1
|
Bahey El-Deen HA, Atef H, Muñoz-Gómez E, Moreno-Segura N, ElZalabany S, Alanazi R, Alruwili W, Alruwili S, Sultan S, Marques-Sule E. Effects of reduced-exertion high-intensity training versus short moderate-intensity continuous training on biomarkers of mortality risk in sedentary women: A randomized clinical trial. J Bodyw Mov Ther 2025; 42:710-714. [PMID: 40325745 DOI: 10.1016/j.jbmt.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION This study aimed to compare the effects of reduced-exertion high-intensity training (REHIT) versus short moderate-intensity continuous training (SMICT) on functional capacity, resting heart rate (RHR), and activity enjoyment in sedentary women. METHODS Thirty sedentary young women were randomly allocated to a: i) REHIT group (n = 15) or ii) SMICT group (n = 15) (2 sessions/week, 6 weeks) using a computer-generated random allocation sequence. Both groups performed an intervention on a cycle ergometer that included a warm-up (3 min at 50% of HRmax), the main part of the session, and a cool-down (3 min at 50% of HRmax). The main part in REHIT consists of 20-40 s divided on two maximum cycling sprints of all-out exercise at 100% of HRmax with an active rest of 3 min between them; whilst SMICT consisted of 6-12 min of moderate intensity exercise at 60-70% of HRmax. Functional capacity (6-min walking test) and RHR were measured before and after the intervention. Physical activity enjoyment (Physical Activity Enjoyment Scale) was assessed after the intervention. RESULTS The effects of the REHIT on functional capacity showed a significant interaction between time measurement and intervention group (p < 0.001) that not occurred in RHR (p > 0.05). Intragroup post-hoc analysis revealed that both groups improve their values in functional capacity and RHR (p < 0.05). Between-groups comparison showed that REHIT group increased significantly functional capacity more than SMICT (p = 0.002). In addition, physical activity enjoyment scores were high in both groups without differences. CONCLUSION REHIT and SMICT are appropriate for improving functional capacity and RHR, as well as being perceived as enjoyable in sedentary young women. REHIT offers higher improvements in functional capacity. CLINICAL TRIAL REGISTRATION NUMBER NCT05875051.
Collapse
Affiliation(s)
- Heba A Bahey El-Deen
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Hady Atef
- School of Allied Health Professions (SAHP), Keele University, Staffordshire, United Kingdom
| | - Elena Muñoz-Gómez
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | | | - Raghad Alanazi
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Wagd Alruwili
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Sarah Alruwili
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Shaza Sultan
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Elena Marques-Sule
- Physiotherapy in Motion, Multispecialty Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Stavrinou PS, Astorino TA, Giannaki CD, Aphamis G, Bogdanis GC. Customizing intense interval exercise training prescription using the "frequency, intensity, time, and type of exercise" (FITT) principle. Front Physiol 2025; 16:1553846. [PMID: 40247924 PMCID: PMC12003422 DOI: 10.3389/fphys.2025.1553846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Intense interval exercise training induces various physiological and metabolic adaptations related to performance and health. For designing a program, the F.I.T.T. principle, referring to frequency, intensity, time, and type of exercise, can be used to manipulate the level of physiological stress in the body, leading to various adaptations. Modifying these four parameters results in a wide range of interval protocols that are safe and effective for different populations including athletes and individuals with chronic diseases. In this review, we present how the manipulation of the F.I.T.T. components can alter the acute and chronic cardiorespiratory, metabolic, perceptual, and affective responses and adaptations to intense interval exercise training. From this evidence, it appears that the duration of the exercise bout and recovery interval are critical parameters for the manipulation of almost all acute responses, enabling periodization of intense interval exercise training, and promoting optimal adaptations and exercise adherence. In addition, a considerable level of adaptations may be achieved with training frequencies as low as once or twice per week and with lower than maximal intensities, adding to the feasibility of this exercise mode. Overall, by varying these parameters, the design of an intense interval exercise training program can be tailored according to the needs and abilities of each individual, and an optimized training prescription may be achieved.
Collapse
Affiliation(s)
| | - Todd A. Astorino
- Department of Kinesiology, CSU-San Marcos, San Marcos, CA, United States
| | | | - George Aphamis
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
| | - Gregory C. Bogdanis
- School of P. E. and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Mensberg P, Frandsen C, Carl CS, Espersen E, Leineweber T, Larsen EL, Storgaard H, Schlawitz K, Petersen THD, Poulsen JN, Sørensen F, Gørtz PM, Forman JL, Kiens B, Knop FK, Vilsbøll T. High-intensity interval training improves insulin sensitivity in individuals with prediabetes. Eur J Endocrinol 2025; 192:456-465. [PMID: 40235355 DOI: 10.1093/ejendo/lvaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/28/2024] [Indexed: 04/17/2025]
Abstract
OBJECTIVE To examine the separate and combined effects of low-volume high-intensity interval training (HIIT) and walking compared with no training on insulin sensitivity and skeletal metabolic capacity in individuals with prediabetes. DESIGN Individuals were randomized to: (1) control (no exercise), (2) HIIT (3 × 20 s's cycle sprint 3 times weekly), (3) HIIT + walking (walking >10 000 steps/day), or (4) walking for 12 weeks. METHODS Insulin sensitivity was assessed by an oral glucose tolerance test at baseline and end-of-trial. Additionally, proteins important for mitochondria capacity and insulin sensitivity were measured in the vastus lateralis muscle. RESULTS Seventy sedentary individuals with prediabetes (women n = 36; age: 60.8 ± 11.3 years (mean ± SD); body mass index: 31.6 ± 4.4 kg/m2; fasting plasma glucose: 6.6 ± 0.8 mmol/L; glycated hemoglobin A1c 5.7 ± 0.4% (39.0 ± 4.3 mmol/mol) were included. Compared with control, peripheral insulin sensitivity (measured by the Cederholm index) was significantly improved with HIIT (estimated treatment difference [ETD]: 18.5% [95% confidence interval (CI): 7.4; 28.3%] and HIIT + walking [ETD: 15.7% (95% CI: 4.4; 25.6%)]), but not with walking alone (ETD: 9.4% [95% CI: -2.5; 19.9%]). Whole-body insulin sensitivity (measured by the Matsuda index) was significantly increased with HIIT + walking (ETD: 28.0% [95% CI: 10.3; 42.3%]) and walking alone (ETD: 42.3% [95% CI: 28.3; 53.5%]), but not with HIIT alone (ETD: 17.0% [95% CI: -4.0; 33.7%]). Protein expression of proteins involved in mitochondrial capacity in skeletal muscle and glucose uptake were most improved with HIIT + walking, and no significant effects were observed with walking alone. CONCLUSIONS Twelve weeks of low-volume HIIT training can improve glucose control and induces adaptations in skeletal muscle important for metabolic health in individuals with prediabetes.
Collapse
Affiliation(s)
- Pernille Mensberg
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Clarissa Frandsen
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Christian S Carl
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Emilie Espersen
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Thomas Leineweber
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Emil L Larsen
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Heidi Storgaard
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirstine Schlawitz
- Center for Prevention and Health, Gentofte Municipality, 2820 Gentofte, Denmark
| | - Torben H D Petersen
- Center for Prevention and Health, Gentofte Municipality, 2820 Gentofte, Denmark
| | - Jytte N Poulsen
- Center for Prevention and Health, Gentofte Municipality, 2820 Gentofte, Denmark
| | - Frederik Sørensen
- Department of Public Health, Section of Biostatistics, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Peter M Gørtz
- Clinical Physiology and Nuclear Medicine, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Julie L Forman
- Department of Public Health, Section of Biostatistics, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Lu Y, Baker JS, Ying S, Lu Y. Effects of practical models of low-volume high-intensity interval training on glycemic control and insulin resistance in adults: a systematic review and meta-analysis of randomized controlled studies. Front Endocrinol (Lausanne) 2025; 16:1481200. [PMID: 39917538 PMCID: PMC11798773 DOI: 10.3389/fendo.2025.1481200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The aim of this systematic review and meta-analysis was to investigate the effects of practical models of low-volume high-intensity interval training protocols (LV-HIIT) on glucose control and insulin resistance compared with moderate-intensity continuous training (MICT) protocols and no-exercise controls (CON). Methods Four databases (PubMed, Web of Science, Scopus, and Cochrane Library) were searched for randomized controlled studies conducted using LV-HIIT interventions (HIIT/SIT protocols involving ≤ 15 min of intense training, within a session lasting ≤ 30 min; < 30 s all-out sprint for SIT additionally). The inclusion criteria required glucose and insulin resistance markers to be evaluated pre- and post-intervention among adults who were not trained athletes. Results As a result, twenty studies were included, and meta-analyses were conducted using sixteen studies employing HIIT protocols. Compared with CON, LV-HIIT with reduced intensity and extended interval duration significantly improved fasting glucose (FPG) (mean difference (MD) in mg/dL=-16.63; 95% confidence interval (CI): -25.30 to -7.96; p<0.001) and HbA1c (MD=-0.70; 95% CI: -1.10 to -0.29; p<0.001). Greater improvements were found in participants who were overweight/obese or having type 2 diabetes (T2D). FPG decreased with every additional second of interval duration (β;=-0.10; 95% CI: -0.19 to -0.00; p=0.046). FPI (β;=-0.65; 95% CI: -1.27 to -0.02; p=0.042) and HOMA-IR (β;=-0.22; 95% CI: -0.36 to -0.09; p=0.001) decreased with every additional minute of interval duration per session. HOMA-IR also decreased with every additional minute of weekly interval duration (β;=-0.06; 95%CI: -0.08 to -0.04; p<0.001). Compared with MICT, LV-HIIT was more effective in improving insulin sensitivity (SMD=-0.40; 95%CI: -0.70 to -0.09; p=0.01), but there were no differences in FPG, FPI, HbA1c or HOMA-IR (p>0.05). The effect of LV-HIIT on FPI was larger compared with MICT among individuals who lost weight. Conclusion Conclusively, a practical model of LV-HIIT with reduced intensity and extended interval was effective in improving glucose control and its effects were similar to MICT. Greater improvements were found in individuals with overweight/obesity or T2D in protocols with longer intervals or accumulated interval duration per session/week. More large-scale, randomized controlled studies with similar intervention protocols in a wide range of population are warranted to confirm these important results. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024516594.
