1
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
2
|
Mesenchymal Stem Cells in the Treatment of Human Spinal Cord Injury: The Effect on Individual Values of pNF-H, GFAP, S100 Proteins and Selected Growth Factors, Cytokines and Chemokines. Curr Issues Mol Biol 2022; 44:578-596. [PMID: 35723326 PMCID: PMC8929137 DOI: 10.3390/cimb44020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury.
Collapse
|
3
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
4
|
Ahmed K, Ali AS, Delwadia N, Greven MA. Neurodevelopmental Outcomes Following Intravitreal Bevacizumab With Laser Versus Laser Photocoagulation Alone for Retinopathy of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2021; 51:220-224. [PMID: 32348538 DOI: 10.3928/23258160-20200326-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To assess neurodevelopmental outcomes of infants with treatment-warranted retinopathy of prematurity (TW-ROP) treated with intravitreal bevacizumab (IVB) plus diode laser photocoagulation (DLP) compared to DLP alone. PATIENTS AND METHODS A retrospective review was performed of infants who underwent treatment for TW-ROP with IVB+DLP or DLP alone from 2010 to 2017. Baseline characteristics and coexisting medical comorbidities were recorded. The presence of neurodevelopmental delay (NDD) at 2-year follow-up and composite Bayley-III scores were recorded. RESULTS Sixty-six infants were included in the study; 18 received IVB+DLP, and 48 received DLP alone. Average Bayley-III scores for cognition, language, and motor, as well as rates of documental NDD, did not differ between the groups. CONCLUSION This study does not demonstrate an increased risk of NDD in infants with TW-ROP treated with IVB+DLP compared with DLP alone. [Ophthalmic Surg Lasers Imaging Retina. 2020;51:220-224.].
Collapse
|
5
|
Gehmeyr J, Maghnouj A, Tjaden J, Vorgerd M, Hahn S, Matschke V, Theis V, Theiss C. Disabling VEGF-Response of Purkinje Cells by Downregulation of KDR via miRNA-204-5p. Int J Mol Sci 2021; 22:2173. [PMID: 33671638 PMCID: PMC7926311 DOI: 10.3390/ijms22042173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) is well known for its wide-ranging functions, not only in the vascular system, but also in the central (CNS) and peripheral nervous system (PNS). To study the role of VEGF in neuronal protection, growth and maturation processes have recently attracted much interest. These effects are mainly mediated by VEGF receptor 2 (VEGFR-2). Current studies have shown the age-dependent expression of VEGFR-2 in Purkinje cells (PC), promoting dendritogenesis in neonatal, but not in mature stages. We hypothesize that microRNAs (miRNA/miR) might be involved in the regulation of VEGFR-2 expression during the development of PC. In preliminary studies, we performed a miRNA profiling and identified miR204-5p as a potential regulator of VEGFR-2 expression. In the recent study, organotypic slice cultures of rat cerebella (postnatal day (p) 1 and 9) were cultivated and VEGFR-2 expression in PC was verified via immunohistochemistry. Additionally, PC at age p9 and p30 were isolated from cryosections by laser microdissection (LMD) to analyse VEGFR-2 expression by quantitative RT-PCR. To investigate the influence of miR204-5p on VEGFR-2 levels in PC, synthetic constructs including short hairpin (sh)-miR204-5p cassettes (miRNA-mimics), were microinjected into PC. The effects were analysed by confocal laser scanning microscopy (CLSM) and morphometric analysis. For the first time, we could show that miR204-5p has a negative effect on VEGF sensitivity in juvenile PC, resulting in a significant decrease of dendritic growth compared to untreated juvenile PC. In mature PC, the overexpression of miR204-5p leads to a shrinkage of dendrites despite VEGF treatment. The results of this study illustrate, for the first time, which miR204-5p expression has the potential to play a key role in cerebellar development by inhibiting VEGFR-2 expression in PC.
Collapse
Affiliation(s)
- Julian Gehmeyr
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Abdelouahid Maghnouj
- Clinical Research Centre (ZKF), Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany; (A.M.); (S.H.)
