1
|
Hennion N, Bedart C, Vandomber L, Gottrand F, Humez S, Chenivesse C, Desseyn JL, Gouyer V. Identification of early genes in the pathophysiology of fibrotic interstitial lung disease in a new model of pulmonary fibrosis. Cell Mol Life Sci 2025; 82:115. [PMID: 40074941 PMCID: PMC11904048 DOI: 10.1007/s00018-025-05620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
Some interstitial lung diseases involve pulmonary fibrosis, which is a process that is characterized by the excessive and abnormal accumulation of extracellular matrix in the pulmonary interalveolar space. Although the current anti-fibrotic therapy aims at slowing down the progression of pulmonary fibrosis, it does not reverse it, and many of the drugs that were identified in basic-research studies failed in clinical phases, mainly because of the lack of a model that can recapitulate the pathophysiological mechanisms of human pulmonary fibrosis. We developed a novel experimental model of pulmonary fibrosis induced by a cocktail of molecules on an air/liquid interface culture of mouse embryonic lung explants. Histological analyses revealed a pattern of usual interstitial pneumonia, the worst-prognosis form of pulmonary fibrosis. We performed a transcriptomics analysis at the single-cell level after the induction of fibrosis and before any histological signs of fibrosis could be observed. The results revealed increased expression of several gene families that are involved in early inflammation, fibrosis and iron homeostasis, as well as potential new genetic targets.
Collapse
Affiliation(s)
- Nathan Hennion
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France
| | - Corentin Bedart
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France
| | - Léonie Vandomber
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France
| | - Sarah Humez
- Univ. Lille, Department of Pathology, CHU Lille, Lille, F-59000, France
- Univ. Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020, UMR1277, Canther, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, Inserm, CHU Lille, Centre de référence constitutif des maladies pulmonaires rares, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, F- 59000, France
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France.
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, Infinite U1286, Lille, F-59000, France
| |
Collapse
|
2
|
Lacroix G, Gouyer V, Rocher M, Gottrand F, Desseyn JL. A porous cervical mucus plug leads to preterm birth induced by experimental vaginal infection in mice. iScience 2022; 25:104526. [PMID: 35754724 PMCID: PMC9218384 DOI: 10.1016/j.isci.2022.104526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
During gestation, the cervical mucus plug (CMP) acts to seal the cervical canal. Pilot studies in humans have suggested that a porous CMP may increase the risk of uterine infection and preterm birth. We examined the gel-forming content of the mouse vagina and the CMP. We experimentally infected pregnant mice by intravaginal administration of pathogens related to preterm birth in humans. We found that the epithelium in both the vagina and cervical canal of pregnant mice produced the two gel-forming mucins Muc5b and Muc5ac. The CMP was porous in Muc5b-deficient mice for which intravaginal administration of Escherichia coli O 55 led to the activation of an inflammatory response in the uterus and 100% preterm births. The pathogen was found in the mucus plug and uterus. This study shows that Muc5b is essential for the in vivo barrier function and the prevention of uterine infections during gestation. Muc5b and Muc5ac are the main gel-forming mucins of the mouse vagina and cervical canal During pregnancy, a cervical mucus plug (CMP) is formed and seals the cervical canal Muc5b-deficient CMP is highly porous Inflammation following vaginal infection causes preterm birth in Muc5b-deficient mice
Collapse
Affiliation(s)
- Guillaume Lacroix
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Valérie Gouyer
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Mylène Rocher
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Jean-Luc Desseyn
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| |
Collapse
|
3
|
Demouveaux B, Gouyer V, Robbe-Masselot C, Gottrand F, Narita T, Desseyn JL. Mucin CYS domain stiffens the mucus gel hindering bacteria and spermatozoa. Sci Rep 2019; 9:16993. [PMID: 31740753 PMCID: PMC6861317 DOI: 10.1038/s41598-019-53547-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Mucus is the first biological barrier encountered by particles and pathogenic bacteria at the surface of secretory epithelia. The viscoelasticity of mucus is governed in part by low energy interactions that are difficult to assess. The CYS domain is a good candidate to support low energy interactions between GFMs and/or mucus constituents. Our aim was to stiffen the mucus from HT29-MTX cell cocultures and the colon of mice through the delivery of a recombinant protein made of hydrophobic CYS domains and found in multiple copies in polymeric mucins. The ability of the delivery of a poly-CYS molecule to stiffen mucus gels was assessed by probing cellular motility and particle diffusion. We demonstrated that poly-CYS enrichment decreases mucus permeability and hinders displacement of pathogenic flagellated bacteria and spermatozoa. Particle tracking microrheology showed a decrease of mucus diffusivity. The empirical obstruction scaling model evidenced a decrease of mesh size for mouse mucus enriched with poly-CYS molecules. Our data bring evidence that enrichment with a protein made of CYS domains stiffens the mucin network to provide a more impermeable and protective mucus barrier than mucus without such enrichment.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Catherine Robbe-Masselot
- CNRS, Univ. Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Frédéric Gottrand
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Tetsuharu Narita
- CNRS, PSL Research University, UPMC Univ. Paris 06, ESPCI Paris, UMR 7615, Laboratoire Sciences et Ingénierie de la Matière Molle, 10 rue Vauquelin, 75231, Paris, Cedex 05, France.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France.
