1
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
2
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 2022; 288:121675. [DOI: 10.1016/j.biomaterials.2022.121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
|
4
|
Qu X, Violette K, Sewell-Loftin MK, Soslow J, Saint-Jean L, Hinton RB, Merryman WD, Baldwin HS. Loss of flow responsive Tie1 results in Impaired
Aortic valve remodeling. Dev Biol 2019; 455:73-84. [PMID: 31319059 DOI: 10.1016/j.ydbio.2019.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms regulating endothelial cell response to hemodynamic forces required for heart valve development, especially valve remodeling, remain elusive. Tie1, an endothelial specific receptor tyrosine kinase, is up-regulated by oscillating shear stress and is required for lymphatic valve development. In this study, we demonstrate that valvular endothelial Tie1 is differentially expressed in a dynamic pattern predicted by disturbed flow during valve remodeling. Following valvular endocardial specific deletion of Tie1 in mice, we observed enlarged aortic valve leaflets, decreased valve stiffness and valvular insufficiency. Valve abnormalities were only detected in late gestation and early postnatal mutant animals and worsened with age. The mutant mice developed perturbed extracellular matrix (ECM) deposition and remodeling characterized by increased glycosaminoglycan and decreased collagen content, as well as increased valve interstitial cell expression of Sox9, a transcription factor essential for normal ECM maturation during heart valve development. This study provides the first evidence that Tie1 is involved in modulation of late valve remodeling and suggests that an important Tie1-Sox9 signaling axis exists through which disturbed flows are converted by endocardial cells to paracrine Sox9 signals to modulate normal matrix remodeling of the aortic valve.
Collapse
Affiliation(s)
- Xianghu Qu
- Division of Pediatrics Cardiology, Vanderbilt University, Nashville, TN, USA
| | - Kate Violette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - M K Sewell-Loftin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan Soslow
- Division of Pediatrics Cardiology, Vanderbilt University, Nashville, TN, USA
| | - LeShana Saint-Jean
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Robert B Hinton
- Division of Cardiology, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - H Scott Baldwin
- Division of Pediatrics Cardiology, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Hernández-Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J Hepatol 2019; 70:759-772. [PMID: 30599172 DOI: 10.1016/j.jhep.2018.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
In the normal liver, cells interact closely through gap junctions. By providing a pathway for the trafficking of low molecular mass molecules, these channels contribute to tissue homeostasis and maintenance of hepatic function. Thus, dysfunction of gap junctions affects a wide variety of liver processes, such as differentiation, cell death, inflammation and fibrosis. In fact, dysfunctional gap junctions have been implicated, for more than a decade, in cholestatic disease, hepatic cancer and cirrhosis. Additionally, in recent years there is an increasing body of evidence that these channels are also involved in other relevant and prevalent liver pathological processes, such as non-alcoholic fatty liver disease, acute liver injury and portal hypertension. In parallel to these new clinical implications the available data include controversial observations. Thus, a comprehensive overview is required to better understand the functional complexity of these pores. This paper will review the most recent knowledge concerning gap junction dysfunction, with a special focus on the role of these channels in the pathogenesis of relevant clinical entities and on potential therapeutic targets that are amenable to modification by drugs.
Collapse
Affiliation(s)
| | | | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Medical School, London, UK
| |
Collapse
|
6
|
Vilà-González M, Kelaini S, Magee C, Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D, Tsifaki M, O'Neill K, Pedrini E, Yang C, Medina R, McDonald D, Simpson D, Zampetaki A, Zeng L, Grieve D, Lois N, Stitt AW, Margariti A. Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells 2018; 37:226-239. [PMID: 30372556 PMCID: PMC6392130 DOI: 10.1002/stem.2936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 01/11/2023]
Abstract
The mortality rate for (cardio)‐vascular disease is one of the highest in the world, so a healthy functional endothelium is of outmost importance against vascular disease. In this study, human induced pluripotent stem (iPS) cells were reprogrammed from 1 ml blood of healthy donors and subsequently differentiated into endothelial cells (iPS‐ECs) with typical EC characteristics. This research combined iPS cell technologies and next‐generation sequencing to acquire an insight into the transcriptional regulation of iPS‐ECs. We identified endothelial cell‐specific molecule 1 (ESM1) as one of the highest expressed genes during EC differentiation, playing a key role in EC enrichment and function by regulating connexin 40 (CX40) and eNOS. Importantly, ESM1 enhanced the iPS‐ECs potential to improve angiogenesis and neovascularisation in in vivo models of angiogenesis and hind limb ischemia. These findings demonstrated for the first time that enriched functional ECs are derived through cell reprogramming and ESM1 signaling, opening the horizon for drug screening and cell‐based therapies for vascular diseases. Therefore, this study showcases a new approach for enriching and enhancing the function of induced pluripotent stem (iPS) cell‐derived ECs from a very small amount of blood through ESM1 signaling, which greatly enhances their functionality and increases their therapeutic potential. Stem Cells2019;37:226–239
