1
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
2
|
Martinez-Marin RJ, Reyes-Leiva D, Nascimento A, Muelas N, Dominguez-González C, Paradas C, Olivé M, García-Romero M, Pascual-Pascual SI, Grau JM, Barba-Romero MA, Gomez-Caravaca MT, de Las Heras J, Casquero P, Mendoza MD, de León JC, Gutierrez A, Morís G, Blanco-Lago R, Ramos-Fransi A, Pintós G, García-Antelo MJ, Rabasa M, Morgado Y, Usón M, Miralles FJ, Bárcena-Llona JE, Gómez-Belda AB, Pedraza-Hueso MI, Hortelano M, Colomé A, Garcia-Martin G, Lopez de Munain A, Jericó I, Galán-Dávila L, Pardo J, Salgueiro-Origlia G, Alonso-Pérez J, Pla-Junca F, Schiava M, Segovia-Simón S, Díaz-Manera J. Description of clinical and genetic features of 122 patients included in the Spanish Pompe registry. Neuromuscul Disord 2024; 34:1-8. [PMID: 38087756 DOI: 10.1016/j.nmd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023]
Abstract
Pompe disease is a rare genetic disorder with an estimated prevalence of 1:60.000. The two main phenotypes are Infantile Onset Pompe Disease (IOPD) and Late Onset Pompe Disease (LOPD). There is no published data from Spain regarding the existing number of cases, regional distribution, clinical features or, access and response to the treatment. We created a registry to collect all these data from patients with Pompe in Spain. Here, we report the data of the 122 patients registered including nine IOPD and 113 LOPD patients. There was a high variability in how the diagnosis was obtained and how the follow-up was performed among different centres. Seven IOPD patients were still alive being all treated with enzymatic replacement therapy (ERT) at last visit. Ninety four of the 113 LOPD patients had muscle weakness of which 81 were receiving ERT. We observed a progressive decline in the results of muscle function tests during follow-up. Overall, the Spanish Pompe Registry is a valuable resource for understanding the demographics, patient's journey and clinical characteristics of patients in Spain. Our data supports the development of agreed guidelines to ensure that the care provided to the patients is standardized across the country.
Collapse
Affiliation(s)
- Rafael Jenaro Martinez-Marin
- NeuService, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital - Universidad Autónoma de Madrid, Madrid, Spain
| | - David Reyes-Leiva
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Andrés Nascimento
- Servicio de Neuropediatría, CIBERER, ERN-NMD, Hospital Sant Joan de Deu, Esplugues de Llobregat, Barcelona, Spain
| | - Nuria Muelas
- CIBERER, Spain; Neurology Service, Hospital La Fe de Valencia, Valencia, Spain
| | - C Dominguez-González
- CIBERER, Spain; Neurology Service, Hospital 12 de Octubre, imas12 Research Institute, ERN-NMD, Madrid, Spain
| | - Carmen Paradas
- Neurology Service, Hospital Virgen del Rocío, Sevilla, Spain
| | - Montse Olivé
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain; Neuromuscular Diseases Unit, Neurology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mar García-Romero
- Neuropaediatrics Service, Hospital Universitario La Paz, Madrid, Spain
| | | | - Josep Maria Grau
- Internal Medicine Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Javier de Las Heras
- Division of Pediatric Metabolism at Cruces University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Pilar Casquero
- Neurology Service, Hospital Mateu Orfila, Menorca, Spain
| | | | - Juan Carlos de León
- Neurology Service, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | | | - Germán Morís
- Neurology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Raquel Blanco-Lago
- Paediatrics Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Alba Ramos-Fransi
- Neurology Service, Hospital Universitario Germans Trias i Pujol, Badalona, Spain
| | - Guillem Pintós
- Internal Medicine Service, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Maria Rabasa
- Neurology Service, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | - Mercedes Usón
- Neurology Service, Hospital Universitario Son Llatzer, Palma de Mallorca, Spain
| | | | | | | | | | - Miryam Hortelano
- Paediatric Service, Hospital Universitario de Segovia, Segovia Spain
| | - Antoni Colomé
- Internal Medicine Service, Hospital de Terrassa, Barcelona, Spain
| | | | - Adolfo Lopez de Munain
- Neurology Service, Instituto Biodonostia-CIBERNED-EHU-UPV, Hospital Universitario Donostia-OSAKIDETZA, Spain
| | - Ivonne Jericó
- Neurology Service, Complejo Hospitalario de Navarra, Spain
| | - Lucía Galán-Dávila
- Neurology Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Julio Pardo
- Neurology Service, Hospital Universitario de Santiago de Compostela, Santiago de Compostela. Spain
| | - Giorgina Salgueiro-Origlia
- Internal Medicine Service, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - Jorge Alonso-Pérez
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Francesc Pla-Junca
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Marianela Schiava
- John Walton Muscular Distrophy Research Center, Newcastle University, UK
| | - Sonia Segovia-Simón
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Jordi Díaz-Manera
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain; John Walton Muscular Distrophy Research Center, Newcastle University, UK.
| |
Collapse
|
3
|
Sniderman King L, Pan Y, Nallamilli BRR, Hegde M, Jagannathan L, Ramachander V, Lucas A, Markind J, Colzani R. Pompe disease ascertained through The Lantern Project, 2018-2021: Next-generation sequencing and enzymatic testing to overcome obstacles to diagnosis. Mol Genet Metab 2023; 139:107565. [PMID: 37087815 DOI: 10.1016/j.ymgme.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023]
Abstract
The Lantern Project is an ongoing complimentary diagnostic program for patients in the United States sponsored by Sanofi and implemented by PerkinElmer Genomics. It combines specific enzymatic, biomarker, and genetic testing to facilitate rapid, accurate laboratory diagnosis of Pompe disease and several other lysosomal storage diseases, and a multigene next-generation sequencing panel including Pompe disease, LGMD, and other neuromuscular disorders. This article reports data for Pompe disease collected from October 2018 through December 2021, including acid α-glucosidase (GAA) enzyme assay and GAA sequencing (standard or expedited for positive newborn screening [NBS] to rule out infantile-onset Pompe disease [IOPD]) and the Focused Neuromuscular Panel, which includes GAA. One hundred forty patients (12 received only GAA enzyme testing, 128 had GAA sequencing alone or in addition to enzyme assay) have been confirmed with Pompe disease in this project. Eight of the 140 had a variant of unknown significance, but GAA activity ≤2.10 μmol/L/h, thus were confirmed with Pompe disease. Three diagnosed patients 0-2 years old had cross-reactive immunologic material (CRIM)-negative GAA variants and thus IOPD. One additional infant with presumptive IOPD had a homozygous frameshift c.1846del, likely CRIM-negative; symptoms were not provided. Among the 128 patients with molecular results, the c.-32-13T>G splice variant was homozygous in 11, compound-heterozygous in 98, and absent in 19. Proximal muscle weakness (58 patients) was the most common sign reported at testing; elevated creatine kinase (29 patients) was the most common laboratory result. The most common symptom categories were muscular (73 patients), musculoskeletal (13 patients), and respiratory (23 patients). Clinical information was not available for 42 samples, and 17 infants had only "abnormal NBS" or "low GAA" reported. Cardiac symptoms in 7 included potentially age-related conditions in five c.-32-13T>G-compound-heterozygous adults (myocardial infarction, heart murmur/palpitations, congestive heart failure: 1 each; 2 with atrial fibrillation) and hypertrophic cardiomyopathy in 2 children (1 and 2 years old) with presumptive IOPD. One novel GAA variant was observed in a patient with enzyme activity 0.31 μmol/L/h: c.1853_1854ins49, a frameshift pathogenic variant. The Lantern Project demonstrates the combinatorial utility of enzyme assay, targeted single-gene testing, and a focused neuromuscular next-generation sequencing panel in diagnosing Pompe disease.
