr Cancer 2020; 73:350-360. [PMID: 32286090 DOI: 10.1080/01635581.2020.1750661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydroxytyrosol (HT) and oleuropein (OL), the most abundant of the phenolic compounds in olives, have anticancer properties against breast cancer (BC). However, little attention has been paid to the mechanism of HT or OL in BC cells. The objective of this study was to identify the underlying molecular mechanisms of these compounds. ER-positive BC MCF7 and T47D cells were treated with HT and OL in combination with hepatocyte growth factor (HGF), rapamycin (Rapa, an agonist of autophagy) or 3-methyladenine (3-MA, an inhibitor of autophagy). Cell viability, metastasis capability and autophagy-related proteins were evaluated by wound healing assays, Transwell assays and Western blot. HT and OL reduced the cell viability of MCF-7 and T47D cells in a dose-dependent manner. Both cells were more sensitive to HT than OL. In addition, Rapa significantly inhibited HGF-induced migration and invasion, indicating that metastases of both BC cells could be inhibited by suppression of autophagy. Moreover, HT and OL significantly blocked HGF- or 3-MA-induced cell migration and invasion by reversing LC3II/LC3I and Beclin-1 downregulation and p62 upregulation. These findings revealed that HT and OL could suppress migration and invasion by activating autophagy in ER-positive BC cells, which might be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Hui-Yuan Lu
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, China
| | - Jian-Sheng Zhu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Xie
- Jiangsu Province Hospital and, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jun Zhu
- Nanjing customs district the People's Republic of China, Nanjing, China
| | - Shan Jiang
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, China
| | - Wei-Jian Shen
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, China
| | - Bin Wu
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, China
| | - Tao Ding
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
17
|
Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene 2020; 39:3980-3996. [PMID: 32238881 PMCID: PMC7220852 DOI: 10.1038/s41388-020-1262-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Branched-chain α-keto acid dehydrogenase kinase (BCKDK), the key enzyme of branched-chain amino acids (BCAAs) metabolism, has been reported to promote colorectal cancer (CRC) tumorigenesis by upregulating the MEK-ERK signaling pathway. However, the profile of BCKDK in metastatic colorectal cancer (mCRC) remains unknown. Here, we report a novel role of BCKDK in mCRC. BCKDK is upregulated in CRC tissues. Increased BCKDK expression was associated with metastasis and poor clinical prognosis in CRC patients. Knockdown of BCKDK decreased CRC cell migration and invasion ex vivo, and lung metastasis in vivo. BCKDK promoted the epithelial mesenchymal transition (EMT) program, by decreasing the expression of E-cadherin, epithelial marker, and increasing the expression of N-cadherin and Vimentin, which are mesenchymal markers. Moreover, BCKDK-knockdown experiments in combination with phosphoproteomics analysis revealed the potent role of BCKDK in modulating multiple signal transduction pathways, including EMT and metastasis. Src phosphorylated BCKDK at the tyrosine 246 (Y246) site in vitro and ex vivo. Knockdown and knockout of Src downregulated the phosphorylation of BCKDK. Importantly, phosphorylation of BCKDK by Src enhanced the activity and stability of BCKDK, thereby promoting the migration, invasion, and EMT of CRC cells. In summary, the identification of BCKDK as a novel prometastatic factor in human CRC will be beneficial for further diagnostic biomarker studies and suggests novel targeting opportunities.
Collapse
|
18
|
Xiang Y, Zhang Q, Wei S, Huang C, Li Z, Gao Y. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. ACTA ACUST UNITED AC 2019; 72:483-495. [PMID: 31858611 DOI: 10.1111/jphp.13204] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Paeoniflorin, a representative pinane monoterpene glycoside in plants of Paeoniaceae family, possesses promising anticancer activities on diverse tumours. This paper summarized the advance of Paeoniflorin on cancers in vivo and in vitro, discussed the related molecular mechanisms, as well as suggested some perspectives of the future investigations. KEY FINDINGS Anticancer activities of paeoniflorin have been comprehensively investigated, including liver cancer, gastric cancer, breast cancer, lung cancer, pancreatic cancer, colorectal cancer, glioma, bladder cancer and leukaemia. Furthermore, the potential molecular mechanisms corresponding to the antitumour effects of Paeoniflorin might be related to the following aspects: inhibition of tumour cell proliferation and neovascularization, induction apoptosis, and inhibition of tumour invasion and metastasis. SUMMARY Paeoniflorin has wide spectrum antitumour activities; however, in vivo and clinical investigations on antitumour effect of Paeoniflorin are lacking which should be focused on further studies. Our present review on antitumour effects of Paeoniflorin would be beneficial for the further molecular mechanisms study, candidate antitumour drug development and clinical research of Paeoniflorin in the future.