Collapse
Affiliation(s)
- Marta Vilà-González
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Corey Magee
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Magdalini Eleftheriadou
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Amy Cochrane
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Daiana Drehmer
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Marianna Tsifaki
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Karla O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Chunbo Yang
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Reinhold Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Denise McDonald
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Anna Zampetaki
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Noemi Lois
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| |
Collapse
|
7
|
Dowding S, Zakkaroff C, Moore S, David T. Coronary Smooth Muscle Cell Calcium Dynamics: Effects of Bifurcation Angle on Atheroprone Conditions. Front Physiol 2018; 9:1528. [PMID: 30429800 PMCID: PMC6220094 DOI: 10.3389/fphys.2018.01528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
This work investigates the effect of arterial bifurcation angulation on atherosclerosis development through in-silico simulations of coupled cell dynamics. The computational model presented here combines cellular pathways, fluid dynamics, and physiologically-realistic vessel geometries as observed in the human vasculature. The coupled cells model includes endothelial cells (ECs) and smooth muscle cells (SMCs) with ion dynamics, hetero and homotypic coupling, as well as electro-diffusive coupling. Three arterial bifurcation surface models were used in the coupled cells simulations. All three simulations showed propagating waves of Ca2+ in both the SMC and EC layers, following the introduction of a luminal agonist, in this case ATP. Immediately following the introduction of ATP concentration Ca2+ waves propagate from the area of high ATP toward the areas of low ATP concentration, forming complex patterns where waves interact with eachother, collide and fade. These dynamic phenomena are repeated with a series of waves of slower velocity. The underlying motivation of this research was to examine the macro-scale phenomena, given that the characteristic length scales of atherosclerotic plaques are much larger than a single cell. The micro-scale dynamics were modeled on macro-scale arterial bifurcation surfaces containing over one million cells. The results of the simulations presented here suggest that susceptibility to atherosclerosis development depends on the bifurcation angulation. In conjunction with findings reported in the literature, the simulation results demonstrate that arterial bifurcations containing wider angles have a more prominent influence on the coupled cells pathways associated with the development of atherosclerosis, by means of disturbed flow and lower SMC Ca2+ concentrations. The discussion of the results considers the findings of this research within the context of the potential link between information transport through frequency encoding of Ca2+ wave dynamics and development of atheroprone conditions.
Collapse
Affiliation(s)
- Stewart Dowding
- UC High Performance Computing Centre, University of Canterbury, Christchurch, New Zealand
| | - Constantine Zakkaroff
- Department of Accounting and Information Systems, University of Canterbury, Christchurch, New Zealand
| | | | - Tim David
- UC High Performance Computing Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
8
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Schmidt VJ, Wietbrock JO, Leibig N, Hernekamp JF, Henn D, Radu CA, Kneser U. Haemodynamically stimulated and in vivo generated axially vascularized soft-tissue free flaps for closure of complex defects: Evaluation in a small animal model. J Tissue Eng Regen Med 2017; 12:622-632. [PMID: 28509443 DOI: 10.1002/term.2477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022]
Abstract
The arteriovenous (AV) loop model permits the creation of significant volumes of axially vascularized tissue that represents an alternative to conventional free flaps, circumventing their common limitations. However, such AV loop-based flaps have never before been examined in standardized animal models with respect to their suitability for reconstruction of critical bone-exposing defects. In the course of our preliminary studies, we implemented a novel defect model in rats that provides standardized and critical wound conditions and evaluated whether AV loop-generated flaps are suitable for free microsurgical transfer and closure of composite defects. We compared three groups of rodents with similar scapular defects: one received the AV flap, whereas controls were left to heal by secondary intention or with supplementary acellular matrix alone. To create the flaps, AV loops were placed into subcutaneous Teflon chambers filled with acellular matrix and transferred to the thigh region. Flap maturation was evaluated by histological analysis of angiogenesis and cell migration at days 14 and 28 after loop creation. Flap transfer to the scapular region and microsurgical anastomoses were performed after 14 days. Postoperative defect closure and perfusion were continually compared between groups. Within the AV flap chamber, the mean vessel number, cell count and the proportion of proliferating cells increased significantly over time. The novel defect model revealed that stable wound coverage with homogeneous vascular integration was achieved by AV loop-vascularized soft-tissue free flaps compared with controls. In summary, our study indicates for the first time that complex composite defects in rats can successfully be treated with AV loop-based free flaps.