Collapse
|
4
|
Lin S, Nateqi J, Weingartner-Ortner R, Gruarin S, Marling H, Pilgram V, Lagler FB, Aigner E, Martin AG. An artificial intelligence-based approach for identifying rare disease patients using retrospective electronic health records applied for Pompe disease. Front Neurol 2023; 14:1108222. [PMID: 37153672 PMCID: PMC10160659 DOI: 10.3389/fneur.2023.1108222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Objective We retrospectively screened 350,116 electronic health records (EHRs) to identify suspected patients for Pompe disease. Using these suspected patients, we then describe their phenotypical characteristics and estimate the prevalence in the respective population covered by the EHRs. Methods We applied Symptoma's Artificial Intelligence-based approach for identifying rare disease patients to retrospective anonymized EHRs provided by the "University Hospital Salzburg" clinic group. Within 1 month, the AI screened 350,116 EHRs reaching back 15 years from five hospitals, and 104 patients were flagged as probable for Pompe disease. Flagged patients were manually reviewed and assessed by generalist and specialist physicians for their likelihood for Pompe disease, from which the performance of the algorithms was evaluated. Results Of the 104 patients flagged by the algorithms, generalist physicians found five "diagnosed," 10 "suspected," and seven patients with "reduced suspicion." After feedback from Pompe disease specialist physicians, 19 patients remained clinically plausible for Pompe disease, resulting in a specificity of 18.27% for the AI. Estimating from the remaining plausible patients, the prevalence of Pompe disease for the greater Salzburg region [incl. Bavaria (Germany), Styria (Austria), and Upper Austria (Austria)] was one in every 18,427 people. Phenotypes for patient cohorts with an approximated onset of symptoms above or below 1 year of age were established, which correspond to infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), respectively. Conclusion Our study shows the feasibility of Symptoma's AI-based approach for identifying rare disease patients using retrospective EHRs. Via the algorithm's screening of an entire EHR population, a physician had only to manually review 5.47 patients on average to find one suspected candidate. This efficiency is crucial as Pompe disease, while rare, is a progressively debilitating but treatable neuromuscular disease. As such, we demonstrated both the efficiency of the approach and the potential of a scalable solution to the systematic identification of rare disease patients. Thus, similar implementation of this methodology should be encouraged to improve care for all rare disease patients.
Collapse
Affiliation(s)
- Simon Lin
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Jama Nateqi
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | - Vinzenz Pilgram
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Florian B. Lagler
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
- Department of Pediatrics and Institute for Inherited Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Alistair G. Martin
- Science Department, Symptoma GmbH, Vienna, Austria
- *Correspondence: Alistair G. Martin
| |
Collapse
|
5
|
Wencel M, Shaibani A, Goyal NA, Dimachkie MM, Trivedi J, Johnson NE, Gutmann L, Wicklund MP, Bandyopadhay S, Genge AL, Freimer ML, Goyal N, Pestronk A, Florence J, Karam C, Ralph JW, Rasheed Z, Hays M, Hopkins S, Mozaffar T. Investigating Late-Onset Pompe Prevalence in Neuromuscular Medicine Academic Practices: The IPaNeMA Study. Neurol Genet 2021; 7:e623. [PMID: 36299500 PMCID: PMC9595038 DOI: 10.1212/nxg.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES We investigated the prevalence of late-onset Pompe disease (LOPD) in patients presenting to 13 academic, tertiary neuromuscular practices in the United States and Canada. METHODS All successive patients presenting with proximal muscle weakness or isolated hyperCKemia and/or neck muscle weakness to these 13 centers were invited to participate in the study. Whole blood was tested for acid alpha-glucosidase (GAA) assay through the fluorometric method, and all cases with enzyme levels of ≤10 pmoL/punch/h were reflexed to molecular testing for mutations in the GAA gene. Clinical and demographic information was abstracted from their clinical visit and, along with study data, entered into a purpose-built REDCap database, and analyzed at the University of California, Irvine. RESULTS GAA enzyme assay results were available on 906 of the 921 participants who consented for the study. LOPD was confirmed in 9 participants (1% prevalence). Another 9 (1%) were determined to have pseudodeficiency of GAA, whereas 19 (1.9%) were found to be heterozygous for a pathogenic GAA mutation (carriers). Of the definite LOPD participants, 8 (89%) were Caucasian and were heterozygous for the common leaky (IVS1) splice site mutation in the GAA gene (c -32-13T>G), with a second mutation that was previously confirmed to be pathogenic. DISCUSSION The prevalence of LOPD in undiagnosed patients meeting the criteria of proximal muscle weakness, high creatine kinase, and/or neck weakness in academic, tertiary neuromuscular practices in the United States and Canada is estimated to be 1%, with an equal prevalence rate of pseudodeficiency alleles. TRIAL REGISTRATION INFORMATION Clinical trial registration number: NCT02838368.
Collapse
|
6
|
Su X, Sheng H, Huang Y, Li X, Zhang W, Zhao X, Li C, Liu L. Clinical and GAA gene mutation analysis in 21 Chinese patients with classic infantile pompe disease. Eur J Med Genet 2020; 63:103997. [PMID: 32711049 DOI: 10.1016/j.ejmg.2020.103997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022]
Abstract
Pompe disease is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). Early and precise diagnosis can be highly important for the treatment, genetic counselling and prenatal diagnosis of this disease in potential candidates. Considering that Pompe disease studies have not been frequently conduced in China, to better understand the clinical course and molecular defects among this group, our study examined 21 Chinese patients with classic infantile Pompe disease. The median age of symptom onset in the patients was 2.5 months (0-7 months), and the median age of confirmed diagnosis was 5.6 months (2-12 months). GAA gene mutation analysis revealed 17 different mutations, two of which were novel (c.538C>A and c.2096T>C). The most frequent mutation in these patients was c.1935C>A, accounting for 40.5% (17/42 alleles) of the mutations. These results confirm the high prevalence of the c.1935C>A mutation in Chinese patients with classic infantile Pompe disease. Furthermore, identification of the novel alterations in the GAA gene will help to broaden the spectrum of the GAA mutations causing Pompe disease and to better understand the potential pathogenic role of each change.
Collapse
Affiliation(s)
- Xueying Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiling Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Aung-Htut MT, Ham KA, Tchan MC, Fletcher S, Wilton SD. Novel Mutations Found in Individuals with Adult-Onset Pompe Disease. Genes (Basel) 2020; 11:genes11020135. [PMID: 32012848 PMCID: PMC7073677 DOI: 10.3390/genes11020135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Pompe disease, or glycogen storage disease II is a rare, progressive disease leading to skeletal muscle weakness due to deficiency of the acid α-1,4-glucosidase enzyme (GAA). The severity of disease and observed time of onset is subject to the various combinations of heterozygous GAA alleles. Here we have characterized two novel mutations: c.2074C>T and c.1910_1918del, and a previously reported c.1082C>G mutation of uncertain clinical significance. These mutations were found in three unrelated patients with adult-onset Pompe disease carrying the common c.-32-13T>G mutation. The c.2074 C>T nonsense mutation has obvious consequences on GAA expression but the c.1910_1918del (deletion of 3 amino acids) and c.1082C>G missense variants are more subtle DNA changes with catastrophic consequences on GAA activity. Molecular and clinical analyses from the three patients corresponded with the anticipated pathogenicity of each mutation.
Collapse
Affiliation(s)
- May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia; (M.T.A.-H.); (K.A.H.); (S.F.)
- Perron Institute for Neurological and Translational Science and The University of Western Australia, Perth 6009, Australia
| | - Kristin A. Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia; (M.T.A.-H.); (K.A.H.); (S.F.)
| | - Michel C. Tchan
- Genetic Medicine, Westmead Hospital, Sydney 2145, Australia;
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia; (M.T.A.-H.); (K.A.H.); (S.F.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia; (M.T.A.-H.); (K.A.H.); (S.F.)
