1
|
Raming C, Meier C, Tschernig T. TRPC6 in Human Peripheral Nerves-An Investigation Using Immunohistochemistry. NEUROSCI 2025; 6:44. [PMID: 40407617 PMCID: PMC12101367 DOI: 10.3390/neurosci6020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 05/11/2025] [Indexed: 05/26/2025] Open
Abstract
Since its discovery, TRPC6 has been associated with a variety of physiological and pathophysiological processes in different tissues. It functions as a non-selective cation channel and belongs to the group of TRP channels. Its importance in the development of pain hypersensitivity is becoming increasingly apparent. This condition has already been associated with increased expression of TRPC6 in dorsal root ganglia. Apart from the fact that most of the evidence has been obtained from samples of animal origin, it remains unclear whether the channel is also expressed in peripheral nerves outside the dorsal root ganglia. The aim of this work was therefore to examine peripheral nerves from human samples for TRPC6. For this purpose, samples of both the sciatic and ulnar nerves were taken from a total of eight body donors and analyzed by immunohistochemistry. Both longitudinal and transverse sections were obtained from the samples and stained. In total, 43 of 48 histological sections showed a positive immunosignal. There were no major differences between the sciatic and ulnar nerves with regard to staining. There was a slight difference in the staining intensity of transverse and longitudinal sections. The longitudinal sections of both nerves were consistently colored slightly more intensely. However, the inter-individual differences between the donors were more pronounced. Interestingly, the samples of a donor who suffered from chronic pain syndrome during his lifetime were particularly strongly stained. This is consistent with the knowledge gained to date, largely from animal experiments, that the channel shows increased expression in pain conditions in dorsal root ganglia. In the future, TRPC6 could therefore be a target in pain therapy.
Collapse
Affiliation(s)
| | | | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, 66424 Homburg, Germany; (C.R.); (C.M.)
| |
Collapse
|
2
|
Fields L, Miles HN, Adrian AE, Patrenets E, Ricke WA, Li L. MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation. J Proteome Res 2025; 24:2478-2490. [PMID: 40197022 DOI: 10.1021/acs.jproteome.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mass spectrometry imaging (MSI) has gained popularity in clinical analyses due to its high sensitivity, specificity, and throughput. However, global profiling experiments are often still restricted to LC-MS/MS analyses that lack spatial localization due to low-throughput methods for on-tissue peptide identification and confirmation. Additionally, the integration of parallel LC-MS/MS peptide confirmation, as well as histological stains for accurate mapping of identifications, presents a large bottleneck for data analysis, limiting throughput for untargeted profiling experiments. Here, we present a novel platform, termed MSIght, which automates the integration of these multiple modalities into an accessible and modular platform. Histological stains of tissue sections are coregistered to their respective MSI data sets to improve spatial localization and resolution of identified peptides. MS/MS peptide identifications via untargeted LC-MS/MS are used to confirm putative MSI identifications, thus generating MS images with greater confidence in a high-throughput, global manner. This platform has the potential to enable large-scale clinical cohorts to utilize MSI in the future for global proteomic profiling that uncovers novel biomarkers in a spatially resolved manner, thus widely expanding the utility of MSI in clinical discovery.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Alexis E Adrian
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Elliot Patrenets
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, Wisconsin 53706, United States
| | - William A Ricke
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Zubair M, Owais M, Hassan T, Bendechache M, Hussain M, Hussain I, Werghi N. An interpretable framework for gastric cancer classification using multi-channel attention mechanisms and transfer learning approach on histopathology images. Sci Rep 2025; 15:13087. [PMID: 40240457 PMCID: PMC12003787 DOI: 10.1038/s41598-025-97256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The importance of gastric cancer (GC) and the role of deep learning techniques in categorizing GC histopathology images have recently increased. Identifying the drawbacks of traditional deep learning models, including lack of interpretability, inability to capture complex patterns, lack of adaptability, and sensitivity to noise. A multi-channel attention mechanism-based framework is proposed that can overcome the limitations of conventional deep learning models by dynamically focusing on relevant features, enhancing extraction, and capturing complex relationships in medical data. The proposed framework uses three different attention mechanism channels and convolutional neural networks to extract multichannel features during the classification process. The proposed framework's strong performance is confirmed by competitive experiments conducted on a publicly available Gastric Histopathology Sub-size Image Database, which yielded remarkable classification accuracies of 99.07% and 98.48% on the validation and testing sets, respectively. Additionally, on the HCRF dataset, the framework achieved high classification accuracy of 99.84% and 99.65% on the validation and testing sets, respectively. The effectiveness and interchangeability of the three channels are further confirmed by ablation and interchangeability experiments, highlighting the remarkable performance of the framework in GC histopathological image classification tasks. This offers an advanced and pragmatic artificial intelligence solution that addresses challenges posed by unique medical image characteristics for intricate image analysis. The proposed approach in artificial intelligence medical engineering demonstrates significant potential for enhancing diagnostic precision by achieving high classification accuracy and treatment outcomes.
Collapse
Affiliation(s)
- Muhammad Zubair
- Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Muhammad Owais
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Taimur Hassan
- Departement of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Malika Bendechache
- ADAPT Research Centre, School of Computer Science, University of Galway, H91 TK33, Galway, Ireland
| | - Muzammil Hussain
- Department of Software Engineering, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan
| | - Irfan Hussain
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Naoufel Werghi
- Department of Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Fiorin A, López Pablo C, Lejeune M, Hamza Siraj A, Della Mea V. Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2996-3008. [PMID: 38806950 PMCID: PMC11612116 DOI: 10.1007/s10278-024-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
The field of immunology is fundamental to our understanding of the intricate dynamics of the tumor microenvironment. In particular, tumor-infiltrating lymphocyte (TIL) assessment emerges as essential aspect in breast cancer cases. To gain comprehensive insights, the quantification of TILs through computer-assisted pathology (CAP) tools has become a prominent approach, employing advanced artificial intelligence models based on deep learning techniques. The successful recognition of TILs requires the models to be trained, a process that demands access to annotated datasets. Unfortunately, this task is hampered not only by the scarcity of such datasets, but also by the time-consuming nature of the annotation phase required to create them. Our review endeavors to examine publicly accessible datasets pertaining to the TIL domain and thereby become a valuable resource for the TIL community. The overall aim of the present review is thus to make it easier to train and validate current and upcoming CAP tools for TIL assessment by inspecting and evaluating existing publicly available online datasets.
