1
|
Gideon S, Boyd B, Ramirez Sierra B, Arenas D, Ochoa P, Eme J, Kolosov D. Voltage-gated ion channels in cultured gill epithelia of rainbow trout, Oncorhynchus mykiss, change in transcript abundance with exposure to freshwater. Comp Biochem Physiol A Mol Integr Physiol 2025; 304:111835. [PMID: 40074167 DOI: 10.1016/j.cbpa.2025.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Salmonid fishes are well adapted to transition between salinities as part of a diadromid lifestyle, and many species are both economically and environmentally important. Ion-transporting gill epithelium helps fishes maintain ion balance during salinity transition. Recent transcriptomic surveys suggest that voltage-gated ion channels (VGICs) are present in gill epithelium of fishes. However, fish gill epithelia are architecturally complex and structurally heterogeneous (which includes layers of excitable tissues), which necessitates a model to study isolated gill epithelial cells. In the present study, we isolated gill epithelial cells, used them to reconstruct primary cultured gill epithelium model, and exposed the reconstructed epithelia to apical freshwater (FW). Using RNAseq and molecular biology we demonstrate that multiple VGICs are expressed in cultured gill epithelia of a salmonid, rainbow trout Oncorhynchus mykiss. Following apical exposure to FW, multiple subunits of voltage-gated calcium (CaV) channels, as well as KCNE2 were upregulated in mRNA abundance. Using a custom-made antibody, we demonstrated that CaV1.3 immunolocalized to the apical membrane of epithelia in intact trout gill, as well as in the cultured gill epithelium. Pharmacological inhibition of CaV1 in FW-exposed cultured epithelia led to increased transepithelial resistance. Therefore, we propose that VGICs are present in gill epithelia of fishes, and may rapidly and autonomously respond to environmental salinity changes to help the fish maintain salt and water balance, where CaV1 specifically may play a particularly important role in rapid adjustment of gill epithelia barrier properties and resistivity and potentially in responding to regulatory cell volume decrease in vitro.
Collapse
Affiliation(s)
- Siaje Gideon
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - Brendan Boyd
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - Brandon Ramirez Sierra
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - Dennise Arenas
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - Perla Ochoa
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - John Eme
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, CA 92096, USA.
| |
Collapse
|
2
|
Fukuoka S, Adachi N, Ouchi E, Ikemoto H, Okumo T, Ishikawa F, Onda H, Sunagawa M. Mechanoreceptor Piezo1 channel-mediated interleukin expression in conjunctival epithelial cells: Linking mechanical stress to ocular inflammation. Ocul Surf 2025; 36:56-68. [PMID: 39778715 DOI: 10.1016/j.jtos.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Mechanical stress on the ocular surface, such as from eye-rubbing, has been reported to lead to inflammation and various ocular conditions. We hypothesized that the mechanosensitive Piezo1 channel in the conjunctival epithelium contributes to the inflammatory response at the ocular surface after receiving mechanical stimuli. METHODS Human conjunctival epithelial cells (HConjECs) were treated with Yoda1, a Piezo1-specific agonist, and various allergens to measure cytokine expression levels using qRT-PCR. Piezo1 activation-induced intracellular signaling pathways were also investigated by Western blot. Mechanical stretching experiments were conducted to simulate Piezo1 activation in HConjECs. Specificity of Piezo1 was confirmed by PIEZO1 knockdown and GsMTx4. In in vivo studies, using immunohistochemistry, rats were administered Yoda1 eye drops to examine the inflammatory response in the conjunctiva and Piezo1-induced signaling activation. RESULTS HConjECs expressed functional Piezo1 channel which was the dominant mechanoreceptor among putative channels and whose activation significantly increased IL-6 and IL-8 expression through the p38 MAPK-CREB pathway. Piezo1-induced [Ca2+]i elevation was crucial for the production of IL-6. The Yoda1-induced inflammatory responses were blocked by PIEZO1 knockdown. Mechanical stretching mimicked these effects, which were suppressed by GsMTx4. In vivo, Yoda1 administration led to increased phospho-p38 MAPK, phospho-CREB, and IL-6 in the rat conjunctival epithelium, with significant neutrophil infiltration. CONCLUSION Mechanical stress-induced Piezo1 channel activation in conjunctival epithelial cells can cause ocular inflammation by upregulating pro-inflammatory cytokines via the p38 MAPK-CREB pathway and promoting neutrophil infiltration. These findings suggest that mechanical stimuli on ocular surface tissues are significant risk factors for ocular inflammation.