Collapse
Affiliation(s)
- Yining Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S. Baker
- Centre for Population Health and Medical Informatics, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Shanshan Ying
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yichen Lu
- Department of Sport and Physical Education, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
5
|
Foster C, Casado A, Bok D, Hofmann P, Bakken M, Tjelta A, Manso JG, Boullosa D, de Koning JJ. History and perspectives on interval training in sport, health, and disease. Appl Physiol Nutr Metab 2025; 50:1-16. [PMID: 40272275 DOI: 10.1139/apnm-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Exercise can be conducted as low-intensity continuous training (LICT) or a variety of higher intensity work/rest formats, collectively called interval training. Interval training was developed for athletes in the early 20th century. It was systemized in Sweden as Fartlek, and in Germany as die interval Method, in the 1930s. Most contemporary forms of interval training evolved from these progenitors. In essence, interval training allows a large volume of high-intensity or race specific training to be performed while controlling the development of fatigue. Adding interval training to LICT done by athletes adds about 2%-4% to performance achievable with LICT, which represents a competitively meaningful difference in performance (e.g., 4:25 vs. 4:00 over 1 mile). More recently, interval training has been applied to health- fitness participants and even to patients with health conditions. Studies indicate that a comparatively low volume of interval training can produce substantial improvement in physiologic capacity, in as little as 20% of training time versus LICT. There are data indicating that interval training can be reasonably pleasant, have good adherence, and is safe, even in patients. Although interval training was originally designed for athletics, the fundamental patterns of work versus recovery are remarkably similar in healthy adults and patients. Although the total volume of training and both absolute and relative intensity and magnitude of homeostatic disturbance are larger in athletes, the overall pattern of effort is the same in fitness participants and patients. Interval training can thus be characterized as an important step in the evolution of exercise training.
Collapse
Affiliation(s)
- Carl Foster
- Department of Exercise and Sports Science, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Arturo Casado
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Daniel Bok
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, Exercise Physiology, Training & Training Therapy Research Group, University of GRAZ, Graz, Austria
| | | | - Asle Tjelta
- Department of Health and Sports Science, St Svithun High School, Stavanger, Norway
| | - Juan Garcia Manso
- Departamento de Educación Física, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | |
Collapse
|
6
|
Low JL, Marcotte-Chénard A, Tremblay R, Islam H, Falkenhain K, Mampuya WM, Mari A, McManus AM, Riesco E, Little JP. An acute bout of 4 × 4-min or 10 × 1-min HIIT improves β cell glucose sensitivity in postmenopausal females with type 2 diabetes: a secondary analysis. J Appl Physiol (1985) 2025; 138:311-317. [PMID: 39694495 DOI: 10.1152/japplphysiol.00777.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Improvements in glycemic control following acute exercise are typically attributed to improved postexercise insulin sensitivity (IS) with comparatively little known about how acute exercise impacts β cell function, especially in postmenopausal females. We determined how two high-intensity interval training (HIIT) protocols, matched for total estimated energy expenditure, impact β cell function in postmenopausal females with type 2 diabetes. Thirteen postmenopausal females (70 ± 5 yr; 12 ± 7 yr since diagnosis, 80.9 ± 13.8 kg, 32.4 ± 5.6 kg·m2; HbA1c-49.8 ± 10.3 mmol/mol [6.7 ± 1.0]) living with type 2 diabetes were included in this semirandomized crossover trial. The trial involved an initial resting control condition followed by two HIIT conditions [4 × 4-min HIIT (HIIT4) and 10 × 1-min HIIT (HIIT10)] completed in a randomized order 2-4 days apart. β cell function (glucose sensitivity) and insulin sensitivity were determined from a 2-h mixed-meal tolerance test performed 2 h after rest or HIIT. Both HIIT4 and HIIT10 significantly improved β cell glucose sensitivity compared with control (15 pmol/min/m2/[mmol/L], [95% confidence interval (CI) 6, 23]; P = 0.002 and 16 pmol/min/m2/[mmol/L], [95% CI 7, 25]; P = 0.002, respectively), with no difference between HIIT protocols (1 [-8, 10], P = 0.79). There were no significant differences in IS metrics (Matsuda index, OGIS, Stumvoli, and QUICKI) between the conditions. An acute bout of 4 × 4-min or 10 × 1-min HIIT improves β cell glucose sensitivity in postmenopausal females living with type 2 diabetes. ClinicalTrials.gov: NCT04986345.NEW & NOTEWORTHY This is the first study to explore the effects of acute high-intensity interval training (HIIT) on β cell function in postmenopausal women with type 2 diabetes. Our crossover trial compares two HIIT protocols, matched for total estimated energy expenditure, examining their impacts on β cell function and insulin sensitivity. Despite the absence of an insulin-sensitizing effect, we show robust effects of HIIT on β-cell function, including an improvement in β-cell glucose sensitivity.
Collapse
Affiliation(s)
- J L Low
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - A Marcotte-Chénard
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - R Tremblay
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - H Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - K Falkenhain
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - W M Mampuya
- CHUS Research Centre, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - A Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - A M McManus
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - E Riesco
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - J P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
7
|
Reljic D, Zieseniss N, Herrmann HJ, Neurath MF, Zopf Y. Protein Supplementation Increases Adaptations to Low-Volume, Intra-Session Concurrent Training in Untrained Healthy Adults: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutrients 2024; 16:2713. [PMID: 39203849 PMCID: PMC11357491 DOI: 10.3390/nu16162713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Combined endurance and resistance training, also known as "concurrent training", is a common practice in exercise routines. While concurrent training offers the benefit of targeting both cardiovascular and muscular fitness, it imposes greater physiological demands on the body compared to performing each modality in isolation. Increased protein consumption has been suggested to support adaptations to concurrent training. However, the impact of protein supplementation on responses to low-volume concurrent training is still unclear. Forty-four untrained, healthy individuals (27 ± 6 years) performed two sessions/week of low-volume high-intensity interval training on cycle ergometers followed by five machine-based resistance training exercises for 8 weeks. Volunteers randomly received (double-blinded) 40 g of whey-based protein (PRO group) or an isocaloric placebo (maltodextrin, PLA group) after each session. Maximal oxygen consumption (VO2max) and overall fitness scores (computed from volunteers' VO2max and one-repetition maximum scores, 1-RM) significantly increased in both groups. The PRO group showed significantly improved 1-RM in all major muscle groups, while the PLA group only improved 1-RM in chest and upper back muscles. Improvements in 1-RM in leg muscles were significantly greater in the PRO group versus the PLA group. In conclusion, our results indicate that adaptations to low-volume concurrent training, particularly leg muscle strength, can be improved with targeted post-exercise protein supplementation in untrained healthy individuals.
Collapse
Affiliation(s)
- Dejan Reljic
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nilas Zieseniss
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans Joachim Herrmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus Friedrich Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Takeda R, Nojima H, Nishikawa T, Okudaira M, Hirono T, Watanabe K. Can Neuromuscular Electrical Stimulation Enhance the Effect of Sprint Interval Training? Int J Sports Med 2024; 45:672-677. [PMID: 38286427 DOI: 10.1055/a-2256-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The aim of this study was to determine the effects of subtetanic neuromuscular electrical stimulation combined with voluntary exercise between repeated Wingate tests on sprint exercise performance and blood lactate accumulation during sprint interval training. Fifteen healthy young males volunteered. After 1-min baseline, participants underwent the Wingate test twice. They performed a 4-min intervention between tests: neuromuscular electrical stimulation with free-weight cycling or voluntary cycling alone [43.6 (8.0) watts], which matched oxygen consumption with neuromuscular electrical stimulation with free-weight cycling. The blood lactate concentration was assessed at the end of the baseline, at 3-min intervention, and on recovery at 1, 3, 5, and 10 min after the second Wingate test. Peak and mean blood lactate concentration during recovery were significantly greater with neuromuscular electrical stimulation with free-weight cycling than voluntary cycling alone (P>0.036 and P=0.011, respectively). Peak power, mean power, and rate of decline (fatigue index) were not significantly different between conditions in both Wingate tests (condition/interaction all P>0.300, partial η2<0.1). Subtetanic neuromuscular electrical stimulation combined with voluntary exercise indicated similar exercise performance and fatigue levels during Wingate tests, but enhanced blood lactate accumulation compared to oxygen consumption-matched voluntary cycling during sprint interval training.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, Chukyo University - Toyota Campus, Toyota, Japan
| | - Hiroya Nojima
- Laboratory of Neuromuscular Biomechanics, Chukyo University - Toyota Campus, Toyota, Japan
| | - Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, Chukyo University - Toyota Campus, Toyota, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, Chukyo University - Toyota Campus, Toyota, Japan
- Health and Sport Sciences, Kyoto University, Kyoto, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, Chukyo University - Toyota Campus, Toyota, Japan
| |
Collapse
|
9
|
Shenoy Basti AR, Anand P, Chandralekha N, Pinto J, Prabhu SM. Effect of high-intensity interval training vs. moderate-intensity continuous training on cardiometabolic risk factors in overweight and obese individuals. J Basic Clin Physiol Pharmacol 2024; 35:265-271. [PMID: 39311083 DOI: 10.1515/jbcpp-2024-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES Our study aims to compare the effects of an 8-week high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) on cardiometabolic risk factors and on serum leptin levels in overweight and obese individuals. METHODS Our quasi-experimental study involved 36 students who were assigned to HIIT, MICT or the control group. Using a bicycle ergometer, participants in the HIIT group performed 25 min of HIIT and those in the MICT group performed 35 min of moderate-intensity continuous exercise for three days a week for 8 weeks. Body composition estimated by bioimpedance analysis, blood lipids and serum leptin were measured pre-exercise and 8 weeks post-exercise. RESULTS After 8 weeks of exercise, the participants in the MICT group showed a significant reduction in weight (p<0.01) and body mass index (BMI) (p<0.05). In the HIIT group, although weight reduction was noticed, the difference was not statistically significant compared to the pre-exercise values. In the control group, participants had a significant increase in their weight, BMI, and total body fat (p<0.05). On performing an inter-group comparison of the magnitude of change in body weight and BMI over 8 weeks of exercise, no difference was seen between the HIIT and MICT groups. No difference was observed in body fat indices and levels of random blood glucose, blood lipids and serum leptin pre and 8 weeks post-exercise. CONCLUSIONS On comparing the change in body weight and BMI over 8 weeks, no significant difference was found between the HIIT and MICT groups. However, HIIT was notably more time efficient.