| |
Collapse
|
4
|
Valque H, Gouyer V, Duez C, Leboeuf C, Marquillies P, Le Bert M, Plet S, Ryffel B, Janin A, Gottrand F, Desseyn JL. Muc5b-deficient mice develop early histological lung abnormalities. Biol Open 2019; 8:8/11/bio046359. [PMID: 31699684 PMCID: PMC6899002 DOI: 10.1242/bio.046359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gel-forming mucins are the main organic component responsible for physical properties of the mucus hydrogels. While numerous biological functions of these mucins are well documented, specific physiological functions of each mucin are largely unknown. To investigate in vivo functions of the gel-forming mucin Muc5b, which is one of the major secreted airway mucins, along with Muc5ac, we generated mice in which Muc5b was disrupted and maintained in the absence of environmental stress. Adult Muc5b-deficient mice displayed bronchial hyperplasia and metaplasia, interstitial thickening, alveolar collapse, immune cell infiltrates, fragmented and disorganized elastin fibers and collagen deposits that were, for approximately one-fifth of the mice, associated with altered pulmonary function leading to respiratory failure. These lung abnormalities start early in life, as demonstrated in one-quarter of 2-day-old Muc5b-deficient pups. Thus, the mouse mucin Muc5b is essential for maintaining normal lung function.
Collapse
Affiliation(s)
- Hélène Valque
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Catherine Duez
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Christophe Leboeuf
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Philippe Marquillies
- CIIL Inserm U1019; CNRS UMR 8204; Institut Pasteur de Lille; Univ. Lille, F-59019 Lille, France
| | - Marc Le Bert
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France
| | - Ségolène Plet
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Bernhard Ryffel
- CNRS UMR 7355, University of Orleans, Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), F-45071 Orleans, France.,IDM, University of Cape Town, South Africa
| | - Anne Janin
- Inserm UMR_S 1165; Université Paris- Diderot, Institut Universitaire d'Hématologie, AP-HP-Hôpital Saint Louis, F-75010 Paris, France
| | - Frédéric Gottrand
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| | - Jean-Luc Desseyn
- LIRIC UMR 995; Univ. Lille; Inserm; CHU Lille, F-59045 Lille, France
| |
Collapse
|
5
|
Méndez A, Rojas DA, Ponce CA, Bustamante R, Beltrán CJ, Toledo J, García-Angulo VA, Henriquez M, Vargas SL. Primary infection by Pneumocystis induces Notch-independent Clara cell mucin production in rat distal airways. PLoS One 2019; 14:e0217684. [PMID: 31170201 PMCID: PMC6553854 DOI: 10.1371/journal.pone.0217684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 11/27/2022] Open
Abstract
Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.
Collapse
Affiliation(s)
- Andrea Méndez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Carolina A. Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Rebeca Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Servicio de Gastroenterología, Hospital Clínico Universidad de Chile y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Laboratorio de Análisis Imágenes Científicas, SCIAN-lab, Instituto de Neurociencias Biomédicas (BNI), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Victor A. García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Mauricio Henriquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Sergio L. Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
6
|
Amini SE, Gouyer V, Portal C, Gottrand F, Desseyn JL. Muc5b is mainly expressed and sialylated in the nasal olfactory epithelium whereas Muc5ac is exclusively expressed and fucosylated in the nasal respiratory epithelium. Histochem Cell Biol 2019; 152:167-174. [PMID: 31030254 DOI: 10.1007/s00418-019-01785-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
The nose is a complex organ that filters and warms breathing airflow. The nasal epithelium is the first barrier between the host and the external environment and is covered by a mucus gel that is poorly documented. Mucins are large, heavily O-glycosylated polymeric molecules secreted in the nose lumen by specialized cells, and they are responsible for the biochemical properties of the mucus gel. The mucus traps particles and clears them, and it also bathes microbiota, host molecules, and receptors that are all essential for odor perception in the olfactory epithelium. We used histology and immunohistochemistry to study the expression of the two main airway polymeric mucins, Muc5ac and Muc5b, in wild-type, green fluorescent protein-reporter Muc5b, and in genetically Muc5b-deficient mice. We report that Muc5ac is produced by goblet cells at the cell surface in the respiratory epithelium but is not expressed in the olfactory epithelium, whereas Muc5b is secreted by Bowman's glands situated in the lamina propria beneath the olfactory epithelium and also by goblet cells in the distal part of the respiratory epithelium. We also observed that Muc5b-deficient mice exhibited depletion of Bowman's glands. Using lectins, we found that terminally O-glycosylated chains of Muc5b were sialylated but not fucosylated, whereas Muc5ac was fucosylated but not sialylated. Specific localization and specific terminal glycosylation of the two mucins suggest different functions of the mucins.
