1
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Andruska N, Schlaak RA, Frei A, Schottstaedt AM, Lin CY, Fish BL, Gasperetti T, Mpoy C, Pipke JL, Pedersen LN, Flister MJ, Javaheri A, Bergom C. Differences in radiation-induced heart dysfunction in male versus female rats. Int J Radiat Biol 2023; 99:1096-1108. [PMID: 36971580 PMCID: PMC10431914 DOI: 10.1080/09553002.2023.2194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren N. Pedersen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ali Javaheri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St Louis, Missouri
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
3
|
Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M, Cucinotta FA, Bazyka D, Chumak V, Ivanov VK, Veiga LHS, Livinski A, Abalo K, Zablotska LB, Einstein AJ, Hamada N. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 2023; 380:e072924. [PMID: 36889791 PMCID: PMC10535030 DOI: 10.1136/bmj-2022-072924] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020202036.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - David B Richardson
- Department of Environmental and Occupational Health, Irvine Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Soile Tapio
- Technische Universität München, Munich, Germany
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | | | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Chumak
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Victor K Ivanov
- Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk, Russia
| | - Lene H S Veiga
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Kossi Abalo
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
4
|
Azizova TV, Bannikova MV, Briks KV, Grigoryeva ES, Hamada N. Incidence risks for subtypes of heart diseases in a Russian cohort of Mayak Production Association nuclear workers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:51-71. [PMID: 36326926 DOI: 10.1007/s00411-022-01005-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Heart diseases are one of the main causes of death. The incidence risks were assessed for various types of heart diseases (HDs) in a cohort of Russian nuclear workers of the Mayak Production Association (PA) who had been chronically occupationally exposed to external gamma and/ or internal alpha radiation. The study cohort included all workers (22,377 individuals) who had been hired at the Mayak PA during 1948-1982 and followed up until 31 December 2018. The mean gamma-absorbed dose to the liver (standard deviation) was 0.43 (0.63) Gy, and the mean alpha-absorbed dose to the liver was 0.25 (1.19) Gy. Excess relative risk (ERR) per unit liver-absorbed dose (Gy) was calculated based on maximum likelihood. At the end of the follow-up, 559 chronic rheumatic heart disease (CRHD), 7722 ischemic heart disease (IHD) [including 2185 acute myocardial infarction (AMI) and 3976 angina pectoris (AP)], 4939 heart failure (HF), and 3689 cardiac arrhythmia and conduction disorder (CACD) cases were verified in the study cohort. Linear model fits of the gamma dose response for HDs were best once adjustments for non-radiation factors (sex, attained age, calendar period, smoking status and alcohol consumption) and alpha dose were included. ERR/Gy in males and females was 0.17 (95% confidence intervals: 0.10, 0.26) and 0.23 (0.09, 0.38) for IHD; 0.18 (0.09, 0.29) and 0.26 (0.08, 0.49) for AP; - 0.01 (n/a, 0.1) and - 0.01 (n/a, 0.27) for AMI; 0.27 (0.16, 0.40) and 0.27 (0.10, 0.49) for HF; 0.32 (0.19, 0.46) and 0.05 (- 0.09, 0.22) for CACD; 0.73 (- 0.02, 2.40) and - 0.12 (- 0.50, 0.69) for CRHD, respectively. Sensitivity analyses demonstrated the persistence of a significant dose-response regardless of exclusion/inclusion of adjustments for known potential non-radiation confounders (smoking, alcohol consumption, body mass index, hypertension, diabetes mellitus), and it was only the magnitude of the risk estimate that varied. The risks of HD incidence were not modified with sex (except for the CACD risk). This study provides evidence for a significant association of certain types of HDs with cumulative dose of occupational chronic external exposure to gamma radiation.
Collapse
Affiliation(s)
- Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia.
| | - Maria V Bannikova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Ksenia V Briks
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeniya S Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
5
|
Simon S, Kendall G, Bouffler S, Little M. The Evidence for Excess Risk of Cancer and Non-Cancer Disease at Low Doses and Dose Rates. Radiat Res 2022; 198:615-624. [PMID: 36136740 PMCID: PMC9797580 DOI: 10.1667/rade-22-00132.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
The question of whether there are excess radiation-associated health risks at low dose is controversial. We present evidence of excess cancer risks in a number of (largely pediatrically or in utero exposed) groups exposed to low doses of radiation (<0.1 Gy). Moreover, the available data on biological mechanisms do not provide support for the idea of a low-dose threshold or hormesis for any of these endpoints. There are emerging data suggesting risks of cardiovascular disease and cataract at low doses, but this is less well established. This large body of evidence does not suggest and, indeed, is not statistically compatible with any very large threshold in dose (>10 mGy), or with possible beneficial effects from exposures. The presented data suggest that exposure to low-dose radiation causes excess cancer risks and quite possibly also excess risks of various non-cancer endpoints.