Collapse
Affiliation(s)
- Volker J Schmidt
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Johanna O Wietbrock
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Nico Leibig
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Jochen F Hernekamp
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Dominic Henn
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Christian A Radu
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
10
|
Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system. Biomed Microdevices 2017; 19:91. [DOI: 10.1007/s10544-017-0229-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Mongkoldhumrongkul N, Latif N, Yacoub MH, Chester AH. Effect of Side-Specific Valvular Shear Stress on the Content of Extracellular Matrix in Aortic Valves. Cardiovasc Eng Technol 2016; 9:151-157. [PMID: 27709350 PMCID: PMC5988791 DOI: 10.1007/s13239-016-0280-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Responses of valve endothelial cells (VECs) to shear stresses are important for the regulation of valve durability. However, the effect of flow patterns subjected to VECs on the opposite surfaces of the valves on the production of extracellular matrix (ECM) has not yet been investigated. This study aims to investigate the response of side-specific flow patterns, in terms of ECM synthesis and/or degradation in porcine aortic valves. Aortic and ventricular sides of aortic valve leaflets were exposed to oscillatory and laminar flow generated by a Cone-and-Plate machine for 48 h. The amount of collagen, GAGs and elastin was quantified and compared to samples collected from the same leaflets without exposing to flow. The results demonstrated that flow is important to maintain the amount of GAGs and elastin in the valve, as compared to the effect of static conditions. Particularly, the laminar waveform plays a crucial role on the modulation of elastin in side-independent manner. Furthermore, the ability of oscillatory flow on the aortic surface to increase the amount of collagen and GAGs cannot be replicated by exposure of an identical flow pattern on the ventricular side of the valve. Side-specific responses to the particular patterns of flow are important to the regulation of ECM components. Such understanding is imperative to the creation of tissue-engineered heart valves that must be created from the “appropriate” cells that can replicate the functions of the native VECs to regulate the different constituents of ECM.
Collapse
Affiliation(s)
| | - Najma Latif
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | - Magdi H Yacoub
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | - Adrian H Chester
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK.
| |
Collapse
|
12
|
Griffin DA, Johnson RW, Whitlock JM, Pozsgai ER, Heller KN, Grose WE, Arnold WD, Sahenk Z, Hartzell HC, Rodino-Klapac LR. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum Mol Genet 2016; 25:1900-1911. [PMID: 26911675 PMCID: PMC5062581 DOI: 10.1093/hmg/ddw063] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 11/15/2022] Open
Abstract
Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659.
Collapse
Affiliation(s)
- Danielle A Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - Ryan W Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric R Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA and
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - William E Grose
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - W David Arnold
- Department of Neurology, Department of Physical Medicine and Rehabilitation, Department of Neuroscience and
| | - Zarife Sahenk
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Department of Neurology
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA and
| |
Collapse
|
13
|
Yuan D, Sun G, Zhang R, Luo C, Ge M, Luo G, Hei Z. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins. Mol Med Rep 2015; 12:7146-52. [PMID: 26324251 DOI: 10.3892/mmr.2015.4273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/04/2015] [Indexed: 11/05/2022] Open
Abstract
Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.
Collapse
Affiliation(s)
- Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guoliang Sun
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Rui Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
14
|
Chevessier F, Schuld J, Orfanos Z, Plank AC, Wolf L, Maerkens A, Unger A, Schlötzer-Schrehardt U, Kley RA, Von Hörsten S, Marcus K, Linke WA, Vorgerd M, van der Ven PFM, Fürst DO, Schröder R. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015; 24:7207-20. [PMID: 26472074 DOI: 10.1093/hmg/ddv421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates.