Collapse
Affiliation(s)
- Alessio Fiorin
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Carlos López Pablo
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Ameer Hamza Siraj
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Vincenzo Della Mea
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2024; 161:445-447. [PMID: 38834901 DOI: 10.1007/s00418-024-02299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Siegfried LG, Bilik SM, Burgess JL, Catanuto P, Jozic I, Pastar I, Stone RC, Tomic-Canic M. An Optimized and Advanced Algorithm for the Quantification of Immunohistochemical Biomarkers in Keratinocytes. JID INNOVATIONS 2024; 4:100270. [PMID: 38756235 PMCID: PMC11097113 DOI: 10.1016/j.xjidi.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in pathology have given rise to software applications intended to minimize human error and improve efficacy of image analysis. Still, the subjectivity of image quantification performed manually and the limitations of the most ubiquitous tissue stain analysis software requiring parameters tuned by the observer, reveal the need for a highly accurate, automated nuclear quantification software specific to immunohistochemistry, with improved precision and efficiency compared with the methods currently in use. We present a method for the quantification of immunohistochemical biomarkers in keratinocyte nuclei proposed to overcome these limitations, contributing sensitive shape-focused segmentation, accurate nuclear detection, and automated device-independent color assessment, without observer-dependent analysis parameters.
Collapse
Affiliation(s)
- Lindsey G. Siegfried
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sophie M. Bilik
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Rigi M, Son HS, Moon L, Matthaei M, Srikumaran D, Jun AS, Eberhart CG, Soiberman US. Collagen type XII is undetectable in keratoconus Bowman's layer. Br J Ophthalmol 2024; 108:343-348. [PMID: 36746614 PMCID: PMC10466210 DOI: 10.1136/bjo-2022-322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE Corneal biomechanical failure is the hallmark of keratoconus (KC); however, the cause of this failure remains elusive. Collagen type XII (COL12A1), which localises to Bowman's layer (BL), is thought to function in stress-bearing areas, such as BL. Given the putative protective role of COL12A1 in biomechanical stability, this study aims to characterise COL12A1 expression in all corneal layers involved in KC. METHODS TaqMan quantitative PCR was performed on 31 corneal epithelium samples of progressive KC and myopic control eyes. Tissue microarrays were constructed using full-thickness corneas from 61 KC cases during keratoplasty and 18 non-KC autopsy eyes and stained with an antibody specific to COL12A1. Additionally, COL12A1 was knocked out in vitro in immortalised HEK293 cells. RESULTS COL12A1 expression was reduced at transcript levels in KC epithelium compared with controls (ratio: 0.58, p<0.03). Immunohistochemical studies demonstrated that COL12A1 protein expression in BL was undetectable, with reduced expression in KC epithelium, basement membrane and stroma. CONCLUSIONS The apparent absence of COL12A1 in KC BL, together with the functional importance that COL12A1 is thought to have in stress bearing areas, suggests that COL12A1 may play a role in the pathogenesis of KC. Further studies are necessary to investigate the mechanisms that lead to COL12A1 dysregulation in KC.
Collapse
Affiliation(s)
- Mohammed Rigi
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Hyeck-Soo Son
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Ophthalmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Loren Moon
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mario Matthaei
- Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Divya Srikumaran
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Uri S Soiberman
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Libard S, Hodik M, Cesarini KG, Dragomir A, Alafuzoff I. The Compartmentalization of Amyloid-β in Idiopathic Normal Pressure Hydrocephalus Brain Biopsies. J Alzheimers Dis 2024; 99:729-737. [PMID: 38669551 PMCID: PMC11191527 DOI: 10.3233/jad-240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Background Amyloid-β (Aβ) is one of the hallmark lesions of Alzheimer's disease (AD). During the disease process, Aβ undergoes biochemical changes, producing toxic Aβ variants, proposed to be detected within the neurons. Idiopathic normal pressure hydrocephalus (iNPH) causes cognitive impairment, gait, and urinary symptoms in elderly, that can be reversed by a ventriculo-peritoneal shunt. Majority of iNPH subjects display different Aβ variants in their brain biopsies, obtained during shunting. Objective To study the cellular compartmentalization of different Aβ variants in brain biopsies from iNPH subjects. Methods We studied the cellular localization of different proteoforms of Aβ using antibodies towards different amino acid sequences or post-translational modifications of Aβ, including clones 4G8, 6F/3D, unmodified- (7H3D6), pyroglutamylated- (N3pE), phosphorylated-(1E4E11) Aβ and Aβ protein precursor (AβPP), in brain biopsies from 3 iNPH subjects, using immunohistochemistry and light microscopy (LM), light microscopy on semi-thin sections (LMst), and electron microscopy (EM). Results In LM all Aβ variants were detected. In LMst and EM, the Aβ 4G8, 6F/3D, and the pyroglutamylated Aβ were detected. The AβPP was visualized by all methods. The Aβ labelling was located extracellularly with no specific signal within the intracellular compartment, whereas the AβPP was seen both intra- and extracellularly. Conclusions The Aβ markers displayed extracellular localization when visualized by three assessment techniques, reflecting the pathological extracellular accumulation of Aβ in the human brain. No intracellular Aβ pathology was seen. AβPP was visualized in intra- and extracellularly, which corresponds to the localization of the protein in the membranes of cells and organelles.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Monika Hodik
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- BioVis Platform, Uppsala University, Uppsala, Sweden
| | | | - Anca Dragomir
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
11
|
Grillo F, Ali M, Paudice M, Pigozzi S, Anselmi G, Scabini S, Sciallero S, Piol N, Mastracci L. Impact of formalin fixation on mismatch repair protein evaluation by immunohistochemistry. Virchows Arch 2023; 483:677-685. [PMID: 37773452 PMCID: PMC10673985 DOI: 10.1007/s00428-023-03661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Mismatch repair/microsatellite instability (MMR/MSI) status in colorectal cancer (CRC) has become fundamental as a diagnostic, prognostic, and predictive factor. MMR immunohistochemistry (IHC) is considered a simple and reliable approach; however, its effectiveness depends on pre-analytic factors. Aim of this study was to investigate the impact of different fixation times/protocols on MMR protein IHC quality. Left over tissue from surgically resected CRC samples (cold ischemia time < 30 min) where fixed as follows: standard formalin fixation (24-48 h); hypo-fixation (<20 h); hyper-fixation (>90 h); cold (4°C) fixation (24-48 h); standard fixation for small sample size (0.5×0.5 cm). Samples for each group were collected from 30 resected CRC and the following parameters were evaluated on 600 immunohistochemical stains: intensity of expression; patchiness of staining; presence of central artefact. Forty-six immunoreactions were inadequate (score 0 intensity), the majority regarding MLH1 or PMS2 in the hypo-fixation group (47.8%), followed by the hyper-fixation group (28.1%); cold formalin fixation showed the least inadequate cases. Patchiness and central artefact were more frequent in hypo-fixation and standard fixation group compared to the others. MLH1 (closely followed by PMS2) performed worse with regard to immunostaining intensity (p=0.0002) in the standard and in the hypo-fixation group (p< 0.00001). Using a small sample size improved patchiness/central artefacts. This is the first study specifically created to evaluate the impact of fixation on MMR protein IHC, showing that both formalin hypo- and hyper-fixation can cause problems; 24-h formalin fixation as well as cold (4°C) formalin fixation are recommended for successful IHC MMR evaluation.
