1
|
Fichtner A, Zschäbitz S, Nettersheim D, Bremmer F. (Epi)genetic and Genomic Features of Pediatric and Adult Germ Cell Tumors. Surg Pathol Clin 2025; 18:63-74. [PMID: 39890310 DOI: 10.1016/j.path.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Testicular germ cell tumors (TGCTs) are a heterogeneous group of tumors that occur more commonly in adolescent and adult men. Depending on their age of onset, biological behavior, morphologic characteristics, and molecular alterations, they are divided into different subtypes. A common alteration in malignant TGCTs is the formation of an isochromosome 12p, leading to copy number alterations in pluripotency and cell cycle regulating genes. Genetic predispositions and somatic alterations rarely occur in TGCTs. This article gives an overview on the current knowledge of genomic alterations that play a role in the predisposition, development, diagnosis, and treatment of TGCTs.
Collapse
Affiliation(s)
- Alexander Fichtner
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Centre for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD)
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
2
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
3
|
Nicu AT, Ionel IP, Stoica I, Burlibasa L, Jinga V. Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship. Biomedicines 2024; 12:1041. [PMID: 38791003 PMCID: PMC11117643 DOI: 10.3390/biomedicines12051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15-45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis and the treatment itself pose a great threat to patients' fertility. Despite extensive research concerning genetic and environmental risk factors, little is known about TGCT etiology. However, epigenetics has recently come into the spotlight as a major factor in TGCT initiation, progression, and even resistance to treatment. As such, recent studies have been focusing on epigenetic mechanisms, which have revealed their potential in the development of novel, non-invasive biomarkers. As the most studied epigenetic mechanism, DNA methylation was the first revelation in this particular field, and it continues to be a main target of investigations as research into its association with TGCT has contributed to a better understanding of this type of cancer and constantly reveals novel aspects that can be exploited through clinical applications. In addition to biomarker development, DNA methylation holds potential for developing novel treatments based on DNA methyltransferase inhibitors (DNMTis) and may even be of interest for fertility management in cancer survivors. This manuscript is structured as a literature review, which comprehensively explores the pivotal role of DNA methylation in the pathogenesis, progression, and treatment resistance of TGCTs.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Ileana Paula Ionel
- Department of Specific Disciplines, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ileana Stoica
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Liliana Burlibasa
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Viorel Jinga
- Department of Urology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- The Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
4
|
Young plasma transfer recovers decreased sperm counts and restores epigenetics in aged testis. Exp Gerontol 2023; 172:112042. [PMID: 36481396 DOI: 10.1016/j.exger.2022.112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Aging is one of the causes of male infertility, and abnormal global DNA methylation and imprinting defects have been characterized in testis during biological aging. One of the important emerging approaches aims to take advantage of the healing properties of young blood plasma to limit the progression of aging in various organs in the body. We aimed to show whether blood plasma transfer has an effect on DNA methylation and spermatogenetic cell development. In addition, we aimed to show whether the young plasma transfer to old mice has an effect on the rejuvenation of the old and whether the impaired DNA methylation and PCNA expression in old age can be restored. METHODS Groups were (i) young control, (ii) young plasma transfer to aged, (iii) aged control, (iv) aged plasma transfer to young. We utilized IHC and WB in protein level of Dnmts. For the global DNA methylation level, we used 5-methylcytosine staining. We also analyzed PCNA protein expressions in all groups by IHC. RESULTS We found that transfusion of young plasma into the old animal restored DNA methylation and PCNA expression as it did in the young animal. Most importantly, we observed an increase in spermatogonia and spermatid counts in older animals after young blood plasma transfer. CONCLUSIONS Our findings show that young plasma transfer can restore epigenetic disorders that occur with aging and solve infertility problems by increasing the sperm count that decreases. It needs to be supported by different studies, especially human studies.
Collapse
|
5
|
High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochem Cell Biol 2023; 159:339-352. [PMID: 36624173 DOI: 10.1007/s00418-022-02173-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Obesity impairs reproductive capacity, and the link between imprinting disorders and obesity has been discussed in many studies. Recent studies indicate that a high-fat diet may cause epigenetic changes in maternal and paternal genes, which may be transmitted to offspring and negatively affect their development. On this basis, our study aims to reveal the changes in DNA methylation and DNA methyltransferase enzymes in the ovaries and testes of C57BL/6 mice fed a high-fat diet and created a model of obesity, by comparing them with the control group. For this purpose, we demonstrated the presence and quantitative differences of DNA methyltransferase 1 and DNA methyltransferase 3a enzymes as well as global DNA methylation in ovaries and testis of C57BL/6 mice fed a high-fat diet by using immunohistochemistry and western blot methods. We found that a high-fat diet induces the levels of Dnmt1 and Dnmt3a proteins (p < 0.05). We observed increased global DNA methylation in testes but, interestingly, decreased global DNA methylation in ovaries. We think that our outcomes have significant value to demonstrate the effects of obesity on ovarian follicle development and testicular spermatogenesis and may bring a new perspective to obesity-induced infertility treatments. Additionally, to the best of our knowledge, this is the first study to document dynamic alteration of Dnmt1 and Dnmt3a as well as global DNA methylation patterns during follicle development in healthy mouse ovaries.
Collapse
|
6
|
Grasso C, Popovic M, Isaevska E, Lazzarato F, Fiano V, Zugna D, Pluta J, Weathers B, D’Andrea K, Almstrup K, Anson-Cartwright L, Bishop DT, Chanock SJ, Chen C, Cortessis VK, Dalgaard MD, Daneshmand S, Ferlin A, Foresta C, Frone MN, Gamulin M, Gietema JA, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Karlsson R, Kiemeney LA, Lessel D, Lista P, Lothe RA, Loveday C, Meijer C, Nead KT, Nsengimana J, Skotheim RI, Turnbull C, Vaughn DJ, Wiklund F, Zheng T, Zitella A, Schwartz SM, McGlynn KA, Kanetsky PA, Nathanson KL, Richiardi L. Association Study between Polymorphisms in DNA Methylation-Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1769-1779. [PMID: 35700037 PMCID: PMC9444936 DOI: 10.1158/1055-9965.epi-22-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Fulvio Lazzarato
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - D. Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Stephen J. Chanock
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K. Cortessis
- Department of Population and Public Health Sciences, and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Marlene D. Dalgaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Megan N. Frone
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A. Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H. Greene
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J. Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B. Haugen
- Faculty of Health Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrizia Lista
- Division of Medical Oncology1, AOU “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin T. Nead
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Hospital, London, United Kingdom
| | - David J. Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrea Zitella
- Division of Urology, Department of Surgical Science, AOU “Città della Salute e della Scienza di Torino”, University of Turin, Turin, Italy
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Katherine A. McGlynn
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | | |
Collapse
|
7
|
Gong H, Liu W, Wu Z, Zhang M, Sun Y, Ling Z, Xiao S, Ai H, Xin Y, Yang B, Huang L. Evolutionary insights into porcine genomic structural variations based on a novel constructed dataset from 24 worldwide diverse populations. Evol Appl 2022. [DOI: 10.1111/eva.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Huanfa Gong
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences Zhejiang University Hangzhou P.R. China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences Zhejiang University Hangzhou P.R. China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Zhongzi Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Mingpeng Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Yingchun Sun
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Yuyun Xin
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology Jiangxi Agricultural University Nanchang P.R. China
| |
Collapse
|
8
|
Raad MV, Fesahat F, Talebi AR, Hosseini-Sharifabad M, Horoki AZ, Afsari M, Sarcheshmeh AA. Altered methyltransferase gene expression, mitochondrial copy number and 4977-bp common deletion in subfertile men with variable sperm parameters. Andrologia 2022; 54:e14531. [PMID: 35841193 DOI: 10.1111/and.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Semen parameters have been found to predict reproductive success poorly and are the most prevalent diagnostic tool for male infertility. There are few conflicting reports regarding the correlation of DNMT genes expression, mitochondrial DNA copy number (mtDNAcn) and deletion (mtDNAdel) with different sperm parameters. To investigate DNMT mRNA level, mtDNAcn and deletion in infertile men, with different sperm parameters, compared with fertile men, semen samples from 30 men with unknown male infertility and normal sperm parameters (experimental group I), 30 infertile patients with at least two abnormal sperm parameters (experimental group II) and 30 fertile normozoospermic men (control group) were collected. After semen analysis, total RNA and DNA were extracted. The isolated DNA was used for assessing the respective mtDNAcn and the presence of common 4977 bp deletion in mtDNA by applying real-time quantitative PCR and multiplex PCR, respectively. Synthesized cDNA from total RNAs was used to quantify DNMT1, DNMT3A and DNMT3B transcripts in study groups by using real-time quantitative reverse-transcription PCR. Significantly higher proportions of mtDNAcn were found in experimental group II. DNMT1 was significantly downregulated in both experimental groups and 4977 bp deletion was not detected. Progressive motility and normal morphology were significantly and negatively correlated with mtDNAcn. A significant positive correlation was detected between sperm parameters and DNMT1 mRNA levels. In conclusion, infertile men with different sperm parameter qualities showed elevated mtDNA content. Abnormal sperm parameters associated with DNMT1 gene expression indicate the possibility of changes in some epigenetic aspects of spermatogenesis in subfertile men with different sperm parameters.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Zare Horoki
- Department of Urology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Afsari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
9
|
Liu Q, Chen X, Qiao J. Advances in studying human gametogenesis and embryonic development in China. Biol Reprod 2022; 107:12-26. [PMID: 35788258 DOI: 10.1093/biolre/ioac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive medicine in China has developed rapidly since 1988 due to the support from the government and scientific exploration. However, the success rate of assisted reproduction technology (ART) is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells (PGCs), gametes and embryos has been investigated in depth. Furthermore, pre-implantation genetic testing (PGT) has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.