Collapse
Affiliation(s)
- S.L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (retired)
| | - G.M. Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, United Kingdom
| | - S.D. Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, United Kingdom
| | - M.P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-9778
| |
Collapse
|
6
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
7
|
Azizova TV, Moseeva MB, Grigoryeva ES, Hamada N. Incidence risks for cerebrovascular diseases and types of stroke in a cohort of Mayak PA workers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:5-16. [PMID: 35182179 DOI: 10.1007/s00411-022-00966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Incidence risks for cerebrovascular diseases (CeVD) and some types of stroke in a cohort of 22,377 Russian Mayak nuclear workers chronically exposed to ionising radiation and followed up until the end of 2018 are reported. Among total 9469 cases of CeVD, 2078 cases were strokes that included 262 hemorrhagic strokes (HS) and 1611 ischemic strokes (IS). Data evaluation was performed with categorical and dose-response analyses estimating the relative risk (RR) and excess relative risk (ERR) per unit cumulative liver absorbed dose of external gamma-ray or internal alpha-particle exposure based on a linear model utilizing the AMFIT module of the EPICURE software. CeVD incidence was found to be significantly associated with cumulative radiation dose: ERR/Gy was 0.37 (95% confidence interval (CI) 0.27, 0.47) in males and 0.47 (95% CI 0.31, 0.66) in females for external exposure, and 0.31 (95% CI 0.11, 0.59) in males and 0.32 (95% CI 0.11, 0.61) in females for internal exposure. When the model for the analysis of external radiation effect did not include an adjustment for alpha radiation dose (and vice versa), the radiogenic risk estimate increased notably both for males and for females. In contrast, exclusion from or inclusion in the model of additional adjustments for non-radiation factors did not notably change the risk estimates. ERR/Gy of external gamma dose for CeVD incidence significantly decreased with increasing attained age (males and females) and duration of employment (females). No significant associations of either stroke or its types with cumulative gamma-ray dose of external exposure or alpha-particle dose of internal exposure were found.
Collapse
Affiliation(s)
- Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia.
| | - Maria B Moseeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
8
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
9
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Schöllnberger H, Kaiser JC, Eidemüller M, Zablotska LB. Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:63-78. [PMID: 31781840 DOI: 10.1007/s00411-019-00819-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response adjusted for dose fractionation. This cohort includes 63,707 tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s-1950s and were followed-up for death from non-cancer causes during 1950-1987. In the current analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically motivated nonlinear dose-response models to get a better understanding of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially linear dose-response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses (> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Division UR-Environmental Radioactivity, Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Markus Eidemüller
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
11
|
Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods. Hypertension 2019; 73:1174-1184. [DOI: 10.1161/hypertensionaha.118.11719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Morelli F, Benedetti Y, Mousseau TA, Møller AP. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:183-190. [PMID: 29778954 DOI: 10.1016/j.jenvman.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
13
|
Abstract
Hormesis can be explained by evolutionary adaptation to the current level of a factor present in the natural environment or to some average from the past. This pertains also to ionizing radiation as the natural background has been decreasing during the time of the life existence. DNA damage and repair are normally in a dynamic balance. The conservative nature of the DNA repair suggests that cells may have retained some capability to repair damage from higher radiation levels than that existing today. According to this concept, the harm caused by radioactive contamination would tend to zero with a dose rate tending to a wide range level of the natural radiation background. Existing evidence in favor of hormesis is substantial, experimental data being partly at variance with results of epidemiological studies. Potential bias, systematic errors, and motives to exaggerate risks from low-dose low-rate ionizing radiation are discussed here. In conclusion, current radiation safety norms are exceedingly restrictive and should be revised on the basis of scientific evidence. Elevation of the limits must be accompanied by measures guaranteeing their observance.
Collapse
Affiliation(s)
- S V Jargin
- Peoples' Friendship University of Russia, Moscow, Russian Federation
| |
Collapse
|
14
|
Schöllnberger H, Eidemüller M, Cullings HM, Simonetto C, Neff F, Kaiser JC. Dose-responses for mortality from cerebrovascular and heart diseases in atomic bomb survivors: 1950-2003. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:17-29. [PMID: 29222678 PMCID: PMC6373359 DOI: 10.1007/s00411-017-0722-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/23/2017] [Indexed: 05/04/2023]
Abstract
The scientific community faces important discussions on the validity of the linear no-threshold (LNT) model for radiation-associated cardiovascular diseases at low and moderate doses. In the present study, mortalities from cerebrovascular diseases (CeVD) and heart diseases from the latest data on atomic bomb survivors were analyzed. The analysis was performed with several radio-biologically motivated linear and nonlinear dose-response models. For each detrimental health outcome one set of models was identified that all fitted the data about equally well. This set was used for multi-model inference (MMI), a statistical method of superposing different models to allow risk estimates to be based on several plausible dose-response models rather than just relying on a single model of choice. MMI provides a more accurate determination of the dose response and a more comprehensive characterization of uncertainties. It was found that for CeVD, the dose-response curve from MMI is located below the linear no-threshold model at low and medium doses (0-1.4 Gy). At higher doses MMI predicts a higher risk compared to the LNT model. A sublinear dose-response was also found for heart diseases (0-3 Gy). The analyses provide no conclusive answer to the question whether there is a radiation risk below 0.75 Gy for CeVD and 2.6 Gy for heart diseases. MMI suggests that the dose-response curves for CeVD and heart diseases in the Lifespan Study are sublinear at low and moderate doses. This has relevance for radiotherapy treatment planning and for international radiation protection practices in general.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Department of Radiation Protection and the Environment, Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Markus Eidemüller
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Cristoforo Simonetto