Collapse
Affiliation(s)
- Yongjing Xiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengsheng Li
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongxiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Wu Y, Wu P, Zhang Q, Chen W, Liu X, Zheng W. MFAP5 promotes basal-like breast cancer progression by activating the EMT program. Cell Biosci 2019; 9:24. [PMID: 30899449 PMCID: PMC6407223 DOI: 10.1186/s13578-019-0284-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Human basal-like breast cancer (BLBC) is an aggressive malignancy with poor prognosis. Since most current treatments are ineffective, there is an urgent need to identify therapeutic targets for BLBC. Microfibrillar-associated protein 5 (MFAP5) plays an important role in the integration of elastic microfibers and the regulation of endothelial cell behaviors. We previously demonstrated that MFAP5 was significantly overexpressed in BLBC tissues and associated with poor metastasis-free survival of patients with BLBC. However, the detailed role of MFAP5 in BLBC is unclear. Thereby, the current study aimed to investigate the underlying function of MFAP5 in BLBC. Method Functional analyses were conducted for the role of MFAP5 in BLBC in vitro and in vivo. Results Overexpression of MFAP5 resulted in a significant increase in the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) markers in BLBC in vitro and in vivo. In addition, other metastasis animal models by tail intravenous injection of BT20 cells further confirmed that MFAP5 overexpression promoted BLBC proliferation and BT20 cells metastasis. We found that the TGF-β or Notch inhibitor significantly reversed the tumorigenicity and metastasis of MFAP5-induced BLBC cells. Conclusion Our findings suggest that MFAP5 may promote EMT in BLBC metastasis via the TGF-β/Notch pathway. Electronic supplementary material The online version of this article (10.1186/s13578-019-0284-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Wu
- 1Department of Breast Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Ping Wu
- Department of Pathology, Maternal and Child Health Care Hospital, Huaian, 223002 Jiangsu China
| | - Quan Zhang
- 1Department of Breast Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Wenjin Chen
- Basic Medical College, Naval Medical University, Shanghai, 200433 China
| | - Xishui Liu
- 1Department of Breast Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Weiqiang Zheng
- 4Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433 China
| |
Collapse
|
20
|
Kapka-Skrzypczak L, Popek S, Sawicki K, Drop B, Czajka M, Jodłowska-Jędrych B, Matysiak-Kucharek M, Furman-Toczek D, Zagórska-Dziok M, Kruszewski M. IL‑6 prevents CXCL8‑induced stimulation of EpCAM expression in ovarian cancer cells. Mol Med Rep 2019; 19:2317-2322. [PMID: 30747214 DOI: 10.3892/mmr.2019.9890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM), which is expressed in the majority of epithelial tissues, exhibits tumor growth promoting abilities and is overexpressed in human epithelial ovarian cancer. Therefore, EpCAM is considered to be a promising target for specific immune‑based therapies. The present study evaluated the role of IL‑6 and IL‑8 in the expression of EpCAM in the A2780 human ovarian cancer cell line. Furthermore, the cellular localization of the EpCAM protein in A2780 cells was determined and the effect of EpCAM inhibition on the proliferation of the A2780 cells was investigated. An MTT assay demonstrated that blocking EpCAM with anti‑EPCAM antibodies had no effect on cellular metabolic activity (proliferation). Gene expression analysis revealed that IL‑8 increased EpCAM expression, whereas IL‑6 and the combination of IL‑6/IL‑8 had no effect on EpCAM expression. Immunofluorescence analysis confirmed that EpCAM is expressed on A2780 cell membranes. The present results demonstrated that IL‑8 increased EpCAM expression at the mRNA level in ovarian cancer cells and suggested a potential role of IL‑6 as an inhibitor of IL‑8‑stimulated EpCAM expression.