Collapse
Affiliation(s)
- Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Barrachina F, de la Iglesia A, Jodar M, Soler-Ventura A, Mallofré C, Rodriguez-Carunchio L, Goudarzi A, Corral JM, Ballescà JL, Castillo J, Oliva R. Histone H4 acetylation is dysregulated in active seminiferous tubules adjacent to testicular tumours. Hum Reprod 2022; 37:1712-1726. [PMID: 35678707 DOI: 10.1093/humrep/deac130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is histone H4 acetylation (H4ac) altered in the seminiferous tubules of patients affected by testicular tumours? SUMMARY ANSWER A considerable dysregulation of H4ac was detected in the cells of the seminiferous tubules adjacent to testicular tumours of different aetiology and prior to any treatment, while no comparable alterations were observed in patients with disrupted spermatogenesis. WHAT IS KNOWN ALREADY Altered H4ac levels have been associated with a variety of testicular pathological conditions. However, no information has been available regarding potential alterations in the spermatogenic cells adjacent to the neoplasia in testicular tumour patients. STUDY DESIGN, SIZE, DURATION A retrospective analysis using testicular sections from 33 men aged between 21 and 74 years old was performed. Three study groups were defined and subjected to double-blind evaluation: a control group with normal spermatogenesis (n = 6), patients with testicular tumours (n = 18) and patients with spermatogenic impairments (n = 8). One additional sample with normal spermatogenesis was used as a technical internal control in all evaluations. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunohistochemistry against H4ac and, when needed, Placental-like alkaline phosphatase and CD117, was performed on testicular sections. The H4ac H-score, based on the percentage of detection and signal intensity, was used as the scoring method for statistical analyses. Protein expression data from the Human Protein Atlas were used to compare the expression levels of predicted secreted proteins from testicular tumours with those present in the normal tissue. MAIN RESULTS AND THE ROLE OF CHANCE We revealed, for the first time, a dramatic disruption of the spermatogenic H4ac pattern in unaffected seminiferous tubule cells from different testicular tumour patients prior to any antineoplastic treatment, as compared to controls (P < 0.05). Since no similar alterations were associated with spermatogenic impairments and the in silico analysis revealed proteins potentially secreted by the tumour to the testicular stroma, we propose a potential paracrine effect of the neoplasia as a mechanistic hypothesis for this dysregulation. LIMITATIONS, REASONS FOR CAUTION Statistical analyses were not performed on the hypospermatogenesis and Leydig cell tumour groups due to limited availability of samples. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first report showing an epigenetic alteration in cells from active seminiferous tubules adjacent to tumour cells in testicular tumour patients. Our results suggest that, despite presenting spermatogenic activity, the global epigenetic dysregulation found in the testicular tumour patients could lead to molecular alterations of the male germ cells. Since testicular tumours are normally diagnosed in men at reproductive age, H4ac alterations might have an impact when these testicular tumour patients express a desire for fatherhood. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the European Union Marie Curie European Training Network actions and by grants to R.O. from the 'Ministerio de Economía y Competividad (Spain)' (fondos FEDER 'una manera de hacer Europa', PI13/00699, PI16/00346 and PI20/00936) and from EU-FP7-PEOPLE-2011-ITN289880. J.C. was supported by the Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109. J.C. is a Serra Húnter fellow (Universitat de Barcelona, Generalitat de Catalunya). F.B. has received grants from the Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (Spain) (FPU15/02306). A.d.l.I. is supported by a fellowship of the Ministerio de Economía, Industria y Competitividad (Spain) (PFIS, FI17/00224). M.J. is supported by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ferran Barrachina
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Ada Soler-Ventura
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Carme Mallofré
- Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - Leonardo Rodriguez-Carunchio
- Department of Pathology, Hospital Clínic, Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Afsaneh Goudarzi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Juan Manuel Corral
- Department of Urology, IDIBAPS, Hospital Clínic, Barcelona, Spain.,Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clínic, Barcelona, Spain
| | - Josep Lluís Ballescà
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clínic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
11
|
Uysal F, Sukur G, Cinar O. DNMT enzymes differentially alter global DNA methylation in a stage‐dependent manner during spermatogenesis. Andrologia 2022; 54:e14357. [DOI: 10.1111/and.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology Ankara Medipol University School of Medicine Ankara Turkey
| | - Gozde Sukur
- Ankara University Biotechnology Institute Ankara Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology Ankara University School of Medicine Ankara Turkey
- Center for Assisted Reproduction Ankara University School of Medicine Ankara Turkey
| |
Collapse
|
12
|
Zhang JM, Wang QY, Han XY, He QL, Liu L, Zhang YT, Meng XQ, Cheng D, Zhang TL, Liu SZ. Effects of 2,3',4,4',5-pentachlorobiphenyl exposure during pregnancy on DNA methylation in the testis of offspring in the mouse. Reprod Fertil Dev 2021; 32:1048-1059. [PMID: 32758352 DOI: 10.1071/rd19412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants, and the widespread use of PCBs has had adverse effects on human and animal health. This study experiment explored the effects of 2,3',4,4',5-pentachlorobiphenyl (PCB118) on the mammalian reproductive system. PCB118 was administered to pregnant mice from 7.5 to 12.5 days of gestation; F1 mice were obtained and the reproductive system of F1 male mice was examined. PCB118 damaged the reproductive system in male F1 mice, as evidenced by negative effects on the testicular organ coefficient (testes weight/bodyweight), a decrease in the diameter of seminiferous tubules and a significant reduction in the anogenital distance in 35-day-old F1 mice. In addition, methylation levels of genomic DNA were reduced, with reductions in the expression of the DNA methyltransferases DNMT1, DNMT3A and DNMT3B, as well as that of the epigenetic regulatory factor ubiquitin like with PHD and ring finger domains 1 (Uhrf1). Together, the results of this study provide compelling evidence that exposure of pregnant mice to PCB118 during primordial germ cell migration in the fetus affects the reproductive system of the offspring and decreases global methylation levels in the testis.