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Städtisches Klinikum München and Technical University of Munich, Munich, Germany
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| |
Collapse
|
15
|
Azizova TV, Batistatou E, Grigorieva ES, McNamee R, Wakeford R, Liu H, de Vocht F, Agius RM. An Assessment of Radiation-Associated Risks of Mortality from Circulatory Disease in the Cohorts of Mayak and Sellafield Nuclear Workers. Radiat Res 2018; 189:371-388. [PMID: 29494323 DOI: 10.1667/rr14468.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mortality from circulatory disease (CD), ischemic heart disease (IHD) and cerebrovascular disease (CeVD) was investigated in relationship to cumulative doses of external gamma radiation and internal alpha radiation to the liver from deposited plutonium over long follow-up periods in two large cohorts of nuclear workers: the Russian Mayak Worker Cohort (MWC) and the UK Sellafield Worker Cohort (SWC). The MWC comprised 22,374 workers (74.6% males) with 5,123 CD deaths registered during 842,538 person-years of follow-up, while the SWC comprised 23,443 workers (87.8% males) with 2,322 CD deaths registered during 602,311 person-years of follow-up. Dose estimates for external gamma radiation and internal alpha radiation to the liver were calculated via a common methodology, in accordance with an agreed protocol. The mean cumulative external Hp(10) dose was 0.52 Sv for the MWC and 0.07 Sv for the SWC, while the mean cumulative internal dose was 0.19 Gy for the MWC and 0.01 Gy for the SWC. Categorical relative risks (RR) and excess relative risks (ERR) per unit dose were estimated for each cohort and for the pooled cohort when appropriate. The dose responses for CD, IHD and CeVD in relationship to internal alpha-particle dose did not differ significantly from the null for either the MWC, the SWC or the pooled plutonium worker cohort. The ERR/Sv estimates in relationship to external exposure were significantly raised for both cohorts (marginally so for the MWC) for CD and IHD (but not for CeVD), but differed significantly between the two cohorts, the estimate for the SWC being approximately ten times greater than that for the MWC. Examination of the ERR/Sv estimates for two periods of first employment at the two facilities revealed that the significant heterogeneity was confined to the earlier sub-cohorts, and that the estimates for the later sub-cohorts were compatible. The two sub-cohorts for the later first-employment periods were pooled, producing risk estimates that were raised, but not significantly so: ERR/Sv for CD, IHD and CeVD of 0.22 (95% CI: -0.01, 0.49), 0.22 (95% CI: -0.06, 0.57) and 0.24 (95% CI: -0.17, 0.80), respectively. The reasons for the complex pattern of results found in this study are unclear. Among potential explanations are the influence of differences in background CD mortality rates, an effect of other occupational factors, substantial uncertainties in doses, particularly during earlier periods of operations, as well as confounding and/or modifying factors that were not taken into account in the current analysis.
Collapse
Affiliation(s)
- T V Azizova
- a Southern Urals Biophysics Institute, Ozyorsk, 456780, Chelyabinsk Region, Russian Federation
| | - E Batistatou
- b Centres for Occupational and Environmental Health and
| | - E S Grigorieva
- a Southern Urals Biophysics Institute, Ozyorsk, 456780, Chelyabinsk Region, Russian Federation
| | - R McNamee
- c Biostatistics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - R Wakeford
- b Centres for Occupational and Environmental Health and
| | - H Liu
- b Centres for Occupational and Environmental Health and
| | - F de Vocht
- b Centres for Occupational and Environmental Health and.,d Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PS, United Kingdom
| | - R M Agius
- b Centres for Occupational and Environmental Health and
| |
Collapse
|
16
|
Kabacik S, Raj K. Ionising radiation increases permeability of endothelium through ADAM10-mediated cleavage of VE-cadherin. Oncotarget 2017; 8:82049-82063. [PMID: 29137243 PMCID: PMC5669869 DOI: 10.18632/oncotarget.18282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
The association between ionising radiation (IR) exposure and risk of cardiovascular diseases (CVD) is well documented, but the underlying mechanism is still poorly understood. As atherosclerotic plaques are the most common cause of CVD, we investigated the effects of IR on one of the critical parameters for atherosclerotic plaque formation – endothelium permeability to macromolecules. We used endothelial cells from human coronary artery as a model of the endothelial layer. Our results show that exposure of this endothelial layer to IR increased its permeability to macromolecules of various sizes in a dose-dependent manner. Immunofluorescence analysis revealed disruption of cell junctions caused by decreased amounts of two junction proteins, one of which is vascular endothelial cadherin (VE-cadherin). The reduction in the level of this protein was not due to diminished transcription but to protein processing instead. We observed a radiation dose-dependent increase in the cleavage of VE-cadherin by ADAM10. This was not mediated through the canonical VEGF route but was instead accompanied by intra-cellular calcium release. Importantly, inhibition of ADAM10 activity rescued IR-induced permeability. Our observations demonstrate that exposure to IR activates ADAM10 to cleave VE-cadherin leading to augmented endothelium permeability; a feature that can lead to the development of atherosclerotic plaques and increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sylwia Kabacik
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|
17
|
Tran V, Zablotska LB, Brenner AV, Little MP. Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Sci Rep 2017; 7:44147. [PMID: 28287147 PMCID: PMC5347030 DOI: 10.1038/srep44147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
High-dose ionising radiation is associated with circulatory disease. Risks associated with lower-dose (<0.5 Gy) exposures remain unclear, with little information on risk modification by age at exposure, years since exposure or dose-rate. Tuberculosis patients in Canada and Massachusetts received multiple diagnostic x-ray fluoroscopic exposures, over a wide range of ages, many at doses <0.5 Gy. We evaluated risks of circulatory-disease mortality associated with <0.5 Gy radiation exposure in a pooled cohort of 63,707 patients in Canada and 13,568 patients in Massachusetts. Under 0.5 Gy there are increasing trends for all circulatory disease (n = 10,209; excess relative risk/Gy = 0.246; 95% CI 0.036, 0.469; p = 0.021) and for ischaemic heart disease (n = 6410; excess relative risk/Gy = 0.267; 95% CI 0.003, 0.552; p = 0.048). All circulatory-disease and ischaemic-heart-disease risk reduces with increasing time since exposure (p < 0.005). Over the entire dose range, there are negative mortality dose trends for all circulatory disease (p = 0.014) and ischaemic heart disease (p = 0.003), possibly due to competing causes of death over this dose interval.These results confirm and extend earlier findings and strengthen the evidence for circulatory-disease mortality radiation risk at doses <0.5 Gy. The limited information on well-known lifestyle/medical risk factors for circulatory disease implies that confounding of the dose trend cannot be entirely excluded.