Collapse
Affiliation(s)
- Seiya Fukuoka
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Erika Ouchi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Center for Biotechnology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hidetoshi Onda
- Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
3
|
Baghban R, Bamdad S, Attar A, Mortazavi M. Implications of nanotechnology for the treatment of Dry Eye Disease: Recent advances. Int J Pharm 2025; 672:125355. [PMID: 39954973 DOI: 10.1016/j.ijpharm.2025.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Managing Dry Eye Disease (DED), a prevalent condition affecting the ocular surface, remains challenging despite advancements in diagnostics and therapies. Current treatments primarily involve lubricating eye drops and anti-inflammatory medications, which often require prolonged use and generally provide only symptomatic relief. The current study focuses on improving DED treatments through nano-drug delivery technologies and advanced formulations. These systems aim to address the limitations of conventional therapies by providing extended, targeted, and sustained drug release. The development of innovative nanomaterials offers improved precision, control, and customization for DED management. By enabling controlled and sustained drug release, these nano-drug delivery systems could offer longer-lasting relief, addressing the chronic nature of DED more effectively than current symptomatic therapies. Future research should focus on integrating multiple therapeutic agents within these systems to simultaneously target inflammation and tear film instability. This review examines the potential of nano-based materials for DED treatment, with a particular emphasis on lipid-based, polymer-based and polysaccharide-based systems.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Bamdad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
4
|
Sun M, Cheng H, Yang Z, Tang J, Sun S, Liu Z, Zhao S, Dong L, Huang Y. Preliminary investigation on the establishment of a new meibomian gland obstruction model and gene expression. Sci Rep 2024; 14:25018. [PMID: 39443496 PMCID: PMC11499931 DOI: 10.1038/s41598-024-73682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Meibomian gland dysfunction is a chronic ocular surface disease with a complex pathogenesis, whose main clinical manifestations are meibomian gland obstruction or/and lipid abnormalities. To explore the mechanism of MGD due to meibomian gland obstruction (MGO), we established a rat model of MGO by cauterizing the meibomian gland orifice. The morphology of the lid margins and meibomian gland orifices were visualized by slit lamp. The tear production of rats was measured by phenol red cotton thread, the tear film breakup time and corneal fluorescein staining scores of rats were detected under cobalt blue light of slit lamp. Changes in the histological structure of the meibomian gland (MG) were observed by HE staining, Oil Red O staining and immunofluorescence staining (collagen IV). RNA sequencing was used to detect differentially expressed genes in MGO and normal rats, which were validated by qPCR. In the MGO group after 4, 8, and 16 weeks, the meibomian gland orifices were closed, tear film break-up time decreased and corneal fluorescein staining score increased (p < 0.05). MG acini was smaller at 8-week and 16-week MGO rats in HE staining. Oil Red O staining showed less condensed staining in the 8- and 16-week MGO groups, while more condensed staining in the 4-week MGO group. Additionally, the basement membrane was destroyed in 16-week MGO group by immunofluorescence staining of collagen IV. Meanwhile, RNA sequencing and qPCR showed that lipid peroxidation (LPO), transient receptor potential vanilloid-3 (TRPV3) and genes in PPAR signaling pathway were differentially expressed in 16-week meibomian gland obstructive rats (p < 0.05). Consequently, meibomian gland obstruction model rats were established successfully with corneal damage and lower tear film stability. Meibomian gland obstruction is a causative factor of MGD, which led to abnormal histological structure in MG, differential expression of PPAR signaling pathway and TRPV3.
Collapse
Affiliation(s)
- Ming Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Huanmin Cheng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zheng Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Jiangqin Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shengshu Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zhanglin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
5
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
6
|
Brito LB, Catarino CM, Passos MC, Garcia Silva AC, Schuck DC, Canavez ADPM, Valadares MC. Sens-ocular model: Cell-based assay to evaluate eye stinging potential of chemicals and baby cosmetic formulations. Toxicol In Vitro 2024; 98:105824. [PMID: 38614139 DOI: 10.1016/j.tiv.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The TRPV1 receptor, which is known to contribute significantly to pain perception, has recently been identified as a useful tool for predicting eye stinging potential in cosmetics. In this study, HEK-293 cells with high TRPV1 expression were utilized to evaluate calcium influx related to receptor activation triggered by chemicals and cosmetic formulations. The cells were exposed to increasing concentrations of substances to cause or not some aggression to the eye, and TRPV1 activity was assessed by measuring intracellular FURA-2 AM fluorescence signal. To confirm TRPV1 channel activation, capsazepine, a capsaicin antagonist, was employed in addition to using capsaicin as a positive control. The study's results indicate that this novel model can identify compounds known to cause some aggression to the eye, such as stinging, considering a cut-off value of 60% of Ca2+ influx exposed to the lowest evaluated concentration (0.00032%). When applied to the cosmetic baby formulation, although the presented model exhibited higher sensitivity by classifying as stinging formulations that had previously undergone clinical testing and were deemed non-stinging, the assay could serve as a valuable in vitro tool for predicting human eye stinging sensation and can be used as a tier 1 in an integrated testing strategy.
Collapse
Affiliation(s)
- Lara Barroso Brito
- Laboratório de Ensino e Pesquisa em Toxicologia In Vitro - Tox In, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Maria Claudia Passos
- Laboratório de Ensino e Pesquisa em Toxicologia In Vitro - Tox In, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Artur C Garcia Silva
- Laboratório de Ensino e Pesquisa em Toxicologia In Vitro - Tox In, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Marize Campos Valadares
- Laboratório de Ensino e Pesquisa em Toxicologia In Vitro - Tox In, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Ding P, Wang R, He Y. Risk factors for pterygium: Latest research progress on major pathogenesis. Exp Eye Res 2024; 243:109900. [PMID: 38636803 DOI: 10.1016/j.exer.2024.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
A pterygium is a wedge-shaped fibrovascular growth of the conjunctiva membrane that extends onto the cornea, which is the outer layer of the eye. It is also known as surfer's eye. Growth of a pterygium can also occur on the either side of the eye, attaching firmly to the sclera. Pterygia are one of the world's most common ocular diseases. However, the pathogenesis remains unsolved to date. As the pathogenesis of pterygium is closely related to finding the ideal treatment, a clear understanding of the pathogenesis will lead to better treatment and lower the recurrence rate, which is notably high and more difficult to treat than a primary pterygium. Massive studies have recently been conducted to determine the exact causes and mechanism of pterygia. We evaluated the pathogenetic factors ultraviolet radiation, viral infection, tumor suppressor genes p53, growth factors, oxidative stress, apoptosis and neuropeptides in the progression of the disease. The heightened expression of TRPV1 suggests its potential contribution in the occurrence of pterygium, promoting its inflammation and modulating sensory responses in ocular tissues. Subsequently, the developmental mechanism of pterygium, along with its correlation with dry eye disease is proposed to facilitate the identification of pathogenetic factors for pterygia, contributing to the advancement of understanding in this area and may lead to improved surgical outcomes.
Collapse
Affiliation(s)
- Peiqi Ding
- The Second Clinical Medical College of Jilin University, Changchun, 130012, Jilin Province, China
| | - Ruiqing Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
8
|
Keller M, Mergler S, Li A, Zahn I, Paulsen F, Garreis F. Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells. Int J Mol Sci 2024; 25:4043. [PMID: 38612853 PMCID: PMC11012639 DOI: 10.3390/ijms25074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.