- Perron Institute for Neurological and Translational Science and The University of Western Australia, Perth 6009, Australia
- Correspondence:
| |
Collapse
|
8
|
Gupta N, Kazi ZB, Nampoothiri S, Jagdeesh S, Kabra M, Puri RD, Muranjan M, Kalaivani M, Rehder C, Bali D, Verma IC, Kishnani PS. Clinical and Molecular Disease Spectrum and Outcomes in Patients with Infantile-Onset Pompe Disease. J Pediatr 2020; 216:44-50.e5. [PMID: 31606152 DOI: 10.1016/j.jpeds.2019.08.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate the clinical and molecular spectrum, and factors affecting clinical outcome of patients in India diagnosed with infantile-onset Pompe disease (IOPD). STUDY DESIGN In this multicenter, cross-sectional study, we evaluated the records of 77 patients with IOPD to analyze their clinical course, outcomes, and factors influencing the outcomes. RESULTS Of the 77 patients with IOPD, phenotype data were available in 59; 46 (78%) had the classic phenotype. Overall, 58 of 77 (75%) and 19 of 77 (25%) patients were symptomatic before and after age 6 months, respectively. Alpha-glucosidase gene variant analysis available for 48 patients (96 alleles) showed missense variants in 49 alleles. Cross-reactive immunologic material (CRIM) status could be determined or predicted in 44 of 48 patients. In total, 32 of 44 patients (72%) were CRIM-positive, and 12 of 44 patients (27%) were CRIM-negative. Thirty-nine cases received enzyme-replacement therapy (ERT), alglucosidase alfa, and 38 patients never received ERT. Median age at initiation of ERT was 6.5 months. Response to ERT was better in babies who had CRIM-positive, non-classic IOPD. CONCLUSIONS This study highlights the clinical spectrum of IOPD in India and provides an insight on various factors, such as undernutrition, feeding difficulties, and recurrent respiratory infection, as possible factors influencing clinical outcomes in these patients. The study also reiterates the importance of raising awareness among clinicians about the need for early diagnosis and timely treatment of IOPD.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| | - Zoheb B Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences, Kerala, India
| | - Sujatha Jagdeesh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Mamta Muranjan
- Department of Pediatrics, King Edward Memorial Hospital, Mumbai, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Catherine Rehder
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC
| |
Collapse
|
9
|
Goina E, Musco L, Dardis A, Buratti E. Assessment of the functional impact on the pre-mRNA splicing process of 28 nucleotide variants associated with Pompe disease in GAA exon 2 and their recovery using antisense technology. Hum Mutat 2019; 40:2121-2130. [PMID: 31301153 DOI: 10.1002/humu.23867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Glycogen storage disease II (GSDII), also called Pompe disease, is an autosomal recessive inherited disease caused by a defect in glycogen metabolism due to the deficiency of the enzyme acid alpha-glucosidase (GAA) responsible for its degradation. So far, more than 500 sequence variants of the GAA gene have been reported but their possible involvement on the pre-messenger RNA splicing mechanism has not been extensively studied. In this work, we have investigated, by an in vitro functional assay, all putative splicing variants within GAA exon 2 and flanking introns. Our results show that many variants falling in the canonical splice site or the exon can induce GAA exon 2 skipping. In these cases, therefore, therapeutic strategies aimed at restoring protein folding of partially active mutated GAA proteins might not be sufficient. Regarding this issue, we have tested the effect of antisense oligonucleotides (AMOs) that were previously shown capable of rescuing splicing misregulation caused by the common c.-32-13T>G variant associated with the childhood/adult phenotype of GSDII. Interestingly, our results show that these AMOs are also quite effective in rescuing the splicing impairment of several exonic splicing variants, thus widening the potential use of these effectors for GSDII treatment.
Collapse
Affiliation(s)
- Elisa Goina
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lorena Musco
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
10
|
Peruzzo P, Pavan E, Dardis A. Molecular genetics of Pompe disease: a comprehensive overview. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:278. [PMID: 31392190 PMCID: PMC6642931 DOI: 10.21037/atm.2019.04.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
Pompe disease (PD) is an autosomal recessive lysosomal disorder caused by the deficient activity of acid alpha-glucosidase (GAA) enzyme due to mutations in the GAA gene. The enzymatic deficiency leads to the accumulation of glycogen within the lysosomes. Clinically, the disease has been classically classified in infantile and childhood/adult forms. The GAA gene has been localized to chromosome 17q25.2-q25.3 and to date, 582 mutations distributed throughout the whole gene have been reported (HGMD: http://www.hgmd.cf.ac.uk/ac/). All types of mutations have been described; missense variants are the most frequent type followed by small deletions. Most GAA mutations are private or found in a small number of families. However, an exception is represented by the c.-32-13T>G splice mutation that is very common in patients of Caucasian origin affected by the childhood/adult form of the disease, with an allelic frequency ranging from 40% to 70%. In this article, we review the spectrum of GAA mutations, their distribution in different populations, and their classification according to their impact on GAA splicing process, protein expression and activity. In addition, whenever possible, we discuss the phenotype/genotype correlation. The information collected in this review provides an overview of the molecular genetics of PD and can be used to facilitate diagnosis and genetic counseling of families affected by this disorder.
Collapse
Affiliation(s)
- Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
11
|
Lorenzoni PJ, Kay CSK, Higashi NS, D'Almeida V, Werneck LC, Scola RH. Late-onset Pompe disease: what is the prevalence of limb-girdle muscular weakness presentation? ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:247-251. [PMID: 29742245 DOI: 10.1590/0004-282x20180018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/10/2018] [Indexed: 11/21/2022]
Abstract
Pompe disease is an inherited disease caused by acid alpha-glucosidase (GAA) deficiency. A single center observational study aimed at assessing the prevalence of late-onset Pompe disease in a high-risk Brazilian population, using the dried blood spot test to detect GAA deficiency as a main screening tool. Dried blood spots were collected for GAA activity assay from 24 patients with "unexplained" limb-girdle muscular weakness without vacuolar myopathy in their muscle biopsy. Samples with reduced enzyme activity were also investigated for GAA gene mutations. Of the 24 patients with dried blood spots, one patient (4.2%) showed low GAA enzyme activity (NaG/AaGIA: 40.42; %INH: 87.22%). In this patient, genetic analysis confirmed two heterozygous mutations in the GAA gene (c.-32-13T>G/p.Arg854Ter). Our data confirm that clinicians should look for late-onset Pompe disease in patients whose clinical manifestation is an "unexplained" limb-girdle weakness even without vacuolar myopathy in muscle biopsy.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Cláudia Suemi Kamoi Kay
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Nádia Sugano Higashi
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Vânia D'Almeida
- Laboratório de Erros Inatos do Metabolismo, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Lineu Cesar Werneck
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Rosana Herminia Scola
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
12
|
Pascarella A, Terracciano C, Farina O, Lombardi L, Esposito T, Napolitano F, Franzese G, Panella G, Tuccillo F, la Marca G, Bernardini S, Boffo S, Giordano A, Di Iorio G, Melone MAB, Sampaolo S. Vacuolated PAS-positive lymphocytes as an hallmark of Pompe disease and other myopathies related to impaired autophagy. J Cell Physiol 2018; 233:5829-5837. [PMID: 29215735 DOI: 10.1002/jcp.26365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022]
Abstract
Autosomal recessive Pompe disease is a lysosomal disorder caused by mutations of the acid-α-glucosidase (GAA) gene. Deficiency of GAA enzyme leads to glycogen accumulation and autophagy impairment in cardiac and skeletal muscles, but also in lymphocytes. Since an effective therapy is available, a rapid, sensitive, and specific test is crucial to early identify affected subjects. Number of lymphocytes containing PAS-positive vacuoles was evaluated on blood films from 72 consecutive adult patients with hyperckemia and/or muscle weakness, 13 genetically confirmed late-onset-Pompe-disease (LOPD) and 13 of their offspring. GAA activity, measured on dried blood spot (DBS) in all patients inversely correlated with number of PAS-positive lymphocytes. More than 4 PAS-positive lymphocytes were found in 11 out of the 72 patients (6 new diagnosis of LOPD, 3 different glycogen storage myopathies, 1 glucose-6-phosphate dehydrogenase deficiency, 1 caveolinopathy), in all 13 LOPD patients and in the 13 LOPD offspring. These latter resulted to have all a single GAA mutation but low GAA levels. Immunostaining with the autophagy markers LC3 and p62 confirmed the autophagic nature of lymphocytes vacuoles. ROC curve assessment of PAS-positive lymphocytes disclosed 100% of sensitivity and 94% of specificity in recognizing both compound heterozygous and heterozygous GAA carriers. The other myopathies with more than 4 PAS-positive lymphocytes appeared to be all related to impaired autophagy, which seems to be responsible of PAS-positive vacuolated lymphocytes formation. Quantification of PAS-positive lymphocytes in blood films is useful to identify autophagic vacuolar myopathies and should be routinely used as first level test for Pompe disease.