Collapse
Affiliation(s)
- Van Tran
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alina V Brenner
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
18
|
Azizova TV, Grigoryeva ES, Hunter N, Pikulina MV, Moseeva MB. [Risk of death from circulatory diseases in a cohort of patients exposed to chronic radiation]. TERAPEVT ARKH 2017; 89:18-27. [PMID: 28252622 DOI: 10.17116/terarkh201789118-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To assess mortality from circulatory diseases (CD) in a cohort of workers exposed occupationally to chronic radiation in relation to external and internal exposure, by taking into account known non-radiation risk factors (RFs), such as smoking (including smoking index), alcohol consumption, hypertension, and body mass index. SUBJECTS AND METHODS Mortality from CD (ICD-10: I00 - I99) was studied in a cohort of 22,377 nuclear power plant («Mayak» Production Association) workers exposed occupationally to chronic radiation. The study was based on the individual dose estimates of external and internal exposure taken from the new Mayak workers dosimetry system 2008 (MWDS-2008). The quantitative characteristics of smoking (smoking index) were used for the first time to assess the risk for CD in the cohort of workers exposed to chronic radiation. RESULTS There was a statistically significant linear relationship between CD mortality and external gamma-dose after adjusting for the non-radiation RFs; the excess relative risk per unit dose (ERR/Gy) was 0.05 (95% confidence interval (CI): 0 to 0.11). Introducing an additional adjustment for internal alpha-dose resulted in a twofold increase in ERR/Gy=0.10 (95% CI: 0.02 to 0.21). There was a statistically significant increasing trend in CD mortality with the elevated absorbed dose from internal alpha-radiation in the liver (ERR/Gy=0.27; 95% CI: 0.12 to 0.48). However, ERR/Gy decreased and lost its statistical significance after adjusting for external gamma-dose. CONCLUSION The results of this study are in good agreement with risk estimates obtained in the Japanese cohort of atomic bomb survivors and in the cohorts of occupationally exposed workers.
Collapse
Affiliation(s)
- T V Azizova
- South Ural Institute of Biophysics, Federal Biomedical Agency, Ozersk, Chelyabinsk Region, Russia
| | - E S Grigoryeva
- South Ural Institute of Biophysics, Federal Biomedical Agency, Ozersk, Chelyabinsk Region, Russia
| | - N Hunter
- Public Health England, Epidemiology Department, Center for Radiation Chemical and Environmental Hazards, Chilton, Didcot, UK
| | - M V Pikulina
- South Ural Institute of Biophysics, Federal Biomedical Agency, Ozersk, Chelyabinsk Region, Russia
| | - M B Moseeva
- South Ural Institute of Biophysics, Federal Biomedical Agency, Ozersk, Chelyabinsk Region, Russia
| |
Collapse
|
19
|
Luo L, Yan C, Urata Y, Hasan AS, Goto S, Guo CY, Zhang S, Li TS. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice. Sci Rep 2017; 7:40959. [PMID: 28098222 PMCID: PMC5241868 DOI: 10.1038/srep40959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs.
Collapse
Affiliation(s)
- Lan Luo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Al Shaimaa Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chang-Ying Guo
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, PR China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, PR China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
20
|
Luo L, Nishi K, Urata Y, Yan C, Hasan AS, Goto S, Kudo T, Li ZL, Li TS. Ionizing Radiation Impairs Endogenous Regeneration of Infarcted Heart: An In Vivo 18F-FDG PET/CT and 99mTc-Tetrofosmin SPECT/CT Study in Mice. Radiat Res 2016; 187:89-97. [PMID: 27922334 DOI: 10.1667/rr14543.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epidemiological studies have suggested that ionizing radiation increases cardiovascular disease risk, but the relevant mechanism is poorly understood. We recently demonstrated that adult mice exposed to whole-body irradiation with 3 Gy gamma rays significantly decreases the number and quality of cardiac stem cells. To further determine if radiation impairs myocardial regenerative potency, a myocardial infarction model was established in adult C57BL/6 mice by ligating the left anterior descending artery approximately 6 h after sham- or whole-body gamma irradiation (0 or 3 Gy). To evaluate the regenerative potency of the infarcted heart, we measured the myocardial perfusion and remodeling by 18F-FDG PET/CT and 99mTc-tetrofosmin SPECT/CT at 1-2 days (baseline) and 14-15 days (end point) after infarction, respectively. Mice were sacrificed at day 15 after infarction, and heart tissue was collected for histological analysis. The infarct area of the left ventricle was significantly larger in irradiated mice than healthy controls 14 days after infarction, although it was similar between the groups at the baseline. However, histological analysis showed that the infarct size and left ventricle wall thickness were not significantly different among the groups. Compared to the healthy controls, irradiated mice had significantly less c-kit-positive stem cells, less Sca-1-positive stem cells, less proliferating cells, more apoptotic cells and lower vessel density within the infarcted heart. The results of this study suggest that whole-body irradiation with 3 Gy gamma rays impairs the endogenous regeneration of infarcted heart, which may indirectly predict future cardiovascular disease risk.