Collapse
Affiliation(s)
- Melina Keller
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Aruna Li
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| |
Collapse
|
9
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Nagata N, Suzuki T, Takenouchi S, Kobayashi K, Murata T. Alleviation of allergic conjunctivitis by (±)5(6)-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid in mice. Front Pharmacol 2023; 14:1217397. [PMID: 37822881 PMCID: PMC10562701 DOI: 10.3389/fphar.2023.1217397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Background: Allergic conjunctivitis (AC) is a common ophthalmologic disorder that causes symptoms that often reduces a patient's quality of life (QOL). We investigated the effects of the eicosapentaenoic acid metabolite (±)5(6)-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid ((±)5(6)-DiHETE) on AC using a mouse model. Methods: BALB/c mice were sensitized with two injections of short ragweed pollen in alum, challenged fifth with pollen in eyedrops. The clinical signs and tear volume were evaluated at 15 min after the final challenge. Histamine-induced ocular inflammation model was prepared by instilling histamine onto the surface of the eye. Fifteen minutes after histamine application, tear volume was measured using the Schirmer tear test. Miles assay was performed to investigate vascular permeability. To cause scratching behavior 10 μg of serotonin was injected in the cheek. Results: Repeated topical application of pollen induced conjunctivitis, accompanied by eyelid edema and tearing in mice. Pollen application typically degranulates mast cells and recruits eosinophils to the conjunctiva. Intraperitoneal administration of 300 μg/kg of (±)5(6)-DiHETE significantly inhibited pollen-induced symptoms. The administration of (±)5(6)-DiHETE also attenuated mast cell degranulation and eosinophil infiltration into the conjunctiva. To assess the effects of (±)5(6)-DiHETE on the downstream pathway of mast cell activation in AC, we used a histamine-induced ocular inflammation model. Topical application of 4 μg/eye histamine caused eyelid edema and tearing and increased vascular permeability, as indicated by Evans blue dye extravasation. Intraperitoneal administration of 300 μg/kg or topical administration of 1 μg/eye (±)5(6)-DiHETE inhibited histamine-induced manifestations. Finally, we assessed the effects of (±)5(6)-DiHETE on itching. An intradermal injection of 10 μg serotonin in the cheek caused scratching behavior in mice. Intraperitoneal administration of 300 μg/kg (±)5(6)-DiHETE significantly inhibited serotonin-induced scratching. Conclusion: Thus, (±)5(6)-DiHETE treatment broadly suppressed AC pathology and could be a novel treatment option for AC.
Collapse
Affiliation(s)
- Nanae Nagata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoka Suzuki
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Takenouchi
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Mogi M, Mendonza AE, Chastain J, Demirs JT, Medley QG, Zhang Q, Papillon JPN, Yang J, Gao Y, Xu Y, Stasi K. Ocular Pharmacology and Toxicology of TRPV1 Antagonist SAF312 (Libvatrep). Transl Vis Sci Technol 2023; 12:5. [PMID: 37672251 PMCID: PMC10484039 DOI: 10.1167/tvst.12.9.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/25/2023] [Indexed: 09/07/2023] Open
Abstract
Purpose To evaluate the pharmacology and toxicology of SAF312, a transient receptor potential vanilloid 1 (TRPV1) antagonist. Methods TRPV1 expression in human ocular tissues was evaluated with immunohistochemistry. Inhibition of calcium influx in Chinese hamster ovary (CHO) cells expressing human TRPV1 (hTRPV1) and selectivity of SAF312 were assessed by a fluorescent imaging plate reader assay. Ocular tissue and plasma pharmacokinetics (PK) were assessed following a single topical ocular dose of SAF312 (0.5%, 1.0%, 1.5%, 2.5%) in rabbits. Safety and tolerability of SAF312 were evaluated in rabbits and dogs. Effects of SAF312 on corneal wound healing after photorefractive keratectomy (PRK) surgery were assessed in rabbits. Results TRPV1 expression was noted in human cornea and conjunctiva. SAF312 inhibited calcium influx in CHO-hTRPV1 cells induced by pH 5.5 (2-[N-morpholino] ethanesulfonic acid), N-arachidonoylethanolamine, capsaicin, and N-arachidonoyl dopamine, with IC50 values of 5, 10, 12, and 27 nM, respectively, and inhibition appeared noncompetitive. SAF312 demonstrated high selectivity for TRPV1 (>149-fold) over other TRP channels. PK analysis showed highest concentrations of SAF312 in cornea and conjunctiva. SAF312 was found to be safe and well tolerated in rabbits and dogs up to the highest feasible concentration of 2.5%. No delay in wound healing after PRK was observed. Conclusions SAF312 is a potent, selective, and noncompetitive antagonist of hTRPV1 with an acceptable preclinical safety profile for use in future clinical trials. Translational Relevance SAF312, which was safe and well tolerated without causing delay in wound healing after PRK in rabbits, may be a potential therapeutic agent for ocular surface pain.
Collapse
Affiliation(s)
- Muneto Mogi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - James Chastain
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - John T. Demirs
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Qin Zhang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Junzheng Yang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Yan Gao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - YongYao Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kalliopi Stasi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
12
|
Lucius A, Chhatwal S, Valtink M, Reinach PS, Li A, Pleyer U, Mergler S. L-Carnitine Suppresses Transient Receptor Potential Vanilloid Type 1 Activation in Human Corneal Epithelial Cells. Int J Mol Sci 2023; 24:11815. [PMID: 37511574 PMCID: PMC10380586 DOI: 10.3390/ijms241411815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced increases in Ca2+ influx or hyperosmotic stress-induced cell volume shrinkage in a human corneal epithelial cell line (HCE-T). Single-cell fluorescence imaging of calcein/AM-loaded cells or fura-2/AM-labeled cells was used to evaluate cell volume changes and intracellular calcium levels, respectively. Planar patch-clamp technique was used to measure whole-cell currents. TRPV1 activation via either capsaicin (20 µmol/L), hyperosmolarity (≈450 mosmol/L) or an increase in ambient bath temperature to 43 °C induced intracellular calcium transients and augmented whole-cell currents, whereas hypertonicity induced cell volume shrinkage. In contrast, either capsazepine (10 µmol/L) or L-carnitine (1-3 mmol/L) reduced all these responses. Taken together, L-carnitine and capsazepine suppress hypertonicity-induced TRPV1 activation by blocking cell volume shrinkage.
