1
|
Romero I, Mandina Cardoso T, Cabitto M, Deminge M, Rearte JF, Vaquero H, Farias de Lima F, Esposito Mendes M, Melo Silva L, Lafuente-Álvarez EF, Rada-Tarifa A, Verdejo V, Radl A, Saavedra N, Santibañez M, Brenes Obando N, Chaves-Campos FA, Ortíz F, Valle L, González Mesa JE, Bastidas A, Muñoz-Velástegui G, Arceo-Maldonado C, Guerrero-Carbajal YC, Aguilar-Coronel S, Monjagata N, Espinoza-Zevallos M, Martínez-López W, Mechoso B, Di Tomaso MV, Falcón de Vargas A, García Lima O. LBDNet inter-laboratory comparison at high doses of ionizing radiation using the dicentric plus caffeine assay. Int J Radiat Biol 2025; 101:636-651. [PMID: 40323900 DOI: 10.1080/09553002.2025.2494554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE To assess the performance of the LBDNet laboratories in estimating dose over 5 Gy of ionizing radiation using the dicentric chromosome plus caffeine assay. MATERIALS AND METHODS Dose-response curve fitting: Peripheral blood was irradiated in vitro between 5 and 25 Gy. Then, the DC plus caffeine assay was carried out. Thirteen laboratories received and analyzed metaphase images. The linear dose-response curve was fitted for each laboratory. Dose estimation was performed analyzing coded metaphase images from three different irradiated samples (7.5, 15, 20 Gy) and using the fitted curve from every laboratory. RESULTS The dose estimation accuracy was within the expected dose ranges. The 76.9%, 84.6% and 69.2% of the estimated doses fell into the ± 20% of the true radiation dose. The 92.3%, 92.3%, and 61.5% of the 95% of the confidence interval of the estimated doses included the true radiation dose. The trueness was 0.9%, 4.4% and 9.6%. The Coefficients of Variation of the estimated doses were 14.5%, 16.1% and 17.8%. Results from only one laboratory were deemed questionable for dose estimation, based on the Z-score derived from robust methods. CONCLUSION The intercomparison study yielded satisfactory results; however, dose estimation accuracy tended to decrease, and variability between laboratory results increased as the dose level rose.
Collapse
Affiliation(s)
- Ivonne Romero
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Tania Mandina Cardoso
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | - Mariana Cabitto
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Mayra Deminge
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | | | - Hernan Vaquero
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Fabiana Farias de Lima
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
| | - Mariana Esposito Mendes
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
| | - Laís Melo Silva
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
- Universidade Federal de Pernambuco, Recife, Brasil
| | - Erika Flavia Lafuente-Álvarez
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Ana Rada-Tarifa
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Valentina Verdejo
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Analia Radl
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Nicolás Saavedra
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Santibañez
- Laboratorio de Radiaciones Ionizantes, Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile
| | - Nelson Brenes Obando
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | | | - Fernando Ortíz
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | - Luisa Valle
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | | | - Angela Bastidas
- Hospital de Especialidades Carlos Andrade Marín, Quito, Ecuador
| | | | - Carolina Arceo-Maldonado
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | - Marco Espinoza-Zevallos
- Cytogenetics and Radiobiology Laboratory, Directorate of Services, Peruvian Nuclear Energy Institute, Lima, Perú
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Burix Mechoso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Aida Falcón de Vargas
- Hospital Vargas de Caracas, Vargas Medical School, Universidad Central de Venezuela. Hospital de Clínicas Caracas, Caracas, Venezuela
| | - Omar García Lima
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| |
Collapse
|
2
|