Collapse
Affiliation(s)
| | - Pauline Anand
- Department of Physiology, 29216 Father Muller Medical College , Mangalore, India
| | | | - Jostol Pinto
- Department of Cardiology, Father Muller Medical College, Mangalore, India
| | - Srilakshmi M Prabhu
- Department of General Medicine, Father Muller Medical College, Mangalore, India
| |
Collapse
|
10
|
Metcalfe RS, Vollaard NBJ. Reduced-exertion high-intensity interval training (REHIT): a feasible approach for improving health and fitness? Appl Physiol Nutr Metab 2024; 49:984-992. [PMID: 38688037 DOI: 10.1139/apnm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In recent years, research investigating the dose-response to sprint interval training (SIT) has provided evidence that the number and duration of repetitions in a SIT session can be reduced whilst preserving the beneficial health-related adaptations. Together this research has led to the development of protocols involving minimal doses of SIT: regularly performing just two or three 20-30 s all-out sprints in a 10 min training session has been shown to elicit beneficial metabolic and cardiovascular adaptations. These SIT protocols, which we originally termed "reduced-exertion high-intensity interval training" (or REHIT), have the potential to remove many of the common barriers associated with other SIT protocols, as well as with HIT and aerobic exercise. Here, we critically review the evidence on the efficacy, feasibility and acceptability, and effectiveness of REHIT for improving health and fitness.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN Wales, UK
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
11
|
Frykholm E, Simonsson E, Levik Sandström S, Hedlund M, Holmberg H, Johansson B, Lindelöf N, Boraxbekk CJ, Rosendahl E. Applicability of a supramaximal high-intensity interval training program for older adults previously not engaged in regular exercise; analyses of secondary outcomes from the Umeå HIT Study. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 73:102647. [PMID: 38604572 DOI: 10.1016/j.psychsport.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
This analysis of secondary outcomes investigated the applicability of supramaximal high-intensity interval training (HIT) with individually prescribed external intensity performed on stationary bicycles. Sixty-eight participants with a median (min; max) age of 69 (66; 79), at the time not engaged in regular exercise were randomized to 25 twice-weekly sessions of supramaximal HIT (20-min session with 10 × 6-s intervals) or moderate-intensity training (MIT, 40-min session with 3 × 8-min intervals). The primary aim was outcomes on applicability regarding; adherence to prescribed external interval intensity, participant reported positive and negative events, ratings of perceived exertion (RPE 6-20), and affective state (Feeling Scale, FS -5-5). A secondary aim was to investigate change in exercise-related self-efficacy (Exercise Self-Efficacy Scale) and motivation (Behavioural Regulations in Exercise Questionnaire-2). Total adherence to the prescribed external interval intensity was [median (min; max)] 89 % (56; 100 %) in supramaximal HIT, and 100 % (95; 100 %) in MIT. The supramaximal HIT group reported 60 % of the positive (112 of 186) and 36 % of the negative (52 of 146) events. At the end of the training period, the median (min; max) session RPE was 15 (12; 17) for supramaximal HIT and 14 (9; 15) for MIT. As for FS, the median last within-session rating was 3 (-1; 5) for supramaximal HIT and 3 (1; 5) for MIT. Exercise-related motivation increased (mean difference in Relative Autonomy Index score = 1.54, 95 % CI [0.69; 2.40]), while self-efficacy did not change (mean difference = 0.55, 95 % CI [-0.75; 1.82]), regardless of group. This study provide support for supramaximal HIT in supervised group settings for older adults.
Collapse
Affiliation(s)
- Erik Frykholm
- Department of Community Medicine and Rehabilitation, Umeå University, 901 87, Umeå, Sweden.
| | - Emma Simonsson
- Department of Community Medicine and Rehabilitation, Umeå University, 901 87, Umeå, Sweden
| | - Sofi Levik Sandström
- Department of Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden
| | - Mattias Hedlund
- Department of Community Medicine and Rehabilitation, Umeå University, 901 87, Umeå, Sweden
| | - Henrik Holmberg
- Department of Epidemiology and Global Health, Umeå University, 901 87, Umeå, Sweden
| | - Bengt Johansson
- Department of Surgical and Perioperative Sciences, Umeå University, 901 87, Umeå, Sweden
| | - Nina Lindelöf
- Department of Community Medicine and Rehabilitation, Umeå University, 901 87, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Department of Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Erik Rosendahl
- Department of Community Medicine and Rehabilitation, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
12
|
Wong PY, Soh SMM, Chu WJM, Lim MXC, Jones LE, Selvaraj S, Chow KMS, Choo HWD, Aziz AR. A single all-out bout of 30-s sprint-cycle performed on 5 consecutive days per week over 6 weeks does not enhance cardiovascular fitness, maximal strength, and clinical health markers in physically active young adults. Eur J Appl Physiol 2024; 124:1861-1874. [PMID: 38233706 DOI: 10.1007/s00421-023-05411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND This study examined the effects of a single all-out bout of 30-s sprint-cycle performed daily for 5 consecutive days per week for 6 weeks, on aerobic fitness, muscle strength and metabolic-health markers in physically active young males and females. METHODS Healthy, physically active 20-28 year olds, were randomly assigned to either experimental (EXP, N = 11) or non-training control (CON, N = 8) group. With supervision, the EXP group performed one bout of 30-s sprint-cycle daily, Mondays to Fridays over 6 weeks, while CON group continued with their usual lifestyle. The followings were measured at pre- and post-intervention: maximal aerobic power, peak torque of knee extensors and flexors at velocities 30° s-1 and 300° s-1, resting heart rate, resting blood pressure, body fat percentage, fasting lipid profile, fasting blood glucose, and fasting insulin levels. RESULTS There were no significant improvements in the EXP group for all the measured variables (all P > 0.05); except for significant interaction effects in peak torque of knee extensors at 30° s-1 (P = 0.044) and low-density lipoprotein-cholesterol (P = 0.046). Post hoc test indicate that CON group showed decline in their low-density lipo-proteins levels (P = 0.024). CONCLUSION Six weeks of one all-out bout of 30-s sprint-cycle per day, for 5 consecutive days per week, was ineffective in improving cardiovascular fitness, maximal strength, and most health markers in physically active young adults. The present results when combined with the previous literature suggest that there is a possibility of a minimum threshold for a number of sprint-cycle bouts needed to be performed before any form of cardio-metabolic-health benefit is accrued.
Collapse
Affiliation(s)
- Pei Ying Wong
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Su Min Megan Soh
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Wei-Jing Marina Chu
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ming Xian Cheval Lim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Lester Edmund Jones
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
- Judith Lumley Centre, La Trobe University, Melbourne, VIC, Australia
| | - Suresh Selvaraj
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Kin Ming Steve Chow
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| | - Hui Wen Darine Choo
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| | - Abdul Rashid Aziz
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Coe LN, Astorino TA. No Sex Differences in Perceptual Responses to High-Intensity Interval Training or Sprint Interval Training. J Strength Cond Res 2024; 38:1025-1032. [PMID: 38781466 DOI: 10.1519/jsc.0000000000004738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Coe, LN and Astorino, TA. No sex differences in perceptual responses to high-intensity interval training or sprint interval training. J Strength Cond Res 36(6): 1025-1032, 2024-High-intensity interval training (HIIT) elicits similar and, in some cases, superior benefits vs. moderate-intensity continuous training (MICT). However, HIIT is typically more aversive than MICT because of the higher intensity and in turn, greater blood lactate accumulation (BLa). This study explored potential sex differences in perceptual responses to acute HIIT and sprint interval training. Fifteen men (age and V̇O2max = 29 ± 8 years and 39 ± 3 ml·kg-1·min-1) and 13 women (age and V̇O2max = 22 ± 2 years and 38 ± 5 ml·kg-1·min-1) who are healthy and recreationally active initially underwent testing of maximal oxygen uptake (V̇O2max) on a cycle ergometer. In randomized order on 3 separate occasions, they performed the 10 × 1-minute protocol at 85% of peak power output, 4 × 4-minute protocol at 85-95% maximal heart rate (%HRmax), or reduced exertion high intensity interval training consisting of 2 "all-out" 20-second sprints at a load equal to 5% body mass. Before and throughout each protocol, rating of perceived exertion (rating of perceived exertion [RPE] 6-20 scale), affective valence (+5 to -5 of the Feeling Scale), and BLa were assessed. Five minutes postexercise, enjoyment was measured using the Physical Activity Enjoyment scale survey. Results showed no difference in RPE (p = 0.17), affective valence (0.27), or enjoyment (p = 0.52) between men and women. Blood lactate accumulation increased in response to all protocols (p < 0.001), and men showed higher BLa than women (p = 0.03). Previous research suggests that interval exercise protocols are not interchangeable between men and women, yet our data reveal that men and women having similar V̇O2max exhibit no differences in perceptual responses to interval exercise.
Collapse
Affiliation(s)
- Leah N Coe
- Department of Kinesiology, CSU-San Marcos, San Marcos, California
| | | |
Collapse
|
14
|
Lloria-Varella J, Koral J, Ravel A, Murias JM, Féasson L, Busso T. Cardiorespiratory and Neuromuscular Improvements Plateau after 2 wk of Sprint Interval Training in Sedentary Individuals. Med Sci Sports Exerc 2024; 56:876-884. [PMID: 38109197 DOI: 10.1249/mss.0000000000003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Previous studies ranging from 2 to 12 wk of sprint interval training (SIT) have reported improvements in maximal oxygen uptake (V̇O 2max ) and neuromuscular function in sedentary populations. However, whether the time course of the changes in these variables correlates with greater training volumes is unclear. METHODS Thirteen sedentary participants performed three all-out training weekly sessions involving 15-s sprints interspersed with 2 min of recovery on a cycle ergometer. The 6-wk training program was composed of three identical blocks of 2 wk in which training volume was increased from 10 to 14 repetitions over the first four sessions and reduced to 8 in the last session. The power output and the heart rate (HR) were monitored during the sessions. The V̇O 2max , the power-force-velocity profile, and the isometric force were assessed every 2 wk from baseline. RESULTS A significant increase in V̇O 2max was observed from the second week plateauing thereafter despite four additional weeks of training. The dynamic force production increased from the second week, and the speed production decreased by the end of the protocol. The isometric force and the maximal power output from the power-force-velocity profile did not change. Importantly, the time spent at high percentages of the maximal HR during the training sessions was lower in the second and third training block compared with the first. CONCLUSIONS SIT resulted in an effective approach for rapidly increasing V̇O 2max , and no change in the isometric force was found; cycling-specific neuromuscular adaptations were observed from the second week of training. SIT may be useful in the short term, but further improvement of overall physical fitness might need other training modalities like endurance and/or resistance training.