Collapse
Affiliation(s)
- Salah-Eddine Amini
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Céline Portal
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
- Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21201, USA
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France.
| |
Collapse
|
7
|
Mucin 2 (MUC2) modulates the aggressiveness of breast cancer. Breast Cancer Res Treat 2018; 173:289-299. [PMID: 30317423 DOI: 10.1007/s10549-018-4989-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Tumors that secrete large volumes of mucus are chemotherapy resistant, however, mechanisms underlying this resistance are unknown. One protein highly expressed in mucin secreting breast cancers is the secreted mucin, Mucin 2 (MUC2). While MUC2 is expressed in some breast cancers it is absent in normal breast tissue, implicating it in breast cancer. However, the effects of MUC2 on breast cancer are largely unknown. This study examined the role of MUC2 in modulating breast cancer proliferation, response to chemotherapy and metastasis. METHODS Using patient derived xenografts we developed two novel cell lines, called BCK4 and PT12, which express high levels of MUC2. To modulate MUC2 levels, BCK4 and PT12 cells were engineered to express shRNA targeted to MUC2 (shMUC2, low MUC2) or a non-targeting control (shCONT, high MUC2) and proliferation and apoptosis were measured in vitro and in vivo. BCK4 cells with shCONT or shMUC2 were labeled with GFP-luciferase and examined in an experimental metastasis model; disease burden and site specific dissemination were monitored by intravital imaging and fluorescence guided dissection, respectively. RESULTS Proliferation decreased in BCK4 and PT12 shMUC2 cells versus control cells both in vitro and in vivo. Chemotherapy induced minimal apoptosis in control cells expressing high MUC2 but increased apoptosis in shMUC2 cells containing low MUC2. An experimental metastasis model showed disease burden decreased when breast cancer cells contained low versus high MUC2. Treatment with Epidermal Growth Factor (EGF) increased MUC2 expression in BCK4 cells; this induction was abolished by the EGF-receptor inhibitor, Erlotinib. CONCLUSIONS MUC2 plays an important role in mediating proliferation, apoptosis and metastasis of breast cancer cells. MUC2 may be important in guiding treatment and predicting outcomes in breast cancer patients.
Collapse
|
8
|
Desseyn JL, Portal C, Gottrand F, Gouyer V. [Mucous cell differentiation and regulation of the gelling mucin Muc5b: a new tool for ex vivo and in vivo preclinical studies]. Med Sci (Paris) 2017; 33:478-480. [PMID: 28612718 DOI: 10.1051/medsci/20173305006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jean-Luc Desseyn
- LIRIC - UMR 995 Inserm/Université de Lille/CHU Lille, Lille, France
| | - Céline Portal
- LIRIC - UMR 995 Inserm/Université de Lille/CHU Lille, Lille, France
| | | | - Valérie Gouyer
- LIRIC - UMR 995 Inserm/Université de Lille/CHU Lille, Lille, France
| |
Collapse
|
9
|
Portal C, Gouyer V, Gottrand F, Desseyn JL. Preclinical mouse model to monitor live Muc5b-producing conjunctival goblet cell density under pharmacological treatments. PLoS One 2017; 12:e0174764. [PMID: 28355261 PMCID: PMC5371386 DOI: 10.1371/journal.pone.0174764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Purpose Modification of mucous cell density and gel-forming mucin production are established hallmarks of mucosal diseases. Our aim was to develop and validate a mouse model to study live goblet cell density in pathological situations and under pharmacological treatments. Methods We created a reporter mouse for the gel-forming mucin gene Muc5b. Muc5b-positive goblet cells were studied in the eye conjunctiva by immunohistochemistry and probe-based confocal laser endomicroscopy (pCLE) in living mice. Dry eye syndrome (DES) model was induced by topical application of benzalkonium chloride (BAK) and recombinant interleukine (rIL) 13 was administered to reverse the goblet cell loss in the DES model. Results Almost 50% of the total of conjunctival goblet cells are Muc5b+ in unchallenged mice. The decrease density of Muc5b+ conjunctival goblet cell population in the DES model reflects the whole conjunctival goblet cell loss. Ten days of BAK in one eye followed by 4 days without any treatment induced a −18.3% decrease in conjunctival goblet cell density. A four days of rIL13 application in the DES model restored the normal goblet cell density. Conclusion Muc5b is a biological marker of DES mouse models. We bring the proof of concept that our model is unique and allows a better understanding of the mechanisms that regulate gel-forming mucin production/secretion and mucous cell differentiation in the conjunctiva of living mice and can be used to test treatment compounds in mucosal disease models.