Collapse
Affiliation(s)
- Angelo Pascarella
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Neurorehabilitation Unit and Research Lab. for Disorder of Consciousness, Maugeri ICS, Telese Terme, Italy
| | - Chiara Terracciano
- Division of Clinical Biochemistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Olimpia Farina
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Lombardi
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Esposito
- Molecular Genetics and Genomics Laboratory, Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", Italian National Research Council (CNR), Naples, Italy
- IRCCS INM Neuromed, Pozzilli, Italy
| | - Filomena Napolitano
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Franzese
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Panella
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Tuccillo
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence; Head, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Offspring's Hospital, Florence, Italy
| | - Sergio Bernardini
- Division of Clinical Biochemistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Boffo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giuseppe Di Iorio
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa A B Melone
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Simone Sampaolo
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Zhang XT, Ren WD. [Research advances in the diagnosis and treatment of Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:588-593. [PMID: 30022764 PMCID: PMC7389209 DOI: 10.7499/j.issn.1008-8830.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Pompe disease, also called type II glycogen storage disease, is a rare autosomal recessive inherited disease caused by the storage of glycogen in lysosome due to acid α-glucosidase (GAA) deficiency, with the most severe conditions in the skeletal muscle, the myocardium, and the smooth muscle. Patients may have the manifestations of dyspnea and dyskinesia, with or without hypertrophic cardiomyopathy. GAA gene mutation has ethnic and regional differences, and new mutation sites are found with the advances in research. Gene analysis is the gold standard for the diagnosis of Pompe disease. Conventional methods, such as skin and muscle biopsies and dried blood spot test, have certain limitations for the diagnosis of this disease. In recent years, prenatal diagnosis and newborn screening play an important role in early diagnosis of this disease. Enzyme replacement therapy (ERT) has a satisfactory effect in the treatment of this disease, but it may lead to immune intolerance. New targeted gene therapy and modified ERT will be put into practice in the future. This article reviews the research advances in the diagnosis and treatment of Pompe disease.
Collapse
Affiliation(s)
- Xin-Tong Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | | |
Collapse
|
14
|
Elenga N, Verloes A, Mrsic Y, Basurko C, Schaub R, Cuadro-Alvarez E, Kom-Tchameni R, Carles G, Lambert V, Boukhari R, Fahrasmane A, Jolivet A, Nacher M, Benoist JF. Incidence of infantile Pompe disease in the Maroon population of French Guiana. BMJ Paediatr Open 2018; 2:e000182. [PMID: 29637184 PMCID: PMC5842995 DOI: 10.1136/bmjpo-2017-000182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The aim of this study was to describe the epidemiology of infantile Pompe disease (IPD) in French Guiana, a French overseas territory, by combining a retrospective case records study and a prospective anonymous genotyping in a sample of mothers followed in the two major maternity units of French Guiana. METHODS We identified 19 newborns with IPD born within a 13-year-period in French Guiana, corresponding to 1/4528 births. All children were born within the African-American Maroon (Bushinengue) community originating from slaves who settled along the Maroni river in the 19th century. We also performed an anonymised screening for all women in postpartum, in the two main maternity units of French Guiana. RESULTS Genetic investigations revealed that all patients with IPD were homozygotes or compound heterozygotes for two known pathogenic variations: c.2560C>T p.(Arg854*) that has already been reported in African-Americans and c.1942G>A p.(Gly648Ser), a rare previously considered to be variant. We identified no heterozygotes among 453 mothers of various ethnicities in Cayenne, but 15 heterozygotes among 425 mothers (1/27) in Saint-Laurent-du-Maroni (95% CI 1/45 to 1/17), all from the Maroon community, which corresponds to an expected IPD incidence in Maroons of 1/1727 (95% CI 1/1156 to 1/8100). CONCLUSION The incidence of IPD in the Maroon community is roughly 50 times higher than elsewhere in the world. The presence of only two different variants in all affected patients is compatible with a double founder effect in a relatively small population that has seldom mixed with other regional populations in the past and therefore has a reduced pool of genotypes.
Collapse
Affiliation(s)
- Narcisse Elenga
- Department of Pediatrics, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Alain Verloes
- Department of Genetics, USCP University and INSERM UMR 1141, APHP-Robert Debré University Hospital, Paris, French
| | - Yajaira Mrsic
- Department of Pediatrics, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Célia Basurko
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Roxane Schaub
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Emma Cuadro-Alvarez
- Department of Pediatrics, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Rémi Kom-Tchameni
- Department of Pediatrics, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Gabriel Carles
- Department of Gynecology and Obstetrics, Frank Joly West Guiana Regional Hospital, Saint-Laurent-du-Maroni, French Guiana
| | - Véronique Lambert
- Department of Gynecology and Obstetrics, Frank Joly West Guiana Regional Hospital, Saint-Laurent-du-Maroni, French Guiana
| | - Rachida Boukhari
- Deparment of Clinical Biology, Frank Joly West Guiana Regional Hospital, Saint-Laurent-du-Maroni, French Guiana
| | - Aniza Fahrasmane
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | - Anne Jolivet
- Department of Public Health, Frank Joly West Guiana Regional Hospital, Saint-Laurent-du-Maroni, French Guiana
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Andrée Rosemon Regional Hospital, Cayenne, French Guiana
| | | |
Collapse
|
15
|
Bravo H, Neto EC, Schulte J, Pereira J, Filho CS, Bittencourt F, Sebastião F, Bender F, de Magalhães APS, Guidobono R, Trapp FB, Michelin-Tirelli K, Souza CF, Rojas Málaga D, Pasqualim G, Brusius-Facchin AC, Giugliani R. Investigation of newborns with abnormal results in a newborn screening program for four lysosomal storage diseases in Brazil. Mol Genet Metab Rep 2017; 12:92-97. [PMID: 28721335 PMCID: PMC5498414 DOI: 10.1016/j.ymgmr.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are genetic disorders, clinically heterogeneous, mainly caused by defects in genes encoding lysosomal enzymes that degrade macromolecules. Several LSDs already have specific therapies that may improve clinical outcomes, especially if introduced early in life. With this aim, screening methods have been established and newborn screening (NBS) for some LSDs has been developed. Such programs should include additional procedures for the confirmation (or not) of the cases that had an abnormal result in the initial screening. We present here the methods and results of the additional investigation performed in four babies with positive initial screening results in a program of NBS for LSDs performed by a private laboratory in over 10,000 newborns in Brazil. The suspicion in these cases was of Mucopolysaccharidosis I - MPS I (in two babies), Pompe disease and Gaucher disease (one baby each). One case of pseudodeficiency for MPS I, 1 carrier for MPS I, 1 case of pseudodeficiency for Pompe disease and 1 carrier for Gaucher disease were identified. This report illustrates the challenges that may be encountered by NBS programs for LSDs, and the need of a comprehensive protocol for the rapid and precise investigation of the babies who have an abnormal screening result.