Collapse
Affiliation(s)
- Lan Luo
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kodai Nishi
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Al Shaimaa Hasan
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takashi Kudo
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Zhao-Lan Li
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
21
|
Little MP. Radiation and circulatory disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 770:299-318. [PMID: 27919337 PMCID: PMC5315567 DOI: 10.1016/j.mrrev.2016.07.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Exposure to therapeutic doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be quantified while also adjusting for concomitant chemotherapy, and medical and lifestyle risk factors. At lower levels of exposure the evidence is less clear. In this article I review radiation-associated risks of circulatory disease in groups treated with radiotherapy for malignant and non-malignant disease, and in occupationally- or environmentally-exposed groups receiving rather lower levels of radiation dose, also for medical diagnostic purposes. Results of a meta-analysis suggest that excess relative risks per unit dose for various types of heart disease do not exhibit statistically significant (p>0.2) heterogeneity between studies. Although there are no marked discrepancies between risks derived from the high-dose therapeutic and medical diagnostic studies and from the moderate/low dose occupational and environmental studies, at least for ischemic heart disease and stroke there are indications of larger risks per unit dose for lower dose rate and fractionated exposures. Risks for stroke and other types of circulatory disease are significantly more variable (p<0.0001), possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Adjustment for any of mean dose, dose fractionation or age at exposure results in the residual heterogeneity for cerebrovascular disease becoming non-significant. The review provides strong evidence in support of a causal association between both low and high dose radiation exposure and most types of circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| |
Collapse
|
22
|
Azizova TV, Zhuntova GV, Haylock R, Moseeva MB, Grigoryeva ES, Bannikova MV, Belyaeva ZD, Bragin EV. Chronic bronchitis incidence in the extended cohort of Mayak workers first employed during 1948-1982. Occup Environ Med 2016; 74:105-113. [PMID: 27647620 DOI: 10.1136/oemed-2015-103283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/04/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This paper describes findings from the study of chronic bronchitis (CB) incidence after occupational exposure to ionising radiation among workers employed at Russian Mayak Production Association (PA) during 1948 and 1982 and followed up until 2008 based on 'Mayak Worker Dosimetry System 2008'. METHODS Analyses were based on 2135 verified cases among 21 417 workers. Rate ratios (RR) were estimated by categorical analysis for non-radiation and radiation factors. Excess rate ratios per Gy (ERR/Gy) of external or internal exposures with adjustments via stratification on other factors were calculated. RESULTS The interesting finding in relation to non-radiation factors was a sharp increase in the RR for CB incidence before 1960, which could be caused by a number of factors. Analyses restricted to the follow-up after 1960 revealed statistically significant associations of the CB incidence and external γ-ray radiation, ERR/Gy=0.14 (95% CI 0.02 to 0.28) having adjusted for sex, attained age, calendar period, plant, smoking status and lung α-particle dose, and internal α-particle radiation, ERR/Gy=1.14 (95% CI 0.41 to 2.18) having adjusted for sex, attained age, calendar period, plant, smoking status and lung γ-ray dose and ERR/Gy=1.19 (95% CI 0.32 to 2.53) having additionally adjusted for pre-employment occupational hazards and smoking index instead of smoking status. CONCLUSIONS Analyses of CB incidence in the study cohort identified positive significant association with occupational exposure to radiation: however, there are no similar studies of CB incidence in relation to radiation in other cohorts to date with which a meaningful comparison of the results could be made.
Collapse
Affiliation(s)
- T V Azizova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - G V Zhuntova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | | | - M B Moseeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - E S Grigoryeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - M V Bannikova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Z D Belyaeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - E V Bragin
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| |
Collapse
|
23
|
Luo L, Urata Y, Yan C, Hasan AS, Goto S, Guo CY, Tou FF, Xie Y, Li TS. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice. PLoS One 2016; 11:e0152179. [PMID: 27195709 PMCID: PMC4873219 DOI: 10.1371/journal.pone.0152179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/09/2016] [Indexed: 01/03/2023] Open
Abstract
Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks.