Collapse
Affiliation(s)
- Lucyna Kapka-Skrzypczak
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Sylwia Popek
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, 20‑080 Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Faculty of Health Sciences, Medical University, 20‑090 Lublin, Poland
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20‑080 Lublin, Poland
| | | | - Dominika Furman-Toczek
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Martyna Zagórska-Dziok
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Marcin Kruszewski
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| |
Collapse
|
21
|
The Role of Tumor Microenvironment and Impact of Cancer Stem Cells on Breast Cancer Progression and Growth. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Breast cancer is not only a mass of genetically abnormal tissue in the breast. This is a well-organized system of a complex heterogeneous tissue. Cancer cells produce regulatory signals that stimulate stromal cells to proliferate and migrate; then, stromal elements respond to these signals by releasing components necessary for tumor development that provide structural support, vasculature, and extracellular matrices. Developing tumors can mobilize a variety of cell types from both local and distant niches via secret chemical factors derived from cancer cells themselves or neighboring cells disrupted by growing neoplasm, such as fibroblasts, immune inflammatory cells, and endothelial cells. CSCs are a group of very few cells that are tumorigenic (able to form tumors) and are defined as those cells within a tumor that can self-renew and lead to tumorigenesis. BCSCs represent a small population of cells that have stem cell characteristics and are related to breast cancer. There are different theories about the origin of BCSCs. BCSCs are responsible for breast carcinoma metastasis. Usually, there is a metastatic spread to the bones, and rarely to the lungs and liver. A phenomenon that allows BCSCs to make the transition from epithelial to mesenchymal expression and thus avoid the effect of cytotoxic agents is the epithelial-mesenchymal transition (EMT). During this process, cells change their molecular characteristics in terms of loss of epithelial characteristics taking the mesenchymal phenotype. This process plays a key role in the progression, invasion, and metastasis of breast tumors.
Collapse
|
22
|
Li C, Wang Q, Shen S, Wei X, Li G. Oridonin inhibits VEGF-A-associated angiogenesis and epithelial-mesenchymal transition of breast cancer in vitro and in vivo. Oncol Lett 2018; 16:2289-2298. [PMID: 30008931 PMCID: PMC6036431 DOI: 10.3892/ol.2018.8943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of mortality in patients with breast cancer and lacks effective therapeutic agents. Oridonin, an active diterpenoid compound isolated from Rabdosia rubescens, was identified to be the most potent anti-tumor ingredient. However, the molecular mechanisms responsible for its anti-metastatic effects remain unclear. In the present study, oridonin significantly suppressed the migration, invasion and adhesion of MDA-MB-231 and 4T1 breast cancer cells, and inhibited tube formation of human umbilical vein endothelial cells in a dose-dependent manner. The expression levels of epithelial-mesenchymal transition (EMT)-associated marker and the hypoxia inducible factor 1α (HIF-1α)/vascular endothelium growth factor (VEGF) signaling pathway mRNA and proteins were determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively in vitro. The results demonstrated that oridonin effectively inhibited EMT as demonstrated by the significant increases in the expression levels of E-cadherin, and decreased expression of N-cadherin, Vimentin and Snail. In addition, oridonin exerted its anti-angiogenesis activity through significantly decreasing HIF-1α, VEGF-A and VEGF receptor-2 protein expression. Furthermore, oridonin was demonstrated to decrease the micro-vessel density as evidenced by the decreased expression of cluster of differentiation 31, a marker for neovasculature. In brief, oridonin inhibits tumor cell migration, invasion and adhesion, as well as tumor angiogenesis, which are mediated by suppressing EMT and the HIF-1α/VEGF signaling pathway. The results of the present study suggest that oridonin may be a promising anti-metastatic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qi Wang
- Department of Oncology, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, P.R. China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaolu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Guoxia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
23
|
Lee J, Guan W, Han S, Hong D, Kim L, Kim H. MicroRNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Sci 2018; 109:1404-1413. [PMID: 29575368 PMCID: PMC5980212 DOI: 10.1111/cas.13588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis and chemoresistance remain major challenges in the clinical treatment of breast cancer. Recent studies show that dysregulated microRNAs (miRNAs) play an important role in metastasis and chemoresistance development in breast cancer. Herein, we identified downregulated expression of miR-708-3p in breast cancers. In particular, miR-708-3p expression was significantly decreased in specimens from breast cancer patients with metastasis compared to that in specimens from patients with no metastasis. Consistent with clinical data, our in vitro data show that miR-708-3p was more significantly decreased in invasive breast cancer cell lines. In addition, our data show that inhibition of miR-708-3p significantly stimulated breast cancer cell metastasis and induced chemoresistance both in vitro and in vivo. In contrast, overexpression of miR-708-3p dramatically inhibited breast cancer cell metastasis and enhanced the sensitivity of breast cancer cells to chemotherapy both in vitro and in vivo. Furthermore, we identified that miR-708-3p inhibits breast cancer cell epithelial-to-mesenchymal transition (EMT) by directly targeting EMT activators, including ZEB1, CDH2 and vimentin. Taken together, our findings suggest that miR-708-3p acts as a cancer suppressor miRNA and carries out its anticancer function by inhibiting EMT in breast cancer. In addition, our findings suggest that restoration of miR-708-3p may be a novel strategy for inhibiting breast cancer metastasis and overcoming the chemoresistance of breast cancer cells.