Collapse
Affiliation(s)
- Alexander Lucius
- Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Sirjan Chhatwal
- Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Monika Valtink
- Faculty of Medicine, Institute of Anatomy, TU Dresden, 01216 Dresden, Germany
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Aruna Li
- Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Uwe Pleyer
- Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| |
Collapse
|
13
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
14
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
15
|
Yang S, Wu Y, Wang C, Jin X. Ocular Surface Ion-Channels Are Closely Related to Dry Eye: Key Research Focus on Innovative Drugs for Dry Eye. Front Med (Lausanne) 2022; 9:830853. [PMID: 35308542 PMCID: PMC8927818 DOI: 10.3389/fmed.2022.830853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abundant ion-channels, including various perceptual receptors, chloride channels, purinergic receptor channels, and water channels that exist on the ocular surface, play an important role in the pathogenesis of dry eye. Channel-targeting activators or inhibitor compounds, which have shown positive effects in in vivo and in vitro experiments, have become the focus of the dry eye drug research and development, and individual compounds have been applied in clinical experimental treatment. This review summarized various types of ion-channels on the ocular surface related to dry eye, their basic functions, and spatial distribution, and discussed basic and clinical research results of various channel receptor regulatory compounds. Therefore, further elucidating the relationship between ion-channels and dry eye will warrant research of dry eye targeted drug therapy.
Collapse
Affiliation(s)
| | | | | | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Li D, Lin SB, Cheng LHH, Zhang MZ, Cheng B. Intense Pulsed Light Treatment for Itch Associated with Allergic Keratoconjunctivitis: A Retrospective Study of 35 Cases. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:196-203. [PMID: 33625273 DOI: 10.1089/photob.2020.4826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: To conduct a preliminary assessment of intense pulsed light (IPL) treatment for allergic keratoconjunctivitis (AKC)-associated ocular itch. Background: Current control measures for AKC rely primarily on drugs. IPL is effective for dry eye disease (DED). Furthermore, phototherapy is effective for managing skin inflammation and pruritus, suggesting that eye itching could decrease in some patients having AKC complicated with DED following IPL treatment to control dry eye symptoms. Methods: Thirty-five patients having DED complicated with mid-to-severe AKC were administered three IPL treatments to the periorbital skin. The eye scores of subjective symptoms and signs of AKC and tear film breakup time (TBUT) were retrospectively assessed before and after each treatment. Results: The scores for AKC-related symptoms and signs were determined four times: on Day 1 (time 0), Day 15 (time 1), Day 45 (time 2), and Day 75 (time 3) before each treatment. The average symptom score significantly decreased with treatments (time 0: 30.97, time 1: 15.03, time 3: 10). The average sign score for both eyes decreased after the first IPL treatment (left eye: 7.97 vs. 11.38; right eye: 8.1 vs. 11.1). There were no further improvements in the signs after the last treatment. The TBUT value in the right eye increased from times 0 to 3 (2.31 vs. 4.66 vs. 7.71 vs. 7.74). The TBUT value in the left eye increased from times 0 to 3 (2.50 vs. 6.97 vs. 7.57 vs. 8.24). Conclusions: Symptoms and signs improved after IPL treatment in patients with AKC. Eye itching was gradually controlled and rarely recurred. IPL may be effective for AKC treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Ophthalmology, Joint Shantou International Eye Center of Shantou University and Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shi-Bin Lin
- Department of Ophthalmology, Joint Shantou International Eye Center of Shantou University and Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Liu-Hang-Hang Cheng
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, The Fourth Medical Center of General Hospital of PLA, Beijing, P.R. China.,Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, P.R. China
| | - Ming-Zhi Zhang
- Department of Ophthalmology, Joint Shantou International Eye Center of Shantou University and Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
17
|
Kaido M, Inoue S, Kawashima M, Ishida R, Nakamura S, Tsubota K. Role of transient receptor potential melastatin 8 activity in menthol-induced cold sensitivity and its qualitative perception in dry eye. Ocul Surf 2020; 19:307-312. [PMID: 33127598 DOI: 10.1016/j.jtos.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the role of transient receptor potential melastatin 8 (TRPM8) activity in menthol-induced cold sensitivity and its qualitative perception in patients with dry eye (DE). METHODS This prospective, cross-sectional, comparative study included 52 eyes of 52 subjects (mean age: 66.8 ± 9.2 years; range: 44-86) with a tear break-up time (TBUT) of ≤5 s. The participants were classified into three groups: 17 patients with DE symptoms and keratoconjunctival (KC) staining scores of ≥3 points (positive KC-DE group), 18 patients with DE symptoms and KC staining scores of <3 points (negative KC-DE group), and 17 individuals with KC staining scores of <3 points and no symptoms (non-DE control group). The menthol-induced cool sensation (M-cool) and TBUT were measured after administration of 2 μl of 1.0 mM menthol eye drops. Furthermore, participants answered a questionnaire regarding their stimulus perception (pleasant, unpleasant, or neither). RESULTS M-cool values were similar in the three groups. TBUT significantly increased in the negative KC-DE and control groups (P < 0.05) and remained unchanged in the positive KC-DE group (P > 0.05) after menthol administration. DE patients reported the sensation as pleasant or unpleasant, whereas most control participants were indifferent (P < 0.05). CONCLUSIONS While M-cold sensitivity was similar in DE and control groups, its qualitative perception differed between these groups. Thus, TRPM8 activation at the peripheral level alone may not be sufficient to account for the manifestation of discomfort symptoms associated with DE.
Collapse
Affiliation(s)
- Minako Kaido
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Wada Eye Clinic, Chiba, Japan; Ishida Eye Clinic, Shizuoka, Japan.
| | - Sachiko Inoue
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Haneginomori Eye Clinic, Tokyo, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Ishida
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Ishida Eye Clinic, Shizuoka, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan
| |
Collapse
|
18
|
Guarino BD, Paruchuri S, Thodeti CK. The role of TRPV4 channels in ocular function and pathologies. Exp Eye Res 2020; 201:108257. [PMID: 32979394 DOI: 10.1016/j.exer.2020.108257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Transient potential receptor vanilloid 4 (TRPV4) is an ion channel responsible for sensing osmotic and mechanical signals, which in turn regulates calcium signaling across cell membranes. TRPV4 is widely expressed throughout the body, and plays an important role in normal physiological function, as well as different pathologies, however, its role in the eye is not well known. In the eye, TRPV4 is expressed in various tissues, such as the retina, corneal epithelium, ciliary body, and the lens. In this review, we provide an overview on TRPV4 structure, activation, mutations, and summarize the current knowledge of TRPV4 function and signaling mechanisms in various locations throughout the eye, as well as its role in ocular diseases, such as glaucoma and diabetic retinopathy. Based on the available data, we highlight the therapeutic potential of TRPV4 as well as the shortcomings of current research. Finally, we provide future perspectives on the implications of targeting TRPV4 to treat various ocular pathologies.