Collapse
Affiliation(s)
- Lan Luo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Al Shaimaa Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chang-Ying Guo
- Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, PR China
| | - Fang-Fang Tou
- Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, PR China
| | - Yucai Xie
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- * E-mail:
| |
Collapse
|
24
|
Liu H, Wakeford R, Riddell A, O'Hagan J, MacGregor D, Agius R, Wilson C, Peace M, de Vocht F. A review of job-exposure matrix methodology for application to workers exposed to radiation from internally deposited plutonium or other radioactive materials. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:R1-R22. [PMID: 26861451 DOI: 10.1088/0952-4746/36/1/r1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Any potential health effects of radiation emitted from radionuclides deposited in the bodies of workers exposed to radioactive materials can be directly investigated through epidemiological studies. However, estimates of radionuclide exposure and consequent tissue-specific doses, particularly for early workers for whom monitoring was relatively crude but exposures tended to be highest, can be uncertain, limiting the accuracy of risk estimates. We review the use of job-exposure matrices (JEMs) in peer-reviewed epidemiological and exposure assessment studies of nuclear industry workers exposed to radioactive materials as a method for addressing gaps in exposure data, and discuss methodology and comparability between studies. We identified nine studies of nuclear worker cohorts in France, Russia, the USA and the UK that had incorporated JEMs in their exposure assessments. All these JEMs were study or cohort-specific, and although broadly comparable methodologies were used in their construction, this is insufficient to enable the transfer of any one JEM to another study. Moreover there was often inadequate detail on whether, or how, JEMs were validated. JEMs have become more detailed and more quantitative, and this trend may eventually enable better comparison across, and the pooling of, studies. We conclude that JEMs have been shown to be a valuable exposure assessment methodology for imputation of missing exposure data for nuclear worker cohorts with data not missing at random. The next step forward for direct comparison or pooled analysis of complete cohorts would be the use of transparent and transferable methods.
Collapse
Affiliation(s)
- Hanhua Liu
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thyroid side effects prophylaxis in front of nuclear power plant accidents. ANNALES D'ENDOCRINOLOGIE 2016; 77:1-6. [PMID: 26830953 DOI: 10.1016/j.ando.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 11/21/2022]
Abstract
The better knowledge of the mechanisms of nuclear incidents and lessons learned from accidents in the recent past to improve the effectiveness of measures taken following a nuclear accident exposure to fallout of radioactive iodine isotopes. Thus, immediate, passive measures, such as containment, and stopping consumption of contaminated products are paramount. The earliest possible administration of stable iodine as potassium iodide (KI) reduces significantly (up to 90% if taken at the same time of the accident) thyroid radioactive contamination. These tablets should be given in priority to children and pregnant women. The side effects are minor. KI is not recommended for persons aged over 60 years, or for adults suffering from cardiovascular disorders.
Collapse
|
26
|
Kitahara CM, Linet MS, Rajaraman P, Ntowe E, Berrington de González A. A New Era of Low-Dose Radiation Epidemiology. Curr Environ Health Rep 2016; 2:236-49. [PMID: 26231501 DOI: 10.1007/s40572-015-0055-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The last decade has introduced a new era of epidemiologic studies of low-dose radiation facilitated by electronic record linkage and pooling of cohorts that allow for more direct and powerful assessments of cancer and other stochastic effects at doses below 100 mGy. Such studies have provided additional evidence regarding the risks of cancer, particularly leukemia, associated with lower-dose radiation exposures from medical, environmental, and occupational radiation sources, and have questioned the previous findings with regard to possible thresholds for cardiovascular disease and cataracts. Integrated analysis of next generation genomic and epigenetic sequencing of germline and somatic tissues could soon propel our understanding further regarding disease risk thresholds, radiosensitivity of population subgroups and individuals, and the mechanisms of radiation carcinogenesis. These advances in low-dose radiation epidemiology are critical to our understanding of chronic disease risks from the burgeoning use of newer and emerging medical imaging technologies, and the continued potential threat of nuclear power plant accidents or other radiological emergencies.
Collapse
Affiliation(s)
- Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rm 7E566, Rockville, MD, 20850, USA,
| | | | | | | | | |
Collapse
|
27
|
Little MP, Lipshultz SE. Low dose radiation and circulatory diseases: a brief narrative review. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2015; 1:4. [PMID: 33530149 PMCID: PMC7837141 DOI: 10.1186/s40959-015-0007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022]
Abstract
Exposure to high doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be estimated while adjusting for concomitant chemotherapy. An association between lower dose exposures and late-occurring circulatory disease has only recently been suspected in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are variable, possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Here, we summarize the evidence for a causal association between moderate- and low-level radiation exposure (whether at high or low dose rates) and circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
- National Cancer Institute, Room 7E546, 9609 Medical Center Drive, MSC 9778, Rockville, MD, 20892-9778, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI, 48201-2196, USA
| |
Collapse
|
28
|
Azizova TV, Grigoryeva ES, Haylock RGE, Pikulina MV, Moseeva MB. Ischaemic heart disease incidence and mortality in an extended cohort of Mayak workers first employed in 1948-1982. Br J Radiol 2015; 88:20150169. [PMID: 26224431 PMCID: PMC4730965 DOI: 10.1259/bjr.20150169] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Incidence and mortality from ischaemic heart disease (IHD) was studied in an extended cohort of 22,377 workers first employed at the Mayak Production Association during 1948-82 and followed up to the end of 2008. METHODS Relative risks and excess relative risks per unit dose (ERR/Gy) were calculated based on the maximum likelihood using Epicure software (Hirosoft International Corporation, Seattle, WA). Dose estimates used in analyses were provided by an updated "Mayak Worker Dosimetry System-2008". RESULTS A significant increasing linear trend in IHD incidence with total dose from external γ-rays was observed after having adjusted for non-radiation factors and dose from internal radiation {ERR/Gy = 0.10 [95% confidence interval (CI): 0.04 to 0.17]}. The pure quadratic model provided a better fit of the data than did the linear one. No significant association of IHD mortality with total dose from external γ-rays after having adjusted for non-radiation factors and dose from internal alpha radiation was observed in the study cohort [ERR/Gy = 0.06 (95% CI: <0 to 0.15)]. A significant increasing linear trend was observed in IHD mortality with total absorbed dose from internal alpha radiation to the liver after having adjusted for non-radiation factors and dose from external γ-rays in both the whole cohort [ERR/Gy = 0.21 (95% CI: 0.01 to 0.58)] and the subcohort of workers exposed at alpha dose <1.00 Gy [ERR/Gy = 1.08 (95% CI: 0.34 to 2.15)]. No association of IHD incidence with total dose from internal alpha radiation to the liver was found in the whole cohort after having adjusted for non-radiation factors and external gamma dose [ERR/Gy = 0.02 (95% CI: not available to 0.10)]. Statistically significant dose effect was revealed in the subcohort of workers exposed to internal alpha radiation at dose to the liver <1.00 Gy [ERR/Gy = 0.44 (95% CI: 0.09 to 0.85)]. CONCLUSION This study provides strong evidence of IHD incidence and mortality association with external γ-ray exposure and some evidence of IHD incidence and mortality association with internal alpha-radiation exposure. ADVANCES IN KNOWLEDGE It is the first time the validity of internal radiation dose estimates has been shown to affect the risk of IHD incidence.