González Mesa JE, Holladay B, Higueras M, Di Giorgio M, Barquinero JF. Assessment methods for inter-laboratory comparisons of the dicentric assay. Int J Radiat Biol 2022; 99:431-438. [PMID: 35759221 DOI: 10.1080/09553002.2022.2094021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To test the performance of different algorithms that can be used in inter-laboratory comparisons based on dicentric chromosome analysis, and to evaluate the impact of considering a priori values different to calculate individual laboratory performance based on the ionizing radiation dose estimation. METHODS Mean and standard deviation estimations in inter-laboratory comparisons are tested on simulated data and data from previously published inter-laboratory comparisons using three robust algorithms, Algorithm A, Algorithm B and Q/Hampel, all programmed in R-project language and implemented in a Shiny application. The simulated data were generated assuming three different probabilities to contaminate inter-laboratory comparisons samples with atypical dose values. Comparison between different algorithms was also done using published exercises where blood samples were irradiated at 0 and 0.7 Gy that represent a challenge for the assessment of an inter-laboratory comparison. RESULTS The best performance was obtained with the Q/Hampel algorithm for the estimation of the dose mean and with the Algorithm B for the estimation of the dose standard deviation under the conditions tested in the simulations. The Q/Hampel algorithm showed the best performance when non-irradiated samples were evaluated and there was a high proportion of identical values. The presence identical values cause the Algorithm B to fail. Real examples illustrating the need to consider standard deviation priors, and the need to use algorithms resistant to a high proportion of identical values are presented. CONCLUSIONS Q/Hampel algorithm is a serious candidate to estimate the dose mean in the inter-laboratory comparisons, and to estimate both parameters when the proportion of identical values equals or higher than the half of the results. When the proportion of identical values is less than the half of the results, the Algorithm B should be considered as a candidate to estimate the standard deviation in the inter-laboratory comparisons with small number of laboratories. We remark that special attention is needed to establish prior definitions of standard deviation in the assessment of inter-laboratory dicentric assay comparisons.
Collapse
Affiliation(s)
| | - Bret Holladay
- Statistics Department, California Polytechnic State University, San Luis Obispo, USA
| | - Manuel Higueras
- Scientific Computation & Technological Innovation Center (SCoTIC), Universidad de La Rioja, Logroño, Spain.,Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain
| | | | - Joan Francesc Barquinero
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
4
|
Radiation Biomarkers in Large Scale Human Health Effects Studies. J Pers Med 2020; 10:jpm10040155. [PMID: 33023046 PMCID: PMC7712754 DOI: 10.3390/jpm10040155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Following recent developments, the RENEB network (Running the European Network of biological dosimetry and physical retrospective dosimetry) is in an excellent position to carry out large scale molecular epidemiological studies of ionizing radiation effects, with validated expertise in the dicentric, fluorescent in situ hybridization (FISH)-translocation, micronucleus, premature chromosome condensation, gamma-H2AX foci and gene expression assays. Large scale human health effects studies present complex challenges such as the practical aspects of sample logistics, assay costs, effort, effect modifiers and quality control/assurance measures. At Public Health England, the dicentric, automated micronucleus and gamma-H2AX radiation-induced foci assays have been tested for use in a large health effects study. The results of the study and the experience gained in carrying out such a large scale investigation provide valuable information that could help minimise random and systematic errors in biomarker data sets for health surveillance analyses going forward.
Collapse
|
5
|
García O, Rada-Tarifa A, Lafuente-Álvarez E, González-Mesa JE, Mandina T, Muñoz-Velastegui G, Astudillo-Silva Y, Monjagata N, Aguilar-Coronel S, de Vargas AF. The BioDoseNet image repository used as a training tool for the dicentric assay. Int J Radiat Biol 2019; 95:1659-1667. [PMID: 31490087 DOI: 10.1080/09553002.2019.1665211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: This paper describes how the BioDoseNet image repository was used as a training tool for the dicentric assay.Materials and methods: The training was implemented in three phases: introduction to dicentric scoring, dose response curve elaboration and dose assessment exercise. Four labs without previous experience in the dicentric assay participated and four modules of the repository were used.Results: The labs become familiar with aberrations induced by ionizing radiation. The labs were able to generate data for the elaboration of a dose response curve and then successfully estimated doses and irradiated fractions in six blind samples.Conclusions: The performance of these laboratories during the exercise demonstrates the efficacy of the BioDoseNet image repository as a training tool and the utility of web based scoring for the dicentric assay community.