Collapse
Affiliation(s)
- Jaume Lloria-Varella
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| | - Jérôme Koral
- Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, FRANCE
| | - Antoine Ravel
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| | - Juan Manuel Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, QATAR
| | | | - Thierry Busso
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| |
Collapse
|
15
|
Ekkekakis P, Hartman ME, Ladwig MA. When Studying Affective Responses to Exercise, the Definition of "Intensity" Must Reference Homeostatic Perturbations: A Retort to Vollaard et al. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2024; 46:66-72. [PMID: 38580300 DOI: 10.1123/jsep.2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
In articles on the methodology of studies investigating affective and enjoyment responses to high-intensity interval training, we noted that, occasionally, exercise conditions described as involving "high" intensity exhibited heart rates that were only as high as, or even lower than, heart rates recorded during comparator conditions described as being of "moderate" intensity. Drs. Vollaard, Metcalfe, Kinghorn, Jung, and Little suggest instead that exercise intensity in high-intensity interval-training studies can be defined in terms of percentages of peak workload. Although we maintain that defining exercise intensity in terms of percentages of maximal heart rate is a suboptimal way to quantify the degree of homeostatic perturbations in response to exercise, we are unconvinced that definitions of intensity relying solely on workload are appropriate for studies investigating affective and enjoyment responses to exercise. The reason is that affect is theorized to have evolved to relay information about homeostatic perturbations to consciousness.
Collapse
Affiliation(s)
| | - Mark E Hartman
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | - Matthew A Ladwig
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN, USA
| |
Collapse
|
16
|
Wang Y, Wang S, Meng X, Zhou H. Effect of high-intensity interval training and moderate-intensity continuous training on cardiovascular risk factors in adolescents: Systematic review and meta-analysis of randomized controlled trials. Physiol Behav 2024; 275:114459. [PMID: 38190958 DOI: 10.1016/j.physbeh.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND In recent years, cardiovascular diseases in adolescents have become more serious. High intensity interval training (HIIT) and moderate intensity continuous training (MICT) have been shown to improve cardiovascular diseases in adolescents. Meta-analysis was conducted to compare the effects of HIIT and MICT on cardiovascular risk factors in adolescents. METHODS Randomised controlled trials of HIIT and MICT for cardiovascular risk factors in adolescents up to January 2023 were searched using authoritative databases such as CNKI, Web of Science, PubMed, and EBSCO. Data analysis was performed using Review Manage 5.4 and Stata 14.0. RESULTS A total of 12 studies involving 468 participants, mean age 15.19±4.35, were included in the study. The findings showed that compared with MICT, HIIT reduced adolescents' body weight (SMD=-0.18, 95 %CI=-0.58, 0.21) and increased maximal oxygen uptake (SMD=0.56, 95 %CI=0.20, 0.93) and high-density lipoprotein (SMD=-0.47, 95 % CI=-1.11, 0.17), and improved systolic blood pressure (SMD=-0.35, 95 %CI=-0.78, 0.09), glucose (SMD=-1.53, 95 %CI=-2.93, -0.13), and insulin (SMD=-0.66, 95 % CI=-1.73, 0.41), p<0.05. HIIT and MICT improved BMI, fat mass, diastolic blood pressure, triglycerides, total cholesterol, and LDL, with no significant difference between these training types. CONCLUSION HIIT was better than MICT for improving cardiovascular health in adolescents, with better effects on body weight, BMI, fat mass, systolic blood pressure, diastolic blood pressure, maximal oxygen uptake, triglyceride, total cholesterol, LDL, HDL, glucose, and insulin levels.
Collapse
Affiliation(s)
- Ya Wang
- School of Physical Education, Huaibei Normal University, Xiangshan District, Huaibei, Anhui Province, China
| | - Shun Wang
- School of Physical Education, Huaibei Normal University, Xiangshan District, Huaibei, Anhui Province, China.
| | - Xiangwu Meng
- School of Physical Education, Huaibei Normal University, Xiangshan District, Huaibei, Anhui Province, China.
| | - Husheng Zhou
- School of Physical Education, Huaibei Normal University, Xiangshan District, Huaibei, Anhui Province, China.
| |
Collapse
|
17
|
Yin M, Li H, Bai M, Liu H, Chen Z, Deng J, Deng S, Meng C, Vollaard NBJ, Little JP, Li Y. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl Physiol Nutr Metab 2024; 49:273-292. [PMID: 37939367 DOI: 10.1139/apnm-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The present meta-analysis aimed to assess the effects of low-volume high-intensity interval training (LV-HIIT; i.e., ≤5 min high-intensity exercise within a ≤15 min session) on cardiometabolic health and body composition. A systematic search was performed in accordance with PRISMA guidelines to assess the effect of LV-HIIT on cardiometabolic health and body composition. Twenty-one studies (moderate to high quality) with a total of 849 participants were included in this meta-analysis. LV-HIIT increased cardiorespiratory fitness (CRF, SMD = 1.19 [0.87, 1.50]) while lowering systolic blood pressure (SMD = -1.44 [-1.68, -1.20]), diastolic blood pressure (SMD = -1.51 [-1.75, -1.27]), mean arterial pressure (SMD = -1.55 [-1.80, -1.30]), MetS z-score (SMD = -0.76 [-1.02, -0.49]), fat mass (kg) (SMD = -0.22 [-0.44, 0.00]), fat mass (%) (SMD = -0.22 [-0.41, -0.02]), and waist circumference (SMD = -0.53 [-0.75, -0.31]) compared to untrained control (CONTROL). Despite a total time-commitment of LV-HIIT of only 14%-47% and 45%-94% compared to moderate-intensity continuous training and HV-HIIT, respectively, there were no statistically significant differences observed for any outcomes in comparisons between LV-HIIT and moderate-intensity continuous training (MICT) or high-volume HIIT. Significant inverse dose-responses were observed between the change in CRF with LV-HIIT and sprint repetitions (β = -0.52 [-0.76, -0.28]), high-intensity duration (β = -0.21 [-0.39, -0.02]), and total duration (β = -0.19 [-0.36, -0.02]), while higher intensity significantly improved CRF gains. LV-HIIT can improve cardiometabolic health and body composition and represent a time-efficient alternative to MICT and HV-HIIT. Performing LV-HIIT at a higher intensity drives higher CRF gains. More repetitions, longer time at high intensity, and total session duration did not augment gains in CRF.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Mingyang Bai
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Hengxian Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Chuan Meng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
18
|
Clausen RD, Astorino TA. Excess post-exercise oxygen consumption after reduced exertion high-intensity interval training on the cycle ergometer and rowing ergometer. Eur J Appl Physiol 2024; 124:815-825. [PMID: 37787925 DOI: 10.1007/s00421-023-05309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE To examine differences in oxygen consumption ([Formula: see text]O2), ventilation ([Formula: see text]E), excess post-exercise oxygen consumption (EPOC), energy expenditure (EE), and blood lactate concentration (BLa) between reduced exertion high-intensity interval training (REHIT) performed on the cycle- and rowing ergometer. METHODS Fourteen active participants (age = 27 ± 7 yr) initially completed two assessments of maximal oxygen uptake. On two subsequent days, participants completed REHIT requiring three 20 s "all-out" sprints on the cycle-(REHIT-CE) and rowing ergometer (REHIT-RE), followed by 60 min rest during which gas exchange data and BLa were measured. RESULTS During exercise, [Formula: see text]O2 increased significantly in response to REHIT-CE (0.21 ± 0.04 L/min vs. 1.34 ± 0.37 L/min, p < 0.001) and REHIT-RE (0.23 ± 0.05 L/min vs. 1.57 ± 0.47 L/min, p < 0.001) compared to rest, and [Formula: see text]O2 remained elevated at 15, 30, and 45 min post-exercise in REHIT-CE (p < 0.001). However, [Formula: see text]O2 was only elevated 15 min after REHIT-RE (0.23 ± 0.05 L/min vs. 0.40 ± 0.11 L/min, p < 0.001). [Formula: see text]O2 (1.57 ± 0.47 L/min vs. 1.34 ± 0.37 L/min, p = 0.003) and EE (94.98 ± 29.60 kcal vs. 82.05 ± 22.85 kcal, p < 0.001) were significantly greater during REHIT-RE versus REHIT-CE. EPOC was significantly greater after REHIT-CE versus REHIT-RE (6.69 ± 2.18 L vs. 5.52 ± 1.67 L, p = 0.009). BLa was ~ twofold higher in response to REHIT-CE vs. REHIT-RE (11.11 ± 2.43 vs. 7.0 ± 2.4, p < 0.001). CONCLUSION Rowing-based REHIT elicits greater oxygen consumption and EE during exercise, yet lower EPOC and BLa. Whether rowing-based REHIT augments reductions in fat loss remains to be determined.
Collapse
Affiliation(s)
- Rasmus Dahl Clausen
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA.
| | - Todd A Astorino
- Department of Kinesiology, California State University, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| |
Collapse
|
19
|
Mastalerz A, Johne M, Mróz A, Bojarczuk A, Stastny P, Petr M, Kolinger D, Pisz A, Vostatkova P, Maculewicz E. Changes of Anaerobic Power and Lactate Concentration following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters. J Hum Kinet 2024; 91:165-174. [PMID: 38689580 PMCID: PMC11057624 DOI: 10.5114/jhk/186074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
400-m races are based on anaerobic energy metabolism, they induce significant muscle fatigue, muscle fiber damage, and high blood lactate (LA) concentration. Despite extensive research on sprint training, our understanding of the training process that leads to world-class sprint performance is rather limited. This study aimed to determine differences in LA concentration and anaerobic power using jumping tests after an intense glycolytic effort in a group of elite and sub-elite 400-m runners. One hundred thirty male runners were divided into two groups: elite (n = 66, body mass = 73.4 ± 7.8 kg, body height = 182.1 ± 6.2 cm, age = 20.8 ± 4.0 y) running the 400-m dash below 50 s and sub-elite (n = 64, body mass = 72.0 ± 7.1 kg, body height = 182.1 ± 5.2 cm, age = 20.8 ± 4.0 y) with a 400-m personal best above 50 s. The power of the countermovement and the sequential squat jumps was measured in two sets after a warm-up, followed by two intermittent 30-s Wingate tests. LA concentration was measured eight times. It was observed that elite athletes achieved significantly higher power in both types of jumps. The maximum post-exercise LA concentration was significantly lower in the sub-elite group after the 3rd, the 6th, the 9th, and the 20th min after the cessation of two Wingate tests (p < 0.001). The rate of LA accumulation after exercise and the rate of LA utilization did not differ between the groups. It can be concluded that elite and non-elite runners differ in higher LA production but not in LA utilization. Anaerobic power and LA concentration seem to differentiate between 400 elite and sub-elite performance.