Collapse
Affiliation(s)
- Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Russia
| | | | | | - Maria V Pikulina
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Russia
| | - Maria B Moseeva
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Russia
| |
Collapse
|
29
|
Cumulative doses analysis in young trauma patients: a single-centre experience. Radiol Med 2015; 121:144-52. [PMID: 26387096 DOI: 10.1007/s11547-015-0584-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.
Collapse
|
30
|
Azizova TV, Grigorieva ES, Hunter N, Pikulina MV, Moseeva MB. Risk of mortality from circulatory diseases in Mayak workers cohort following occupational radiation exposure. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:517-38. [PMID: 26082993 DOI: 10.1088/0952-4746/35/3/517] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mortality from circulatory diseases (CD) (ICD-9 codes 390-459) was studied in an extended Mayak worker cohort, which included 22,377 workers first employed at the Mayak Production Association in 1948-1982 and followed up to the end of 2008. The enlarged cohort and extended follow-up as compared to the previous analyses provided an increased number of deaths from CD and improved statistical power of this mortality study. The analyses were based on dose estimates provided by a new Mayak Worker Dosimetry System 2008 (MWDS-2008). For the first time in the study of non-cancer effects in this cohort quantitative smoking data (smoking index) were taken into account. A significant increasing trend for CD mortality with increasing dose from external gamma-rays was found after having adjusted for non-radiation factors; the excess relative risk per unit dose (ERR/Gy) was 0.05 (95% confidence interval (CI): >0, 0.11). Inclusion of an additional adjustment for dose from internal alpha-radiation to the liver resulted in a two-fold increase of ERR/Gy = 0.10 (95% CI: 0.02, 0.21). A significant increasing trend in CD mortality with increasing dose from internal alpha-radiation to the liver was observed (ERR/Gy = 0.27, 95% CI: 0.12, 0.48). However the ERR/Gy decreased and lost its significance after adjusting for dose from external gamma-rays. Results of the current study are in good agreement with risk estimates obtained for the Japanese LSS cohort as well as other studies of cohorts of nuclear workers.
Collapse
Affiliation(s)
- T V Azizova
- Southern Urals Biophysics Institute, 19 Ozyorskoe shosse, Ozyorsk, 456780, Chelyabinsk Region, Russia
| | | | | | | | | |
Collapse
|
31
|
Cerebrovascular Diseases in Workers at Mayak PA: The Difference in Radiation Risk between Incidence and Mortality. PLoS One 2015; 10:e0125904. [PMID: 25933038 PMCID: PMC4416824 DOI: 10.1371/journal.pone.0125904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/21/2015] [Indexed: 01/24/2023] Open
Abstract
A detailed analysis of cerebrovascular diseases (CeVD) for the cohort of workers at Mayak Production Association (PA) is presented. This cohort is especially suitable for the analysis of radiation induced circulatory diseases, due to the detailed medical surveillance and information on several risk factors. The risk after external, typically protracted, gamma exposure is analysed, accounting for potential additional internal alpha exposure. Three different endpoints have been investigated: incidence and mortality from all cerebrovascular diseases and incidence of stroke. Particular emphasis was given to the form of the dose-response relationship and the time dependence of the radiation induced risk. Young attained age was observed to be an important, aggravating modifier of radiation risk for incidence of CeVD and stroke. For incidence of CeVD, our analysis supports a dose response sub-linear for low doses. Finally, the excess relative risk per dose was confirmed to be significantly higher for incidence of CeVD compared to CeVD mortality and incidence of stroke. Arguments are presented for this difference to be based on a true biological effect.