Collapse
Affiliation(s)
- Federica Grillo
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Murad Ali
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Paudice
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giorgia Anselmi
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Scabini
- Oncological Surgical Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Nataniele Piol
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Kaul NL, Diebolt CM, Meier C, Tschernig T. Transient receptor potential channel 3 in human liver and gallbladder - An investigation in body donors. Ann Anat 2023; 250:152150. [PMID: 37633502 DOI: 10.1016/j.aanat.2023.152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/28/2023]
Abstract
Since the discovery of TRP proteins in 1969, during studies of the fruit fly Drosophila melanogaster, interest around them and the subfamily of TRPC channels has remained high. TRPC3 was able to be detected in a number of organs in rodents, such as rats and mice, and also in various human tissues. For the most part, these investigations were carried out using gene expression of TRPC3. Further work has already confirmed the relevance of TRPC3 in the context of neurodegenerative diseases, such as spinocerebellar ataxia, and carcinogenic entities, such as ovarian carcinoma. An association with TRPC3 has also been demonstrated for diseases that affect the liver. In order to confirm the expression of TRPC3 in the human liver, this study uses samples taken from eight (n = 8) fixated human body donors and analyzed with immunohistochemistry. In accordance with the macroscopic anatomy of the organs, six samples (n = 6) of liver tissue and three (n = 3) of gallbladder tissue were obtained. TRPC3 was clearly detected in all liver and gallbladder samples examined. Thus, it is not unlikely that TRPC3 plays a role in the extensive metabolic processes of the liver and could also serve as a target for pharmacological interventions in an imbalance of calcium homeostasis.
Collapse
Affiliation(s)
- Nele Leonie Kaul
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Coline M Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany.
| |
Collapse
|
13
|
Nikolic G, Zivotic M, Cirovic S, Despotovic S, Dundjerovic D, Radojevic Skodric S. The Utility of Mitochondrial Detection Methods Applied as an Additional Tool for the Differentiation of Renal Cell Tumors. Diagnostics (Basel) 2023; 13:2319. [PMID: 37510063 PMCID: PMC10377759 DOI: 10.3390/diagnostics13142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
The precise differentiation of renal cell tumors (RCTs) is sometimes hard to achieve using standard imaging and histopathological methods, especially for those with eosinophilic features. It has been suggested that the vast overabundance of mitochondria, as a well-known hallmark of eosinophilic cytoplasm, and could be a characteristic of distinct tumor types with opposing clinical outcomes. Thus, we intended to explore the associations between mitochondrial distribution patterns in different RCTs, including 43 cell renal cell carcinomas (ccRCCs), 15 papillary renal cell carcinomas (pRCCs), 20 chromophobe renal cell carcinomas (chRCCs), and 18 renal oncocytomas (ROs). Tumor samples were stained with two anti-mitochondrial antibodies (mitochondrial antibody Ab-2, clone MTC02; prohibitin, II-14-10, MA5-12858), applying immunohistochemistry and immunofluorescence to define mitochondrial distribution patterns (coarse scanty, moderate granular, and diffuse granular). Our results revealed significantly different expression patterns among the investigated RCTs (p < 0.001). The majority of ccRCCs exhibited coarse scanty mitochondrial staining, while all chRCCs had moderate granular expression. Nevertheless, all ROs, all pRCCs, and two cases of ccRCC presenting with higher nuclear grade and eosinophilic cytoplasm had diffuse granular mitochondrial expression. Moreover, with increased distribution of mitochondria, the intensity of staining was higher (p < 0.001). Here we present a strategy that utilizes fast and easy mitochondrial detection to differentiate RO from chRCC, as well as other eosinophilic variants of RCC with high accuracy.