Collapse
Affiliation(s)
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Zacharias Orfanos
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Anne-C Plank
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | | | - Alexandra Maerkens
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Stephan Von Hörsten
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | - Katrin Marcus
- Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
15
|
Meens MJ, Pfenniger A, Kwak BR, Delmar M. Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 2013; 99:304-14. [PMID: 23612582 DOI: 10.1093/cvr/cvt095] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexins.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, Foundation for Medical Research, University of Geneva, 2nd floor, 64 Avenue de Roseraie, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
16
|
Salameh A, Dhein S. Effects of mechanical forces and stretch on intercellular gap junction coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:147-56. [PMID: 22245380 DOI: 10.1016/j.bbamem.2011.12.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 01/27/2023]
Abstract
Mechanical forces provide fundamental physiological stimulus in living organisms. Recent investigations demonstrated how various types of mechanical load, like strain, pressure, shear stress, or cyclic stretch can affect cell biology and gap junction intercellular communication (GJIC). Depending on the cell type, the type of mechanical load and on strength and duration of application, these forces can induce hypertrophic processes and modulate the expression and function of certain connexins such as Cx43, while others such as Cx37 or Cx40 are reported to be less mechanosensitive. In particular, not only expression but also subcellular localization of Cx43 is altered in cardiomyocytes submitted to cyclic mechanical stretch resulting in the typical elongated cell shape with an accentuation of Cx43 at the cell poles. In the heart both cardiomyocytes and fibroblasts can alter their GJIC in response to mechanical load. In the vasculature both endothelial cells and smooth muscle cells are subject to strain and cyclic stretch resulting from the pulsatile flow. In addition, vascular endothelial cells are mainly affected by shear stress resulting from the blood flow parallel to their surface. These mechanical forces lead to a regulation of GJIC in vascular tissue. In bones, osteocytes and osteoblasts are coupled via gap junctions, which also react to mechanical forces. Since gap junctions are involved in regulation of cell growth and differentiation, the mechanosensitivity of the regulation of these channels might open new perspectives to explain how cells can respond to mechanical load, and how stretch induces self-organization of a cell layer which might have implications for embryology and the development of organs. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Germany
| | | |
Collapse
|
17
|
Vorderwülbecke BJ, Maroski J, Fiedorowicz K, Da Silva-Azevedo L, Marki A, Pries AR, Zakrzewicz A. Regulation of endothelial connexin40 expression by shear stress. Am J Physiol Heart Circ Physiol 2012; 302:H143-52. [PMID: 22021330 DOI: 10.1152/ajpheart.00634.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial connexin (Cx)40 plays an important role in signal propagation along blood vessel walls, modulating vessel diameter and thereby blood flow. Blood flow, in turn, has been shown to alter endothelial Cx40 expression. However, the timing and shear stress dependence of this relationship have remained unclear, as have the signal transduction pathways involved and the functional implications. Therefore, the aim of this study was to quantify the effects of shear stress on endothelial Cx40 expression, to analyze the role of phosphoinositide 3-kinase (PI3K)/Akt signaling involved, and to assess the possible functional consequences for the adaptation of microvascular networks. First-passage human umbilical vein endothelial cells were exposed to defined shear stress conditions and analyzed for Cx40 using real-time RT-PCR and immunoblot analysis. Shear stress caused long-term induction of Cx40 protein expression, with two short-term mRNA peaks at 4 and 16 h, indicating the dynamic nature of the adaptation process. Maximum shear stress-dependent induction was observed at shear levels between 6 and 10 dyn/cm(2). Simulation of this pattern of shear-dependent Cx expression in a vascular adaptation model of a microvascular network led to an improved fit for the simulated results to experimental measurements. Cx40 expression was greatly reduced by inhibiting PI3K or Akt, with PI3K activity being required for basal Cx40 expression and Akt activity taking part in its shear stress-dependent induction.
Collapse
Affiliation(s)
- Bernd J Vorderwülbecke
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Institute of Physiology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 2011; 354:253-66. [PMID: 21515254 PMCID: PMC3134316 DOI: 10.1016/j.ydbio.2011.04.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Intraluminal valves are required for the proper function of lymphatic collecting vessels and large lymphatic trunks like the thoracic duct. Despite recent progress in the study of lymphvasculogenesis and lymphangiogenesis, the molecular mechanisms controlling the morphogenesis of lymphatic valves remain poorly understood. Here, we report that gap junction proteins, or connexins (Cxs), are required for lymphatic valvulogenesis. Cx37 and Cx43 are expressed early in mouse lymphatic development in the jugular lymph sacs, and later in development these Cxs become enriched and differentially expressed by lymphatic endothelial cells on the upstream and downstream sides of the valves. Specific deficiencies of Cx37 and Cx43 alone or in combination result in defective valve formation in lymphatic collecting vessels, lymphedema, and chylothorax. We also show that Cx37 regulates jugular lymph sac size and that both Cx37 and Cx43 are required for normal thoracic duct development, including valve formation. Another Cx family member, Cx47, whose human analog is mutated in some families with lymphedema, is also highly enriched in a subset of endothelial cells in lymphatic valves. Mechanistically, we present data from Foxc2-/- embryos suggesting that Cx37 may be a target of regulation by Foxc2, a transcription factor that is mutated in human lymphedema-distichiasis syndrome. These results show that at least three Cxs are expressed in the developing lymphatic vasculature and, when defective, are associated with clinically manifest lymphatic disorders in mice and man.