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Matthias Vorgerd
- Neuromuscular Center Ruhrgebiet, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Stephan Hahn
- Clinical Research Centre (ZKF), Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany; (A.M.); (S.H.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany; (J.G.); (J.T.); (V.M.); (V.T.)
| |
Collapse
|
6
|
Hunt PJ, Kabotyanski KE, Calin GA, Xie T, Myers JN, Amit M. Interrupting Neuron-Tumor Interactions to Overcome Treatment Resistance. Cancers (Basel) 2020; 12:E3741. [PMID: 33322770 PMCID: PMC7762969 DOI: 10.3390/cancers12123741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurons in the tumor microenvironment release neurotransmitters, neuroligins, chemokines, soluble growth factors, and membrane-bound growth factors that solid tumors leverage to drive their own survival and spread. Tumors express nerve-specific growth factors and microRNAs that support local neurons and guide neuronal growth into tumors. The development of feed-forward relationships between tumors and neurons allows tumors to use the perineural space as a sanctuary from therapy. Tumor denervation slows tumor growth in animal models, demonstrating the innervation dependence of growing tumors. Further in vitro and in vivo experiments have identified many of the secreted signaling molecules (e.g., acetylcholine, nerve growth factor) that are passed between neurons and cancer cells, as well as the major signaling pathways (e.g., MAPK/EGFR) involved in these trophic interactions. The molecules involved in these signaling pathways serve as potential biomarkers of disease. Additionally, new treatment strategies focus on using small molecules, receptor agonists, nerve-specific toxins, and surgical interventions to target tumors, neurons, and immune cells of the tumor microenvironment, thereby severing the interactions between tumors and surrounding neurons. This article discusses the mechanisms underlying the trophic relationships formed between neurons and tumors and explores the emerging therapies stemming from this work.
Collapse
Affiliation(s)
- Patrick J. Hunt
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Katherine E. Kabotyanski
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
| | - George A. Calin
- Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Moran Amit
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| |
Collapse
|
7
|
Glaesel K, May C, Marcus K, Matschke V, Theiss C, Theis V. miR-129-5p and miR-130a-3p Regulate VEGFR-2 Expression in Sensory and Motor Neurons during Development. Int J Mol Sci 2020; 21:ijms21113839. [PMID: 32481647 PMCID: PMC7312753 DOI: 10.3390/ijms21113839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023] Open
Abstract
The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)-miR-129-5p and miR-130a-3p-that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury.
Collapse
Affiliation(s)
- Kevin Glaesel
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Caroline May
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Katrin Marcus
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| |
Collapse
|
8
|
Lemaire Q, Raffo-Romero A, Arab T, Van Camp C, Drago F, Forte S, Gimeno JP, Begard S, Colin M, Vizioli J, Sautière PE, Salzet M, Lefebvre C. Isolation of microglia-derived extracellular vesicles: towards miRNA signatures and neuroprotection. J Nanobiotechnology 2019; 17:119. [PMID: 31801555 PMCID: PMC6894150 DOI: 10.1186/s12951-019-0551-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived extracellular vesicles (EVs) were isolated and molecularly characterized to be then studied in neurite outgrowth assays. The EVs, mainly composed of exosomes and microparticles, are an important cell-to-cell communication process as they exhibit different types of mediators (proteins, lipids, nucleic acids) to recipient cells. The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk due to their easy collection for primary cultures. After the microglia-derived EV isolation following successive methods, we developed their large-scale and non-targeted proteomic analysis to (i) detect as many EV protein markers as possible, (ii) better understand the biologically active proteins in EVs and (iii) evaluate the resulting protein signatures in EV-activated neurons. The EV functional properties were also evaluated in neurite outgrowth assays on rat primary neurons and the RNAseq analysis of the microglia-derived EVs was performed to propose the most representative miRNAs in microglia-derived EVs. This strategy allowed validating the EV isolation, identify major biological pathways in EVs and corroborate the regenerative process in EV-activated neurons. In parallel, six different miRNAs were originally identified in microglia-derived EVs including 3 which were only known in plants until now. The analysis of the neuronal proteins under the microglial EV activation suggested possible miRNA-dependent regulation mechanisms. Taken together, this combination of methodologies showed the leech microglial EVs as neuroprotective cargos across species and contributed to propose original EV-associated miRNAs whose functions will have to be evaluated in the EV-dependent dialog between microglia and neurons.
Collapse
Affiliation(s)
- Quentin Lemaire
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Antonella Raffo-Romero
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Tanina Arab
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Christelle Van Camp
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Francesco Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Jean-Pascal Gimeno
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Séverine Begard
- Centre de Recherche Jean-Pierre AUBERT (JPArc), INSERM U1172, Université de Lille, 59000, Lille, France
| | - Morvane Colin
- Centre de Recherche Jean-Pierre AUBERT (JPArc), INSERM U1172, Université de Lille, 59000, Lille, France
| | - Jacopo Vizioli
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Pierre-Eric Sautière
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Michel Salzet
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France
| | - Christophe Lefebvre
- Laboratoire de Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000, Lille, France.
| |
Collapse
|
9
|
A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials 2019; 225:119537. [PMID: 31614290 PMCID: PMC7294901 DOI: 10.1016/j.biomaterials.2019.119537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023]
Abstract
Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne’s muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting.