Collapse
Affiliation(s)
- Gorana Nikolic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Cirovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Despotovic
- Institute for Histology and Embryology "Aleksandar Đ. Kostić", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
14
|
Lang AL, Eulalio T, Fox E, Yakabi K, Bukhari SA, Kawas CH, Corrada MM, Montgomery SB, Heppner FL, Capper D, Nachun D, Montine TJ. Methylation differences in Alzheimer's disease neuropathologic change in the aged human brain. Acta Neuropathol Commun 2022; 10:174. [PMID: 36447297 PMCID: PMC9710143 DOI: 10.1186/s40478-022-01470-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with advancing age as its strongest risk factor. AD neuropathologic change (ADNC) is known to be associated with numerous DNA methylation changes in the human brain, but the oldest old (> 90 years) have so far been underrepresented in epigenetic studies of ADNC. Our study participants were individuals aged over 90 years (n = 47) from The 90+ Study. We analyzed DNA methylation from bulk samples in eight precisely dissected regions of the human brain: middle frontal gyrus, cingulate gyrus, entorhinal cortex, dentate gyrus, CA1, substantia nigra, locus coeruleus and cerebellar cortex. We deconvolved our bulk data into cell-type-specific (CTS) signals using computational methods. CTS methylation differences were analyzed across different levels of ADNC. The highest amount of ADNC related methylation differences was found in the dentate gyrus, a region that has so far been underrepresented in large scale multi-omic studies. In neurons of the dentate gyrus, DNA methylation significantly differed with increased burden of amyloid beta (Aβ) plaques at 5897 promoter regions of protein-coding genes. Amongst these, higher Aβ plaque burden was associated with promoter hypomethylation of the Presenilin enhancer 2 (PEN-2) gene, one of the rate limiting genes in the formation of gamma-secretase, a multicomponent complex that is responsible in part for the endoproteolytic cleavage of amyloid precursor protein into Aβ peptides. In addition to novel ADNC related DNA methylation changes, we present the most detailed array-based methylation survey of the old aged human brain to date. Our open-sourced dataset can serve as a brain region reference panel for future studies and help advance research in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna-Lena Lang
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Eddie Fox
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Koya Yakabi
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Claudia H. Kawas
- Department of Neurology, University of California Irvine, Orange, CA 92868-4280 USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Maria M. Corrada
- Department of Neurology, University of California Irvine, Orange, CA 92868-4280 USA
- Department of Epidemiology, University of California, Irvine, CA 92617 USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Frank L. Heppner
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Cluster of Excellence, NeuroCure, 10117 Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniel Nachun
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| |
Collapse
|
15
|
Herbsthofer L, Tomberger M, Smolle MA, Prietl B, Pieber TR, López-García P. Cell2Grid: an efficient, spatial, and convolutional neural network-ready representation of cell segmentation data. J Med Imaging (Bellingham) 2022; 9:067501. [PMID: 36466076 PMCID: PMC9709305 DOI: 10.1117/1.jmi.9.6.067501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cell segmentation algorithms are commonly used to analyze large histologic images as they facilitate interpretation, but on the other hand they complicate hypothesis-free spatial analysis. Therefore, many applications train convolutional neural networks (CNNs) on high-resolution images that resolve individual cells instead, but their practical application is severely limited by computational resources. In this work, we propose and investigate an alternative spatial data representation based on cell segmentation data for direct training of CNNs. Approach We introduce and analyze the properties of Cell2Grid, an algorithm that generates compact images from cell segmentation data by placing individual cells into a low-resolution grid and resolves possible cell conflicts. For evaluation, we present a case study on colorectal cancer relapse prediction using fluorescent multiplex immunohistochemistry images. Results We could generate Cell2Grid images at 5 - μ m resolution that were 100 times smaller than the original ones. Cell features, such as phenotype counts and nearest-neighbor cell distances, remain similar to those of original cell segmentation tables ( p < 0.0001 ). These images could be directly fed to a CNN for predicting colon cancer relapse. Our experiments showed that test set error rate was reduced by 25% compared with CNNs trained on images rescaled to 5 μ m with bilinear interpolation. Compared with images at 1 - μ m resolution (bilinear rescaling), our method reduced CNN training time by 85%. Conclusions Cell2Grid is an efficient spatial data representation algorithm that enables the use of conventional CNNs on cell segmentation data. Its cell-based representation additionally opens a door for simplified model interpretation and synthetic image generation.
Collapse
Affiliation(s)
- Laurin Herbsthofer
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
| | - Martina Tomberger
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Maria A. Smolle
- Medical University of Graz, Department of Orthopaedics and Trauma, Graz, Austria
| | - Barbara Prietl
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
- Medical University of Graz, Division of Endocrinology and Diabetology, Graz, Austria
| | - Thomas R. Pieber
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
- Medical University of Graz, Division of Endocrinology and Diabetology, Graz, Austria
- Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | | |
Collapse
|
16
|
Chiriboga L, Callis GM, Wang Y, Chlipala E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J Histotechnol 2022; 45:132-147. [DOI: 10.1080/01478885.2022.2134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- NYULH Center for Biospecimen Research and Development, New York, NY, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas, MO, USA
| | | |
Collapse
|
17
|
Perrone E, Tudisco R, Pafundi PC, Guido D, Ciucci A, Martinelli E, Zannoni GF, Piermattei A, Spadola S, Ferrante G, Marchetti C, Scambia G, Fagotti A, Gallo D. What’s beyond BRCA Mutational Status in High Grade Serous Ovarian Cancer? The Impact of Hormone Receptor Expression in a Large BRCA-Profiled Ovarian Cancer Patient Series: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14194588. [PMID: 36230510 PMCID: PMC9559459 DOI: 10.3390/cancers14194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Ovarian hormones are involved in ovarian cancer pathogenesis. However, few reports have investigated the hormone receptor pattern according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the relationship between hormone receptor status and BRCA1/2 mutation in a cohort of 207 high-grade serous ovarian carcinoma (HGSOC) patients. Interesting differences emerged between BRCA-mutated and BRCA wild-type women, in terms of pattern of receptor expression and its association to the outcome. On the whole, our findings, though needing further validation, extend our understanding of the complex interplay between BRCA1/2 protein and hormone signaling, suggesting new pathways to be exploited in order to develop future personalized therapy. Abstract Several studies have explored the prognostic role of hormone receptor status in high-grade serous ovarian cancer (HGSOC) patients. However, few reports have investigated their expression according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the hormone receptor pattern and its potential prognostic role in a cohort of 207 HGSOC women stratified for BRCA mutational status. To this end, ERα, ERβ1, ERβ2, ERβ5, PR, and AR expression were assessed by immunohistochemistry in 135 BRCA-wild type (BRCA-wt) and 72 BRCA1/2 mutation carriers (BRCA-mut). No significant difference emerged in hormone receptor expression between the two sub-samples, except for a significantly lower ERα expression observed in pre-menopausal BRCA1/2-mut as compared to BRCA-wt patients (p = 0.02). None of the examined hormone receptors has revealed a significant prognostic role in the whole sample, apart from the ratio ERα/ERβ5 nuclear, for which higher values disclosed a positive role on the outcome in BRCA-wt subgroup (HR 0.77; CI 0.61–0.96; p = 0.019). Conversely, it negatively affected overall survival in the presence of BRCA1/2-mut (HR 1.41; CI 1.06–1.87; p = 0.020). Finally, higher PR levels were associated with platinum sensitivity in the whole sample (p = 0.019). Our data, though needing further validation, suggest a potential role of oestrogen-mediated pathways in BRCA1/2-associated HGSOC tumorigenesis, thus revealing a possible therapeutic potential for targeting this interaction.