Collapse
Affiliation(s)
- Heydy Bravo
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | | | - Jaqueline Schulte
- CTN Diagnósticos, Av. Ipiranga 5000, Porto Alegre, RS 90610-000, Brazil
| | - Jamile Pereira
- CTN Diagnósticos, Av. Ipiranga 5000, Porto Alegre, RS 90610-000, Brazil
| | | | - Fernanda Bittencourt
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda Sebastião
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda Bender
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Régis Guidobono
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Franciele Barbosa Trapp
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Carolina F.M. Souza
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Diana Rojas Málaga
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
- Gene Therapy Center, Experimental Research Center, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Roberto Giugliani
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
- Post-Graduate Program in Medical Sciences, UFRGS, Rua Ramiro Barcelos 2400, 90035-003 Porto Alegre, RS, Brazil
- Gene Therapy Center, Experimental Research Center, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
- Corresponding author at: Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS, Brazil.Medical Genetics ServiceHCPARua Ramiro Barcelos 2350Porto AlegreRSBrazil
| |
Collapse
|
16
|
Ünver O, Hacıfazlıoğlu NE, Karatoprak E, Güneş AS, Sağer G, Kutlubay B, Sözen G, Saltık S, Yılmaz K, Kara B, Türkdoğan D. The frequency of late-onset Pompe disease in pediatric patients with limb-girdle muscle weakness and nonspecific hyperCKemia: A multicenter study. Neuromuscul Disord 2016; 26:796-800. [DOI: 10.1016/j.nmd.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/31/2016] [Accepted: 09/01/2016] [Indexed: 11/15/2022]
|
17
|
Reevaluating Muscle Biopsies in the Diagnosis of Pompe Disease: A Corroborative Report. Can J Neurol Sci 2016; 43:561-6. [DOI: 10.1017/cjn.2016.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground: Previous reports suggest that although a diagnostic muscle biopsy can confirm the presence of Pompe disease, the absence of a definitive biopsy result does not rule out the diagnosis. Methods: In this study, we reviewed patients with a limb-girdle syndrome who demonstrated nonspecific abnormalities of muscle, without evidence of the classical changes of acid maltase deficiency. These patients were rescreened for Pompe disease using dried blood spot (DBS) testing. Results: Twenty-seven patients provided blood samples for the DBS test. Four patients underwent subsequent genetic testing. Genetic analysis demonstrated that one patient tested positive for Pompe disease and one patient had one copy of a pathogenic variant. Conclusions: In conclusion, the ability of a diagnostic muscle biopsy to definitively rule out the presence of Pompe disease is limited. There is a role for a screening DBS in all patients presenting with a limb-girdle syndrome without a clear diagnosis.
Collapse
|
18
|
Lévesque S, Auray-Blais C, Gravel E, Boutin M, Dempsey-Nunez L, Jacques PE, Chenier S, Larue S, Rioux MF, Al-Hertani W, Nadeau A, Mathieu J, Maranda B, Désilets V, Waters PJ, Keutzer J, Austin S, Kishnani P. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J Rare Dis 2016; 11:8. [PMID: 26809617 PMCID: PMC4727295 DOI: 10.1186/s13023-016-0390-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background Late-onset Pompe disease (LOPD) is a rare treatable lysosomal storage disorder characterized by progressive lysosomal glycogen accumulation and muscle weakness, with often a limb-girdle pattern. Despite published guidelines, testing for LOPD is often overlooked or delayed in adults, owing to its low frequency compared to other muscle disorders with similar muscle patterns. Next-generation sequencing has the capability to test concurrently for several muscle disorders. This could potentially lead to increased diagnosis of LOPD, disorders with non-specific muscle weakness or atypical patients. Methods We developed a gene panel to further study its clinical utility in a cohort of patients with suspected muscle disorders. We designed a gene panel to analyze the coding sequences and splice site junctions of GAA causing LOPD, along with 77 other genes causing muscle disorders with overlapping phenotypes. Results At a median coverage of ~200X (sequences per base), all GAA exons were successfully covered with >20X and only 0.3 % of exons across all genes were <20X. The panel showed an excellent sensitivity (100 %) and specificity (98 %) across all selected genes, using known variations in Pompe patients and controls. We determined its clinical utility by analyzing 34 patients with suspected muscle disorders of undetermined etiology and various muscle patterns, who were referred or followed in neuromuscular and genetics clinics. A putative diagnosis was found in up to 32 % of patients. The gene panel was instrumental in reaching a diagnosis in atypical patients, including one LOPD case. Acid alpha-glucosidase activity was used to confirm the molecular results in all patients. Conclusion This work highlights the high clinical utility of gene panels in patients with suspected muscle disorders and its potential to facilitate the diagnosis of patients showing non-specific muscle weakness or atypical phenotypes. We propose that gene panels should be used as a first-tier test in patients with suspected muscle disorders of undetermined etiology, which could further increase overall diagnosis of muscle conditions, and potentially reduce diagnostic delay. Further studies are necessary to determine the impact of first-tier gene panels on diagnostic delay and on treatment outcome for LOPD. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sébastien Lévesque
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Christiane Auray-Blais
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Elaine Gravel
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Michel Boutin
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Laura Dempsey-Nunez
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Pierre-Etienne Jacques
- Departments of Biology and Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Chenier
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Sandrine Larue
- Department of Neurology, Notre-Dame Hospital, Université de Montréal, Montreal, QC, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Walla Al-Hertani
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, and Alberta Children's Hospital, Calgary, AB, Canada
| | - Amelie Nadeau
- Department of Pediatrics, Division of Pediatric Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean Mathieu
- Neuromuscular Clinic, Centre de réadaptation en déficience physique de Jonquière, Saguenay, QC, Canada
| | - Bruno Maranda
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Valérie Désilets
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Paula J Waters
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Joan Keutzer
- Genzyme Corporation, a Sanofi Company, Cambridge, MA, USA
| | - Stephanie Austin
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Llerena Junior JC, Nascimento OJM, Oliveira ASB, Dourado Junior MET, Marrone CD, Siqueira HH, Sobreira CFR, Dias-Tosta E, Werneck LC. Guidelines for the diagnosis, treatment and clinical monitoring of patients with juvenile and adult Pompe disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 74:166-76. [DOI: 10.1590/0004-282x20150194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023]
Abstract
ABSTRACT Pompe disease (PD) is a potentially lethal illness involving irreversible muscle damage resulting from glycogen storage in muscle fiber and activation of autophagic pathways. A promising therapeutic perspective for PD is enzyme replacement therapy (ERT) with the human recombinant enzyme acid alpha-glucosidase (Myozyme®). The need to organize a diagnostic flowchart, systematize clinical follow-up, and establish new therapeutic recommendations has become vital, as ERT ensures greater patient longevity. A task force of experienced clinicians outlined a protocol for diagnosis, monitoring, treatment, genetic counseling, and rehabilitation for PD patients. The study was conducted under the coordination of REBREPOM, the Brazilian Network for Studies of PD. The meeting of these experts took place in October 2013, at L’Hotel Port Bay in São Paulo, Brazil. In August 2014, the text was reassessed and updated. Given the rarity of PD and limited high-impact publications, experts submitted their views.