Collapse
Affiliation(s)
- Andrzej Mastalerz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Monika Johne
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Mróz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Petr Stastny
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Dominik Kolinger
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Anna Pisz
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Pavlina Vostatkova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
- Department of Laboratory Diagnostics, Military Institute of Aviation Medicine, Warsaw, Poland
| |
Collapse
|
20
|
Lock M, Yousef I, McFadden B, Mansoor H, Townsend N. Cardiorespiratory Fitness and Performance Adaptations to High-Intensity Interval Training: Are There Differences Between Men and Women? A Systematic Review with Meta-Analyses. Sports Med 2024; 54:127-167. [PMID: 37676620 PMCID: PMC10799129 DOI: 10.1007/s40279-023-01914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND It is important to consider biological sex as a variable that might influence exercise adaptation in order to optimize exercise prescription for men and women. OBJECTIVE The aim of this study was to quantify the impact of biological sex on maximal oxygen uptake ([Formula: see text]O2max) and performance outcomes after high-intensity interval training (HIIT). METHODS A systematic search and review was conducted by two independent reviewers up to 8 September 2022 using MEDLINE, SPORTDiscus, and Sports Medicine & Education Index in ProQuest. Trials including healthy adults were included if they presented data for or compared male and female [Formula: see text]O2max or performance outcomes in response to HIIT. Performance outcomes included measures of exercise performance and concurrently measured physiological adaptations. Where appropriate, a random-effects, pre-post meta-analysis was undertaken. Data were sub-grouped for men and women, baseline training level, mean age, intervention type, and intervention length. Heterogeneity was assessed using Chi2, Cochran's Q, and Higgins I2 and sensitivity analyses, where required. Study quality was assessed using the Newcastle-Ottawa Scale and publication bias was assessed through visual inspection of funnel plots. RESULTS Thirty-three references from 28 trials were included in the review (n = 965; 462 women and 503 men). Meta-analyses included 19 studies for [Formula: see text]O2max, eight for peak power output from [Formula: see text]O2max testing (PPO), and five for threshold power (powerAT). Meta-analyses revealed similar increases in [Formula: see text]O2max in women (g = 0.57; 95% CI 0.44-0.69) and men (g = 0.57; 95% CI 0.42-0.72), and powerAT in women (g = 0.38; 95% CI 0.13-0.64) and men (g = 0.38; 95% CI 0.11-0.64). Raw mean differences for change in [Formula: see text]O2max were Δ 0.32 L·min-1 and 3.50 mL·kg-1·min-1 in men, versus Δ 0.20 L·min-1 and 3.34 mL·kg-1·min-1 for women. No significant sex differences were present for the primary analysis of any outcome. After sub-grouping, significant differences were present for PPO where the effect size was higher for well-trained women (g = 0.37) compared with well-trained men (g = 0.17), and for [Formula: see text]O2max where interventions with a duration of 4 weeks or less had significantly smaller effect sizes compared with those longer than 4 weeks (p < 0.001). Unweighted mean percentage change in [Formula: see text]O2max, PPO, and powerAT across studies was 11.16 ± 7.39%, 11.16 ± 5.99%, and 8.07 ± 6.55% for women, and 10.90 ± 5.75%, 8.22 ± 5.09%, and 7.09 ± 7.17% for men, respectively. Significant heterogeneity was present for both [Formula: see text]O2max and PPO (I2, range: 62.06-78.80%). Sub-grouping by baseline training status and intervention length decreased heterogeneity in most groups. A qualitative synthesis of other outcomes indicated similar improvements in fitness and performance for men and women with some evidence suggesting differences in the mechanisms of adaptation. LIMITATIONS AND RISK OF BIAS Publication bias is unlikely to have significantly influenced results for [Formula: see text]O2max or powerAT, but the meta-analysis of PPO could have benefitted from additional study data to strengthen results. The overlap in age categories and sensitivity of the analysis limits the accuracy of the results of the sub-grouping by age. CONCLUSIONS Findings indicated no sex-specific differences for any fitness or performance outcomes. Baseline training status and intervention length accounted for most variability in outcomes. PROSPERO registration number: CRD42021272615.
Collapse
Affiliation(s)
- Merilyn Lock
- Division of Exercise Science, Health and Epidemiology, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Ibtisam Yousef
- Division of Exercise Science, Health and Epidemiology, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Patient and Family Education Unit, Nursing Department, Hamad Medical Corporation, Doha, Qatar
| | - Bridget McFadden
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Family, Nutrition, and Exercise Sciences, Queens College, City University of New York, Queens, NY, USA
| | - Hend Mansoor
- Division of Exercise Science, Health and Epidemiology, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Nathan Townsend
- Division of Exercise Science, Health and Epidemiology, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
21
|
Bostad W, Williams JS, Van Berkel EK, Richards DL, MacDonald MJ, Gibala MJ. Biological sex does not influence the peak cardiac output response to twelve weeks of sprint interval training. Sci Rep 2023; 13:22995. [PMID: 38151488 PMCID: PMC10752867 DOI: 10.1038/s41598-023-50016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Sprint interval training (SIT) increases peak oxygen uptake (V̇O2peak) but the mechanistic basis is unclear. We have reported that 12 wk of SIT increased V̇O2peak and peak cardiac output (Q̇peak) and the changes in these variables were correlated. An exploratory analysis suggested that Q̇peak increased in males but not females. The present study incorporated best practices to examine the potential influence of biological sex on the Q̇peak response to SIT. Male and female participants (n = 10 each; 21 ± 4 y) performed 33 ± 2 sessions of SIT over 12 wk. Each 10-min session involved 3 × 20-s 'all-out' sprints on an ergometer. V̇O2peak increased after SIT (3.16 ± 1.0 vs. 2.89 ± 1.0 L/min, η2p = 0.53, p < 0.001) with no sex × time interaction (p = 0.61). Q̇peak was unchanged after training (15.2 ± 3.3 vs. 15.1 ± 3.0 L/min, p = 0.85), in contrast to our previous study. The peak estimated arteriovenous oxygen difference increased after training (204 ± 30 vs. 187 ± 36 ml/L, p = 0.006). There was no effect of training or sex on measures of endothelial function. We conclude that 12 wk of SIT increases V̇O2peak but the mechanistic basis remains unclear. The capacity of inert gas rebreathing to assess changes in Q̇peak may be limited and invasive studies that use more direct measures are needed.
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jennifer S Williams
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Emily K Van Berkel
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Douglas L Richards
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
22
|
Santos A, Braaten K, MacPherson M, Vasconcellos D, Vis-Dunbar M, Lonsdale C, Lubans D, Jung ME. Rates of compliance and adherence to high-intensity interval training: a systematic review and Meta-analyses. Int J Behav Nutr Phys Act 2023; 20:134. [PMID: 37990239 PMCID: PMC10664287 DOI: 10.1186/s12966-023-01535-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND To determine rates of compliance (i.e., supervised intervention attendance) and adherence (i.e., unsupervised physical activity completion) to high-intensity interval training (HIIT) among insufficiently active adults and adults with a medical condition, and determine whether compliance and adherence rates were different between HIIT and moderate-intensity continuous training (MICT). METHODS Articles on adults in a HIIT intervention and who were either insufficiently active or had a medical condition were included. MEDLINE, EMBASE, PsychINFO, SPORTDiscus, CINAHL, and Web of Science were searched. Article screening and data extraction were completed by two independent reviewers. Risk of bias was assessed using RoB 2.0 or ROBINS-I. Meta-analyses were conducted to discern differences in compliance and adherence between HIIT vs. MICT. Sensitivity analyses, publication bias, sub-group analyses, and quality appraisal were conducted for each meta-analysis. RESULTS One hundred eighty-eight unique studies were included (n = 8928 participants). Compliance to HIIT interventions averaged 89.4% (SD:11.8%), while adherence to HIIT averaged 63% (SD: 21.1%). Compliance and adherence to MICT averaged 92.5% (SD:10.6%) and 68.2% (SD:16.2%), respectively. Based on 65 studies included in the meta-analysis, compliance rates were not different between supervised HIIT and MICT interventions [Hedge's g = 0.015 (95%CI: - 0.088-0.118), p = .78]. Results were robust and low risk of publication bias was detected. No differences were detected based on sub-group analyses comparing medical conditions or risk of bias of studies. Quality of the evidence was rated as moderate over concerns in the directness of the evidence. Based on 10 studies, adherence rates were not different between unsupervised HIIT and MICT interventions [Hedge's g = - 0.313 (95%CI: - 0.681-0.056), p = .096]. Sub-group analysis points to differences in adherence rates dependent on the method of outcome measurement. Adherence results should be interpreted with caution due to very low quality of evidence. CONCLUSIONS Compliance to HIIT and MICT was high among insufficiently active adults and adults with a medical condition. Adherence to HIIT and MICT was relatively moderate, although there was high heterogeneity and very low quality of evidence. Further research should take into consideration exercise protocols employed, methods of outcome measurement, and measurement timepoints. REGISTRATION This review was registered in the PROSPERO database and given the identifier CRD42019103313.