Collapse
Affiliation(s)
- Jian-Mei Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qiu-Yue Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiao-Ying Han
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yong-Tao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiao-Qian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dong Cheng
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Tian-Liang Zhang
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; and Corresponding author.
| |
Collapse
|
13
|
Efficacy of HDAC Inhibitors Belinostat and Panobinostat against Cisplatin-Sensitive and Cisplatin-Resistant Testicular Germ Cell Tumors. Cancers (Basel) 2020; 12:cancers12102903. [PMID: 33050470 PMCID: PMC7601457 DOI: 10.3390/cancers12102903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary There is a need for novel treatment options for patients with testicular germ cell tumors, especially for those that are resistant to standard chemotherapy, who show poor prognosis. In this work, we test two compounds that inhibit epigenetic enzymes called histone deacetylases—belinostat and panobinostat. We show that these enzymes are expressed at different levels in different germ cell tumor subtypes (seminomas and non-seminomas) and that both drugs are effective in reducing tumor cell viability, by decreasing cell proliferation and increasing cell death. These results are promising and should prompt further works with these compounds, envisioning the improvement of care of germ cell tumor patients. Abstract Novel treatment options are needed for testicular germ cell tumor (TGCT) patients, particularly important for those showing or developing cisplatin resistance, the major cause of cancer-related deaths. As TGCTs pathobiology is highly related to epigenetic (de)regulation, epidrugs are potentially effective therapies. Hence, we sought to explore, for the first time, the effect of the two most recently FDA-approved HDAC inhibitors (HDACis), belinostat and panobinostat, in (T)GCT cell lines including those resistant to cisplatin. In silico results were validated in 261 patient samples and differential expression of HDACs was also observed across cell lines. Belinostat and panobinostat reduced cell viability in both cisplatin-sensitive cells (NCCIT-P, 2102Ep-P, and NT2-P) and, importantly, also in matched cisplatin-resistant subclones (NCCIT-R, 2102Ep-R, and NT2-R), with IC50s in the low nanomolar range for all cell lines. Treatment of NCCIT-R with both drugs increased acetylation, induced cell cycle arrest, reduced proliferation, decreased Ki67 index, and increased p21, while increasing cell death by apoptosis, with upregulation of cleaved caspase 3. These findings support the effectiveness of HDACis for treating TGCT patients in general, including those developing cisplatin resistance. Future studies should explore them as single or combination agents.
Collapse
|
14
|
Saki J, Sabaghan M, Arjmand R, Teimoori A, Rashno M, Saki G, Shojaee S. Curcumin as an indirect methylation inhibitor modulates the effects of Toxoplasma gondii on genes involved in male fertility. EXCLI JOURNAL 2020; 19:1196-1207. [PMID: 33013270 PMCID: PMC7527515 DOI: 10.17179/excli2020-2052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Toxoplasma gondii is a common protozoan parasite, which infects warm-blooded mammals, including mice and humans, throughout the world. The negative effects of T. gondii infection on the human reproductive system have been documented, especially in females. However, only few studies have examined the effects of T. gondii infection on the male reproductive system. Previous research shows that T. gondii can induce DNA methylation in some gene promoters, which are key regulators of spermatogenesis. Therefore, this study aimed to evaluate the effects of curcumin on the activity of DNA methyltransferases (DNMTs), as well as selected genes, involved in spermatogenesis in spermatogenic cells. In the spermatogenic cells exposed to T. gondii, there was a significant increase in DNMT1 and DNMT3A gene expression and a significant reduction in HSPA1A, MTHR, and DAZL gene expression, compared to the controls. The present results showed that curcumin could regulate changes in T. gondii-mediated gene expression. The effect of T. gondii on DNMT activity was also investigated in this study. A 40 % increase in DNMT activity was observed due to T. gondii infection. However, DNMT activity was restored by treatment with 20 μM curcumin for eight hours. The results revealed that T. gondii increases the NF-κB activity, compared to the control group. The increase in NF-κB activity, induced by T. gondii, was inhibited by curcumin. In conclusion, T. gondii, by increasing DNMT expression and activity, leads to an increase in NF-κB activity in cells. On the other hand, curcumin reduced DNA methylation, induced by T. gondii, owing to its NF-κB-inhibiting properties. Therefore, curcumin, as a hypomethylating agent, can be potentially used to alleviate the negative effects of T. gondii on the male reproductive system.
Collapse
Affiliation(s)
- Jasem Saki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohamad Sabaghan
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arjmand
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
He QL, Lyu TQ, Zhang YT, Wang HQ, Zhou Q, Zhang JM, Liu YY, Li JS, Jiang LG, Cheng D, Ge ZJ, Liu SZ. Effects of intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl on the reproductive system and sperm epigenetic imprinting of male offspring. J Appl Toxicol 2020; 40:1396-1409. [PMID: 32418265 DOI: 10.1002/jat.3992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic environmental pollutants with a total of 209 homologs. The homolog 2,3',4,4',5-pentachlorobiphenyl (PCB118) is one of the most important dioxin-like PCBs and is highly toxic. PCB118 can accumulate in human tissues, serum and breast milk, which leads to direct exposure of the fetus during development. In the present study, pregnant mice were exposed to 0, 20 and 100 μg/kg/day of PCB118 during the stage of fetal primordial germ cell migration. Compared with the control group, we found morphological alterations of the seminiferous tubules and a higher sperm deformity rate in the male offspring in the treatment groups. Furthermore, the methylation patterns in the treatment groups of the imprinted genes H19 and Gtl2 in the sperm were altered in the male offspring. We also characterized the disturbance of the expression levels of DNA methyltransferase 1 (Dnmt1), Dnmt3a, Dnmt3b, Dnmt3l, and Uhrf1. The results indicated that intrauterine exposure to low doses of PCB118 could significantly damage the reproductive health of the male offspring. Therefore, attention should be paid to the adverse effects of PCB118 exposure during pregnancy on the reproductive system of male offspring.
Collapse
Affiliation(s)
- Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tian-Qi Lyu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yong-Tao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hai-Quan Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Mei Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuan-Yuan Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jia-Shuo Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Li-Gang Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dong Cheng
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020; 77:93-113. [PMID: 31377843 PMCID: PMC11105059 DOI: 10.1007/s00018-019-03253-8] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.
Collapse
Affiliation(s)
- Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Oing C, Skowron MA, Bokemeyer C, Nettersheim D. Epigenetic treatment combinations to effectively target cisplatin-resistant germ cell tumors: past, present, and future considerations. Andrology 2019; 7:487-497. [PMID: 30924611 DOI: 10.1111/andr.12611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type II germ cell tumors represent the most common solid malignancy in men aged 15-45 years. Despite high cure rates of >90% over all stages, 10-15% of advanced patients develop treatment resistance and potentially succumb to their disease. Treatment of refractory germ cell tumors remains unsatisfactory, and new approaches are needed to further improve outcomes. OBJECTIVES With this narrative review, we highlight epigenetic mechanisms related to resistance to standard systemic treatment, which may act as promising targets for novel combined epigenetic treatment approaches. MATERIALS AND METHODS A comprehensive literature search of PubMed and MEDLINE was conducted to identify original and review articles on resistance mechanisms and/or epigenetic treatment of germ cell tumors in vitro and in vivo. Review articles were hand-searched to identify additional articles. RESULTS Distinct epigenetic phenomena have been linked to chemotherapy resistance in germ cell tumors, among which DNA hypermethylation, histone acetylation, and bromodomain proteins appear as promising targets for therapeutic exploitation. Inhibitors of key regulators, for example DNA methyltransferases (e.g. decitabine, guadecitabine), histone deacetylases (e.g. romidepsin), and bromodomain proteins (e.g. JQ1) decreased cell viability, triggered apoptosis, and growth arrest. Additionally, these epigenetic drugs induced differentiation and led to loss of pluripotency and re-sensitization towards cisplatin in cell lines and animal models. DISCUSSION Epigenetic treatments hold promise to (i) reduce the treatment burden of and (ii) overcome resistance to standard cisplatin-based chemotherapy. Combined approaches may enhance activity, while the ideal target and treatment combination of epigenetic drugs, either with another epigenetic agent or conventional cytotoxic agents need to be defined. CONCLUSION Epigenetic (combination) treatment for germ cell tumors should be further explored in pre-clinical and clinical research for its potential to further improve germ cell tumor treatment.