Collapse
Affiliation(s)
- Brianna D Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
19
|
Capsaicin-induced pain sensitivity in short tear break-up time dry eye. Ocul Surf 2020; 18:620-626. [PMID: 32712260 DOI: 10.1016/j.jtos.2020.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE To evaluate transient receptor potential vanilloid 1 (TRPV1)-mediated pain sensitivity in patients with short tear break-up time (TBUT) dry eye (DE) by using the capsaicin stimulus test. METHODS This prospective cross-sectional comparative study included 22 eyes of 22 patients with short TBUT DE and 11 eyes of 11 non-DE control subjects. Patients were divided into two groups based on response to standard DE treatments: 10 non-responders (intractable DE) and 12 responders (responsive DE). Mechanical touch (M-touch) and mechanical pain (M-pain) were measured using a Cochet-Bonnet esthesiometer. Capsaicin-induced pain (C-pain) and C-pain duration (C-pain DT) were measured using a capsaicin stimulus test. Psychological distress was also assessed. RESULTS M-touch sensitivity was similar among all three groups. M-pain sensitivity was higher in the responsive DE group than in the intractable DE and control groups (P < .001). C-pain sensitivity was lower (P < .001) in the intractable DE group than in the responsive DE and control groups, and C-pain DT was shorter (P = .006) in the intractable DE group than in the responsive DE group. Psychological distress was higher in the intractable DE group than in the control group (P < .001). CONCLUSIONS Patients with intractable short TBUT DE were less sensitive to the effects of capsaicin than patients with responsive short TBUT DE and controls. Altered neural activation may contribute to the development of DE symptoms in the short TBUT DE subjects. The capsaicin stimulus test may be used to better understand pain sensitivity in short TBUT DE patients.
Collapse
|
20
|
Developmental change in the gene expression of transient receptor potential melastatin channel 3 (TRPM3) in murine lacrimal gland. Ann Anat 2020; 231:151551. [PMID: 32512204 DOI: 10.1016/j.aanat.2020.151551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels with ubiquitous expression. Various TRP channels are functionally active at the ocular surface and are involved in tear secretion and multiple inflammatory processes. So far, the impact of TRP channels regarding the development of the lacrimal gland (LG) is unclear. While investigating TRP channels in the LG, the TRPM3 channel presented itself as a promising candidate to play a role in the development and functioning of the LG. Therefore, Trpm3 expression was analyzed in different embryonic and postembryonic LGs. Thus, gene expression of TRPM channels including Trpm2, Trpm3, Trpm4 and Trpm6 was analyzed by quantitative RT-PCR in murine LGs at different developmental stages. Localization of TRPM3 in LGs was examined by immunohistochemistry. Primary LG epithelial cells (LGEC) and mesenchymal cells (MC) from newborn mice were cultured (either separately or collectively) for three days, and Trpm3 expression was analyzed in LGEC and MC. As a result, gene expression of Trpm2, Trpm4 and Trpm6 showed no significant difference in LGs in the different stages of development. However, Trpm3 gene expression was significantly higher in the embryonic stage than in the postnatal stage with the peak at E18. Postnatal, Trpm3 expression significantly decreased up to 28-fold until two years of age. Immunohistochemistry for TRPM3 revealed apical membranous expression in the excretory ducts, as well as in the acini of up to P7 old mice. Trpm3 expression in LGEC were significantly higher than that of MC. Our results indicate that Trpm3 expression in murine LG is age-dependent and peaks at age E18. Its expression is localized in the apical membrane of the glandular epithelium. However, its functional role still requires additional study in the LG.
Collapse
|
21
|
|
22
|
TRPM8 Channels and Dry Eye. Pharmaceuticals (Basel) 2018; 11:ph11040125. [PMID: 30445735 PMCID: PMC6316058 DOI: 10.3390/ph11040125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential (TRP) channels transduce signals of chemical irritation and temperature change from the ocular surface to the brain. Dry eye disease (DED) is a multifactorial disorder wherein the eyes react to trivial stimuli with abnormal sensations, such as dryness, blurring, presence of foreign body, discomfort, irritation, and pain. There is increasing evidence of TRP channel dysfunction (i.e., TRPV1 and TRPM8) in DED pathophysiology. Here, we review some of this literature and discuss one strategy on how to manage DED using a TRPM8 agonist.
Collapse
|
23
|
Chigbu DI, Minhas BK. Immunopathology of Allergic Conjunctivitis. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10312711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allergic conjunctivitis is predominantly an immunoglobulin E-mediated hypersensitivity reaction to environmental allergens. Allergic diseases affect >30% of the world’s population, of which 40% report associated ocular manifestations. Cellular and soluble mediators play a major role in the pathophysiology of allergic conjunctivitis. Mast cells, which are major effector cells of allergic conjunctivitis, undergo activation and degranulation to release histamine, tryptase, prostaglandins, leukotrienes, and cytokines. These mediators play important roles in immunopathological mechanisms that generate the clinical manifestations of allergic conjunctivitis. These clinical features include conjunctival hyperaemia, chemosis, tearing, itching, papillae, mucus discharge, and eyelid oedema. Histamine mediates the early phase of the allergic immune response, whereas lipid mediators and cytokines are involved in the late phase of the immunopathology of allergic conjunctivitis. Current management of allergic conjunctivitis includes non-pharmacological approaches such as allergen avoidance and palliative therapy, whereas pharmacological therapeutic modalities may include antihistamine–mast cell stabiliser combination ophthalmic formulations and allergen-specific immunotherapy. Furthermore, as cellular and soluble mediators play a pivotal role in the immunopathogenesis and immunopathology of allergic conjunctivitis, development of immunotherapeutic and pharmacotherapeutic agents specific to these mediators can enhance the therapeutic index and safety profile of anti-allergy treatment.