Collapse
|
10
|
Zhang W, Xu Y, Chen G, Wang K, Shan W, Chen Y. Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:26-33. [PMID: 30393161 DOI: 10.1016/j.bbamem.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The composition, structure, production, motion, fate, and functions of cell-bound membrane vesicles pre-existing in the plasma membrane of cells are poorly understood. Here, single-vesicle tracking of individual cell-bound membrane vesicles in the plasma membrane of endothelial cells treated with or without various reagents was performed to investigate the motion of cell-bound membrane vesicles. The efficacy of each of these reagents was confirmed prior to single-vesicle tracking. Via single-vesicle tracking, we found that oxLDL, TNF-α, and VEGFα significantly increased the average number of cell-bound membrane vesicles per cell, implying that cell activation by oxLDL, TNF-α, and VEGFα could trigger the production of cell-bound membrane vesicles. It was also found that oxLDL, TNF-α, VEGFα, LPS, and MβCD but not LDL could significantly affect the motion speed of cell-bound membrane whereas none of them could significantly influence the displacement (moving range) of cell-bound membrane vesicles. The single-vesicle tracking further revealed that the average number of cell-bound membrane vesicles per cell and the mean speed/displacement of individual cell-bound membrane vesicles could be dramatically altered by the cytoskeleton-disrupting reagents (cytochalasin D and nocodazole). The data imply that the production and movement of cell-bound membrane vesicles are probably controlled by intracellular cytoskeletons and capable of being affected by multiple conditions e.g. cell activation, membrane fluidity alteration, and others.
Collapse
Affiliation(s)
- Wendiao Zhang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Ye Xu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guo Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Kun Wang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wenzhe Shan
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China.
| |
Collapse
|
11
|
Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone. Int J Mol Sci 2018; 19:ijms19020384. [PMID: 29382077 PMCID: PMC5855606 DOI: 10.3390/ijms19020384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.
Collapse
Affiliation(s)
- Matthias Schlau
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Daniel Terheyden-Keighley
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Hans Georg Mannherz
- Research Group Molecular Cardiology, University Hospital Bergmannsheil and St. Josef Hospital, c/o Clinical Pharmacology, Ruhr-University, 44780 Bochum, Germany.
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
12
|
Lindholm T, Risling M, Carlstedt T, Hammarberg H, Wallquist W, Cullheim S, Sköld MK. Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury. Front Neurol 2017; 8:49. [PMID: 28270793 PMCID: PMC5318460 DOI: 10.3389/fneur.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dorsal root injury is a situation not expected to be followed by a strong regenerative growth, or growth of the injured axon into the central nervous system of the spinal cord, if the central axon of the dorsal root is injured but of strong regeneration if subjected to injury to the peripherally projecting axons. The clinical consequence of axonal injury is loss of sensation and may also lead to neuropathic pain. In this study, we have used in situ hybridization to examine the distribution of mRNAs for the neural guidance molecules semaphorin 3A (SEMA3A), semaphorin 3F (SEMA3F), and semaphorin 4F (SEMA4F), their receptors neuropilin 1 (NP1) and neuropilin 2 (NP2) but also for the neuropilin ligand vascular endothelial growth factor (VEGF) and Tenascin J1, an extracellular matrix molecule involved in axonal guidance, in rat dorsal root ganglia (DRG) after a unilateral dorsal rhizotomy (DRT) or sciatic nerve transcetion (SNT). The studied survival times were 1–365 days. The different forms of mRNAs were unevenly distributed between the different size classes of sensory nerve cells. The results show that mRNA for SEMA3A was diminished after trauma to the sensory nerve roots in rats. The SEMA3A receptor NP1, and SEMA3F receptor NP2, was significantly upregulated in the DRG neurons after DRT and SNT. SEMA4F was upregulated after a SNT. The expression of mRNA for VEGF in DRG neurons after DRT showed a significant upregulation that was high even a year after the injuries. These data suggest a role for the semaphorins, neuropilins, VEGF, and J1 in the reactions after dorsal root lesions.