Collapse
Affiliation(s)
- Omar García
- Centro de Protección e Higiene de las Radiaciones, La Habana, Cuba
| | - Ana Rada-Tarifa
- Instituto de Genética, Facultad de Medicina, La Paz, Bolivia
| | | | | | - Tania Mandina
- Centro de Protección e Higiene de las Radiaciones, La Habana, Cuba
| | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | | | | |
Collapse
|
6
|
Ryan TL, Pantelias AG, Terzoudi GI, Pantelias GE, Balajee AS. Use of human lymphocyte G0 PCCs to detect intra- and inter-chromosomal aberrations for early radiation biodosimetry and retrospective assessment of radiation-induced effects. PLoS One 2019; 14:e0216081. [PMID: 31059552 PMCID: PMC6502328 DOI: 10.1371/journal.pone.0216081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3–4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6–8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.
Collapse
Affiliation(s)
- Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Antonio G. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Georgia I. Terzoudi
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Gabriel E. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
7
|
Balajee AS, Escalona M, Iddins CJ, Shuryak I, Livingston GK, Hanlon D, Dainiak N. Development of electronic training and telescoring tools to increase the surge capacity of dicentric chromosome scorers for radiological/nuclear mass casualty incidents. Appl Radiat Isot 2018; 144:111-117. [PMID: 30572199 DOI: 10.1016/j.apradiso.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Dicentric chromosome assay (DCA) is most frequently used for estimating the absorbed radiation dose in the peripheral blood lymphocytes of humans after occupational or incidental radiation exposure. DCA is considered to be the "gold standard" for estimating the absorbed radiation dose because the dicentric chromosome formation is fairly specific to ionizing radiation exposure and its baseline frequency is extremely low in non-exposed humans. However, performance of DCA for biodosimetry is labor intensive and time-consuming making its application impractical for radiological/nuclear mass casualty incidents. Realizing the critical need for rapid dose estimation particularly after radiological/nuclear disaster events, several laboratories have initiated efforts to automate some of the procedural steps involved in DCA. Although metaphase image capture and dicentric chromosome analysis have been automated using commercially available platforms, lack or an insufficient number of these platforms may pose a serious bottleneck when hundreds and thousands of samples need to be analyzed for rapid dose estimation. To circumvent this problem, a web-based approach for telescoring was initiated by our laboratory, which enabled the cytogeneticists around the globe to analyze and score digital images. To further increase the surge capacity of dicentric scorers, we recently initiated a dicentric training and scoring exercise involving a total of 50 volunteers at all academic levels without any prerequisite for experience in radiation cytogenetics. Out of the 50 volunteers enrolled thus far, only one outlier was found who overestimated the absorbed radiation dose. Our approach of training the civilians in dicentric chromosome analysis holds great promise for increasing the surge capacity of dicentric chromosome scorers for a rapid biodosimetry in the case of mass casualty scenarios.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA.
| | - Maria Escalona
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Carol J Iddins
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York City, NY, USA
| | - Gordon K Livingston
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Don Hanlon
- Department of Health, Energy and Environment-Health, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Unverricht-Yeboah M, Giesen U, Kriehuber R. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. JOURNAL OF RADIATION RESEARCH 2018; 59:411-429. [PMID: 29800458 PMCID: PMC6054186 DOI: 10.1093/jrr/rry038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.