Collapse
Affiliation(s)
- John D. Kanady
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Michael T. Dellinger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Marlys H. Witte
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
19
|
Markert C, Meaney M, Voelker K, Grange R, Dalley H, Cann J, Ahmed M, Bishwokarma B, Walker S, Yu S, Brown M, Lawlor M, Beggs A, Childers M. Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet 2010; 19:2268-83. [PMID: 20233748 PMCID: PMC2865379 DOI: 10.1093/hmg/ddq105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/18/2010] [Accepted: 03/09/2010] [Indexed: 02/03/2023] Open
Abstract
Autosomal recessive limb-girdle muscular dystrophy type 2G (LGMD2G) is an adult-onset myopathy characterized by distal lower limb weakness, calf hypertrophy and progressive decline in ambulation. The disease is caused by mutations in Tcap, a z-disc protein of skeletal muscle, although the precise mechanisms resulting in clinical symptoms are unknown. To provide a model for preclinical trials and for mechanistic studies, we generated knockout (KO) mice carrying a null mutation in the Tcap gene. Here we present the first report of a Tcap KO mouse model for LGMD2G and the results of an investigation into the effects of Tcap deficiency on skeletal muscle function in 4- and 12-month-old mice. Muscle histology of Tcap-null mice revealed abnormal myofiber size variation with central nucleation, similar to findings in the muscles of LGMD2G patients. An analysis of a Tcap binding protein, myostatin, showed that deletion of Tcap was accompanied by increased protein levels of myostatin. Our Tcap-null mice exhibited a decline in the ability to maintain balance on a rotating rod, relative to wild-type controls. No differences were detected in force or fatigue assays of isolated extensor digitorum longus (EDL) and soleus (SOL) muscles. Finally, a mechanical investigation of EDL and SOL indicated an increase in muscle stiffness in KO animals. We are the first to establish a viable KO mouse model of Tcap deficiency and our model mice demonstrate a dystrophic phenotype comparable to humans with LGMD2G.
Collapse
Affiliation(s)
- C.D. Markert
- Department of Neurology and
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - M.P. Meaney
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - K.A. Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - R.W. Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - H.W. Dalley
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J.K. Cann
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - M. Ahmed
- Department of Neurology and
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - B. Bishwokarma
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - S.J. Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - S.X. Yu
- InGenious Targeting Laboratory, Inc., Stony Brook, NY, USA
| | - M. Brown
- Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, USA and
| | - M.W. Lawlor
- Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - A.H. Beggs
- Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - M.K. Childers
- Department of Neurology and
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| |
Collapse
|
20
|
Song M, Yu X, Cui X, Zhu G, Zhao G, Chen J, Huang L. Blockade of Connexin 43 Hemichannels Reduces Neointima Formation After Vascular Injury by Inhibiting Proliferation and Phenotypic Modulation of Smooth Muscle Cells. Exp Biol Med (Maywood) 2009; 234:1192-200. [PMID: 19596827 DOI: 10.3181/0902-rm-80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Connexins 43 (Cx43) plays a key role in neointimal formation after vascular injury, but the mechanism still needs to be further explored. We hypothesized that the gap junction-dependent function of Cx43 to mediate intercellular communication has a crucial role in the development and progression of vascular diseases. The effect of intercellular communication mediated by Cx43 hemichannels on neointimal formation after vascular injury was investigated. Cx43 was overexpressed or knockdown in rat vascular smooth muscle cell (SMC) by transfection pcDNA-Cx43 plasmid or small interfering RNA (siRNA) against Cx43 (siCx43). SMC proliferation and marker genes expression after Cx43 alteration and blockade of the Cx43 hemichannel were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and RT-PCR. The effect of carbenoxolone on neointimal formation was investigated in carotid artery injured rat model. We demonstrated that overexpression of Cx43 promoted SMC proliferation, meanwhile, mRNA expression level of smooth muscle α-actin and calponin, which were important markers of SMC in a contractile state, were down-regulated in smooth muscle. Knockdown of Cx43 inhibited SMC proliferation but increased SMC marker genes expression level. Carbenoxolone (50 μM) improved SMC contractile differentiation and inhibited its proliferation. Our data showed that carbenoxolone reduced neointimal formation after carotid artery injury. In summary, blockade of intercellular communication via Cx43 hemichannels reduces neointimal formation after vascular injury by inhibiting proliferation and phenotypic modulation of SMCs.