Collapse
Affiliation(s)
- C Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M A Skowron
- Department of Urology, Urological Research Lab, Translational Urooncology, University Medical School Duesseldorf, Duesseldorf, Germany
| | - C Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Nettersheim
- Department of Urology, Urological Research Lab, Translational Urooncology, University Medical School Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
18
|
The Role of DNA/Histone Modifying Enzymes and Chromatin Remodeling Complexes in Testicular Germ Cell Tumors. Cancers (Basel) 2018; 11:cancers11010006. [PMID: 30577487 PMCID: PMC6357018 DOI: 10.3390/cancers11010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
It is well established that cancer cells exhibit alterations in chromatin structure and accessibility. Indeed, the dysregulation of many protein-coding players with enzymatic activity (DNA and histone-modifying enzymes) and chromatin remodelers have been depicted in various tumor models in recent years. Still, little attention has been directed towards testicular germ cell tumors (TGCTs)-representing the most common neoplasm among young adult Caucasian men-with most studies focusing on exploring the role of DNA methyltransferases (DNMTs) and DNA demethylases (TETs). TGCTs represent a complex tumor model, associated with developmental and embryogenesis-related phenomena, and display seldom (cyto)genetic aberrations, leaving room for Epigenetics to explain such morphological and clinical diversity. Herein, we have summarized the major findings that were reported in literature regarding the dysregulation of DNA/histone-modifying enzymes and chromatin remodelers in TGCTs. Additionally, we performed in silico analysis of The Cancer Genome Atlas database to find the most relevant of those players in TGCTs. We concluded that several DNA/histone-modifying enzymes and chromatin remodelers may serve as biomarkers for subtyping, dictating prognosis and survival, and, possibly, for serving as targets of directed, less toxic therapies.
Collapse
|
19
|
Laleethambika N, Anila V, Manojkumar C, Muruganandam I, Giridharan B, Ravimanickam T, Balachandar V. Diabetes and Sperm DNA Damage: Efficacy of Antioxidants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42399-018-0012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Facchini G, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Iovane G, Grimaldi G, Piscitelli R, Muto P, Botti G, Perdonà S, Veneziani BM, Berretta M, Montanari M. Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget 2017; 9:1365-1379. [PMID: 29416701 PMCID: PMC5787445 DOI: 10.18632/oncotarget.22373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. They constitute a distinct entity because of their embryonic origin and their unique biological behavior. Recent preclinical data regarding biological signaling machinery as well as genetic and epigenetic mechanisms associated with molecular patterns of tumors have contribute to explain the pathogenesis and the differentiation of TGCTs and to understand the mechanisms responsible for the development of resistance to treatment. In this review, we discuss the main genetic and epigenetic events associated with TGCTs development in order to better define their role in the pathogenesis of these tumors and in cisplatin-acquired resistance.
Collapse
Affiliation(s)
- Gaetano Facchini
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Giovanni Grimaldi
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
21
|
Tang Q, Chen Y, Wu W, Ding H, Xia Y, Chen D, Wang X. Idiopathic male infertility and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. Sci Rep 2017; 7:11219. [PMID: 28894282 PMCID: PMC5593912 DOI: 10.1038/s41598-017-11636-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the association between male infertility and single-nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMT) genes (DNMT3B: rs2424909, DNMT1: rs4804490, DNMT3A: rs1550117 and DNMT3L: rs7354779). Eight hundred and thirty three idiopathic infertile males and four hundred and ten fertile controls from the hospitals affiliated to Nanjing Medical University between 2010 and 2012 were recruited in the study. We demonstrated a significantly increased risk of idiopathic infertility with abnormal semen parameters in association with the heterozygous genotype of variant rs4804490. Moreover, the AA genotype of variant rs4804490 was associated with significantly decreased risk for male infertility with abnormal semen parameters. A decreased risk of idiopathic infertility with abnormal semen parameters was associated with the homozygous genotype of variant rs2424909. These results suggested that variants in different DNMT genes have different relationships with idiopathic male infertility, and Chinese men carrying these variants have an increased or decreased risk of abnormal semen parameters.
Collapse
Affiliation(s)
- Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
| | - Daozhen Chen
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
22
|
Lynch EWJ, Coyle CS, Stevenson TJ. Photoperiodic and ovarian steroid regulation of histone deacetylase 1, 2, and 3 in Siberian hamster (Phodopus sungorus) reproductive tissues. Gen Comp Endocrinol 2017; 246:194-199. [PMID: 28017732 DOI: 10.1016/j.ygcen.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
Epigenetic modifications in reproductive tissues have predominantly focused on pathological conditions, such as ovarian and uterine cancers. The contribution of DNA methylation and histone acetylation to the timing and control of fertility is not well described. Siberian hamsters provide an important model to investigate the relatively short-term regulation of fertility (e.g. estrous) as well as long-term timing of breeding (e.g. seasonal). Recent work has shown that DNA methyltransferase 3a (dnmt3a) expression is associated with reproductive involution. Here, the objectives were to identify the impact of photoperiod on hdac1-3 expression in hamster testicular, ovarian and uterine tissue. Then, we assessed the effect of E2P4 and estrous cycling on hdac1-3 expression in uterine tissue. Testicular expression of hdac1 was significantly reduced, whereas hdac3 increased in reproductively photoregressed male hamsters; hdac2 expression did not significantly change across photoperiod conditions. There was no significant photoperiodic effect on ovarian expression of hdac1-3. Uterine expression of hdac3 expression was greater in long day hamsters; exposure to short days significantly reduced uterine hdac2 expression. Ovariectomized hamsters administered a single bolus injection of oil were found to have elevated uterine hdac2 compared to E2P4 treated females 12h and 24h post injection. Uterine hdac1-3 expression was relatively constant across the estrous cycle. Altogether these data indicate tissue-dependent photoperiodic regulation of hdac1-3 expression and that E2P4 may inhibit uterine hdac2 over long-term breeding cycles.
Collapse
Affiliation(s)
- Eloise W J Lynch
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher S Coyle
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
23
|
Epigenetic events in male common urogenital organs cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2016. [DOI: 10.1016/j.jcrpr.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Uysal F, Akkoyunlu G, Ozturk S. DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod Biomed Online 2016; 33:690-702. [PMID: 27687053 DOI: 10.1016/j.rbmo.2016.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023]
Abstract
DNA methylation is one of the epigenetic marks and plays critically important functions during spermatogenesis in mammals. DNA methylation is catalysed by DNA methyltransferase (DNMT) enzymes, which are responsible for the addition of a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinucleotide sites. Structurally and functionally five different DNMT enzymes have been identified in mammals, including DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L. These enzymes mainly play roles in two DNA methylation processes: maintenance and de novo. While DNMT1 is primarily responsible for maintenance methylation via transferring methyl groups to the hemi-methylated DNA strands following DNA replication, both DNMT3A and DNMT3B are capable of methylating unmodified cytosine residues, known as de novo methylation. However, DNMT3L indirectly participates in de novo methylation, and DNMT2 carries out methylation of the cytosine 38 in the anticodon loop of aspartic acid transfer RNA. To date, many studies have been performed to determine spatial and temporal expression levels and functional features of the DNMT in the male germ cells. This review article comprehensively discusses dynamic expression of the DNMT during spermatogenesis and their relationship with male infertility development in the light of existing investigations.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey.