Collapse
Affiliation(s)
- Emanuele Perrone
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Riccardo Tudisco
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Facility Core Research, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Guido
- Bioinformatics Facility Core Research, Gemelli Science and Technology Park (GSTeP) Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Ciucci
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Enrica Martinelli
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessia Piermattei
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Saveria Spadola
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Ferrante
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Claudia Marchetti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anna Fagotti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Gallo
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Mauriello S, Treglia M, Pallocci M, Bonfiglio R, Giacobbi E, Passalacqua P, Cammarano A, D’Ovidio C, Marsella LT, Scimeca M. Antigenicity Preservation Is Related to Tissue Characteristics and the Post-Mortem Interval: Immunohistochemical Study and Literature Review. Healthcare (Basel) 2022; 10:healthcare10081495. [PMID: 36011152 PMCID: PMC9408092 DOI: 10.3390/healthcare10081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to investigate the post-mortem proteolytic degradation process of selected tissue antigens and correlate it to the post-mortem interval. During the autopsy of 12 cadavers (time interval ranging 1 day–2 years after death) samples of skin, liver, kidney, and spleen were collected. All samples were formalin-fixed and paraffin-embedded. Four µm paraffin sections were used for hematoxylin–eosin staining and immunohistochemical analysis (Ki67, Vimentin, Pan cytokeratin, and CD20). Data reported here show that immunohistochemical reactivity preservation was related to the characteristics of the tissues. In particular, the most resistant tissue was the skin, where the autolysis phenomena were not appreciable before 5 days. On the contrary, the liver and the spleen underwent early autolysis, while the kidney displayed an early autolysis of the tubules and a late one of the glomeruli. As concerns specific antigens, immunoreactivity was lost earliest for nuclear antigens as compared to cytoplasmic ones. In conclusion, our results demonstrate that immunohistochemical detection of specific antigens may be useful in estimating the post-mortem interval, especially when we need to know whether the post-mortem interval is a few days or more than 7–10 days.
Collapse
Affiliation(s)
- Silvestro Mauriello
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Michele Treglia
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Margherita Pallocci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Pierluigi Passalacqua
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Cammarano
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Cristian D’Ovidio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara “G. D’Annunzio”, Section of Legal Medicine, 66100 Chieti, Italy
| | - Luigi Tonino Marsella
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Shih CH, Chang YC, Lai YC, Chiou HY. Investigating the role of signal transducer and activator of transcription 3 in feline injection site sarcoma. BMC Vet Res 2022; 18:276. [PMID: 35836213 PMCID: PMC9281114 DOI: 10.1186/s12917-022-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feline injection-site sarcomas (FISSs) are malignant mesenchymal tumors of different histotypes. The pathogenesis of FISS has been correlated with chronic inflammation, resulting in neoplastic transformation. Activation of the Janus kinase-signal transducer and activator of transcription 3 (STAT3) have been demonstrated to play a critical role in tumor development by regulating signaling pathways involved in cell proliferation, survival, metastasis, and angiogenesis in human medicine. To characterize the role of STAT3 in FISS, we first detected STAT3 and phosphorylated STAT3 in formalin-fixed and paraffin-embedded (FFPE) FISS tissues using immunohistochemical staining. RESULTS STAT3 was detected in 88.9% (40/45) of FISS cases, and phosphorylated STAT3 was detected in 53.3% (24/45) of cases. However, the expression levels of both forms of STAT3 were not correlated with tumor grade. To study the role of STAT3 in tumor survival, two primary cells derived from FISSs of two cats exhibiting consistent immunophenotypes with their parental FFPE tissues were established. A dose-dependent inhibitory effect on cell proliferation was observed in both primary FISS cells treated with the STAT3 inhibitor, 5-hydroxy-9,10-dioxo-9,10-dihydroanthracene-1-sulfonamide. CONCLUSIONS The STAT 3 may play an important role in the tumorigenesis of FISS and be a potential molecular therapeutic target for FISS.
Collapse
Affiliation(s)
- Cheng-Hsin Shih
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Yun-Chiang Lai
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
20
|
N-Tosylindole-coumarin with high fluorescence quantum yield and their potential applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rana MK, Rana APS, Jain A, Pathak A, Khera U, Sharma U, Jindal A, Singh K. Standardization of Manual Method of Immunohistochemical Staining for Breast Cancer Biomarkers at Tertiary Cancer Care Center: An Audit. Cureus 2022; 14:e25773. [PMID: 35702640 PMCID: PMC9178285 DOI: 10.7759/cureus.25773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Immunohistochemistry (IHC) is a necessary ancillary technique in surgical pathology laboratories, particularly for oncology tissue specimens. Automation in the IHC technique has an advantage over manual methods in terms of quality, except for the cost of the equipment. Thus, the manual method of IHC staining is the preferred method of choice in countries with limited resources. However, standardization of all steps in the preanalytic phase is critical to obtain reliable immunohistochemistry test results. The current audit was conducted to describe the preanalytic factors affecting manual IHC methods. The most important preanalytic factors were fixative, the composition of dehydrate, pH, drying of sections, and heat-mediated antigen retrieval method (HMAR). The domestic pressure cooker method was found to be the best for HMAR.