Collapse
Affiliation(s)
- Tomas Lindholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Helsa Företagshälsovård Östermalm, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Thomas Carlstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Hammersmith Hospital, University College London and Imperial College, London, UK; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Henrik Hammarberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Wilhelm Wallquist
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Anesthesiology and Intensive Care, Västerås General Hospital, Västerås, Sweden
| | - Staffan Cullheim
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Herrfurth L, Theis V, Matschke V, May C, Marcus K, Theiss C. Morphological Plasticity of Emerging Purkinje Cells in Response to Exogenous VEGF. Front Mol Neurosci 2017; 10:2. [PMID: 28194096 PMCID: PMC5276996 DOI: 10.3389/fnmol.2017.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is well known as the growth factor with wide-ranging functions even in the central nervous system (CNS). Presently, most attention is given to the investigation of its role in neuronal protection, growth and maturation processes, whereby most effects are mediated through VEGF receptor 2 (VEGFR-2). The purpose of our current study is to provide new insights into the impact of VEGF on immature and mature Purkinje cells (PCs) in accordance with maturity and related receptor expression. Therefore, to expand our knowledge of VEGF effects in PCs development and associated VEGFR-2 expression, we used cultivated organotypic cerebellar slice cultures in immunohistochemical or microinjection studies, followed by confocal laser scanning microscopy (CLSM) and morphometric analysis. Additionally, we incorporated in our study the method of laser microdissection, followed by quantitative polymerase chain reaction (qPCR). For the first time we could show the age-dependent VEGF sensitivity of PCs with the largest promoting effects being on dendritic length and cell soma size in neonatal and juvenile stages. Once mature, PCs were no longer susceptible to VEGF stimulation. Analysis of VEGFR-2 expression revealed its presence in PCs throughout development, which underlined its mediating functions in neuronal cells.
Collapse
Affiliation(s)
- Leonard Herrfurth
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Verena Theis
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Veronika Matschke
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| | - Caroline May
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Katrin Marcus
- Abteilung für Medizinische Proteomik/Bioanalytik, Medizinisches Proteom-Center, Ruhr-University Bochum Bochum, Germany
| | - Carsten Theiss
- Medizinische Fakultät, Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität Bochum Bochum, Germany
| |
Collapse
|
14
|
Krcek R, Latzer P, Adamietz IA, Bühler H, Theiss C. Influence of vascular endothelial growth factor and radiation on gap junctional intercellular communication in glioblastoma multiforme cell lines. Neural Regen Res 2017; 12:1816-1822. [PMID: 29239327 PMCID: PMC5745835 DOI: 10.4103/1673-5374.219030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive glial brain tumor with an unfavorable prognosis despite all current therapies including surgery, radiation and chemotherapy. One characteristic of this tumor is a strong synthesis of vascular endothelial growth factor (VEGF), an angiogenesis factor, followed by pronounced vascularization. VEGF became a target in the treatment of GBM, for example with bevacizumab or the tyrosine kinase inhibitor axitinib, which blocks VEGF receptors. To improve patients’ prognosis, new targets in the treatment of GBM are under investigations. The role of gap junctions in GBM remains unknown, but some experimental therapies affect these intercellular channels to treat the tumor. Gap junctions are composed of connexins to allow the transport of small molecules between adjacent cells through gap junctional intercellular communication (GJIC). Based on data derived from astrocytes in former studies, which show that VEGF is able to enhance GJIC, the current study analyzed the effects of VEGF, radiation therapy and VEGF receptor blockade by axitinib on GJIC in human GBM cell lines U-87 and U-251. While VEGF is able to induce GJIC in U-251 cells but not in U-87 cells, radiation enhances GJIC in both cell lines. VEGF receptor blockade by axitinib diminishes radiation induced effects in U-251 partially, while increases GJIC in U-87 cells. Our data indicate that VEGF and radiation are both modifying components of GJIC in pathologic brain tumor tissue.