Collapse
MESH Headings
- Animals
- Carbenoxolone/pharmacology
- Carotid Artery Injuries/metabolism
- Cell Proliferation/drug effects
- Coloring Agents/metabolism
- Connexin 43/genetics
- Connexin 43/metabolism
- Endothelium, Vascular/metabolism
- Fluorescence Recovery After Photobleaching
- Fluorescent Antibody Technique, Indirect
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptides/pharmacology
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Tetrazolium Salts/metabolism
- Thiazoles/metabolism
- Transfection
- Tunica Intima/drug effects
- Tunica Intima/metabolism
Collapse
Affiliation(s)
- MingBao Song
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Inai T, Shibata Y. Heterogeneous expression of endothelial connexin (Cx) 37, Cx40, and Cx43 in rat large veins. Anat Sci Int 2009; 84:237-45. [PMID: 19322632 DOI: 10.1007/s12565-009-0029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/25/2008] [Indexed: 11/25/2022]
Abstract
Gap junctions are clusters of transmembrane protein channels for intercellular communication and are composed of connexin (Cx). The vascular endothelial cells express Cx37, Cx40, and Cx43. We herein examined the spatial distribution of the endothelial connexins Cx37, Cx40, and Cx43 in rat large veins including the cranial vena cava, thoracic section of the caudal vena cava, and abdominal section of the caudal vena cava. We also examined the mean size of the endothelial cells and quantified the protein expression levels of the endothelial connexins. We found that the large veins heterogeneously expressed Cx37, Cx40, and Cx43 as follows: Cx40 > Cx37 > > Cx43 in the cranial vena cava, Cx37 > Cx43 > > Cx40 in the thoracic section of the caudal vena cava, and Cx40 > Cx43 > > Cx37 in the abdominal section of the caudal vena cava. Double immunostaining of two of the endothelial connexins revealed that the gap-junction plaques were composed of various combinations of endothelial connexins. The mean size of the endothelial cells was large, moderate, or small in the cranial vena cava, the abdominal section of the caudal vena cava, or the thoracic section of the caudal vena cava, respectively. The heterogeneity of the endothelial cells of the rat large veins in terms of the connexin expression suggests that the endothelial cells are differently coupled in the large veins. The present data are useful for investigating, for example, disease-related alterations in expression of endothelial connexins in large veins.
Collapse
Affiliation(s)
- Tetsuichiro Inai
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | |
Collapse
|
22
|
Kwak BR, Silacci P, Stergiopulos N, Hayoz D, Meda P. Shear Stress and Cyclic Circumferential Stretch, But Not Pressure, Alter Connexin43 Expression in Endothelial Cells. ACTA ACUST UNITED AC 2009; 12:261-70. [PMID: 16531321 DOI: 10.1080/15419060500514119] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hemodynamic forces play a critical role in atherogenesis, as evidenced by the focal pattern of development of atherosclerotic lesions. Whereas disturbed flow in the branches and curved regions of large arteries is proatherogenic, laminar flow in the straight parts of vessels is atheroprotective. In addition, hypertension and age-related changes in arterial stiffness are important risk factors of the disease. Hemodynamic forces induce various changes in the structure and function of vascular endothelium, many of which reflect alterations in gene expression. Endothelial cells are linked by gap junctions, which facilitate the propagation of electrical and chemical signals along the vascular wall. Using an in vitro perfusion system, we investigated the effects of pulsed unidirectional and oscillatory flows in combination with different levels of hydrostatic pressure and circumferential stretch on the expression of Cx43 in endothelial cells. Our results show that shear stress and circumferential stretch, but not pressure, modulate the expression of Cx43. In view of the distribution of this protein along the vascular tree, our findings provide new insights into the role of mechanical forces on gap junctional communication in regions prone to the development of atherosclerosis.
Collapse
Affiliation(s)
- Brenda R Kwak
- Division of Cardiology, University Hospitals Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Wang YP, Choe M, Choi SY, Jin U, Kim CK, Seo EJ, Cho IJ, Park CB. Increased Expression of Connexin43 on the Aortic Valve in the Hypercholesterolemic Rabbit Model. J INVEST SURG 2009; 22:98-104. [DOI: 10.1080/08941930802713035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Martín de Llano JJ, Fuertes G, Torró I, García Vicent C, Fayos JL, Lurbe E. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels. J Transl Med 2009; 7:30. [PMID: 19393064 PMCID: PMC2680391 DOI: 10.1186/1479-5876-7-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/24/2009] [Indexed: 11/13/2022] Open
Abstract
Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein) and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67) and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0) have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p < 0.05). Morphometric analysis indicated that the projection area of the artery endothelial cells (1,161 ± 198 and 1,544 ± 472 μm2, p < 0.05), but not those derived from the vein from individuals with a birth weight lower than 2.8 kg was lower than that of cells from individuals with a birth weight higher than 3.5 kg. Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.