Collapse
Affiliation(s)
- DeGaulle I. Chigbu
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Bhawanjot K. Minhas
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| |
Collapse
|
24
|
Yarishkin O, Phuong TTT, Lakk M, Križaj D. TRPV4 Does Not Regulate the Distal Retinal Light Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:553-560. [PMID: 29721987 DOI: 10.1007/978-3-319-75402-4_67] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transient receptor potential vanilloid isoform 4 (TRPV4) functions as polymodal transducer of swelling, heat, stretch, and lipid metabolites, is widely expressed across sensory tissues, and has been implicated in pressure sensing in vertebrate retinas. Although TRPV4 knockout mice exhibit a variety of mechanosensory, nociceptive, and thermo- and osmoregulatory phenotypes, it is not known whether the transmission of light-induced signals in the eye is affected by the loss of TRPV4. We utilized field potentials, a measure of rod and cone signaling, to determine whether TRPV4 impacts on the generation and/or transmission of the photoreceptor light response and neurotransmission. Luminance intensity-response relationships were acquired in anesthetized wild-type and TRPV4-/- mice and evaluated for peak amplitude and implicit time under scotopic and photopic conditions. We found that the morphology of the outer retina is unaffected by the ablation of the Trpv4 gene. Calcium imaging of dissociated Müller glia showed that selective TRPV4 stimulation induces oscillatory calcium signals in adjacent rods. However, no differences in scotopic or photopic light-evoked signaling in the distal retina were observed in TRPV4-/- eyes, suggesting that TRPV4 signaling in healthy Müller cells does not modulate the transmission of light-evoked signals at rod and cone synapses.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT, USA
| | - Tam T T Phuong
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT, USA. .,Department of Bioengineering, University of Utah, Salt Lake City, UT, USA. .,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Türker E, Garreis F, Khajavi N, Reinach PS, Joshi P, Brockmann T, Lucius A, Ljubojevic N, Turan E, Cooper D, Schick F, Reinholz R, Pleyer U, Köhrle J, Mergler S. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T 1AM) in Human Corneal Keratocytes. Front Endocrinol (Lausanne) 2018; 9:670. [PMID: 30524369 PMCID: PMC6262029 DOI: 10.3389/fendo.2018.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.
Collapse
Affiliation(s)
- Ersal Türker
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Noushafarin Khajavi
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Pooja Joshi
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Brockmann
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Lucius
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elizabeth Turan
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Drew Cooper
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schick
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rob Reinholz
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Pleyer
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Stefan Mergler
| |
Collapse
|
26
|
Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3242649. [PMID: 29238714 PMCID: PMC5697388 DOI: 10.1155/2017/3242649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Recently, in vivo confocal microscopy is used to examine the human corneal nerve fibers morphology. Corneal nerve fiber architecture and its role are studied in healthy and pathological conditions. Corneal nerves of rats were studied by nonspecific acetylcholinesterase (NsAchE) staining. NsAchE-positive subepithelial (stromal) nerve fiber has been found to be insensitive to capsaicin. Besides, NsAchE-negative but capsaicin-sensitive subbasal nerve (leash) fibers formed thick mesh-like structure showing close interconnections and exhibit both isolectin B4- and transient receptor potential vanilloid channel 1- (TRPV1-) positive. TRPV1, TRPV3, TRPA (ankyrin) 1, and TRPM (melastatin) 8 are expressed in corneal nerve fibers. Besides the corneal nerve fibers, the expressions of TRPV (1, 3, and 4), TRPC (canonical) 4, and TRPM8 are demonstrated in the corneal epithelial cell membrane. The realization of the importance of TRP channels acting as polymodal sensors of environmental stresses has identified potential drug targets for corneal disease. The pathophysiological conditions of corneal diseases are associated with disruption of normal tissue innervation, especially capsaicin-sensitive small sensory nerve fibers. The relationships between subbasal corneal nerve fiber morphology and neurotrophic keratopathy in corneal diseases are well studied. The recommended treatment for neurotrophic keratopathy is administration of preservative free eye drops.
Collapse
|
27
|
Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep 2017; 16:5285-5293. [PMID: 28849159 PMCID: PMC5647061 DOI: 10.3892/mmr.2017.7246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids, as multi-target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi-serial paraffin-embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV channel expression was identified to be significantly higher than the expression level of cannabinoid receptors in the pterygium samples (P<0.001). The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoid targets in the underlying mechanisms of pterygium.
Collapse
Affiliation(s)
- Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Dionysios Pagoulatos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Pinelopi Nterma
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Nikolaos Pharmakakis
- Department of Ophthalmology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| |
Collapse
|
28
|
Jones L, Downie LE, Korb D, Benitez-del-Castillo JM, Dana R, Deng SX, Dong PN, Geerling G, Hida RY, Liu Y, Seo KY, Tauber J, Wakamatsu TH, Xu J, Wolffsohn JS, Craig JP. TFOS DEWS II Management and Therapy Report. Ocul Surf 2017; 15:575-628. [DOI: 10.1016/j.jtos.2017.05.006] [Citation(s) in RCA: 578] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
|
29
|
Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8? Front Endocrinol (Lausanne) 2017; 8:198. [PMID: 28861042 PMCID: PMC5561014 DOI: 10.3389/fendo.2017.00198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
The decarboxylated and deiodinated thyroid hormone (TH) derivative, 3-iodothyronamine (3-T1AM), is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs) are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs) were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8) was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
- *Correspondence: Noushafarin Khajavi,
| | - Stefan Mergler
- Department of Ophthalmology, Charité University of Medicine Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
| |
Collapse
|
30
|
Warcoin E, Clouzeau C, Brignole-Baudouin F, Baudouin C. Hyperosmolarité : effets intracellulaires et implication dans la sécheresse oculaire. J Fr Ophtalmol 2016; 39:641-51. [DOI: 10.1016/j.jfo.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
31
|
Reinach PS, Mergler S, Okada Y, Saika S. Ocular transient receptor potential channel function in health and disease. BMC Ophthalmol 2015; 15 Suppl 1:153. [PMID: 26818117 PMCID: PMC4895786 DOI: 10.1186/s12886-015-0135-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca(2+) transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca(2+) selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression.