Collapse
|
32
|
Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, Tapio S, Zhang W, Gomolka M. Low-dose ionising radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:90-100. [DOI: 10.1016/j.mrrev.2015.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022]
|
33
|
Drubay D, Caër-Lorho S, Laroche P, Laurier D, Rage E. Mortality from Circulatory System Diseases among French Uranium Miners: A Nested Case-Control Study. Radiat Res 2015; 183:550-62. [PMID: 25807316 DOI: 10.1667/rr13834.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A significant association has been observed between radon exposure and cerebrovascular disease (CeVD) mortality among French uranium miners, but risk factors for circulatory system diseases (CSD) have not been previously considered. We conducted new analyses in the recently updated (through 2007) French cohort of uranium miners (n = 5,086), which included 442 deaths from CSD, 167 of them from ischemic heart disease (IHD) and 105 from CeVD. A nested case-control study was then set up to collect and investigate the influence of these risk factors on the relationships between mortality from CSD and occupational external gamma ray and internal ionizing radiation exposure (radon and long-lived radionuclides) in this updated cohort. The nested case-control study included miners first employed after 1955, still employed in 1976 and followed up through 2007. Individual information about CSD risk factors was collected from medical files for the 76 deaths from CSD (including 26 from IHD and 16 from CeVD) and 237 miners who had not died of CSD by the end of follow-up. The exposure-risk relationships were assessed with a Cox proportional hazard model weighted by the inverse sampling probability. A significant increase in all CSD and CeVD mortality risks associated with radon exposure was observed in the total cohort [hazard ratios: HRCSD/100 working level months (WLM) = 1.11, 95% confidence interval (1.01; 1.22) and HRCeVD/100 WLM = 1.25 (1.09; 1.43), respectively]. A nonsignificant exposure-risk relationship was observed for every type of cumulative ionizing radiation exposure and every end point [e.g., HRCSD/100WLM = 1.43 (0.71; 2.87)]. The adjustment for each CSD risk factor did not substantially change the exposure-risk relationships. When the model was adjusted for overweight, hypertension, diabetes, hypercholesterolemia and smoking status, the HR/100WLM for CSD, for example, was equal to 1.21 (0.54; 2.75); and when it was adjusted for risk factors selected with the Akaike information criterion, it was equal to 1.44 (0.66; 3.14). To our knowledge, this is the first study to use a uranium miner cohort to consider the major standard CSD risk factors in assessing the relationships between ionizing radiation exposure and the risk of death from these diseases. These results suggest that the significant relationship between CeVD risk and radon exposure observed in the total French cohort is probably not affected by the CSD risk factors. Extending the collection of information about CSD risk factors to a larger subsample would be useful to confirm this result.
Collapse
Affiliation(s)
- Damien Drubay
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LEPID, Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
34
|
Azizova TV, Haylock RGE, Moseeva MB, Bannikova MV, Grigoryeva ES. Cerebrovascular diseases incidence and mortality in an extended Mayak Worker Cohort 1948-1982. Radiat Res 2014; 182:529-44. [PMID: 25361397 DOI: 10.1667/rr13680.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Incidence and mortality from cerebrovascular disease (CVD) [International Classification of Diseases 9th revision (ICD-9) codes: 430-438] was studied in a cohort of 22,377 workers first employed at the Mayak Production Association (Mayak PA) in 1948-1982 and followed up to the end of 2008. The cohort size was increased by 19% and follow-up extended by 3 years over the previous analysis. Radiation doses were estimated using an updated dosimetry system: Mayak Worker Dosimetry System 2008 (MWDS-2008). For the first time, in an analysis of this cohort, quantitative smoking data were used. Workers of the study cohort were exposed occupationally to prolonged external gamma rays and internal alpha particles. The mean (±standard deviation) total dose from external gamma rays was 0.54 ± 0.76 Gy (95% percentile 2.21 Gy) for males and 0.44 ± 0.65 Gy (95% percentile 1.87 Gy) for females. The mean plutonium body burden in the 31% of workers monitored for internal exposure was 1.32 ± 4.87 kBq (95% percentile 4.71 kBq) for males and 2.21 ± 13.24 kBq (95% percentile 4.56 kBq) for females. The mean total absorbed alpha-particles dose to the liver from incorporated plutonium was 0.23 ± 0.77 Gy (95% percentile 0.89 Gy) in males and 0.44 ± 2.11 Gy (95% percentile 1.25 Gy) in females. After adjusting for nonradiation factors (gender, age, calendar period, employment period, facility, smoking, alcohol consumption), there were significantly increasing trends in CVD incidence associated with total absorbed dose from external gamma rays and total absorbed dose to the liver from internal alpha-particle radiation exposure. Excess relative risks per Gy (ERR/Gy) were 0.46 (95% CI 0.37, 0.57) and 0.28 (95% CI 0.16, 0.42), respectively, based on a linear dose-response model. Adjustments for additional factors (hypertension, body mass index, duration of employment, smoking index and total absorbed dose to the liver from internal exposure during the analysis of external exposure and vice versa) had little effect on the results. The categorical analyses showed that CVD incidence was significantly higher among workers with total absorbed external gamma-ray doses greater than 0.1 Gy compared to those exposed to lower doses and that CVD incidence was also significantly higher among workers with total absorbed internal alpha-particle doses to the liver from incorporated plutonium greater than 0.01 Gy compared to those exposed to lower doses. The results of the categorical analyses of CVD incidence were in good agreement with a linear dose response for external gamma-ray doses but for internal alpha-particle doses the picture was less clear. For the first time an excess risk of CVD mortality was seen in workers whose livers were exposed to internal alpha-particle doses greater than 0.1 Gy compared to those workers who were exposed to doses of less than 0.01 Gy. A significant increasing trend for CVD mortality with internal alpha-particle dose was revealed in the subcohort of workers exposed at doses <1.0 Gy after having adjusted for nonradiation factors, ERR/Gy = 0.84 (95% CI, 0.09, 1.92). These updated results provide good evidence for a linear trend in risk of CVD incidence with external gamma-ray dose. The trend for CVD incidence with internal alpha-particle dose is less clear due to the impact of issues concerning the use of dose estimates based on below the limit of detection bioassay measurements.
Collapse
Affiliation(s)
- T V Azizova
- a Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | | | | | | | | |
Collapse
|