Collapse
Affiliation(s)
- José Javier Martín de Llano
- Pediatric Department, Consorcio Hospital General Universitario de Valencia, and CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Burnier L, Fontana P, Angelillo-Scherrer A, Kwak BR. Intercellular Communication in Atherosclerosis. Physiology (Bethesda) 2009; 24:36-44. [DOI: 10.1152/physiol.00036.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell-to-cell communication is a process necessary for physiological tissue homeostasis and appears often altered during disease. Gap junction channels, formed by connexins, allow the direct intercellular communication between adjacent cells. After a brief review of the pathophysiology of atherosclerosis, we will discuss the role of connexins throughout the different stages of the disease.
Collapse
Affiliation(s)
- Laurent Burnier
- Department of Internal Medicine, Division of Cardiology,
- Department of Internal Medicine, Division of Angiology and Hemostasis, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; and
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Pierre Fontana
- Department of Internal Medicine, Division of Angiology and Hemostasis, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; and
| | - Anne Angelillo-Scherrer
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Brenda R. Kwak
- Department of Internal Medicine, Division of Cardiology,
| |
Collapse
|
26
|
Abstract
Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
27
|
Shi X, Han W, Yamamoto H, Tang W, Lin X, Xiu R, Trune DR, Nuttall AL. The cochlear pericytes. Microcirculation 2008; 15:515-29. [PMID: 19086261 DOI: 10.1080/10739680802047445] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Cochlear pericytes are not well characterized. The aim of this study was to further advance the characterization of cochlear pericyte location and distribution, with particular focus on pericyte-related proteins on the capillaries of the cochlear lateral wall that are functionally integral to structure, contraction, and gap junction transport. MATERIALS AND METHODS Cochlear pericytes were identified by the immunofluorescence labeling of pericyte marker proteins, including alpha-smooth muscle actin (alpha-SMA), desmin, Thy-1, tropomyosin, and NG2, and by morphological identification, using fluorescence, electron, and differential interference contrast microscopy. RESULTS Pericytes were predominately found in the capillary network of the cochlear lateral wall, with considerable morphological heterogeneity across different types of microvessels. For example, pericytes on the vessels of the spiral ligament (V/SL) strongly expressed a gap junction protein, connexin 40, and were positive for alpha-SMA, tropomyosin, and desmin. In contrast, pericytes on the vessels of the stria vascularis (V/SV) were positive for desmin, and were negative for alpha-SMA and tropomyosin. CONCLUSIONS The capillary networks of the cochlear lateral wall comprise a rich population of pericytes. These pericytes are morphologically heterogeneous, with protein expression potentially indicative of function.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jacot JG, Wong JY. Endothelial injury induces vascular smooth muscle cell proliferation in highly localized regions of a direct contact co-culture system. Cell Biochem Biophys 2008; 52:37-46. [PMID: 18766304 PMCID: PMC2770599 DOI: 10.1007/s12013-008-9023-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
Though previous studies have indicated a relationship between the proliferation of endothelial cells and vascular smooth muscle cells (VSMCs) in co-culture, the results have been contradictory and the signaling mechanism poorly understood. In this transmembrane co-culture study, VSMCs and endothelial cells were grown to confluence on opposite sides of a microporous membrane to mimic the intima/media border of vessels. The endothelial layer was injured, and then cultured for 3 days, resulting in partial re-endothelialization. VSMC proliferation across from the injured/partially recovered endothelial region was significantly higher than across from the de-endothelialized region (a sevenfold increase) and the uninjured region (a threefold increase). ELISA indicated that PDGF, which was undetectable in uninjured co-culture and homotypic controls, increased after injury and the addition of a piperazinyl-quinazoline carboxamide PDGF receptor inhibitor blocked VSMC proliferation across from the injured/partially recovered region. We conclude that co-culture signaling initiated by endothelial cell injury locally stimulates VSMC proliferation and that this signaling could be mediated by PDGF-BB.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cattle
- Cell Proliferation/drug effects
- Cells, Cultured
- Coculture Techniques/instrumentation
- Coculture Techniques/methods
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fatty Acids, Monounsaturated/pharmacology
- Gap Junctions/drug effects
- Gap Junctions/physiology
- Graft Occlusion, Vascular/physiopathology
- Models, Cardiovascular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/physiology
- Proto-Oncogene Proteins c-sis
- Quinazolines/pharmacology
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jeffrey G. Jacot
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston MA 02215, USA
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston MA 02215, USA
| |
Collapse
|
29
|
Abstract
To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable alpha-helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 degrees C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the alpha-helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney-293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such alpha-actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen-19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally.