Collapse
|
20
|
Bali DS, Goldstein JL, Rehder C, Kazi ZB, Berrier KL, Dai J, Kishnani PS. Clinical Laboratory Experience of Blood CRIM Testing in Infantile Pompe Disease. Mol Genet Metab Rep 2015; 5:76-79. [PMID: 26693141 PMCID: PMC4674832 DOI: 10.1016/j.ymgmr.2015.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022] Open
Abstract
Cross-reactive immunological material (CRIM) status is an important prognostic factor in patients with infantile Pompe disease (IPD) being treated with enzyme replacement therapy. Western blot analysis of cultured skin fibroblast lysates has been the gold standard for determining CRIM status. Here, we evaluated CRIM status using peripheral blood mononuclear cell (PBMC) protein. For 6 of 33 patients (18%) CRIM status determination using PBMC was either indeterminate or discordant with GAA genotype or fibroblast CRIM analysis results. While the use of PBMCs for CRIM determination has the advantage of a faster turnaround time, further evaluation is needed to ensure the accuracy of CRIM results.
Collapse
Affiliation(s)
- Deeksha S. Bali
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| | - Jennifer L. Goldstein
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| | - Catherine Rehder
- Department of Pathology, Box 3712, Duke University Health System, Durham, NC 27710, USA
| | - Zoheb B. Kazi
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| | - Kathryn L. Berrier
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| | - Jian Dai
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Box 103856, Duke University Health System, Durham, NC 27710, USA
| |
Collapse
|
21
|
Turaça LT, de Faria DOS, Kyosen SO, Teixeira VD, Motta FL, Pessoa JG, Rodrigues E Silva M, de Almeida SS, D'Almeida V, Munoz Rojas MV, Martins AM, Pesquero JB. Novel GAA mutations in patients with Pompe disease. Gene 2015; 561:124-31. [PMID: 25681614 DOI: 10.1016/j.gene.2015.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
Pompe disease is an autosomal recessive disorder linked to GAA gene that leads to a multi-system intralysosomal accumulation of glycogen. Mutation identification in the GAA gene can be very important for early diagnosis, correlation between genotype-phenotype and therapeutic intervention. For this purpose, peripheral blood from 57 individuals susceptible to Pompe disease was collected and all exons of GAA gene were amplified; the sequences and the mutations were analyzed in silico to predict possible impact on the structure and function of the human protein. In this study, 46 individuals presented 33 alterations in the GAA gene sequence, among which five (c.547-67C>G, c.547-39T>G, p.R437H, p.L641V and p.L705P) have not been previously described in the literature. The alterations in the coding region included 15 missense mutations, three nonsense mutations and one deletion. One insertion and other 13 single base changes were found in the non-coding region. The mutation p.G611D was found in homozygosis in a one-year-old child, who presented low levels of GAA activity, hypotonia and hypertrophic cardiomyopathy. Two patients presented the new mutation p.L705P in association with c.-32-13T>G. They had low levels of GAA activity and developed late onset Pompe disease. In our study, we observed alterations in the GAA gene originating from Asians, African-Americans and Caucasians, highlighting the high heterogeneity of the Brazilian population. Considering that Pompe disease studies are not very common in Brazil, this study will help to better understand the potential pathogenic role of each change in the GAA gene. Furthermore, a precise and early molecular analysis improves genetic counseling besides allowing for a more efficient treatment in potential candidates.
Collapse
Affiliation(s)
- Lauro Thiago Turaça
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Martins
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Karagol IHE, Bakirtas A, Yilmaz O, Topal E, Kucukcongar A, Ezgu FS, Demirsoy MS, Turktas I. Desensitisation of the youngest patient with Pompe disease in response to alglucosidase alfa. Allergol Immunopathol (Madr) 2014; 42:372-5. [PMID: 23769736 DOI: 10.1016/j.aller.2013.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/25/2013] [Accepted: 02/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- I H E Karagol
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - A Bakirtas
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - O Yilmaz
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - E Topal
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - A Kucukcongar
- Department of Pediatric Metabolism, Gazi University Faculty of Medicine, Ankara, Turkey
| | - F S Ezgu
- Department of Pediatric Metabolism, Gazi University Faculty of Medicine, Ankara, Turkey
| | - M S Demirsoy
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - I Turktas
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
Werneck LC, Lorenzoni PJ, Kay CSK, Scola RH. Muscle biopsy in Pompe disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 71:284-9. [PMID: 23689405 DOI: 10.1590/0004-282x20130022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/13/2012] [Indexed: 11/21/2022]
Abstract
UNLABELLED Pompe disease (PD) can be diagnosed by measuring alpha-glucosidase levels or by identifying mutations in the gene enzyme. Muscle biopsies can aid diagnosis in doubtful cases. METHODS A review of muscle biopsy from 19 cases of PD (infantile, 6 cases; childhood, 4 cases; and juvenile/adult, 9 cases). RESULTS Vacuoles with or without glycogen storage were found in 18 cases. All cases had increased acid phosphatase activity. The vacuole frequency varied (almost all fibers in the infantile form to only a few in the juvenile/adult form). Atrophy of type 1 and 2 fibers was frequent in all forms. Atrophic angular fibers in the NADH-tetrazolium reductase and nonspecific esterase activity were observed in 4/9 of the juvenile/adult cases. CONCLUSION Increased acid phosphatase activity and vacuoles were the primary findings. Most vacuoles were filled with glycogen, and the adult form of the disease had fewer fibers with vacuoles than the infantile or childhood forms.
Collapse
Affiliation(s)
- Lineu Cesar Werneck
- Neuromuscular/Neurology Division, Internal Medicine Department, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba PR, Brazil.
| | | | | | | |
Collapse
|
24
|
Fu L, Qiu W, Yu Y, Guo Y, Zhao P, Zhang X, Liu C, Li F, Huang H, Huang M, Chen S. Clinical and molecular genetic study of infantile-onset Pompe disease in Chinese patients: identification of 6 novel mutations. Gene 2013; 535:53-9. [PMID: 24269976 DOI: 10.1016/j.gene.2013.10.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
Abstract
Pompe disease is an autosomal recessive disorder and is caused by a deficiency in acid alpha-glucosidase (GAA). A broad range of studies have been performed on Pompe patients from different countries. However, the clinical course and molecular basis of the disease in Mainland China have not been well defined. In the present study, we examined a total of 18 Chinese children with infantile-onset Pompe disease to better understand the clinical and genetic features in this population. The median age at symptom onset was 3.6 months (range: 1.7-6.8 months) and 6.3 months at diagnosis (range: 2.5-9.3 months). All but 1 patient died at a median age of 8.2 months (range: 4.7-18.7 months). Molecular analysis revealed 20 different mutations, 6 of which are novel (c.1356delC, c.378G>A, c.1827C>G, c.859-2 A>T, c.1551+2T>G, and c.1465G>T). The most common mutation in the study was c.1935C>A, accounting for 25% (9/36 alleles) of the mutations. Our study provides the first comprehensive examination of the clinical course of infantile-onset Pompe disease and mutations of the GAA gene for patients in Mainland China. Our results confirm the high prevalence of the c.1935C>A mutation, previously reported for other populations, in Mainland Chinese patients with infantile-onset Pompe disease. Furthermore, six novel mutations in the GAA gene are reported for the first time.
Collapse
Affiliation(s)
- Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinologic, Genetic and Metabolic Diseases, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongguo Yu
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Guo
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Pengjun Zhao
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xu Zhang
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chunxiao Liu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huimin Huang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Meirong Huang
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Shubao Chen
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
25
|
Remiche G, Ronchi D, Magri F, Lamperti C, Bordoni A, Moggio M, Bresolin N, Comi GP. Extended phenotype description and new molecular findings in late onset glycogen storage disease type II: a northern Italy population study and review of the literature. J Neurol 2013; 261:83-97. [PMID: 24158270 DOI: 10.1007/s00415-013-7137-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
Abstract
Glycogen storage disease type II (GSDII) is a lysosomal storage disorder caused by acid alpha-1,4-glucosidase deficiency and associated with recessive mutations in its coding gene GAA. Few studies have provided so far a detailed phenotypical characterization in late onset GSDII (LO-GSDII) patients. Genotype-phenotype correlation has been previously attempted with controversial results. We aim to provide an in-depth description of a cohort (n = 36) of LO-GSDII patients coming from the north of Italy and compare our population's findings to the literature. We performed a clinical record-based retrospective and prospective study of our patients. LO-GSDII in our cohort covers a large variability of phenotype including subtle clinical presentation and did not differ significantly from previous data. In all patients, molecular analysis disclosed GAA mutations, five of them being novel. To assess potential genotype-phenotype correlations we divided IVS1-32-13T>G heterozygous patients into two groups following the severity of the mutations on the second allele. Our patients harbouring "severe" mutations (n = 21) presented a strong tendency to have more severe phenotypes and more disability, more severe phenotypes and more disability, higher prevalence of assisted ventilation and a shorter time of evolution to show it. The determination of prognostic factors is mandatory in order to refine the accuracy of prognostic information, to develop follow-up strategy and, more importantly, to improve the decision algorithm for enzyme replacement therapy administration. The demonstration of genotype-phenotype correlations could help to reach this objective. Clinical assessment homogeneity is required to overcome limitations due to the lack of power of most studies.