Collapse
Affiliation(s)
- Peter S Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xuejuan Road, Wenzhou, Zhejiang, 325027, P. R. China.
| | - Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|
32
|
Lucius A, Khajavi N, Reinach PS, Köhrle J, Dhandapani P, Huimann P, Ljubojevic N, Grötzinger C, Mergler S. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells. Cell Signal 2015; 28:136-147. [PMID: 26689735 DOI: 10.1016/j.cellsig.2015.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
3-Iodothyronamine (3T1AM) is an endogenous thyroid hormone metabolite that interacts with the human trace amine-associated receptor 1 (hTAAR1), a G-protein-coupled receptor, to induce numerous physiological responses including dose-dependent body temperature lowering in rodents. 3T1AM also directly activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) channels in human conjunctival epithelial cells (HCjEC) at constant temperature as well as reducing rises in IL-6 release induced by transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin (CAP). Here, we describe that 3T1AM-induced TRPM8 activation suppresses through crosstalk TRPV1 activation in immortalized human corneal epithelial cells (HCEC). RT-PCR and immunofluorescent staining identified TRPM8 gene and protein expression. Increases in Ca(2+) influx induced by the TRPM8 agonists either 3T1AM (0.1-10 μM), menthol (500 μM), icilin (15-60 μM) or temperature lowering (either <17°C or >17°C) were all blocked by 10-20 μM BCTC, a mixed TRPV1/TRPM8 antagonist. BCTC blocked 3T1AM-induced recombinant TRPM8 activation of Ca(2+) transients in an osteosarcoma heterologous expression system. The effects of BCTC in HCEC were attributable to selective TRPM8 inhibition since whole-cell patch-clamp currents underlying Ca(2+) rises induced by 20 μM CAP were BCTC insensitive. On the other hand, Ca(2+) transients induced by activating TRPV1 with either CAP or a hyperosmolar medium were suppressed during exposure to either 1 μM 3T1AM or 15 μM icilin. All of these modulatory effects on intracellular Ca(2+) regulation induced by the aforementioned agents were attributable to changes in underlying inward and outward current. Taken together, TRPM8 activation by 3T1AM markedly attenuates and even eliminates hyperosmolar and CAP induced TRPV1 activation through crosstalk.
Collapse
Affiliation(s)
- Alexander Lucius
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Noushafarin Khajavi
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Priyavathi Dhandapani
- Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Huimann
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carsten Grötzinger
- Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
33
|
Dinter J, Khajavi N, Mühlhaus J, Wienchol CL, Cöster M, Hermsdorf T, Stäubert C, Köhrle J, Schöneberg T, Kleinau G, Mergler S, Biebermann H. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. Eur Thyroid J 2015; 4:21-9. [PMID: 26601070 PMCID: PMC4640289 DOI: 10.1159/000381801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether β-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. METHODS A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca(2+) imaging was utilized to delineate 3-T1AM-induced Ca(2+) signaling. RESULTS 3-T1AM (10(-5)-10(-10)M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca(2+) influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca(2+) channels. Notably, timolol was also found to block 3-T1AM (10(-5)M)-induced Ca(2+) influx. CONCLUSIONS The presented data support that 3-T1AM directly modulates β-adrenergic receptor signaling. The relationship between 3-T1AM and β-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca(2+) channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis.
Collapse
Affiliation(s)
- Juliane Dinter
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Noushafarin Khajavi
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | | | - Maxi Cöster
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Thomas Hermsdorf
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Claudia Stäubert
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
- *Heike Biebermann, Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail , Stefan Mergler, Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail
| |
Collapse
|
34
|
Chigbu DI, Coyne AM. Update and clinical utility of alcaftadine ophthalmic solution 0.25% in the treatment of allergic conjunctivitis. Clin Ophthalmol 2015; 9:1215-25. [PMID: 26185412 PMCID: PMC4501164 DOI: 10.2147/opth.s63790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Allergic disorders of the ocular surface are primarily characterized as IgE- and/or T-lymphocyte-mediated disorders that affect the cornea, conjunctiva, and eyelid. Approximately 40% of individuals in the developed countries have allergic conjunctivitis, and as such, it is the most common form of ocular allergy. Seasonal allergic conjunctivitis is the most prevalent type of allergic conjunctivitis that impacts the quality of life of patients. This article reviews the pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, clinical efficacy, and safety of alcaftadine. Histamine and the pathological mechanism of ocular allergy will be briefly reviewed with the intent of providing a background for the detailed discussion on the clinical utility of alcaftadine in allergic conjunctivitis. The Medline PubMed, Elsevier Science Direct, and Google Scholar databases were used to search for evidence-based literature on histamine and immunopathological mechanism of allergic conjunctivitis, as well as on pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, and clinical efficacy of alcaftadine. The treatment and management goals of allergic conjunctivitis are to prevent or minimize the inflammatory cascade associated with allergic response in the early stages of the pathological mechanism. It is of note that activation of histamine receptors on immune and nonimmune cells are associated with allergen-induced inflammation of the conjunctiva and its associated ocular allergic manifestations, including itching, edema, hyperemia, and tearing. Alcaftadine is an efficacious multiple action antiallergic therapeutic agent with inverse agonist activity on H1, H2, and H4 receptors, as well as anti-inflammatory and mast cell stabilizing effects that could provide therapeutic benefits to patients with allergic conjunctivitis.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Pennsylvania College of Optometry Salus University, Elkins Park, PA, USA
| | - Alissa M Coyne
- Pennsylvania College of Optometry Salus University, Elkins Park, PA, USA
| |
Collapse
|
35
|
Reinach PS, Chen W, Mergler S. Polymodal roles of transient receptor potential channels in the control of ocular function. EYE AND VISION 2015; 2:5. [PMID: 26605361 PMCID: PMC4655450 DOI: 10.1186/s40662-015-0016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/15/2015] [Indexed: 12/05/2022]
Abstract
Maintenance of intracellular Ca2+ levels at orders of magnitude below those in the extracellular environment is a requisite for preserving cell viability. Membrane channels contribute to such control through modulating their time-dependent opening and closing behaviour. Such regulation requires Ca2+ to serve as a second messenger mediating receptor control of numerous life-sustaining responses. Transient receptor potential (TRP) channels signal transduce a wide variety of different sensory stimuli to induce responses modulating cellular function. These channels are non-selective cation channels with variable Ca2+ selectivity having extensive sequence homology. They constitute a superfamily made up of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Some of these TRP channel isotypes are expressed in the eye and localized to both neuronal and non-neuronal cell membranes. Their activation generates intracellular Ca2+ transients and other downstream-linked signalling events that affect numerous responses required for visual function. As there is an association between changes in functional TRP expression in various ocular diseases, there are efforts underway to determine if these channels can be used as drug targets to reverse declines in ocular function. We review here our current knowledge about the expression, function and regulation of TRPs in different eye tissues in health and disease. Furthermore, some of the remaining hurdles are described to developing safe and efficacious TRP channel modulators for use in a clinical setting.