Collapse
|
22
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
23
|
Wu X, Deng C, Su Y, Zhang C, Chen M, Tian K, Wu H, Xu S. The effect of prolonged formalin fixation on the expression of proteins in human brain tissues. Acta Histochem 2022; 124:151879. [PMID: 35358895 DOI: 10.1016/j.acthis.2022.151879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues have been widely used in researches. Proteins and nucleic acids in prolonged FFPE tissues display different degrees of degradation. We investigated the effect of prolonged formalin fixation on protein expression in human brain tissues. Twenty-eight middle prefrontal front cortex tissue blocks from human brains prefixed in formalin were obtained from a brain bank. The tissue blocks were divided into two groups, the control group and the prolonged fixation group. Quantitative immunocytochemistry was used to analyse the biological markers of Fox-3, Rbfox3 (NeuN), glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule-1 (IBA-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nissl staining showed that positive signaling of Nissl body was significantly decreased by 16.6% in the prolonged fixation group. In addition, the staining intensity of Nissl body was negatively correlated with fixation time. The level of NeuN immunoreactivity (ir) was significantly reduced by 19.31% in the prolonged fixation group. Moreover, there was a significant negative correlation between NeuN-ir and fixation time. There were no significant changes in GFAP-ir, IBA-1-ir and GAPDH-ir between control group and the prolonged fixation group. Prolonged formalin-fixed tissues showed time- and molecule-dependent protein changes, which may be potential confounders in the clinic and researches. Our study suggested short formalin fixation time is recommended when using PPFE brain tissues.
Collapse
|
24
|
Grushko TA, Filiaci VL, Montag AG, Apushkin M, Gomez MJ, Monovich L, Ramirez NC, Schwab C, Kesterson JP, Seward SM, Method MW, Olopade OI, Fleming GF, Birrer MJ. Effects of Slide Storage on Detection of Molecular Markers by IHC and FISH in Endometrial Cancer Tissues From a Clinical Trial: An NRG Oncology/GOG Pilot Study. Appl Immunohistochem Mol Morphol 2022; 30:27-35. [PMID: 34224438 PMCID: PMC8664981 DOI: 10.1097/pai.0000000000000949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
We performed a pilot study in anticipation of using long-aged precut formalin-fixed paraffin-embedded tissue sections stored in real-world conditions for translational biomarker studies of topoisomerase 2A (TOP2A), Ki67, and human epidermal growth factor receptor 2 (HER2) in endometrial cancer. Formalin-fixed paraffin-embedded tissue blocks or unstained slides or both from GOG-0177 were collected centrally (1999-2000) and stored at room temperature. During 2004 to 2011 specimens were stored at 4°C. Matched pairs of stored slides and freshly cut slides from stored blocks were analyzed for TOP2A (KiS1), Ki67 (MIB1), and HER2 (HercepTest) proteins. To assess DNA stability (HER2 PathVision), fluorescence in situ hybridization (FISH) was repeated on stored slides from 21 cases previously shown to be HER2 amplified. Immunohistochemistry (IHC) staining intensity and extent, mean FISH copies/cell, and copy number ratios were compared using the κ statistic for concordance or signed rank test for differences in old cut versus new cut slides. IHC results reflected some protein degradation in stored slides. The proportion of cells with TOP2A staining was lower on average by 12% in older sections (P=0.03). The proportion of Ki67-positive cells was lower in stored slides by an average of 10% (P<0.01). Too few cases in the IHC cohort were FISH positive for any conclusions. HER2 amplification by FISH was unaffected by slide storage. We conclude that use of aged stored slides for proliferation markers TOP2A and Ki67 is feasible but may modestly underestimate true values in endometrial cancer. Pilot studies for particular storage conditions/durations/antigens to be used in translational studies are warranted.
Collapse
Affiliation(s)
- Tatyana A. Grushko
- The University of Chicago Medical Center, Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Virginia L. Filiaci
- NRG Oncology Statistics and Data Management Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Anthony G. Montag
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL USA
| | - Marsha Apushkin
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL USA
| | - Maria J. Gomez
- The University of Chicago Medical Center, Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Laura Monovich
- Gynecologic Oncology Group Tissue Bank/NRG Oncology Biospecimen Bank, Biopathology Center, Research Institute at Nationwide Children's Hospital, Columbus, OH USA
| | - Nilsa C. Ramirez
- Gynecologic Oncology Group Tissue Bank/NRG Oncology Biospecimen Bank, Biopathology Center, Research Institute at Nationwide Children's Hospital, Columbus, OH USA
| | - Carlton Schwab
- Clinical Research; Gibbs Cancer Center and Research Institute, Spartanburg, SC USA
| | - Joshua P. Kesterson
- Division of Gynecologic Oncology; Penn State Hershey Medical Center, Hershey, PA
| | | | - Michael W. Method
- Division of Gynecological Oncology; Indiana University Hospital/Melvin and Bren Simon Cancer Center; Indianapolis, IN USA
| | - Olufunmilayo I. Olopade
- The University of Chicago Medical Center, Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Gini F. Fleming
- The University of Chicago Medical Center, Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | | |
Collapse
|
25
|
Timmerman BM, Mooney-Leber SM, Brummelte S. The effects of neonatal procedural pain and maternal isolation on hippocampal cell proliferation and reelin concentration in neonatal and adult male and female rats. Dev Psychobiol 2021; 63:e22212. [PMID: 34813104 DOI: 10.1002/dev.22212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Preterm births accounted for over 10% of all U.S. live births in 2019 and the rate is rising. Neonatal stressors, especially procedural pain, experienced by preterm infants in the neonatal intensive care unit (NICU) have been associated with neurodevelopmental impairments. Parental care can alleviate stress during stressful or painful procedures; however, infants in the NICU often receive reduced parental care compared with their peers. Animal studies suggest that decreased maternal care similarly impairs neurodevelopment but also influences the effects of neonatal pain. It is important to mimic both stressors in animal models of neonatal stress exposure. In this study, researchers investigated the individual and combined impact of neonatal pain and maternal isolation on reelin protein levels and cellular proliferation in the hippocampal dentate gyrus of 8 days old and adult rats. Exposure to either stressor individually, but not both, increased reelin levels in the dentate gyrus of adult females without significantly altering reelin levels in adult males. However, cell proliferation levels at either age were unaffected by the early-life stressors. These results suggest that each early-life stressor has a unique effect on markers of brain development and more research is needed to further investigate their distinct influences.