Collapse
Affiliation(s)
- Gauthier Remiche
- Fonds Erasme pour la Recherche Médicale, Université Libre de Bruxelles (ULB), Brussels, Belgium,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Marie SKN. Pompe disease: further challenges to pursue. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:273-274. [PMID: 23689403 DOI: 10.1590/0004-282x20130035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
|
27
|
Wens SCA, Kroos MA, de Vries JM, Hoogeveen-Westerveld M, Wijgerde MGJM, van Doorn PA, van der Ploeg AT, Reuser AJJ. Remarkably low fibroblast acid α-glucosidase activity in three adults with Pompe disease. Mol Genet Metab 2012; 107:485-9. [PMID: 23000108 DOI: 10.1016/j.ymgme.2012.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Most adults with Pompe disease are compound heterozygotes in which one acid α-glucosidase (GAA) allele harbors the c.-32-13T>G mutation, causing partial loss of GAA, and the other allele harbors a fully deleterious mutation. The fibroblast GAA activity in these patients is usually between 5% and 25% of the average in healthy individuals. In some adult patients, however, the fibroblast GAA activity is much lower and is in the range that is normally observed in classic-infantile Pompe disease. We investigated the genotype-phenotype correlation in three such adult patients and measured the GAA activity as well as the glycogen content in muscle and fibroblasts in order to better understand the clinical course. METHODS DNA was sequenced and GAA activity and glycogen content were measured in leukocytes, fibroblasts and muscle. Muscle biopsies were microscopically analyzed and the biosynthesis of GAA in fibroblasts was analyzed by immunoblotting. GAA activity and glycogen content in fibroblasts and muscle tissue in healthy controls, adult patients with Pompe disease and classic-infantile patients were compared with those of the three index patients. RESULTS One patient had genotype c.525delT/c.671G>A (r.0/p.Arg224Gln). Two affected brothers had genotype c.569G>A/c.1447G>A (p.Arg190His/p.Gly483Arg). In all three cases the GAA activity and the glycogen content in fibroblasts were within the same range as in classic-infantile Pompe disease, but the activity and glycogen content in muscle were both within the adult range. In fibroblasts, the first step of GAA synthesis appeared unaffected but lysosomal forms of GAA were not detectable with immunoblotting. CONCLUSION Some adult patients with mutations other than c.-32-13T>G can have very low GAA activity in fibroblasts but express higher activity in muscle and store less glycogen in muscle than patients with classic-infantile Pompe disease. This might explain why these patients have a slowly progressive course of Pompe disease.
Collapse
|
28
|
Lipinski SE. Alglucosidase alfa and Pompe disease: still going strong? Mol Genet Metab 2012; 107:245-6. [PMID: 23034445 DOI: 10.1016/j.ymgme.2012.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Shawn E Lipinski
- Division of Medical Genetics, Department of Pediatrics, University of Virginia Health System, 1801 Hospital Drive, PO Box 800386, Charlottesville, VA 22908, USA.
| |
Collapse
|
29
|
Palermo AT, Palmer RE, So KS, Oba-Shinjo SM, Zhang M, Richards B, Madhiwalla ST, Finn PF, Hasegawa A, Ciociola KM, Pescatori M, McVie-Wylie AJ, Mattaliano RJ, Madden SL, Marie SKN, Klinger KW, Pomponio RJ. Transcriptional response to GAA deficiency (Pompe disease) in infantile-onset patients. Mol Genet Metab 2012; 106:287-300. [PMID: 22658377 DOI: 10.1016/j.ymgme.2012.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022]
Abstract
Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease.
Collapse
Affiliation(s)
- A T Palermo
- Genetics & Genomics, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kroos M, Hoogeveen-Westerveld M, Michelakakis H, Pomponio R, Van der Ploeg A, Halley D, Reuser A. Update of the pompe disease mutation database with 60 novel GAA sequence variants and additional studies on the functional effect of 34 previously reported variants. Hum Mutat 2012; 33:1161-5. [PMID: 22644586 DOI: 10.1002/humu.22108] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Marian Kroos
- Department of Clinical Genetics and Paediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Niño MY, Mateus HE, Fonseca DJ, Kroos MA, Ospina SY, Mejía JF, Uribe JA, Reuser AJJ, Laissue P. Identification and Functional Characterization of GAA Mutations in Colombian Patients Affected by Pompe Disease. JIMD Rep 2012; 7:39-48. [PMID: 23430493 DOI: 10.1007/8904_2012_138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 01/27/2012] [Accepted: 02/24/2012] [Indexed: 03/17/2023] Open
Abstract
Pompe disease (PD) is a recessive metabolic disorder characterized by acid α-glucosidase (GAA) deficiency, which results in lysosomal accumulation of glycogen in all tissues, especially in skeletal muscles. PD clinical course is mainly determined by the nature of the GAA mutations. Although ~400 distinct GAA sequence variations have been described, the genotype-phenotype correlation is not always evident.In this study, we describe the first clinical and genetic analysis of Colombian PD patients performed in 11 affected individuals. GAA open reading frame sequencing revealed eight distinct mutations related to PD etiology including two novel missense mutations, c.1106 T > C (p.Leu369Pro) and c.2236 T > C (p.Trp746Arg). In vitro functional studies showed that the structural changes conferred by both mutations did not inhibit the synthesis of the 110 kD GAA precursor form but affected the processing and intracellular transport of GAA. In addition, analysis of previously described variants located at this position (p.Trp746Gly, p.Trp746Cys, p.Trp746Ser, p.Trp746X) revealed new insights in the molecular basis of PD. Notably, we found that p.Trp746Cys mutation, which was previously described as a polymorphism as well as a causal mutation, displayed a mild deleterious effect. Interestingly and by chance, our study argues in favor of a remarkable Afro-American and European ancestry of the Colombian population. Taken together, our report provides valuable information on the PD genotype-phenotype correlation, which is expected to facilitate and improve genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Mónica Yasmín Niño
- Unidad de Genética, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cho A, Kim SJ, Lim BC, Hwang H, Park JD, Kim GB, Jin DK, Lee J, Ki CS, Kim KJ, Hwang YS, Chae JH. Infantile Pompe disease: clinical and genetic characteristics with an experience of enzyme replacement therapy. J Child Neurol 2012; 27:319-24. [PMID: 21940687 DOI: 10.1177/0883073811420295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pompe disease is an autosomal recessive disorder caused by lysosomal acid α-glucosidase deficiency. Infantile-onset Pompe disease presents with cardiomyopathy and hypotonia, leading to premature death. This article describes 7 infantile Pompe disease cases and provides their molecular bases and clinical outcomes after enzyme replacement therapy for the first time in Korea. Molecular genetic analyses revealed the presence of 9 different mutations, including 5 novel mutations (c.2171C>A, c.2774C>T, c.1582_3de12, c.1261_1263Tms, and c.1322_1326+9de114). The most common mutation in these 7 patients was c.1316T>A (28%). Four patients received intravenous recombinant human acid α-glucosidase therapy for 2 years, on average, without significant side effects during the treatment course. They all exhibited increased muscle power, with considerable improvement in cardiac function. Pompe disease is heterogeneous regarding both clinical features and molecular characteristics. Early identification of Pompe disease is very important, considering that enzyme replacement therapy is a safe and effective treatment for early-onset patients.