Collapse
Affiliation(s)
- Jin‐Won Lee
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Wei Guan
- Cancer CenterDaping Hospital and Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Sanghak Han
- Department of PathologyChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Deok‐Ki Hong
- Department of BiochemistryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Lee‐Su Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Haesung Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| |
Collapse
|
24
|
OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability. Oncogene 2018; 37:3356-3368. [PMID: 29559747 DOI: 10.1038/s41388-018-0224-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/31/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023]
Abstract
Snail is a key regulator of epithelial-mesenchymal transition (EMT) and plays an important role in tumor progression and metastasis. Snail is rapidly degraded in the cells and its protein level is critically controlled. Although several E3 ligases regulating Snail degradation have been defined, the deubiquitinases (DUBs) responsible for Snail deubiquitination are less studied. We identified ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) as a DUB that stabilizes Snail through preventing its ubiquitination and proteasomal degradation. Functionally, OTUB1 facilitates metastasis of esophageal squamous cell carcinoma (ESCC) through promoting Snail protein stability. Moreover, OTUB1 is highly expressed in ESCC and higher expression of OTUB1 predicts poor prognosis. These findings suggest that OTUB1 is an essential regulator of Snail and plays a critical role in facilitating esophageal cancer progression.
Collapse
|
25
|
Paeoniflorin Inhibits Migration and Invasion of Human Glioblastoma Cells via Suppression Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition. Neurochem Res 2018; 43:760-774. [PMID: 29423667 PMCID: PMC5842263 DOI: 10.1007/s11064-018-2478-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Paeoniflorin (PF) is a polyphenolic compound derived from Radix Paeoniae Alba thathas anti-cancer activities in a variety of human malignancies including glioblastoma. However, the underlying mechanisms have not been fully elucidated. Epithelial to mesenchymal transition (EMT), characterized as losing cell polarity, plays an essential role in tumor invasion and metastasis. TGFβ, a key member of transforming growth factors, has been demonstrated to contribute to glioblastoma aggressiveness through inducing EMT. Therefore, the present studies aim to investigate whether PF suppresses the expression of TGFβ and inhibits EMT that plays an important role in anti-glioblastoma. We found that PF dose-dependently downregulates the expression of TGFβ, enhances apoptosis, reduces cell proliferation, migration and invasion in three human glioblastoma cell lines (U87, U251, T98G). These effects are enhanced in TGFβ siRNA treated cells and abolished in cells transfected with TGFβ lentiviruses. In addition, other EMT markers such as snail, vimentin and N-cadherin were suppressed by PF in these cell lines and in BALB/c nude mice injected with U87 cells. The expression of MMP2/9, EMT markers, are also dose-dependently reduced in PF treated cells and in U87 xenograft mouse model. Moreover, the tumor sizes are reduced by PF treatment while there is no change in body weight. These results indicate that PF is a potential novel drug target for the treatment of glioblastoma by suppression of TGFβ signaling pathway and inhibition of EMT.