Collapse
Affiliation(s)
- Alexandre Santos
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Kyra Braaten
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Megan MacPherson
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Diego Vasconcellos
- Institute for Positive Psychology & Education, Australian Catholic University, Melbourne, Victoria, Australia
| | - Mathew Vis-Dunbar
- Library, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Chris Lonsdale
- Institute for Positive Psychology & Education, Australian Catholic University, Melbourne, Victoria, Australia
| | - David Lubans
- School of Education, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Mary E Jung
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.
| |
Collapse
|
23
|
Shirai T, Uemichi K, Takemasa T. Effects of the order of endurance and high-intensity interval exercise in combined training on mouse skeletal muscle metabolism. Am J Physiol Regul Integr Comp Physiol 2023; 325:R593-R603. [PMID: 37746708 DOI: 10.1152/ajpregu.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Endurance exercise (EE) mainly improves oxidative capacity, whereas high-intensity interval exercise (HIIE) also improves glycolytic capacity. There is growing evidence that suggests that combining EE with HIIE can lead to improved athletic performance and fitness outcomes compared with either form of exercise alone. This study aimed to elucidate whether the order in which EE and HIIE are performed in combined training affects oxidative metabolism and glycolysis in mouse skeletal muscle. Male ICR mice at 7 wk of age were divided into three groups: control (CON), EE-HIIE, and HIIE-EE. The total training period was 3 wk (3 times/week). Mice performed running on a treadmill as endurance exercise and swimming with a weight load of 10% of body weight as high-intensity interval exercise. EE before HIIE (EE-HIIE) improved running performance in the maximal EE capacity test (all-out test) and partly enhanced the expression levels of molecular signals involved in glycolysis compared with HIIE before EE (HIIE-EE). The order of exercise did not, however, impact the expression of proteins related to mitochondrial dynamics, including those involved in the morphological changes of mitochondria through repeated fusion and fission, as well as oxidative energy metabolism. The findings suggest that the order of exercise has no significant impact on the expression of proteins associated with glycolytic and oxidative energy metabolism. Nevertheless, our results indicate that the order of EE-HIIE may enhance running performance.
Collapse
Affiliation(s)
- Takanaga Shirai
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Uemichi
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Tohru Takemasa
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Findikoglu G, Altinkapak A, Yaylali GF. Is isoenergetic high-intensity interval exercise superior to moderate-intensity continuous exercise for cardiometabolic risk factors in individuals with type 2 diabetes mellitus? A single-blinded randomized controlled study. Eur J Sport Sci 2023; 23:2086-2097. [PMID: 36622777 DOI: 10.1080/17461391.2023.2167238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of this study was to compare the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) with equal energy expenditure on glycaemic and cardiometabolic risk factors in people with Type 2 Diabetes Mellitus (T2DM) when compared to the control. Sixty-three people with T2DM were randomly assigned to HIIT, MICT, or non-exercising controls. Individuals were trained with HIIT at 90 and 30% of their VO2peak (1:2 min ratio) starting from 8 up to 16 intervals and MICT at 50% of VO2peak, on a cycle ergometer, 3 times/week for 12 weeks under supervision. The primary outcome measure was the change in HbA1c. Aerobic capacity, cardiovascular responses, anthropometric measures, body composition, glycaemic, and cardiometabolic risk factors were measured at the beginning and the end of the 12-week training period. There was no significant difference between HIIT and MICT or when compared to the control for HbA1c, glucose, insulin resistance, blood lipids, cardiovascular responses, anthropometric measures, body composition, and abdominal and visceral fat (padj > 0.05). HIIT and MICT increased VO2peak significantly compared to controls (p < 0.05) but not to each other (p > 0.05). Both HIIT and MICT improved VO2peak and HbA1c after 12 weeks of training compared to their baseline, furthermore, only MICT caused additional improvements in cardiovascular responses, anthropometric measures, and abdominal fat compared to baseline (p < 0.05). As a conclusion, isoenergetic HIIT or MICT did not improve HbA1c. The two protocols were equally efficient for improvement in aerobic capacity but had little effect on other cardiometabolic factors.Trial registration: ClinicalTrials.gov identifier: NCT03682445.HighlightsHIIT and MICT with equal energy expenditure were equally efficient for aerobic capacity compared to controls.Isoenergetic HIIT or MICT were not superior for improving HbA1c.Isoenergetic HIIT and MICT were not superior to each other for anthropometric measures, body composition, and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Gulin Findikoglu
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, University of Pamukkale, Denizli, Turkey
| | - Abdurrahim Altinkapak
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, University of Pamukkale, Denizli, Turkey
| | - Guzin Fidan Yaylali
- Faculty of Medicine, Department of Endocrinology and Metabolism Diseases, University of Pamukkale, Denizli, Turkey
| |
Collapse
|
25
|
Lloria-Varella J, Koral J, Ravel A, Féasson L, Murias JM, Busso T. Neuromuscular and autonomic function is fully recovered within 24 h following a sprint interval training session. Eur J Appl Physiol 2023; 123:2317-2329. [PMID: 37285051 DOI: 10.1007/s00421-023-05249-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Recovery is a key factor to promote adaptations and enhance performance. Sprint Interval Training (SIT) is known to be an effective approach to improve overall physical function and health. Although a 2-day rest period is given between SIT sessions, the time-course of recovery after SIT is unknown. PURPOSE The aim of this study was to determine whether the neuromuscular and autonomic nervous systems would be impaired 24 and 48 h after an SIT session. METHODS Twenty-five healthy subjects performed an 8 × 15 s all-out session on a braked cycle ergometer with 2 min of rest between repetitions. Isometric maximal voluntary contraction (iMVC) and evoked forces to electrical nerve stimulation during iMVC and at rest were used to assess muscle contractile properties and voluntary activation before (Pre), 1 (Post24h), and 2 (Post48h) days after the session. Two maximal 7 s sprints with two different loads were performed at those same time-points to evaluate the maximal theoretical force (F0), velocity (V0) and maximal power (Pmax) production during a dynamic exercise. Additionally, nocturnal heart rate variability (HRV) was assessed the previous and the three subsequent nights to the exercise bout. RESULTS No significant impairments were observed for the iMVC or for the force evoked by electrical stimulation 1 day after the session. Similarly, F0, V0, and Pmax were unchanged at Post24h and Post48h. Furthermore, HRV did not reveal any temporal or frequential significant difference the nights following SIT compared to Pre. CONCLUSION The results of this study show a full recovery of neuromuscular and autonomic functions a day after an all-out SIT session.
Collapse
Affiliation(s)
- Jaume Lloria-Varella
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France.
| | - Jérôme Koral
- Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, France
| | - Antoine Ravel
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
- Unité de Myologie, IRMIS, Centre Référent Maladies Neuromusculaires Rares-Euro-NmD, CHU de Saint-Etienne, 42055, Saint Etienne, France
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Thierry Busso
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| |
Collapse
|
26
|
Metcalfe RS, Gurd BJ, Vollaard NBJ. Exploring interindividual differences in fasting and postprandial insulin sensitivity adaptations in response to sprint interval exercise training. Eur J Sport Sci 2023; 23:1950-1960. [PMID: 36093904 DOI: 10.1080/17461391.2022.2124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies have concluded that wide variance in changes in insulin sensitivity markers following exercise training demonstrates heterogeneity in individual trainability. However, these studies frequently don't account for technical, biological, and random within-subject measurement error. We used the standard deviation of individual responses (SDIR) to determine whether interindividual variability in trainability exists for fasting and postprandial insulin sensitivity outcomes following low-volume sprint interval training (SIT). We pooled data from 63 untrained participants who completed 6 weeks of SIT (n = 49; VO2max: 35 (7) mL⋅kg-1⋅min-1) or acted as no-intervention controls (n = 14; VO2max: 34 (6) mL⋅kg-1⋅min-1). Fasting and oral glucose tolerance test (OGTT)-derived measures of insulin sensitivity were measured pre- and post-intervention. SDIR values were positive and exceeded a small effect size threshold for changes in fasting glucose (SDIR = 0.27 [95%CI 0.07,0.38] mmol⋅L-1), 2-h OGTT glucose (SDIR = 0.89 [0.22,1.23] mmol⋅L-1), glucose area-under-the-curve (SDIR = 66.4 [-81.5,124.3] mmol⋅L-1⋅120min-1) and The Cederholm Index (SDIR = 7.2 [-16.0,19.0] mg⋅l2⋅mmol-1⋅mU-1⋅min-1), suggesting meaningful individual responses to SIT, whilst SDIR values were negative for fasting insulin, fasting insulin resistance and insulin AUC. For all variables, the 95% CIs were wide and/or crossed zero, highlighting uncertainty about the existence of true interindividual differences in exercise trainability. Only 2-22% of participants could be classified as responders or non-responders with more than 95% certainty. Our findings demonstrate it cannot be assumed that variation in changes in insulin sensitivity following SIT is attributable to inherent differences in trainability, and reiterate the importance of accounting for technical, biological, and random error when examining heterogeneity in health-related training adaptations.Highlights This study tested whether true interindividual variability exists for changes in insulin sensitivity and glyceamic control following 6-weeks of low volume sprint interval training (SIT).The high level of technical, biological, and random error associated with repeated measurements of insulin sensitivity and glycaemic control, means we can neither confidently conclude that there is evidence of true interindividual differences in the trainability of these outcomes following SIT, nor confidently identify responders or non-responders for such parameters.Researchers contrasting responders vs. non-responders for a given parameter, either to understand mechanisms of adaptation and/or develop physiological/genetic/epigenetic predictors of response, need to be aware that identification of responders and non-responders with sufficient certainty may not be achievable for parameters with a high level of technical, biological, and random error.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Canada
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
27
|
Kimball AL, Petrie MA, McCue PM, Johnson KA, Shields RK. Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury. J Funct Morphol Kinesiol 2023; 8:123. [PMID: 37606417 PMCID: PMC10443282 DOI: 10.3390/jfmk8030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
After spinal cord injury (SCI), multiple adaptations occur that influence metabolic health and life quality. Prolonged sitting and inactivity predispose people with SCI to body composition changes, such as increased visceral adipose tissue (VAT) thickness, which is often associated with impaired glucose tolerance. Our goal is to understand whether VAT is an index of leanness, and, secondarily, whether mobility methods influence glucose tolerance for people living with SCI. A total of 15 people with SCI and 20 people without SCI had fasting oral glucose tolerance tests (OGTT) and VAT thickness (leanness) measured during a single session. Glucose was 51% and 67% greater for individuals with SCI relative to those without SCI after 60 and 120 min of an OGTT (p < 0.001). Glucose area under the curve (AUC) was 28%, 34%, and 60% higher for non-lean people with SCI than lean people with SCI and non-lean and lean people without SCI, respectively (p = 0.05, p = 0.009, p < 0.001). VAT was associated with glucose AUC (R2 = 0.23, p = 0.004). Taken together, these findings suggest that leanness, as estimated from VAT, may be an important consideration when developing rehabilitation programs to influence metabolism among people with SCI.