Collapse
Affiliation(s)
- Brian M Timmerman
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Sean M Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Points, Stevens Point, Wisconsin, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA.,Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
26
|
Lawson MJ, Katsamenis OL, Chatelet D, Alzetani A, Larkin O, Haig I, Lackie P, Warner J, Schneider P. Immunofluorescence-guided segmentation of three-dimensional features in micro-computed tomography datasets of human lung tissue. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211067. [PMID: 34737879 PMCID: PMC8564621 DOI: 10.1098/rsos.211067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Micro-computed tomography (µCT) provides non-destructive three-dimensional (3D) imaging of soft tissue microstructures. Specific features in µCT images can be identified using correlated two-dimensional (2D) histology images allowing manual segmentation. However, this is very time-consuming and requires specialist knowledge of the tissue and imaging modalities involved. Using a custom-designed µCT system optimized for imaging unstained formalin-fixed paraffin-embedded soft tissues, we imaged human lung tissue at isotropic voxel sizes less than 10 µm. Tissue sections were stained with haematoxylin and eosin or cytokeratin 18 in columnar airway epithelial cells using immunofluorescence (IF), as an exemplar of this workflow. Novel utilization of tissue autofluorescence allowed automatic alignment of 2D microscopy images to the 3D µCT data using scripted co-registration and automated image warping algorithms. Warped IF images, which were accurately aligned with the µCT datasets, allowed 3D segmentation of immunoreactive tissue microstructures in the human lung. Blood vessels were segmented semi-automatically using the co-registered µCT datasets. Correlating 2D IF and 3D µCT data enables accurate identification, localization and segmentation of features in fixed soft lung tissue. Our novel correlative imaging workflow provides faster and more automated 3D segmentation of µCT datasets. This is applicable to the huge range of formalin-fixed paraffin-embedded tissues held in biobanks and archives.
Collapse
Affiliation(s)
- Matthew J. Lawson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - David Chatelet
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aiman Alzetani
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oliver Larkin
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Ian Haig
- Nikon X-Tek Systems Ltd, Tring, UK
| | - Peter Lackie
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane Warner
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philipp Schneider
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- High-Performance Vision Systems, Center for Vision, Automation and Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
27
|
Astbury S, Grove JI, Dorward DA, Guha IN, Fallowfield JA, Kendall TJ. Reliable computational quantification of liver fibrosis is compromised by inherent staining variation. J Pathol Clin Res 2021; 7:471-481. [PMID: 34076968 PMCID: PMC8363922 DOI: 10.1002/cjp2.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Biopsy remains the gold-standard measure for staging liver disease, both to inform prognosis and to assess the response to a given treatment. Semiquantitative scores such as the Ishak fibrosis score are used for evaluation. These scores are utilised in clinical trials, with the US Food and Drug Administration mandating particular scores as inclusion criteria for participants and using the change in score as evidence of treatment efficacy. There is an urgent need for improved, quantitative assessment of liver biopsies to detect small incremental changes in liver architecture over the course of a clinical trial. Artificial intelligence (AI) methods have been proposed as a way to increase the amount of information extracted from a biopsy and to potentially remove bias introduced by manual scoring. We have trained and evaluated an AI tool for measuring the amount of scarring in sections of picrosirius red-stained liver. The AI methodology was compared with both manual scoring and widely available colour space thresholding. Four sequential sections from each case were stained on two separate occasions by two independent clinical laboratories using routine protocols to study the effect of inter- and intra-laboratory staining variation on these tools. Finally, we compared these methods to second harmonic generation (SHG) imaging, a stain-free quantitative measure of collagen. Although AI methods provided a modest improvement over simpler computer-assisted measures, staining variation both within and between laboratories had a dramatic effect on quantitation, with manual assignment of scar proportion being the most consistent. Manual assessment also most strongly correlated with collagen measured by SHG. In conclusion, results suggest that computational measures of liver scarring from stained sections are compromised by inter- and intra-laboratory staining. Stain-free quantitative measurement using SHG avoids staining-related variation and may prove more accurate in detecting small changes in scarring that may occur in therapeutic trials.
Collapse
Affiliation(s)
- Stuart Astbury
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Nottingham Digestive Diseases Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Jane I Grove
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Nottingham Digestive Diseases Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - David A Dorward
- University of Edinburgh Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
- Edinburgh PathologyUniversity of EdinburghEdinburghUK
| | - Indra N Guha
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Nottingham Digestive Diseases Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Jonathan A Fallowfield
- University of Edinburgh Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
| | - Timothy J Kendall
- University of Edinburgh Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
- Edinburgh PathologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
28
|
Ak E, Ak K, Midi A, Kervancıoğlu-Demirci E, Arsan S, Çetinel Ş, Pişiriciler R. Histopathologic evaluation of saphenous vein grafts in patients with type II diabetes mellitus undergoing coronary artery bypass grafting. Cardiovasc Pathol 2021; 52:107328. [PMID: 33639243 DOI: 10.1016/j.carpath.2021.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Diabetes Mellitus (DM) has been known to be a risk factor for the development of more severe form of saphenous vein graft disease after coronary artery bypass grafting (CABG). We aimed to evaluate the impact of type II-DM on histopathological features of great saphenous vein grafts of patients undergoing CABG. PATIENTS AND METHODS Forty consecutive patients undergoing elective CABG were enrolled into the study. Patients were grouped into two; Diabetic group (n = 20); includes patients with preoperative diagnosis of type II-DM and Nondiabetic group (n = 20): those without type II-DM. In all patients, a short segment of the great saphenous vein graft at the level of medial malleolus was taken for light microscopy and transmission electron microscopy (TEM) evaluation. Moreover, immunoexpressions of Caveolin-1, Vascular cell adhesion protein 1 (VCAM-1) and endothelial nitric oxide synthase (eNOS) were studied. RESULTS There were no differences in the demographics of patients between two groups. The magnitude of intimal fibrosis in diabetic group was slightly higher than in nondiabetics (1.95 ± 0.99 versus 1.3 ± 0.8, P = .04). In TEM, vacuolization in endothelial cells, substance accumulation along with coarse collagen fibers and cytoplasmic degeneration with vacuolization in muscle cells were detected in diabetic group. While there were no differences in Caveolin-1 and VCAM-1 immunostaining, the intensity of positive eNOS immunostaining was significantly higher in endothelium (2.10 ± 0.64 versus 1.55 ± 0.68, P = .01) and tunica media 1.75 ± 0.63 versus 1.2 ± 0.52, P = .007) in nondiabetic group, respectively) compared with diabetic group. CONCLUSION Type II DM might be a reason for decreased expression of eNOS and increased intimal fibrosis, vacuolization of endothelial and smooth muscle cells in saphenous vein grafts. The clinical implications of these alterations on the graft patency need to be evaluated.