| |
Collapse
|
25
|
Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, Wang Z. DNA methylation in spermatogenesis and male infertility. Exp Ther Med 2016; 12:1973-1979. [PMID: 27698683 DOI: 10.3892/etm.2016.3569] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Infertility is a significant problem for human reproduction, with males and females equally affected. However, the molecular mechanisms underlying male infertility remain unclear. Spermatogenesis is a highly complex process involving mitotic cell division, meiosis cell division and spermiogenesis; during this period, unique and extensive chromatin and epigenetic modifications occur to bring about specific epigenetic profiles in spermatozoa. It has recently been suggested that the dysregulation of epigenetic modifications, in particular the methylation of sperm genomic DNA, may serve an important role in the development of numerous diseases. The present study is a comprehensive review on the topic of male infertility, aiming to elucidate the association between sperm genomic DNA methylation and poor semen quality in male infertility. In addition, the current status of the genetic and epigenetic determinants of spermatogenesis in humans is discussed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China; Division of Clinical Microbiology The Center Hospital of Linfen, Linfen, Shanxi 041000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Meiqin Yan
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Yan Shen
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Zhenqiang Wang
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
26
|
Wang L, Wolgemuth DJ. BET Protein BRDT Complexes With HDAC1, PRMT5, and TRIM28 and Functions in Transcriptional Repression During Spermatogenesis. J Cell Biochem 2015; 117:1429-38. [PMID: 26565999 DOI: 10.1002/jcb.25433] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 02/01/2023]
Abstract
The expression of BRDT, a member of the BET sub-family of double bromodomain-containing proteins, is restricted to the male germ line, specifically to pachytene-diplotene spermatocytes and early spermatids. We previously showed that loss of the first bromodomain of BRDT by targeted mutagenesis (Brdt(ΔBD1) ) resulted in sterility and abnormalities in spermiogenesis, but little is known about BRDT's function at the molecular level. As part of studies designed to identify BRDT-interacting proteins we stably introduced a FLAG-tagged BRDT cDNA into 293T cells, which do not normally express BRDT. Affinity-purification of FLAG-tagged BRDT complexes indicated that BRDT has novel interactions with the histone deacetylase HDAC1, the arginine-specific histone methyltransferase 5 PRMT5, and the Tripartite motif-containing 28 protein TRIM28. Immunofluorescent microscopy revealed that BRDT co-localized with each of these proteins in round spermatids and co-immunoprecipitation of testicular extracts showed that these proteins interact with BRDT. Furthermore, they bind the promoter of H1t, a putative target of BRDT-containing complexes. This binding of H1t was lost in mice expressing the Brdt(ΔBD1) mutant protein and concomitantly, H1t expression was elevated in round spermatids. Our study reveals a role for BRDT-containing complexes in the repression of gene expression in vivo that correlates with dramatic effects on chromatin remodeling and the progression of spermiogenesis.
Collapse
Affiliation(s)
- Li Wang
- Department of Genetics and Development, New York, New York, 10032
| | - Debra J Wolgemuth
- Department of Genetics and Development, New York, New York, 10032.,Department of Obstetrics and Gynecology, New York, New York, 10032.,Institute of Human Nutrition, New York, New York, 10032.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, 10032
| |
Collapse
|
27
|
Rahman MB, Kamal MM, Rijsselaere T, Vandaele L, Shamsuddin M, Van Soom A. Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle. Reprod Fertil Dev 2015; 26:1107-16. [PMID: 24041366 DOI: 10.1071/rd13218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022] Open
Abstract
Shortly after penetration of the oocyte, sperm DNA is actively demethylated, which is required for totipotent zygotic development. Aberrant DNA methylation is thought to be associated with altered chromatin condensation of spermatozoa. The objectives of this study were to investigate the dynamics of DNA methylation reprogramming in the paternal pronucleus and subsequent fertilisation potential of heat-stressed bull spermatozoa having altered chromatin condensation. Hence, bovine zygotes (n=1239) were collected at three different time points (12, 18 and 24h post insemination, hpi), and stained with an antibody against 5-methylcytosine. Fluorescence intensities of paternal and maternal pronuclei were measured by ImageJ. DNA methylation patterns in paternal pronuclei derived from heat-stressed spermatozoa did not differ between time points (P>0.05), whereas control zygotes clearly showed demethylation and de novo methylation at 18 and 24hpi, respectively. Moreover, heat-stressed spermatozoa showed a highly reduced (P<0.01) fertilisation rate compared with non-heat-stressed or normal control spermatozoa (53.7% vs 70.2% or 81.5%, respectively). Our data show that the normal pattern of active DNA demethylation followed by de novo methylation in the paternal pronucleus is perturbed when oocytes are fertilised with heat-stressed spermatozoa, which may be responsible for decreased fertilisation potential.
Collapse
Affiliation(s)
- Mohammad Bozlur Rahman
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Md Mostofa Kamal
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tom Rijsselaere
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Leen Vandaele
- Department of Animal Science, Institute for Agricultural and Fisheries Research, Scheldeweg 68, 9090 Melle, Belgium
| | - Mohammed Shamsuddin
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
28
|
Histone methylation and acetylation in ejaculated human sperm: effects of swim-up and smoking. Fertil Steril 2015; 103:1425-31. [DOI: 10.1016/j.fertnstert.2015.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022]
|
29
|
A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep 2014; 4:6413. [PMID: 25231260 PMCID: PMC4166711 DOI: 10.1038/srep06413] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022] Open
Abstract
It was previously demonstrated that microRNA-199a (miR-199a) was down-regulated in testicular germ cell tumor (TGCT) partially caused by hypermethylation of its promoter. miR-199a is encoded by two loci in the human genome, miR-199a-1 on chromosome (Chr) 19 and miR-199a-2 on Chr 1. Both loci encode the same miR-199a. Another microRNA, microRNA-214 (miR-214), also locates on Chr 1. Previous study revealed that it is co-transcribed with miR-199a-2. However, the biological significance of the co-expression of miR-199a and miR-214 remains largely unknown. In this study, we determined that miR-199a and miR-214 were concordantly expressed in NT2 cells and TGCT patient tissues. After 5-aza treatment, miR-199-3p/5p and miR-214 expression was significantly increased. Silencing of DNMT1with siRNA restored the expression of miR-199a and miR-214, accompanied by de-methylation of the promoters of miR-199a-1/2. TP53 down-regulated the expression of DNMT1 in NT2 cells and overexpression of TP53 restored the expression of miR-199-3p/5p and miR-214. In addition, silencing of PSMD10 up-regulated the expression of TP53, while miR-214 over-expression resulted in PSMD10 down-regulation and TP53 up-regulation. Collectively, our findings highlighted a miR-199a/miR-214/PSMD10/TP53/DNMT1 self-regulatory network, which might be a potential therapeutic target in the treatment of TGCT.
Collapse
|
30
|
Tantibhedhyangkul J, Hawkins KC, Dai Q, Mu K, Dunn CN, Miller SE, Price TM. Expression of a mitochondrial progesterone receptor in human spermatozoa correlates with a progestin-dependent increase in mitochondrial membrane potential. Andrology 2014; 2:875-83. [PMID: 25187426 DOI: 10.1111/j.2047-2927.2014.00263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/23/2022]
Abstract
The hyperactivation of human spermatozoa necessary for fertilization requires a substantial increase in cellular energy production. The factors responsible for increasing cellular energy remain poorly defined. This article proposes a role for a novel mitochondrial progesterone receptor (PR-M) in modulation of mitochondrial activity. Basic science studies demonstrate a 38 kDa protein with western blot analysis, consistent with PR-M; whereas imaging studies with confocal and immunoelectron microscopy demonstrate a PR on the mitochondria. Treatment with a PR-specific progestin shows increased mitochondrial membrane potential, not related to induction of an acrosome reaction. The increase in mitochondrial membrane potential was inhibited by a specific PR antagonist, but not affected by an inhibitor to the progesterone-dependent Catsper voltage-activated channel. In conclusion, these studies suggest expression of a novel mitochondrial PR in human spermatozoa with a progestin-dependent increase in mitochondrial activity. This mechanism may serve to enhance cellular energy production as the spermatozoa traverse the female genital tract being exposed to increasing concentrations of progesterone.