Collapse
Affiliation(s)
- Anna Cho
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kroos M, Hoogeveen-Westerveld M, van der Ploeg A, Reuser AJ. The genotype-phenotype correlation in Pompe disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:59-68. [DOI: 10.1002/ajmg.c.31318] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Bali DS, Goldstein JL, Banugaria S, Dai J, Mackey J, Rehder C, Kishnani PS. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experience. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:40-9. [PMID: 22252923 DOI: 10.1002/ajmg.c.31319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme replacement therapy (ERT) for Pompe disease using recombinant acid alpha-glucosidase (rhGAA) has resulted in increased survival although the clinical response is variable. Cross-reactive immunological material (CRIM)-negative status has been recognized as a poor prognostic factor. CRIM-negative patients make no GAA protein and develop sustained high antibody titers to ERT that render the treatment ineffective. Antibody titers are generally low for the majority of CRIM-positive patients and there is typically a better clinical outcome. Because immunomodulation has been found to be most effective in CRIM-negative patients prior to, or shortly after, initiation of ERT, knowledge of CRIM status is important before ERT is begun. We have analyzed 243 patients with infantile Pompe disease using a Western blot method for determining CRIM status and using cultured skin fibroblasts. Sixty-one out of 243 (25.1%) patients tested from various ethnic backgrounds were found to be CRIM-negative. We then correlated the CRIM results with GAA gene mutations where available (52 CRIM-negative and 88 CRIM-positive patients). We found that, in most cases, CRIM status can be predicted from GAA mutations, potentially circumventing the need for invasive skin biopsy and time wasted in culturing cells in the future. Continued studies in this area will help to increase the power of GAA gene mutations in predicting CRIM status as well as possibly identifying CRIM-positive patients who are at risk for developing high antibody titers.
Collapse
Affiliation(s)
- Deeksha S Bali
- Duke Biochemical Genetics Laboratory, Durham, NC 27713, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kishnani P, Byrne B, Case L, Cupler E, Genge A, van der Ploeg A, Prasad S. The Heterogeneity of Pompe Disease: Early Data on Genotype From the Pompe Registry. Clin Ther 2011. [DOI: 10.1016/j.clinthera.2011.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients' phenotypes. Eur J Hum Genet 2010; 19:422-31. [PMID: 21179066 DOI: 10.1038/ejhg.2010.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glycogen-storage disease type II is an autosomal recessive-inherited disorder due to the deficiency of acid α-glucosidase. A large number of mutations in the acid α-glucosidase gene have been described to date. Among them, ~15% are variations that may affect mRNA splicing process. In this study, we have for the first time comprehensively reviewed the available information on splicing mutations of the acid α-glucosidase gene and we have evaluated their possible impact on the splicing process using different in silico approaches. Out of the 39 different GAA-sequence variations described, an in silico analysis using seven different programs showed that 97% of them are predicted to have an impact on the splicing process. Moreover, this analysis showed a quite good correlation between the impact of the mutation on the splicing process and the clinical phenotype. In addition, we have performed the functional characterization of three novel sequence variants found in Italian patients and still uncharacterized. Using a minigene system, we have confirmed their pathogenic nature. In conclusion, this study has shown that in silico analysis represents a useful tool to select mutations that affect the splicing process of the acid α-glucosidase gene and provides an updated picture of all this kind of mutations reported till now.
Collapse
|
37
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Sarkozy A, Lochmüller H. Neuromuscular disorders and 2010: recent advances. J Neurol 2010; 257:2117-21. [PMID: 20852879 DOI: 10.1007/s00415-010-5745-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 02/05/2023]
Abstract
This short review summarises the research articles related to neuromuscular disorders published in the Journal of Neurology over the last year from May 2009 to July 2010.
Collapse
Affiliation(s)
- Anna Sarkozy
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | |
Collapse
|
39
|
Bernstein DL, Bialer MG, Mehta L, Desnick RJ. Pompe disease: dramatic improvement in gastrointestinal function following enzyme replacement therapy. A report of three later-onset patients. Mol Genet Metab 2010; 101:130-3. [PMID: 20638881 DOI: 10.1016/j.ymgme.2010.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/05/2010] [Accepted: 06/05/2010] [Indexed: 11/18/2022]
Abstract
Pompe disease is a lysosomal storage disease due to deficient acid α-glucosidase (GAA) activity. Infants with the classic infantile-onset subtype present with severe hypotonia and cardiomegaly, and most expire in the first year of life, whereas the severity of the muscle-based manifestations in patients with the late infantile/juvenile and adult-onset subtypes depends on the level of GAA residual enzymatic activity. The clinical features of later-onset Pompe disease are still emerging, and even the natural history and progression of muscle weakness and respiratory failure, hallmarks of the later-onset subtypes, are not well documented. For example, we report here three later-onset patients who had chronic diarrhea, postprandial bloating and abdominal pain, previously unrecognized manifestations of later-onset Pompe disease. Two patients had intestinal incontinence and one reported synchronous vomiting and diarrhea on a daily basis. These symptoms significantly interfered with their quality of life, often limiting their ability to leave home. All gastrointestinal symptoms resolved within the first six months of enzyme replacement therapy (ERT) with recombinant human alglucosidase alpha (rhGAA). All three patients gained weight and remain symptom free, two for over four years. Thus, gastrointestinal symptoms occur in later-onset patients with Pompe disease and are resolved with ERT.
Collapse
Affiliation(s)
- Donna L Bernstein
- Division of Medical Genetics, North Shore-Long Island Jewish Health System, 1554 Northern Boulevard, Suite 204, Manhasset, NY 11030, United States
| | | | | | | |
Collapse
|
40
|
Grzesiuk AK, Shinjo SMO, Silva RD, Machado M, Galera MF, Marie SKN. Homozygotic intronic GAA mutation in three siblings with late-onset Pompe's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 68:194-7. [DOI: 10.1590/s0004-282x2010000200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/28/2009] [Indexed: 11/21/2022]
Abstract
Pompe's disease (PD) is a metabolic myopathy caused by the accumulation of lysosomal glycogen, secondary to acid α-glucosidase (GAA) enzyme deficiency. Childhood and late-onset forms are described, differing by the age of onset and symptoms. In this study were analyzed affected siblings with Pompe's disease (PD) and their distinct clinical and pathological presentations. METHOD: Diagnosis was performed by the clinical presentation of limb-girdle dystrophies and respiratory compromise. Confirmatory diagnoses were conducted by muscle biopsy, GAA activity measurement and by GAA gene genotyping. RESULTS: The findings suggested muscular involvement due to GAA deficiency. GAA genotyping showed they are homozygous for the c.-32-3C>A mutation. CONCLUSION: Herein we reported a family where three out of five siblings were diagnosed with late-onset PD, although it is a rare metabolic disease inherited in an autossomal recessive manner. We emphasize the importance of including this presentation within the differential diagnoses of the limb-girdle dystrophies once enzyme replacement therapy is available.
Collapse
|
41
|
Llerena JC, Horovitz DM, Marie SKN, Porta G, Giugliani R, Rojas MVM, Martins AM. The Brazilian consensus on the management of Pompe disease. J Pediatr 2009; 155:S47-56. [PMID: 19765410 DOI: 10.1016/j.jpeds.2009.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/27/2009] [Accepted: 07/08/2009] [Indexed: 11/16/2022]
Affiliation(s)
- Juan C Llerena
- Departamento de Genética Médica, Instituto Fernandes Figueira/FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|