Collapse
|
26
|
Choupani J, Mansoori Derakhshan S, Bayat S, Alivand MR, Shekari Khaniani M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial-mesenchymal transition in cancer cells. J Cell Physiol 2018; 233:4443-4457. [PMID: 29194618 DOI: 10.1002/jcp.26302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a highly networked cellular process which involves cell transition from the immotile epithelial to the motile mesenchymal phenotype, whereby cells lose their cell-cell adhesion and cell polarity. This important process is one of the underlying mechanisms for enabling invasion and metastasis of cancer cells which is considered as malignant phase of tumor progression. However, the molecular mechanisms of this process are not fully clarified. It is reported that Sirtuin1 (SIRT1), a NAD+ dependent class III histone deacetylase is associated with tumor metastasis through positive regulation of EMT in several types of cancers. Recent studies confirmed that up and down regulation of SIRT1 expression remarkably change the migration ability of different cancer cells in vitro and tumor metastasis in vivo. Also, according to this fact that carcinomas as the main human solid tumors, originate from different epithelial cell types, SIRT1 role in EMT has received a great attention due to its potential role in tumor development and metastasis. Therefore, SIRT1 has been proposed as a key regulator of cancer metastasis by promoting EMT, although little is known about the cleared effect of SIRT1 in this transition. Our aim in this review is to explain in more detail the role of SIRT1 in various signaling pathways related to carcinogenesis, with the focus on the promoting role of SIRT1 in EMT as a potential therapeutic target to control EMT and to prevent cancer progression.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Wang H, An X, Yu H, Zhang S, Tang B, Zhang X, Li Z. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 2017; 8:102119-102133. [PMID: 29254230 PMCID: PMC5731940 DOI: 10.18632/oncotarget.22183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET1 and downregulated a downstream target gene of TET1, ZEB2, to explore the regulatory mechanism of miR-29b in BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Our results showed lower expression of miR-29b in BC samples and cell lines. Functional assays showed that miR-29b overexpression resulted in a higher cell proliferation, greater colony formation, higher migration rate and EMT. A dual luciferase assay identified TET1 as a direct target of miR-29b. As the promoting effects of miR-29b in the proliferation and metastasis of MDA-MB-231 and MCF-7, knockdown of TET1 also led to increased proliferation, colony formation, invasion and EMT. Further, we found that TET1 bound to the promoter of ZEB2, and siTET1 enhanced ZEB2 expression. Disruption of ZEB2 expression inhibited BC cells proliferation, colony formation and invasion. Our results establish the miR-29b/TET1/ZEB2 pathway in BC cell proliferation, migration and provide a theoretical basis for further research on the molecular mechanisms and new clinical treatments for BC.
Collapse
Affiliation(s)
- Hua Wang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
28
|
Islam MM, Yang HC, Nguyen PA, Poly TN, Huang CW, Kekade S, Khalfan AM, Debnath T, Li YCJ, Abdul SS. Exploring association between statin use and breast cancer risk: an updated meta-analysis. Arch Gynecol Obstet 2017; 296:1043-1053. [PMID: 28940025 DOI: 10.1007/s00404-017-4533-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The benefits of statin treatment for preventing cardiac disease are well established. However, preclinical studies suggested that statins may influence mammary cancer growth, but the clinical evidence is still inconsistent. We, therefore, performed an updated meta-analysis to provide a precise estimate of the risk of breast cancer in individuals undergoing statin therapy. METHODS For this meta-analysis, we searched PubMed, the Cochrane Library, Web of Science, Embase, and CINAHL for published studies up to January 31, 2017. Articles were included if they (1) were published in English; (2) had an observational study design with individual-level exposure and outcome data, examined the effect of statin therapy, and reported the incidence of breast cancer; and (3) reported estimates of either the relative risk, odds ratios, or hazard ratios with 95% confidence intervals (CIs). We used random-effect models to pool the estimates. RESULTS Of 2754 unique abstracts, 39 were selected for full-text review, and 36 studies reporting on 121,399 patients met all inclusion criteria. The overall pooled risks of breast cancer in patients using statins were 0.94 (95% CI 0.86-1.03) in random-effect models with significant heterogeneity between estimates (I 2 = 83.79%, p = 0.0001). However, we also stratified by region, the duration of statin therapy, methodological design, statin properties, and individual stain use. CONCLUSIONS Our results suggest that there is no association between statin use and breast cancer risk. However, observational studies cannot clarify whether the observed epidemiologic association is a causal effect or the result of some unmeasured confounding variable. Therefore, more research is needed.
Collapse
Affiliation(s)
- Md Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Phung-Anh Nguyen
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Chih-Wei Huang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Shwetambara Kekade
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | | | - Tonmoy Debnath
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Shabbir Syed Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan. .,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|