Collapse
Affiliation(s)
- Esin Ak
- Department of Basic Medical Sciences, Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| | - Koray Ak
- Department of Cardiovascular Surgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Midi
- Department of Pathology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | | | - Sinan Arsan
- Department of Cardiovascular Surgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Şule Çetinel
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Rabia Pişiriciler
- Department of Basic Medical Sciences, Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
29
|
Barba M, Groover ES, Bailey J, Cole R, Christopherson P, Cattley R. Nonclassified Lymphoma as a Cause of Radial Nerve Paralysis in a Horse. J Equine Vet Sci 2021; 98:103371. [PMID: 33663719 DOI: 10.1016/j.jevs.2021.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
A 4-year-old American Quarter Horse gelding was evaluated for acute non-weight-bearing lameness of the right thoracic limb with swelling in the right shoulder region. Physical examination revealed radial nerve paralysis of unknown etiology. The primary differential diagnosis was musculoskeletal trauma. Ultrasonography of the right shoulder region identified a heterogeneous mass that extended from the point of the shoulder to the thoracic inlet. Cytologic analysis of fluid collected by fine needle aspirate of the mass was consistent with large cell lymphoma. Based on the cytological findings, locally invasive neoplasia was diagnosed and considered the likely cause of the radial nerve paralysis. Because of the poor prognosis, the horse was euthanized, and postmortem examination confirmed the diagnosis of a nonclassified large cell lymphoma that extended from the deep tissues of the right pectoral muscle group into the thoracic inlet and pleural cavity, as well as the right brachial plexus. The mass in the region of the brachial plexus encompassed and mechanically compressed all of the nerves within the area, resulting in the clinical sign of radial nerve paralysis. Although neoplasia as a cause of radial nerve paralysis is rare, it should be considered as a differential diagnosis, regardless of age.
Collapse
Affiliation(s)
- Marta Barba
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL; Department of Medicine and Surgery, Research Group Microbiological Agents Associated with Animal Reproduction (ProVaginBio), Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Erin S Groover
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL.
| | - Jessica Bailey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL; Battelle, Health - Clinical and Nonclinical Research, West Jefferson, OH
| | - Robert Cole
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Peter Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Russell Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
30
|
Han CM, Waks E, Shapiro B. Mathematical modeling and experimental validation for expression microdissection. APPLIED OPTICS 2020; 59:5870-5880. [PMID: 32672729 DOI: 10.1364/ao.395864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Using laser excitation, expression microdissection (xMD) can selectively heat cancer cells targeted via immunohistochemical staining to enable their selective retrieval from tumor tissue samples, thus reducing misdiagnoses caused by contamination of noncancerous cells. Several theoretical models have been validated for the photothermal effect in highly light absorbing and scattering media. However, these models are not generally applicable to the physics behind the process of xMD. In this study, we propose a thermal model that can analyze the transient temperature distribution and heat melt zone in an xMD sample medium composed of a thermoplastic film and a tumor tissue sample sandwiched between two glass slides. Furthermore, we experimentally examined the model using an ink layer with controllable optical properties to serve as a microscale-thin, tissue-mimicking phantom and found the experimentally measured film temperature is in good agreement with the model predictions. The validated model can help researchers to optimize cell retrieval by xMD for improved diagnostics of cancer and other diseases.
Collapse
|
31
|
A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience 2020; 439:275-286. [DOI: 10.1016/j.neuroscience.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
32
|
Lee TB, Lee J, Jun JH. Three-Dimensional Approaches in Histopathological Tissue Clearing System. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2020. [DOI: 10.15324/kjcls.2020.52.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Tae Bok Lee
- Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Seongnam, Korea
- Eulji Medi-Bio Research Institute (EMBRI), Eulji University, Daejeon, Korea
| |
Collapse
|
33
|
Wang WY, Meng LJ, Xu YJ, Gong T, Yang Y. Effects of 4% paraformaldehyde and modified Davidson's fluid on the morphology and immunohistochemistry of Xiang pig testes. J Toxicol Pathol 2020; 33:97-104. [PMID: 32425342 PMCID: PMC7218235 DOI: 10.1293/tox.2019-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023] Open
Abstract
Modified Davidson’s fluid (mDF) is a good fixative for morphological and antigen
preservation. However, recent studies have shown that 4% paraformaldehyde (PFA) can better
preserve the actin structure in rodent testes. It remains controversial which of these
fixatives is best for testicular tissue. This study investigated the effects of both mDF
and 4% PFA on the morphology and antigen preservation of Xiang pig testes using
hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). The stronger testis
penetration of mDF compared with that of 4% PFA was primarily manifested as testicular
color change and decrease in tissue weight loss. Testes fixed with 4% PFA displayed a
severe shrinkage of both the tubular and interstitial compartments and the seminiferous
tubule area decreased by 12.02% compared with that in mDF-fixed tissues. In contrast, IHC
results showed that 4% PFA fixation achieved better IHC-positive performance than mDF
fixation for antigens specifically expressed in germ cells, Leydig cells and Sertoli
cells. Due to this improved antigen preservation by 4% PFA fixation, the relative
immunoreactions intensity significantly increased by 39.8%, 27.8%, and 76.4%,
respectively, compared with that in mDF fixation. In summary, fixation of Xiang pig testes
with mDF was suitable for HE staining, while fixation with 4% PFA was more suitable for
IHC.
Collapse
Affiliation(s)
- Wei-Yong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Li-Jie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yong-Jian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| |
Collapse
|