Collapse
|
31
|
Kim JH, Jee BC, Lee JM, Suh CS, Kim SH. Histone acetylation level and histone acetyltransferase/deacetylase activity in ejaculated sperm from normozoospermic men. Yonsei Med J 2014; 55:1333-40. [PMID: 25048493 PMCID: PMC4108820 DOI: 10.3349/ymj.2014.55.5.1333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this work was to evaluate nuclear histone acetylation level and total histone acetyltransferase (HAT) and deacetylase (HDAC) activity in ejaculated sperm and their relevance to conventional sperm parameters. MATERIALS AND METHODS Thirty-three normozoospermic men were included in this study. Semen samples were processed by swim-up and then immunostained by six acetylation antibodies (H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, and H4K16ac). Our preliminary study verified the expression of HAT/HDAC1 in mature human sperm. From vitrified-warmed sperm samples, total HAT/HDAC activity was measured by commercially available kits. Nuclear DNA integrity was also measured by TUNEL assay. RESULTS The levels of six acetylation marks were not related with conventional sperm parameters including sperm DNA fragmentation index (DFI) as well as HAT/HDAC activity. However, sperm DFI was positively correlated with HAT activity (r=0.038 after adjustment, p<0.02). HAT activity showed a negative relationship with HDAC activity (r=-0.51, p<0.01). Strict morphology was negatively correlated with acetylation enzyme index (=HAT activity/HDAC activity) (r=-0.53, p<0.01). CONCLUSION Our works demonstrated a significant relationship of acetylation-associated enzyme activity and strict morphology or sperm DFI.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jang Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea. ; Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Polymorphism in DNMT1 may modify the susceptibility to oligospermia. Reprod Biomed Online 2014; 28:644-9. [DOI: 10.1016/j.rbmo.2014.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/16/2022]
|
33
|
Gong EJ, Shin IS, Son TG, Yang K, Heo K, KIM JS. Low-dose-rate radiation exposure leads to testicular damage with decreases in DNMT1 and HDAC1 in the murine testis. JOURNAL OF RADIATION RESEARCH 2014; 55:54-60. [PMID: 24027299 PMCID: PMC3885123 DOI: 10.1093/jrr/rrt090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study examined the effects of continuous low-dose-rate radiation exposure (3.49 mGy/h) of gamma rays on mice testicles. C57BL/6 mice were divided into sham and radiation groups (n = 8 each), and were exposed to either sham irradiation or 2 Gy for 21 days, 0.2 Gy for 2 days, or 0.02 Gy for 6 h of low-dose-rate irradiation. Testicular weight, seminiferous tubular diameter, and seminiferous epithelial depth were significantly decreased in the mice irradiated with 2 Gy at 1 and 9 days after exposure. Moreover, the low-dose-rate radiation exposure induced an increase in malondialdehyde levels, and a decrease in superoxide dismutase activity in the testis of mice irradiated with 2 Gy at 1 and 9 days after exposure. The sperm count and motility in the epididymis also decreased in mice irradiated with 2 Gy at 1 and 9 days after exposure, whereas there was no significant effect on the proportion of abnormal sperm. The expressions of DNA methlytransferases-1 and histone deacetylases 1 in testes irradiated with 2 Gy were significantly decreased compared with the sham group. In conclusion, the damage exerted on the testes and epididymis largely depended on the total dose of low-dose-rate radiation.
Collapse
Affiliation(s)
- Eun Ji Gong
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea
| | - In Sik Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea
| | - Joong Sun KIM
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea
- Corresponding author. Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), 40 Jwadong-gil, Gijang-gun, Busan 619-953, Republic of Korea. Tel: +82-51-720-5145; Fax; +82-51-720-2430;
| |
Collapse
|
34
|
Hasibeder A, Venkataramani V, Thelen P, Radzun HJ, Schweyer S. Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors. Int J Oncol 2013; 43:1385-94. [PMID: 23969837 PMCID: PMC3823397 DOI: 10.3892/ijo.2013.2060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/01/2013] [Indexed: 01/14/2023] Open
Abstract
Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell factors may be based on histone-independent mechanisms such as direct hyperacetylation of transcription factors. Based on these findings, phytoestrogens may be useful as new agents in the treatment of TGCT.
Collapse
Affiliation(s)
- Astrid Hasibeder
- Department of Pathology, Georg August University, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Chen BF, Gu S, Suen YK, Li L, Chan WY. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics 2013; 9:119-28. [PMID: 23959088 DOI: 10.4161/epi.25799] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3'-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.
Collapse
Affiliation(s)
- Bi-Feng Chen
- Key Laboratory for Regenerative Medicine; Ministry of Education; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Shen Gu
- Key Laboratory for Regenerative Medicine; Ministry of Education; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Yick-Keung Suen
- Key Laboratory for Regenerative Medicine; Ministry of Education; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Lu Li
- Key Laboratory for Regenerative Medicine; Ministry of Education; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine; Ministry of Education; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, P.R. China
| |
Collapse
|
36
|
Abstract
The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A 'stem-like' state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411 007, India,
| |
Collapse
|
37
|
Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from type 1 cannabinoid receptor knockout mice. Int J Endocrinol 2013; 2013:501350. [PMID: 24324492 PMCID: PMC3845505 DOI: 10.1155/2013/501350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.
Collapse
Affiliation(s)
- Giovanna Cacciola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
- *Riccardo Pierantoni:
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
38
|
Gu Y, Yang P, Shao Q, Liu X, Xia S, Zhang M, Xu H, Shao Q. Investigation of the expression patterns and correlation of DNA methyltransferases and class I histone deacetylases in ovarian cancer tissues. Oncol Lett 2012; 5:452-458. [PMID: 23420051 PMCID: PMC3573157 DOI: 10.3892/ol.2012.1057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
Recent studies have reported that DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) are involved in the epigenetic regulation of cancer, as well as promoting cell proliferation and tumorigenesis. These mechanisms also play important roles in ovarian cancer, but little is known concerning the correlation of DNMTs and HDACs in ovarian cancer. In the present study, we used quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical staining to examine the mRNA and protein expression of DNMTs and class I HDACs of tissues from 22 cases of ovarian cancer and 8 normal ovaries as a control. Furthermore, we assessed the correlation with clinicopathological stages and the mRNA expression of these genes. The results indicated that the mRNA expression of DNMT1, DNMT3b and class I HDACs was increased in ovarian cancers, while the expression of DNMT3a was not different between cancer tissues and normal ovaries. Additionally, the results of immunohistochemical staining demonstrated that DNMT1 and DNMT3b were significantly increased in ovarian cancer samples. Furthermore, the expression of DNMT1, DNMT3b, HDAC1 and HDAC2 was significantly higher in stage III/IV compared with stage I/II ovarian carcinomas. The expression of HDAC2 was positively correlated with HDCA1, HDAC3 and HDAC8, and DNMT1 was positively correlated with DNMT3b. Simultaneously, DNMT3b was correlated with HDAC1 and HDAC2. HDAC1 may upregulate the expression of DNMTs, but this requires confirmation by in vitro and in vivo experiments. The overall high rate of expression for class I HDACs, DNMT1 and DNMT3b suggested that these mRNAs should be explored as predictive factors in ovarian cancer. In addition, HDAC1, HDAC2 and DNMT3b cooperated in controlling ovarian cancer progression. Determining the correlations between HDACs and DNMTs in ovarian cancer will not only further clarify the mechanisms of genesis and development, but also guide clinical therapy using the inhibitors of HDACs and DNMTs.