Collapse
Affiliation(s)
| | | | | | | | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; (A.L.K.); (M.A.P.); (P.M.M.); (K.A.J.)
| |
Collapse
|
28
|
Racil G, Chelly MS, Coquart J, Padulo J, Teodor DF, Russo L. Long- and Short-Term High-Intensity Interval Training on Lipid Profile and Cardiovascular Disorders in Obese Male Adolescents. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1180. [PMID: 37508677 PMCID: PMC10378083 DOI: 10.3390/children10071180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
This study investigated the effects of short-term and long-term periods (8 and 16 weeks) of high-intensity interval training (HIIT) on cardiovascular components, blood lipids, and 6-min walking test performance in obese young boys (age = 16.2 ± 0.7) with >34% body fat. The participants were split into two groups: severe obesity (SOG; n = 17) and moderate obesity (MOG; n = 16). All participants performed on a cycle ergometer for 16 weeks (3 times per week) of HIIT at 100% peak power output at the ventilatory threshold and recovered at 50% of peak power. Except for BMI, both groups improved all body composition measures after 16 weeks, with a higher percentage of change (Δ) in SOG. The 6-min walking test increased in both groups (p < 0.001). Furthermore, cardiovascular variables, blood lactate concentration at rest and after 5-min post-exercise, blood lipids, and insulin concentrations improved significantly in both groups. After 16 weeks, MOG significantly improved in HRpeak, blood glucose concentration, and rating of perceived exertion (RPE), but the percentage of change (Δ) was higher in SOG for all the other variables. SOG showed a higher (Δ) waist-to-hip ratio, maximum heart rate, resting heart rate, systolic blood pressure, blood lactate at 5-min post-exercise, and triglyceride concentrations after 8 and 16 weeks of training. In conclusion, a long-term HIIT program appears to be an appropriate training approach for obese boys with extra body fat. However, considering the RPE values, short-duration training sessions should be planned.
Collapse
Affiliation(s)
- Ghazi Racil
- Research Laboratory (LR23JS01) "Sport Performance, Health & Society", Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Tunis 1000, Tunisia
- Department of Biological Sciences Applied for Physical Activities and Sport, Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| | - Mohamed-Souhaiel Chelly
- Research Laboratory (LR23JS01) "Sport Performance, Health & Society", Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Tunis 1000, Tunisia
- Department of Biological Sciences Applied for Physical Activities and Sport, Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| | - Jeremy Coquart
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000 Lille, France
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Dragos Florin Teodor
- Faculty of Physical Education and Sport, Ovidius University of Constanta, 900029 Constanta, Romania
| | - Luca Russo
- Department of Human Sciences, Università Telematica Degli Studi IUL, 50122 Florence, Italy
| |
Collapse
|
29
|
Kirchner H, Weisner L, Wilms B. When should I run-the role of exercise timing in metabolic health. Acta Physiol (Oxf) 2023; 237:e13953. [PMID: 36815281 DOI: 10.1111/apha.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The prevalence of type 2 diabetes is reaching epidemic proportions. First line therapy approaches are lifestyle interventions including exercise. Although a vast amount of studies reports on beneficial effects of exercise on metabolism in humans per se, overall data are contradictory which makes it difficult to optimize interventions. Innovative exercise strategies and its underlying mechanism are needed to elucidate in order to close this therapeutic gap. The skeletal muscle produces and secretes myokines and microRNAs in response to exercise and both are discussed as mechanisms linking exercise and metabolic adaptation. Aspects of chronophysiology such as diurnal variation in insulin sensitivity or exercise as a signal to reset dysregulated peripheral clocks are of growing interest in the context of impaired metabolism. Deep insight of how exercise timing determines metabolic adaptations is required to optimize exercise interventions. This review aims to summarize the current state of research on the interaction between timing of exercise and metabolism in humans, providing insights into proposed mechanistic concepts focusing on myokines and microRNAs. First evidence points to an impact of timing of exercise on health outcome, although data are inconclusive. Underlying mechanisms remain elusive. It is currently unknown if the timed release of mykokines depends on time of day when exercise is performed. microRNAs have been found as an important mediator of processes associated with exercise adaptation. Further research is needed to evaluate their full relevance. In conclusion, it seems to be too early to provide concrete recommendations on timing of exercise to maximize beneficial effects.
Collapse
Affiliation(s)
- Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Leon Weisner
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
30
|
Hall AJ, Aspe RR, Craig TP, Kavaliauskas M, Babraj J, Swinton PA. The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:457-481. [PMID: 36165995 DOI: 10.1519/jsc.0000000000004257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Hall, AJ, Aspe, RR, Craig, TP, Kavaliauskas, M, Babraj, J, and Swinton, PA. The effects of sprint interval training on physical performance: a systematic review and meta-analysis. J Strength Cond Res 37(2): 457-481, 2023-The present study aimed to synthesize findings from published research and through meta-analysis quantify the effect of sprint interval training (SIT) and potential moderators on physical performance outcomes (categorized as aerobic, anaerobic, mixed aerobic-anaerobic, or muscular force) with healthy adults, in addition to assessing the methodological quality of included studies and the existence of small study effects. Fifty-five studies were included (50% moderate methodological quality, 42% low methodological quality), with 58% comprising an intervention duration of ≤4 weeks and an array of different training protocols. Bayesian's meta-analysis of standardized mean differences (SMD) identified a medium effect of improved physical performance with SIT (ES 0.5 = 0.52; 95% credible intervals [CrI]: 0.42-0.62). Moderator analyses identified overlap between outcome types with the largest effects estimated for anaerobic outcomes (ES 0.5 = 0.61; 95% CrI: 0.48-0.75). Moderator effects were identified for intervention duration, sprint length, and number of sprints performed per session, with larger effects obtained for greater values of each moderator. A substantive number of very large effect sizes (41 SMDs > 2) were identified with additional evidence of extensive small study effects. This meta-analysis demonstrates that short-term SIT interventions are effective for developing moderate improvements in physical performance outcomes. However, extensive small study effects, likely influenced by researchers analyzing many outcomes, suggest potential overestimation of reported effects. Future research should analyze fewer a priori selected outcomes and investigate models to progress SIT interventions for longer-term performance improvements.
Collapse
Affiliation(s)
- Andy J Hall
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Rodrigo R Aspe
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Thomas P Craig
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Mykolas Kavaliauskas
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom ; and
| | - John Babraj
- Division of Sport and Exercise Science, Abertay University, Dundee, United Kingdom
| | - Paul A Swinton
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
31
|
Valsdottir TD, Øvrebø B, Kornfeldt TM, Litleskare S, Johansen EI, Henriksen C, Jensen J. Effect of aerobic exercise and low-carbohydrate high-fat diet on glucose tolerance and android/gynoid fat in overweight/obese women: A randomized controlled trial. Front Physiol 2023; 14:1056296. [PMID: 36760521 PMCID: PMC9902511 DOI: 10.3389/fphys.2023.1056296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The study was designed to compare the effects of weight loss induced by a low-carbohydrate-high-fat diet or a normal diet, with and without exercise, on glucose tolerance measured as area under the curve (AUC), and android (A) and gynoid (G) fat distribution. The study was registered at clinicaltrials.gov; NCT04100356. In total, 57 women classified as overweight or obese (age 40 ± 3.5 years, body mass index 31.1 ± 2.6 kg/m2) were randomly assigned and completed a 10-week intervention using a low-carbohydrate high-fat diet or a normal diet, with or without aerobic interval exercise. An equal deficit of 700 kcal/day was prescribed, either restricting the diet only, or moderately restricting diet and including three 50-min high-intensity bicycle sessions per week. There were thus four groups: normal diet (NORM); low-carbohydrate-high-fat diet (LCHF); normal diet with exercise (NORM-EX); and low-carbohydrate-high-fat diet with exercise (LCHF-EX). Linear mixed models was used to assess differences between groups. With all groups pooled, the intervention resulted in a weight loss of 6.7 ± 2.5% (p < 0.001). The intervention did not result in differences between groups in AUC glucose, nor in fasting glucose or indicis for insulin resistance such as Homeostatic Model Assessment, Matsuda Insulin Sensitivity Index, insulinogenic index and disposition index. Post-intervention android fat was lower in LCHF than NORM (3,223 ± 727 vs. 2,533 ± 535 g, p = 0.041). LCHF reached a lower A/G ratio than NORM (0.94 ± 0.12 vs. 1.04 ± 0.09, p = 0.011) and LCHF-EX (0.94 ± 0.12 vs. 1.09 ± 0.09, p < 0.001) after the intervention. LCHF resulted in lower android fat mass compared to NORM and the lowest A/G ratio compared to the other matched groups, but with no accompanying improvement in AUC glucose. In conclusion, although all groups achieved improvements in glucose tolerance, no superior effect was observed with the LCHF diet, neither with nor without exercise.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Institute of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway,Department of Health Sciences, Kristiania University College, Oslo, Norway,*Correspondence: Thorhildur Ditta Valsdottir,
| | - Bente Øvrebø
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Thea Martine Kornfeldt
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Sigbjørn Litleskare
- Department of Sports and Physical Education, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Egil Ivar Johansen
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Christine Henriksen
- Institute of Basic Medical Sciences, Department of Nutrition, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| |
Collapse
|
32
|
Guo L, Chen J, Yuan W. The effect of HIIT on body composition, cardiovascular fitness, psychological well-being, and executive function of overweight/obese female young adults. Front Psychol 2023; 13:1095328. [PMID: 36743598 PMCID: PMC9891140 DOI: 10.3389/fpsyg.2022.1095328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose To evaluate the effect of a short-term HIIT program on the selected health-related parameters for overweight/obese young adult women in a university context. Methods A total of 48 participants were randomly divided into two groups. The exercise group (HIIT) received a HIIT intervention of aerobics for 4 weeks, while the control group (CON) received no training. Body composition including waist circumference (WC), body fat percentage (BF %), Cardiorespiratory fitness (VO2max), the score of Self-Rating Depression Scale (SDS), and Stroop word-color test (SCWT) results were assessed before and after the intervention along with within- and between-group comparisons. Results All the indices were significantly improved in HIIT group (p < 0.01) after 4 weeks of intervention. No significant changes were found in CON. There were significant differences between HIIT and CON in cardiovascular fitness (p < 0.01), SDS (p < 0.01) and SCWT (p < 0.05) before and after 4 weeks. In addition, weekly measurements of HIIT effects showed significant changes (p < 0.01) from the second week in the variables of body composition, VO2max, SDS and SCWT when compared with the baseline and maintained the tendency till the end of program. Conclusion The short-term HIIT aerobics of the campus program conducted in a non-lab setting induced significant improvements in body composition, cardiovascular fitness, psychological well-being and executive function in overweight young female adults.