Collapse
Affiliation(s)
- Reinhardt Krcek
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Pauline Latzer
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Irenäus Anton Adamietz
- Department of Radiotherapy and Radio-Oncology, University Medical Centre Marienhospital, Ruhr-University Bochum, Herne, North Rhine-Westphalia, Germany
| | - Helmut Bühler
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, University Medical Centre Marienhospital, Ruhr-University Bochum, Herne, North Rhine-Westphalia, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| |
Collapse
|
15
|
Guo H, Zhou H, Lu J, Qu Y, Yu D, Tong Y. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen Res 2016; 11:174-9. [PMID: 26981109 PMCID: PMC4774214 DOI: 10.4103/1673-5374.175067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Lu
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
16
|
Latzer P, Schlegel U, Theiss C. Morphological Changes of Cortical and Hippocampal Neurons after Treatment with VEGF and Bevacizumab. CNS Neurosci Ther 2016; 22:440-50. [PMID: 26861512 PMCID: PMC5067574 DOI: 10.1111/cns.12516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/21/2015] [Accepted: 01/02/2016] [Indexed: 01/13/2023] Open
Abstract
Aims Vascular endothelial growth factor (VEGF) is a hallmark of glioblastoma multiforme (GBM) and plays an important role in brain development and function. Recently, it has been reported that treatment of GBM patients with bevacizumab, an anti‐VEGF antibody, may cause a decline in neurocognitive function and compromise quality of life. Therefore, we investigated the effects of VEGF and bevacizumab on the morphology and on survival of neurons and glial cells. Methods Dissociated cortical and hippocampal cell cultures of juvenile rats were treated with VEGF, bevacizumab, and VEGF + bevacizumab. Neuronal and glial cell viability was analyzed, and the morphology of neurons was objectified by morphometric analysis. Results In cortical cultures, bevacizumab significantly decreased the number of neurons after 20 days and the number of glial cells subsequent 30 days. Additionally, an increase in the dendritic length of cortical neurons was obvious after 10 days of incubation with bevacizumab, but returned to control level after 30 days. In hippocampal cultures, cell viability was not affected by bevacizumab; however, dendritic length increased at day 10, but decreased after long‐term treatment. Conclusion Therefore, bevacizumab obviously has a cytotoxic effect in cortical cultures and decreases the dendritic length in hippocampal neurons after long‐term treatment.
Collapse
Affiliation(s)
- Pauline Latzer
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Uwe Schlegel
- Department of Neurology, Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Dumpich M, Theiss C. VEGF in the nervous system: an important target for research in neurodevelopmental and regenerative medicine. Neural Regen Res 2016; 10:1725-6. [PMID: 26807091 PMCID: PMC4705768 DOI: 10.4103/1673-5374.170287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Matthias Dumpich
- Faculty of Medicine, Institute of Anatomy, Department of Cytology Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Faculty of Medicine, Institute of Anatomy, Department of Cytology Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
18
|
A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 2015; 64:639-49. [DOI: 10.1016/j.bios.2014.09.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
|
19
|
Intermediate filaments and the regulation of focal adhesion. Curr Opin Cell Biol 2014; 32:13-20. [PMID: 25460777 DOI: 10.1016/j.ceb.2014.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/19/2022]
Abstract
Focal adhesions are localized actin filament-anchoring signalling centres at the cell-extracellular matrix interface. The currently emerging view is that they fulfil an all-embracing coordinating function for the entire cytoskeleton. This review highlights the tight relationship between focal adhesions and the intermediate filament cytoskeleton. We summarize the accumulating evidence for direct binding of intermediate filaments to focal adhesion components and their mutual cross-talk through signalling molecules. Examples are presented to emphasize the high degree of complexity of these interactions equipping cells with a precisely controlled machinery for context-dependent adjustment of their biomechanical properties.
Collapse
|
20
|
Moloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 2014; 8:252. [PMID: 25177267 PMCID: PMC4132373 DOI: 10.3389/fnins.2014.00252] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
| | - Fred de Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Department of Neurosurgery, Leiden University Medical CentreLeiden, Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
21
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|
22
|
Olbrich L, Wessel L, Balakrishnan-Renuka A, Böing M, Brand-Saberi B, Theiss C. Rapid impact of progesterone on the neuronal growth cone. Endocrinology 2013; 154:3784-95. [PMID: 23913445 DOI: 10.1210/en.2013-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.
Collapse
Affiliation(s)
- Laura Olbrich
- Faculty of Medicine, Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Carmeliet P, Ruiz de Almodovar C, Carmen RDA. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 2013; 70:1763-78. [PMID: 23475071 PMCID: PMC11113464 DOI: 10.1007/s00018-013-1283-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.
Collapse
Affiliation(s)
- Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, K.U.Leuven, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
24
|
Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovádi J. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC BIOCHEMISTRY 2013; 14:3. [PMID: 23398642 PMCID: PMC3577492 DOI: 10.1186/1471-2091-14-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022]
Abstract
Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined.
Collapse
Affiliation(s)
- Vic Norris
- EA 3829, Faculté des Sciences de l'Université de Rouen, 76821, Mont Saint Aignan Cedex, France.
| | | | | | | | | | | |
Collapse
|