Collapse
Affiliation(s)
- Céline Portal
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | | | - Jean-Luc Desseyn
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
- * E-mail:
| |
Collapse
|
10
|
Portal C, Gouyer V, Magnien M, Plet S, Gottrand F, Desseyn JL. In vivo imaging of the Muc5b gel-forming mucin. Sci Rep 2017; 7:44591. [PMID: 28294161 PMCID: PMC5353722 DOI: 10.1038/srep44591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Gel-forming mucins are macromolecules produced by goblet cells and responsible for the mucus gel formation. Changes in goblet cell density and in gel-forming mucin production have emerged as sensitive indicators for mucosal diseases. A Muc5b-GFP tagged reporter mouse was used to assess Muc5b production in mouse tissues by immunofluorescence microscopy and fluorescent activity using stereromicroscopy and probe-based confocal laser endomicroscopy. Muc5b production was followed longitudinally by recording the fluorescent activity in vagina and in embryonic lung explants under stimulation by interleukin 13. We show that the GFP is easily visualized in the mouse adult ear, nose, trachea, gallbladder, and cervix. Live Muc5b is also easily monitored in the nasal cavity, trachea and vagina where its production varies during the estrus cycle with a peak at the proestrus phase and in pregnant mice. Explant culture of reporter mouse embryonic whole lung shows that interleukin 13 stimulates Muc5b production. The transgenic Muc5b-GFP mouse is unique and suitable to study the mechanisms that regulate Muc5b production/secretion and mucous cell differentiation by live imaging and can be applied to test drug efficacy in mucosal disease models.
Collapse
Affiliation(s)
- Céline Portal
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Mylène Magnien
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Ségolène Plet
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Frédéric Gottrand
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Jean-Luc Desseyn
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Bou Saab J, Bacchetta M, Chanson M. Ineffective correction of PPARγ signaling in cystic fibrosis airway epithelial cells undergoing repair. Int J Biochem Cell Biol 2016; 78:361-369. [DOI: 10.1016/j.biocel.2016.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
|
12
|
Desseyn JL, Gouyer V, Gottrand F. Biological modeling of mucus to modulate mucus barriers. Am J Physiol Gastrointest Liver Physiol 2016; 310:G225-7. [PMID: 26660538 DOI: 10.1152/ajpgi.00274.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A recent study using a transgenic mouse, whose intestinal mucus contains a molecule made of 12 copies of a domain found in many gelling mucins, demonstrates that it is possible to strengthen mucus properties in situ, leading to promising new treatment strategies in diseases in which the mucosal barrier is impaired.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- LIRIC-UMR 995, Inserm, University of Lille, Lille, France
| | | |
Collapse
|
13
|
Valque H, Gouyer V, Gottrand F, Desseyn JL. MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS One 2012; 7:e46699. [PMID: 23056409 PMCID: PMC3462796 DOI: 10.1371/journal.pone.0046699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
The mucin MUC5B has a critical protective function in the normal lung, salivary glands, esophagus, and gallbladder, and has been reported to be aberrantly expressed in breast cancer, the second leading cause of cancer-related deaths among women worldwide. To understand better the implication of MUC5B in cancer pathogenesis, the luminal human breast cancer cell line MCF7 was transfected with a vector encoding a recombinant mini-mucin MUC5B and was then infected with a virus to deliver a short hairpin RNA to knock down the mini-mucin. The proliferative and invasive properties in Matrigel of MCF7 subclones and subpopulations were evaluated in vitro. A xenograft model was established by subcutaneous inoculation of MCF7 clones and subpopulations in SCID mice. Tumor growth was measured, and the tumors and metastases were assessed by histological and immunological analysis. The mini-mucin MUC5B promoted MCF7 cell proliferation and invasion in vitro. The xenograft experiments demonstrated that the mini-mucin promoted tumor growth and MCF7 cell dissemination. In conclusion, MUC5B expression is associated with aggressive behavior of MCF7 breast cancer cells. This study suggests that MUC5B may represent a good target for slowing tumor growth and metastasis.
Collapse
Affiliation(s)
- Hélène Valque
- Inserm U995, Lille, France
- University Lille 2, Lille, France
| | - Valérie Gouyer
- Inserm U995, Lille, France
- University Lille 2, Lille, France
- CHRU of Lille, Lille, France
| | - Frédéric Gottrand
- Inserm U995, Lille, France
- University Lille 2, Lille, France
- CHRU of Lille, Lille, France
| | - Jean-Luc Desseyn
- Inserm U995, Lille, France
- University Lille 2, Lille, France
- * E-mail:
| |
Collapse
|
14
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|