Collapse
Affiliation(s)
- Yifeng Gu
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Battista N, Meccariello R, Cobellis G, Fasano S, Di Tommaso M, Pirazzi V, Konje JC, Pierantoni R, Maccarrone M. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012; 355:1-14. [PMID: 22305972 DOI: 10.1016/j.mce.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are natural lipids able to bind to cannabinoid and vanilloid receptors. Their biological actions at the central and peripheral level are under the tight control of the proteins responsible for their synthesis, transport and degradation. In the last few years, several reports have pointed out these lipid mediators as critical signals, together with sex hormones and cytokines, in various aspects of animal and human reproduction. The identification of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in reproductive cells and tissues of invertebrates, vertebrates and mammals highlights the key role played by these endogenous compounds along the evolutionary axis. Here, we review the main actions of endocannabinoids on female and male reproductive events, and discuss the interplay between them, steroid hormones and cytokines in regulating fertility. In addition, we discuss the involvement of endocannabinoid signalling in ensuring a correct chromatin remodeling, and hence a good DNA quality, in sperm cells.
Collapse
Affiliation(s)
- Natalia Battista
- Dipartimento di Scienze Biomediche Comparate, Università di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vega A, Baptissart M, Caira F, Brugnon F, Lobaccaro JMA, Volle DH. Epigenetic: a molecular link between testicular cancer and environmental exposures. Front Endocrinol (Lausanne) 2012; 3:150. [PMID: 23230429 PMCID: PMC3515880 DOI: 10.3389/fendo.2012.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/13/2012] [Indexed: 11/13/2022] Open
Abstract
In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the testicular dysgenesis syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Furthermore, infertility has been stated as a risk factor for testicular cancer (TC). The incidence of TC has been increasing over the past decade. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ from fetal germ cells (primordial germ cell or gonocyte). During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications) plays an important role in normal development as well as in various diseases, including TC. Here we will review chromatin modifications which can affect testicular physiology leading to the development of TC; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.
Collapse
Affiliation(s)
- Aurelie Vega
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Marine Baptissart
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Françoise Caira
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Florence Brugnon
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - David H. Volle
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
- *Correspondence: David H. Volle, Génétique Reproduction et Développement, INSERM U 1103, CNRS, UMR 6293, Clermont Université, 24 avenue des Landais, BP 80026, 63171 Aubière Cedex, France. e-mail:
| |
Collapse
|
41
|
Alva AS, Hahn NM, Aparicio AM, Singal R, Yellapragada S, Sonpavde G. Hypomethylating agents for urologic cancers. Future Oncol 2011; 7:447-63. [PMID: 21417907 DOI: 10.2217/fon.11.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter-region methylation as an epigenetic mechanism of gene regulation is increasingly recognized as beneficial in cancer. Initially developed as cytotoxic high-dose therapies, azacitidine and decitabine are now being reinvestigated in lower-dose cancer treatment regimens with a different paradigm - hypomethylation. Recent evidence for benefit in myelodysplastic syndromes and acute myeloid leukemias has renewed interest in hypomethylation as a therapeutic option in epithelial cancers. In this article, we describe the mechanistic aspects of DNA methylation, which alters gene expression, and review the evidence for hypomethylation as a therapeutic option in urologic cancers. Potential correlative studies that may assist in developing tailored therapy with hypomethylating agents are reviewed. Given that the population with urologic cancers is typically elderly with multiple comorbidities, the excellent tolerability of lower-dose hypomethylating agents provides a high therapeutic index and rational development is warranted, bearing in mind that the cytostatic and delayed activity present challenges in the choice of appropriate trial end points.
Collapse
Affiliation(s)
- Ajjai S Alva
- Baylor College of Medicine & Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Li X, Kaplun A, Lonardo F, Heath E, Sarkar FH, Irish J, Sakr W, Sheng S. HDAC1 inhibition by maspin abrogates epigenetic silencing of glutathione S-transferase pi in prostate carcinoma cells. Mol Cancer Res 2011; 9:733-45. [PMID: 21622623 PMCID: PMC3612175 DOI: 10.1158/1541-7786.mcr-10-0505] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both maspin and glutathione S-transferase pi (GSTp) are implicated as tumor suppressors and downregulated in human prostate cancer. It is well established that GSTp downregulation is through DNA methylation-based silencing. We report here that maspin expression in prostate cancer cell line DU145 reversed GSTp DNA methylation, as measured by methylation- specific PCR, MethyLight assay, and bisulfite sequencing. The effect of maspin on GSTp expression was similar to that of the combination of a synthetic histone deacetylase (HDAC) inhibitor and DNA methylation inhibitor 5-aza-2'-deoxycytidine. Maspin expression also led to an increased level of acetylated histone 3, decreased level of methyl transferase, and methyl-CpG-binding domain proteins at the site of demethylated GSTp promoter DNA. Earlier, we have shown that maspin inhibits HDAC1. In PC3 cells, where both maspin and GSTp are expressed at a reduced level, maspin knockdown led to a significant reduction in GSTp expression, whereas dual knockdown of maspin and HDAC1 barely increased the level of GSTp expression. Thus, HDAC1 may play an essential role in cellular response to maspin-mediated GSTp desilencing. Maspin has been shown to increase tumor cell sensitivity to drug-induced apoptosis. Interestingly, GSTp reexpression in the absence of maspin expression perturbation blocked the phosphorylation of histone 2A.X, the induction of hypoxia-induced factor 1α (HIF-1α), and cell death of LNCaP cells under oxidative stress. Because DNA hypermethylation-based silencing may couple with and depend on histone deacetylation, our study suggests that endogenous HDAC inhibition by maspin may prevent pathologic gene silencing in prostate tumor progression.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Alexander Kaplun
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Fulvio Lonardo
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Elisabeth Heath
- Department of Internal Medicine, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Fazlul H. Sarkar
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Jonathan Irish
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Wael Sakr
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Shijie Sheng
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
- Address correspondence to: 313-993-4112 (Tel);313-993-4112 (Fax);
| |
Collapse
|
43
|
Hecht N, Cavalcanti MCO, Nayudu P, Behr R, Reichenbach M, Weidner W, Steger K. Protamine-1 represents a sperm specific gene transcript: a study in Callithrix jacchus and Bos taurus. Andrologia 2011; 43:167-73. [PMID: 21486395 DOI: 10.1111/j.1439-0272.2009.01038.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Spermatozoa are transcriptionally inactive cells, but contain acetylated histones, normally a characteristic of transcriptionally active cells. Acetylgroups are thought to represent epigenetic marks that are transmitted to the oocyte and are involved in starting gene expression in the zygote and in regulating gene expression during early embryogenesis. We performed reverse transcription polymerase chain reaction (RT-PCR) in the common marmoset monkey (Callithrix jacchus) and in bovine spermatozoa, oocytes, zygotes, two- and four-cell embryos to evaluate the presence of specific transcripts known to play a role during fertilisation and early embryo development, namely protamine-1 (PRM1), protamine-2 (PRM2), histone H1 (H1), histone H3 (H3), histone H4 (H4), cAMP-responsive element modulator (CREM), DNA methyltransferase-1 (DNMT1), TATA box-binding protein (TBP). All transcripts tested were present in spermatozoa of the common marmoset, while bull spermatozoa lack PRM2. Marmoset oocytes exhibited transcripts for H1, H3, H4 and TBP, whereas bovine oocytes revealed H1, H3, H4, CREM, DNMT and TBP mRNAs. In zygotes, we amplified H1, H4, TBP (marmoset) and PRM1, H1, H3, H4, CREM, DNMT1 and TBP (bovine). Two-cell embryos showed PCR products for H1, H3 and TBP in the marmoset. In the bovine, all transcripts could be observed except PRM2. In four-cell embryos, PCR signals were obtained for PRM1, H1, H3, H4 and TBP in the marmoset. In the bovine, all transcripts were detected except PRM2. Our data suggest that, in both C. jacchus and Bos taurus, PRM1 transcripts are delivered by the spermatozoon to the oocyte.