Collapse
Affiliation(s)
- Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Beinke C, Port M, Ullmann R, Gilbertz K, Majewski M, Abend M. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis. Radiat Res 2018; 189:579-596. [PMID: 29613823 DOI: 10.1667/rr14974.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G2 as well as into the second G1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - R Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - K Gilbertz
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
10
|
Manivannan B, Kuppusamy T, Venkatesan S, Perumal V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the γ-H2AX assay: Relevance to radiation triage. Appl Radiat Isot 2017; 131:1-7. [PMID: 29080427 DOI: 10.1016/j.apradiso.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
The γ-H2AX assay was investigated as an alternative to the time-consuming dicentric chromosome assay (DCA). Radiation doses to 25 radiotherapy patients were estimated in parallel by DCA and the γ-H2AX assay. The γ-H2AX assay yielded doses in line with the calculated equivalent whole body doses in 92% of the patients, whereas the success rate of DCA was only 76%. The result shows that the γ-H2AX assay can be effectively used as a rapid and more precise alternative to DCA.
Collapse
Affiliation(s)
- Bhavani Manivannan
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - Thayalan Kuppusamy
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Srinivasan Venkatesan
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Venkatachalam Perumal
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| |
Collapse
|
11
|
Wilkins RC, Rodrigues MA, Beaton-Green LA. The Application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integr 2017; 8:7. [PMID: 28250914 PMCID: PMC5320785 DOI: 10.4103/2041-9414.198912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large-scale radiological/nuclear event. Recent modifications to the microscope-based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer (IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope-based biodosimetry techniques can be modified for the IFC for high-throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry.
Collapse
Affiliation(s)
- Ruth C. Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Lindsay A. Beaton-Green
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Vinnikov VA. Optimizing the Microscopy Time Schedule for Chromosomal Dosimetry of High-dose and Partial-body Irradiations. Genome Integr 2017; 8:3. [PMID: 28250910 PMCID: PMC5320789 DOI: 10.4103/2041-9414.198908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The methodology of cytogenetic triage can be improved by optimizing a schedule of microscopy for different exposure scenarios. Chromosome aberrations were quantified by microscopy in human blood lymphocytes irradiated in vitro to ~2, 4, and 12 Gy acute 60Co γ-rays mixed with the unirradiated blood simulating 10%, 50%, 90%, and 100% exposure and in along with a sample from a homogeneous exposure to ~20 Gy. Biodosimetry workload was statistically modeled assuming that 0.5, 1, 5, or 25 h was available for scoring one case or for analysis of up to 1000 cells or 100 dicentrics plus centric rings by one operator. A strong negative correlation was established between the rates of aberration acquisition and cell recording. Calculations showed that the workload of 1 case per operator per·day (5 h of scoring by microscopy) allows dose estimates with high accuracy for either 90%–100% irradiations of 2 Gy or 50%–90% irradiations of 4–12 Gy; lethal homogeneous (100%) exposures of 12 and 20 Gy can be evaluated with just 1 h of microscopy. Triage analysis of 0.5 h scoring per case results in the minimum tolerable accuracy only for partial- and total-body exposure of 4–20 Gy. Time-related efficacy of conventional biodosimetry depends primarily on the aberration yield in the sample, which is dependent on the radiation dose and its distribution in the patient's body. An optimized schedule of microscopy scoring should be developed for different exposure scenarios in each laboratory to increase their preparedness to radiological emergencies.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- Individual Radiosensitivity Group, Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
13
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
15
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
16
|
McKeever S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
18
|