Collapse
Affiliation(s)
- Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027 P.R. China
| | - Weiwei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027 P.R. China
| | - Stefan Mergler
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
36
|
Tokuda M, Fujisawa M, Miyashita K, Kawakami Y, Morimoto-Yamashita Y, Torii M. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells. Connect Tissue Res 2015; 56:44-9. [PMID: 25372661 DOI: 10.3109/03008207.2014.984804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. METHODOLOGY OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. RESULTS Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. CONCLUSION OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.
Collapse
Affiliation(s)
- M Tokuda
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | | | | | | | | | | |
Collapse
|
37
|
Khajavi N, Reinach PS, Slavi N, Skrzypski M, Lucius A, Strauß O, Köhrle J, Mergler S. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal 2014; 27:315-25. [PMID: 25460045 DOI: 10.1016/j.cellsig.2014.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
3-Iodothyronamine (T1AM), an endogenous thyroid hormone (TH) metabolite, induces numerous responses including a spontaneously reversible body temperature decline. As such an effect is associated in the eye with increases in basal tear flow and thermosensitive transient receptor potential melastatin 8 (TRPM8) channel activation, we determined in human conjunctival epithelial cells (IOBA-NHC) if T1AM also acts as a cooling agent to directly affect TRPM8 activation at a constant temperature. RT-PCR and quantitative real-time PCR (qPCR) along with immunocytochemistry probed for TRPM8 gene and protein expression whereas functional activity was evaluated by comparing the effects of T1AM with those of TRPM8 mediators on intracellular Ca(2+) ([Ca(2+)]i) and whole-cell currents. TRPM8 gene and protein expression was evident and icilin (20μM), a TRPM8 agonist, increased Ca(2+) influx as well as whole-cell currents whereas BCTC (10μM), a TRPM8 antagonist, suppressed these effects. Similarly, either temperature lowering below 23°C or T1AM (1μM) induced Ca(2+) transients that were blocked by this antagonist. TRPM8 activation by both 1µM T1AM and 20μM icilin prevented capsaicin (CAP) (20μM) from inducing increases in Ca(2+) influx through TRP vanilloid 1 (TRPV1) activation, whereas BCTC did not block this response. CAP (20μM) induced a 2.5-fold increase in IL-6 release whereas during exposure to 20μM capsazepine this rise was completely blocked. Similarly, T1AM (1μM) prevented this response. Taken together, T1AM like icilin is a cooling agent since they both directly elicit TRPM8 activation at a constant temperature. Moreover, there is an inverse association between changes in TRPM8 and TRPV1 activity since these cooling agents blocked both CAP-induced TRPV1 activation and downstream rises in IL-6 release.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter S Reinach
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Nefeli Slavi
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Alexander Lucius
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Olaf Strauß
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Stefan Mergler
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
38
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Mergler S, Derckx R, Reinach PS, Garreis F, Böhm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 2013; 26:56-69. [PMID: 24084605 DOI: 10.1016/j.cellsig.2013.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/16/2022]
Abstract
Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.
Collapse
Affiliation(s)
- Stefan Mergler
- Charité - Universitätsmedizin Berlin, Campus Virchow-Clinic, Department of Ophthalmology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
41
|
Yang Y, Yang H, Wang Z, Mergler S, Wolosin JM, Reinach PS. Functional TRPV1 expression in human corneal fibroblasts. Exp Eye Res 2013; 107:121-9. [PMID: 23232207 PMCID: PMC3556194 DOI: 10.1016/j.exer.2012.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Corneal wound healing in mice subsequent to an alkali burn results in dysregulated inflammation and opacification. Transient receptor potential vanilloid subtype 1 (TRPV1) channel activation in all tissue layers by endogenous ligands contributes to this sight compromising outcome since in TRPV1 knockout mice wound healing results instead in tissue transparency restoration. However, it is not known if primary human stromal fibroblasts exhibit such expression even though functional TRPV1 expression is evident in an immortalized human corneal epithelial cell line. In primary human corneal fibroblasts (HCF), TRPV1 gene expression and localization were identified based on the results of quantitative RT-PCR and immunocytochemistry, respectively. Western blot analysis identified a 100 kD protein corresponding to TRPV1 protein expression in a positive control. Single-cell fluorescence imaging detected in fura2-AM loaded cells Ca(2+) transients that rose 1.8-fold above the baseline induced by a selective TRPV1 agonist, capsaicin (CAP), which were blocked by a TRPV1 antagonist, capsazepine (CPZ) or exposure to a Ca(2+) free medium. The whole-cell mode of the planar patch-clamp technique identified TRPV1-induced currents that rose 1.76-fold between -60 and +130 mV. CAP-induced time dependent changes in the phosphorylation status of mitogen activated protein kinase (MAPK) signaling mediators that led to a 2.5-fold increase in IL-6 release after 24 h. This rise did not occur either in TRPV1 siRNA gene silenced cells or during exposure to SB203580 (10 μM), a selective p38 MAPK inhibitor. Taken together, identification of functional TRPV1 expression in HCF suggests that in vivo its activation by injury contributes to corneal opacification and inflammation during wound healing. These undesirable effects may result in part from increases in IL-6 expression mediated by p-p38 MAPK signaling.
Collapse
Affiliation(s)
- Yuanquan Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Hua Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Zheng Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Stefan Mergler
- Department of Ophthalmology, Charité, University Berlin, Campus Virchow-Clinic, Berlin, Germany
| | - J. Mario Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Peter S. Reinach
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| |
Collapse
|