Collapse
Affiliation(s)
- N Hecht
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Payne CJ, Gallagher SJ, Foreman O, Dannenberg JH, Depinho RA, Braun RE. Sin3a is required by sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells 2011; 28:1424-34. [PMID: 20572009 DOI: 10.1002/stem.464] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microenvironments support the maintenance of stem cells and the growth of tumors through largely unknown mechanisms. While cell-autonomous chromatin modifications have emerged as important determinants for self-renewal and differentiation of stem cells, a role for non-cell autonomous epigenetic contributions is not well established. Here, we genetically ablated the chromatin modifier Swi-independent 3a (Sin3a) in fetal Sertoli cells, which partly comprise the niche for male germline stem cells, and investigated its impact on spermatogenic cell fate and teratoma formation in vivo. Sertoli cell-specific Sin3a deletion resulted in the formation of few undifferentiated spermatogonia after birth while initially maintaining spermatogenic differentiation. Stem cell-associated markers Plzf, Gfra1, and Oct4 were downregulated in the mutant fetal gonad, while Sertoli cell markers Steel and Gdnf, which support germ cells, were not diminished. Following birth, markers of differentiating spermatogonia, Kit and Sohlh2, exhibited normal levels, but chemokine-signaling molecules chemokine (C-X-C motif) ligand 12 (CXCL12)/stromal cell-derived factor 1 (SDF1) and chemokine (C-X-C motif) receptor 4 (CXCR4), expressed in Sertoli cells and germ cells, respectively, were not detected. In the juvenile, mutant testes exhibited a progressive loss of differentiating spermatogonia and a block in spermatid elongation, followed by extensive germ cell degeneration. Sertoli cell-specific Sin3a deletion also suppressed teratoma formation by fetal germ cells in an in vivo transplantation assay. We conclude that the epigenome of Sertoli cells influences the establishment of a niche for germline stem cells as well as for tumor initiating cells.
Collapse
|
45
|
Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech 2009; 72:603-19. [PMID: 19319879 DOI: 10.1002/jemt.20715] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spermatogenesis is a truly remarkable process that requires exquisite control and synchronization of germ cell development. It is prone to frequent error, as paternal infertility contributes to 30-50% of all infertility cases; yet, in many cases, the mechanisms underlying its causes are unknown. Strikingly, aberrant epigenetic profiles, in the form of anomalous DNA and histone modifications, are characteristic of cancerous testis cells. Germ cell development is a critical period during which epigenetic patterns are established and maintained. The progression from diploid spermatogonia to haploid spermatozoa involves stage- and testis-specific gene expression, mitotic and meiotic division, and the histone-protamine transition. All are postulated to engender unique epigenetic controls. In support of this idea are the findings that mouse models with gene deletions for epigenetic modifiers have severely compromised fertility. Underscoring the importance of understanding how epigenetic marks are set and interpreted is evidence that abnormal epigenetic programming of gametes and embryos contributes to heritable instabilities in subsequent generations. Numerous studies have documented the existence of transgenerational consequences of maternal nutrition, or other environmental exposures, but it is only now recognized that there are sex-specific male-line transgenerational responses in humans and other species. Epigenetic events in the testis have just begun to be studied. New work on the function of specific histone modifications, chromatin modifiers, DNA methylation, and the impact of the environment on developing sperm suggests that the correct setting of the epigenome is required for male reproductive health and the prevention of paternal disease transmission.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Montreal H9X3V9 Canada
| | | | | |
Collapse
|
46
|
Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 2009; 26:537-44. [PMID: 19876730 DOI: 10.1007/s10815-009-9346-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/16/2009] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Methylation of sperm DNA is impaired in many infertile men potentially adversely effecting reproductive outcomes. In somatic cells oxidative damage to DNA and hyperhomocysteinaemia are linked with DNA hypomethylation. The objective of this study was to investigate if these pathologies also impair sperm DNA methylation. METHODS The relationship between sperm DNA quality, oxidative stress and serum homocysteine was analysed at study entry and after 3 months of antioxidant treatment. RESULTS Overall a significant negative correlation was observed between sperm DNA methylation and sperm DNA fragmentation, as well as seminal reactive oxygen species (ROS) production. Sperm DNA methylation was not significantly related to serum homocysteine concentrations. Administration of an antioxidant supplement produced a significant fall in seminal ROS levels and sperm DNA fragmentation, while increasing sperm DNA methylation. CONCLUSIONS These results suggest that oxidative stress related damage to sperm DNA impedes the process of methylation, while antioxidant supplementation appears to have the potential to reduce DNA damage and normalize sperm DNA methylation.
Collapse
Affiliation(s)
- Ozlem Tunc
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
| | | |
Collapse
|
47
|
van de Geijn GJM, Hersmus R, Looijenga LHJ. Recent developments in testicular germ cell tumor research. ACTA ACUST UNITED AC 2009; 87:96-113. [DOI: 10.1002/bdrc.20140] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
49
|
Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. HUM FERTIL 2008; 11:85-94. [PMID: 18569063 DOI: 10.1080/14647270802116250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic information, which is essential for normal mammalian development, is acquired during gametogenesis and further regulated during preimplantation development. The epigenetic consequences of assisted reproductive technologies (ARTs) and infertility on the health and quality of the human preimplantation embryo are considered in this review. In the zygote, the epigenetic information that is inherited from the sperm and the oocyte intersects and must be appropriately recognized, regulated and then propagated during preimplantation development so as to regulate gene expression in an appropriate manner. A growing body of evidence suggests that ARTs and/or infertility itself may affect these complex processes leading to epigenetic diseases that include disorders of genomic imprinting. The epigenetic safety of human gametes and embryos is of paramount importance. Unfortunately, morphological methods of assessing embryo quality are incapable of detecting epigenetic errors. Further research is therefore critical to resolve these issues.
Collapse
Affiliation(s)
- John Huntriss
- Reproduction and Early Development Research Group, Leeds Institute of Genetics, Health and Therapeutics, The LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|
50
|
Kempisty B, Antosik P, Bukowska D, Jackowska M, Lianeri M, Jaśkowski JM, Jagodziński PP. Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos. Reprod Fertil Dev 2008; 20:513-8. [DOI: 10.1071/rd07211] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/21/2008] [Indexed: 11/23/2022] Open
Abstract
It has been suggested that spermatozoa can deliver mRNAs to the oocyte during fertilisation. Using reverse transcription and real-time quantitative polymerase chain reaction analysis (RQ-PCR), we evaluated the presence of clusterin (CLU), protamine 2 (PRM2), calmegin (CLGN), cAMP-response element modulator protein (CREM), methyltransferase 1 (DNMT1), linker histone 1 (H1), protamine 1 (PRM1), TATA box-binding protein associated factor 1 (TAF1) and TATA box-binding protein (TBP) in porcine mature oocytes, zygotes and two-cell stage embryos. Spermatozoa isolated from semen samples of boars contained all transcripts investigated, whereas oocytes contained only CREM, H1, TAF1, and TBP mRNAs. The zygote and two-cell stage embryos contained CLU, CREM, H1, PRM1, PRM2, TAF1 and TBP transcripts. Our observations suggest that porcine spermatozoa may delivery CLU, PRM1 and PRM2 mRNAs to the oocyte, which may contribute to zygotic and early embryonic development.
Collapse
|