Beinke C, Port M, Lamkowski A, Abend M. Comparing seven mitogens with PHA-M for improved lymphocyte stimulation in dicentric chromosome analysis for biodosimetry. RADIATION PROTECTION DOSIMETRY 2016; 168:235-41. [PMID: 25958413 PMCID: PMC4884885 DOI: 10.1093/rpd/ncv286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/13/2015] [Indexed: 05/06/2023]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose estimation. Two limiting factors of DCA are the time-consuming lymphocyte stimulation and proliferation using the lectin PHA-M and the upper dose limit of individual dose assessment of ∼4 Gy. By measuring the mitotic index (MI), the authors investigated systematically whether the stimulation of lymphocytes can be improved after administration of alternative (and combined) mitogens. The authors compared the lymphocyte stimulation effectiveness of the traditionally used PHA-M (from Phaseolus vulgaris) with seven cited mitogens by determination of MIs: five lectins namely CNA (concanavalin A), PW (pokeweed), LMA (Maackia amurensis), LTV (T. vulgaris), PHA-L (P. vulgaris) as well as LPS (lipopolysaccharide, Escherichia coli) and SLO (streptolysine O, Streptococcus pyogenes) were applied. The conventional protocol using PHA-M for lymphocyte stimulation proved to be superior over lower/higher PHA-M concentrations as well as seven other mitogens administered either alone or combined with SLO or LPS.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| |
Collapse
|
19
|
Jaworska A, Ainsbury EA, Fattibene P, Lindholm C, Oestreicher U, Rothkamm K, Romm H, Thierens H, Trompier F, Voisin P, Vral A, Woda C, Wojcik A. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. RADIATION PROTECTION DOSIMETRY 2015; 164:165-169. [PMID: 25274532 DOI: 10.1093/rpd/ncu294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
Collapse
Affiliation(s)
- Alicja Jaworska
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Oesteraas, Norway
| | - Elizabeth A Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Paola Fattibene
- Department Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carita Lindholm
- Department of Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Ursula Oestreicher
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Kai Rothkamm
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Horst Romm
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Hubert Thierens
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Francois Trompier
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Philippe Voisin
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Anne Vral
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Clemens Woda
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Romm H, Ainsbury E, Bajinskis A, Barnard S, Barquinero JF, Barrios L, Beinke C, Puig-Casanovas R, Deperas-Kaminska M, Gregoire E, Oestreicher U, Lindholm C, Moquet J, Rothkamm K, Sommer S, Thierens H, Vral A, Vandersickel V, Wojcik A. Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:241-254. [PMID: 24557539 DOI: 10.1007/s00411-014-0519-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
In the case of a large scale radiation accident high throughput methods of biological dosimetry for population triage are needed to identify individuals requiring clinical treatment. The dicentric assay performed in web-based scoring mode may be a very suitable technique. Within the MULTIBIODOSE EU FP7 project a network is being established of 8 laboratories with expertise in dose estimations based on the dicentric assay. Here, the manual dicentric assay was tested in a web-based scoring mode. More than 23,000 high resolution images of metaphase spreads (only first mitosis) were captured by four laboratories and established as image galleries on the internet (cloud). The galleries included images of a complete dose effect curve (0-5.0 Gy) and three types of irradiation scenarios simulating acute whole body, partial body and protracted exposure. The blood samples had been irradiated in vitro with gamma rays at the University of Ghent, Belgium. Two laboratories provided image galleries from Fluorescence plus Giemsa stained slides (3 h colcemid) and the image galleries from the other two laboratories contained images from Giemsa stained preparations (24 h colcemid). Each of the 8 participating laboratories analysed 3 dose points of the dose effect curve (scoring 100 cells for each point) and 3 unknown dose points (50 cells) for each of the 3 simulated irradiation scenarios. At first all analyses were performed in a QuickScan Mode without scoring individual chromosomes, followed by conventional scoring (only complete cells, 46 centromeres). The calibration curves obtained using these two scoring methods were very similar, with no significant difference in the linear-quadratic curve coefficients. Analysis of variance showed a significant effect of dose on the yield of dicentrics, but no significant effect of the laboratories, different methods of slide preparation or different incubation times used for colcemid. The results obtained to date within the MULTIBIODOSE project by a network of 8 collaborating laboratories throughout Europe are very promising. The dicentric assay in the web based scoring mode as a high throughput scoring strategy is a useful application for biodosimetry in the case of a large scale radiation accident.
Collapse
Affiliation(s)
- H Romm
- Bundesamt fuer Strahlenschutz, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|