Collapse
Affiliation(s)
- Fanjie Meng
- Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo
| | - Thomas M. Suchyna
- Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo
| | - Frederick Sachs
- Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo
| |
Collapse
|
30
|
Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc Lond B Biol Sci 2007; 362:1445-57. [PMID: 17569641 PMCID: PMC2440407 DOI: 10.1098/rstb.2007.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endothelial cells are critical mediators of haemodynamic forces and as such are important foci for initiation of vascular pathology. Valvular leaflets are also lined with endothelial cells, though a similar role in mechanosensing has not been demonstrated. Recent evidence has shown that valvular endothelial cells respond morphologically to shear stress, and several studies have implicated valvular endothelial dysfunction in the pathogenesis of disease. This review seeks to combine what is known about vascular and valvular haemodynamics, endothelial response to mechanical stimuli and the pathogenesis of valvular diseases to form a hypothesis as to how mechanical stimuli can initiate valvular endothelial dysfunction and disease progression. From this analysis, it appears that inflow surface-related bacterial/thrombotic vegetative endocarditis is a high shear-driven endothelial denudation phenomenon, while the outflow surface with its related calcific/atherosclerotic degeneration is a low/oscillatory shear-driven endothelial activation phenomenon. Further understanding of these mechanisms may help lead to earlier diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850, USA.
| | | |
Collapse
|
31
|
Stromal derived factor-1 exerts differential regulation on distinct cortical cell populations in vitro. BMC DEVELOPMENTAL BIOLOGY 2007; 7:31. [PMID: 17425785 PMCID: PMC1854892 DOI: 10.1186/1471-213x-7-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/10/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Stromal derived factor (SDF-1), an alpha chemokine, is a widely known chemoattractant in the immune system. A growing body of evidence now suggests multiple regulatory roles for SDF-1 in the developing nervous system. RESULTS To investigate the role of SDF-1 signaling in the growth and differentiation of cortical cells, we performed numerous in vitro experiments, including gene chip and quantitative RT-PCR analysis. Using SDF-1 medium and AMD3100, a receptor antagonist, we demonstrate that the chemokine signaling regulates key events during early cortical development. First, SDF-1 signaling maintains cortical progenitors in proliferation, possibly through a mechanism involving connexin 43 mediated intercellular coupling. Second, SDF-1 signaling upregulates the differentiation of cortical GABAergic neurons, independent of sonic signaling pathway. Third, SDF-1 enables the elongation and branching of axons of cortical glutamatergic neurons. Finally, cortical cultures derived from CXCR4-/- mutants show a close parallel to AMD3100 treatment with reduced cell proliferation and differentiation of GABAergic neurons. CONCLUSION Results from this study show that SDF-1 regulates distinct cortical cell populations in vitro.
Collapse
|
32
|
Inai T, Sengoku A, Guan X, Hirose E, Iida H, Shibata Y. Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and -15, examined by RT-PCR and immunofluorescence microscopy. ACTA ACUST UNITED AC 2006; 68:349-60. [PMID: 16505581 DOI: 10.1679/aohc.68.349] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tight junctions regulate paracellular permeability, create the luminal fluid microenvironment of blood vessels and the digestive tract, and also form the protective barrier in the stratified epithelium including the epidermis. Claudins are the integral membrane proteins at tight junctions and form a multigene family composed of at least 24 members, but knowledge of the subcellular localization of each claudin is still fragmentary. We performed RT-PCR for fifteen claudin species to examine the mRNA expression in various mouse tissues, and focused on investigating the subcellular localization of claudin-10 and -15 by immunofluorescence microscopy in various rat tissues. Neither claudin-10 nor -15 was detected in vascular endothelial cells in most tissues, and these claudins were restricted to the vasa recta in the kidney medulla. Both claudins were also detected at apical tight junctions in the epithelium of the jejunum with no intensity gradients along the crypt-to-villus axis. However, both claudins were expressed only in the basal half of the crypt epithelium in the colon, showing obvious gradients along crypt-to-surface axis. Moreover, claudin-10 showed the ectopic subcellular localization where tight junction strands do not exist. Claudin-10 was detected along the entire lateral membranes of acinar cells in addition to the apical tight junctions in exocrine glands, and in the cytoplasm of basal cells in the stratified epithelium including the dorsal skin and cutaneous stomach. These heterogeneous distributions of claudin-10 and -15 in tissues may be related to the differences in paracellular permeability among tissues.
Collapse
Affiliation(s)
- Tetsuichiro Inai
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Asan E, Drenckhahn D. News and views in Histochemistry and Cell Biology. Histochem Cell Biol 2004; 122:593-621. [PMID: 15614519 DOI: 10.1007/s00418-004-0735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
Advances in histochemical methodology and ingenious applications of novel and improved methods continue to confirm the standing of morphological means and approaches in research efforts, and contribute significantly to increasing our knowledge about structures and functions in all areas of the life sciences from cell biology to pathology. Reports published during recent months documenting this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| | | |
Collapse
|