Collapse
|
33
|
Stern G, Psycharakis SG, Phillips SM. Effect of High-Intensity Interval Training on Functional Movement in Older Adults: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:5. [PMID: 36641767 PMCID: PMC9840985 DOI: 10.1186/s40798-023-00551-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/30/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Preserving physiological functional capacity (PFC), the ability to perform the activities of daily life, and the ease with which they can be performed, in older adults, defined for this study as ≥ 50 years of age, is an important consideration for maintaining health and independence through the ageing process. Physical activity, and exercise training in particular, has been positively associated with improvement in PFC. In addition to improving aerobic and anaerobic capacity, promoting and preserving functional movement as a component of PFC is an important goal of physical activity, especially for older adults. High-intensity interval training (HIIT), an exercise protocol where repeated bouts of increased intensity are interspersed with active or passive recovery periods, has often been studied as an alternative to traditional moderate-intensity continuous training (MICT) exercise, where a continuous intensity is maintained throughout the exercise session. A large body of research has determined that both types of exercise programme are effective in improving measures of aerobic and anaerobic fitness in older adults. However, the effect of the two exercise modalities on functional movement has most often been a secondary outcome, with a range of observational techniques applied for measurement. OBJECTIVES The primary objective of this research is to systematically review and meta-analyse published studies of HIIT interventions that measured functional movement in older adults to conclude if HIIT is effective for improving functional movement. A secondary objective is to determine if there are significant differences between HIIT and MICT effect on functional movement. METHODS A search strategy of terms locating studies of HIIT interventions, functional movement outcome measures, and older adult population samples was executed on seven digital databases. Randomized and pair-matched trials of > 2 weeks were considered for inclusion. Studies of participants with neurological impairment or studies using combined exercise modality were rejected. Standardized mean difference for functional movement outcome measures was calculated. A meta-analysis of the included studies and subgroups was performed along with study quality (risk of bias and publication bias) evaluation. RESULTS A total of 18 studies were included in random effects model pooled analysis. Subgroup analysis of HIIT versus MICT on functional movement showed a trivial effect in favour of HIIT (ES 0.13, 95% CI [-0.06, 0.33] p = 0.18) and did not achieve statistical significance. However, HIIT showed a medium, statistically significant favourable effect on functional movement versus non-intervention control (ES = 0.60 95% CI [0.24, 0.95] p = 0.001). Further subgroups analysis using singular and multiple functional movement outcome measures showed similar results. CONCLUSION This meta-analysis indicates that HIIT interventions in older adults may be effective at promoting improvements in functional movement, though it is unclear whether HIIT is superior to MICT.
Collapse
Affiliation(s)
- Guy Stern
- grid.4305.20000 0004 1936 7988The University of Edinburgh, St Leonard’s Land, Holyrood Road, Edinburgh, EH8 8AQ UK ,grid.4305.20000 0004 1936 7988Human Performance Science Research Group, Moray House School of Education & Sport, Institute for Sport, PE and Health Sciences, Edinburgh, Scotland ,Sport & Exercise Physiology, Institute for Sport, PE and Health Sciences, Edinburgh, Scotland
| | - Stelios G. Psycharakis
- grid.4305.20000 0004 1936 7988The University of Edinburgh, St Leonard’s Land, Holyrood Road, Edinburgh, EH8 8AQ UK ,grid.4305.20000 0004 1936 7988Biomechanics, Moray House School of Education & Sport, Institute for Sport, PE and Health Sciences, Edinburgh, Scotland
| | - Shaun M. Phillips
- grid.4305.20000 0004 1936 7988The University of Edinburgh, St Leonard’s Land, Holyrood Road, Edinburgh, EH8 8AQ UK ,Sport & Exercise Physiology, Institute for Sport, PE and Health Sciences, Edinburgh, Scotland
| |
Collapse
|
34
|
Bradley P, Merchant Z, Rowlinson-Groves K, Taylor M, Moore J, Evison M. Feasibility and outcomes of a real-world regional lung cancer prehabilitation programme in the UK. Br J Anaesth 2023; 130:e47-e55. [PMID: 35840361 PMCID: PMC9875904 DOI: 10.1016/j.bja.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Prehabilitation, or multimodality patient optimisation before major treatment, has demonstrated meaningful improvements in patients' outcomes. In the setting of lung cancer surgery, postoperative complications and length of hospital stay are reduced, but there is currently limited access to prehabilitation. Prehab4Cancer (P4C) is an innovative regional programme serving all areas of Greater Manchester (GM). METHODS The lung cancer P4C service commenced in 2019 as a collaboration between the GM Cancer alliance and 12 leisure and community organisations. Patients planning surgical resection could be referred to receive exercise, nutrition, and well-being assessment and interventions before surgery. We evaluated the programme's feasibility, uptake, and outcomes during the 11 months before COVID-19 restrictions. RESULTS In total, 377 patients were referred to the lung cancer P4C service from all 11 hospitals in GM. Of the patients reached by telephone, 80.0% (n=280/348) attended initial P4C assessment, which occurred a median of 8 days (inter-quartile range [IQR]: 4-14) after referral. In addition, 74.3% (n=280/377) attended for baseline assessment and 47.7% (n=180/377) completed prehabilitation, attending a median of six sessions (IQR: 4-9). Statistically significant improvements in all objective physiological and subjective functional assessments were observed preoperatively, including a mean increase in the incremental shuttle walk test of 50 m (95% confidence interval: 25-74; P<0.001). CONCLUSIONS The P4C programme demonstrated feasibility at scale, high uptake, and promising impact on the status of patients with lung cancer before surgery. P4C is the first regional prehabilitation service internationally, and this evaluation provides a framework for implementing similar services in other regions.
Collapse
Affiliation(s)
- Patrick Bradley
- Manchester Thoracic Oncology Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.
| | - Zoe Merchant
- Greater Manchester Cancer Prehab4Cancer and Recovery Programme, Manchester, UK
| | | | - Marcus Taylor
- Department of Thoracic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - John Moore
- Greater Manchester Cancer Prehab4Cancer and Recovery Programme, Manchester, UK; Division for Anaesthesia, Peri-Operative Medicine and Critical Care Services, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Matthew Evison
- Manchester Thoracic Oncology Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Greater Manchester Cancer Prehab4Cancer and Recovery Programme, Manchester, UK
| |
Collapse
|
35
|
Islam H, Gillen JB. Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:20-28. [PMID: 36994179 PMCID: PMC10040385 DOI: 10.1016/j.smhs.2023.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
High-intensity and sprint interval training (HIIT and SIT, respectively) enhance insulin sensitivity and glycemic control in both healthy adults and those with cardiometabolic diseases. The beneficial effects of intense interval training on glycemic control include both improvements seen in the hours to days following a single session of HIIT/SIT and those which accrue with chronic training. Skeletal muscle is the largest site of insulin-stimulated glucose uptake and plays an integral role in the beneficial effects of exercise on glycemic control. Here we summarize the skeletal muscle responses that contribute to improved glycemic control during and following a single session of interval exercise and evaluate the relationship between skeletal muscle remodelling and improved insulin sensitivity following HIIT/SIT training interventions. Recent evidence suggests that targeting skeletal muscle mechanisms via nutritional interventions around exercise, particularly with carbohydrate manipulation, can enhance the acute glycemic benefits of HIIT. There is also some evidence of sex-based differences in the glycemic benefits of intense interval exercise, with blunted responses observed after training in females relative to males. Differences in skeletal muscle metabolism between males and females may contribute to sex differences in insulin sensitivity following HIIT/SIT, but well-controlled studies evaluating purported muscle mechanisms alongside measurement of insulin sensitivity are needed. Given the greater representation of males in muscle physiology literature, there is also a need for more research involving female-only cohorts to enhance our basic understanding of how intense interval training influences muscle insulin sensitivity in females across the lifespan.
Collapse
|
36
|
Rohmansyah NA, Ka Praja R, Phanpheng Y, Hiruntrakul A. High-Intensity Interval Training Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2023; 60:469580231172870. [PMID: 37158072 PMCID: PMC10184247 DOI: 10.1177/00469580231172870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
In elderly women, a lack of regular physical exercise may result in faster decreases in general health and functional performance. Although high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) have been effectively applied in young and clinical groups, there is no evidence to support their use in elderly women to achieve health benefits. Thus, the major goal of this study was to investigate how HIIT affected health-related outcomes in elderly women. Twenty-four inactive elderly women agreed to participate in the 16-week HIIT and MICT intervention. Body composition, insulin resistance, blood lipids, functional capacity, cardiorespiratory fitness, and quality of life were all measured before and after the intervention. The number of differences between groups was determined using Cohen's effect sizes, and the pre-post intra-group changes were compared using paired t-tests. Using 2 × 2 ANOVA, the time × group interaction effects between HIIT and MICT were evaluated. Body fat percentage, sagittal abdominal diameter, waist circumference, and hip circumference all were improved significantly in the 2 groups. HIIT substantially improved fasting plasma glucose and cardiorespiratory fitness as compared to the MICT. HIIT improved the lipid profile and functional ability more significantly compared to the MICT group. These findings show that HIIT is a useful exercise for improving elderly women's physical health.
Collapse
Affiliation(s)
| | - Rian Ka Praja
- Universitas Palangka Raya, Central Kalimantan, Indonesia
| | | | | |
Collapse
|
37
|
Delfan M, Vahed A, Bishop DJ, Amadeh Juybari R, Laher I, Saeidi A, Granacher U, Zouhal H. Effects of two workload-matched high intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats. Front Physiol 2022; 13:927969. [PMID: 36213227 PMCID: PMC9541894 DOI: 10.3389/fphys.2022.927969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4-5 × 2-min running at 80%-90% of the maximum speed reached with 2-min of recovery at 40% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5-6 × 2-min running at 80%-90% of the maximum speed reached with 1-min of recovery at 30% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats.
Collapse
Affiliation(s)
- Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Alieh Vahed
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - David J. Bishop
- Institute for Sport and Health (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Raheleh Amadeh Juybari
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Urs Granacher
- Division of Training and Movement Sciences, University of Potsdam, Potsdam, Germany
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Rennes Cedex, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
38
|
Cardiometabolic and perceptual responses to different forms of interval training in patients with type 2 diabetes. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022. [DOI: 10.1007/s12662-022-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Leahy DJ, Dalleck LC, Ramos JS. Changes in the Fitness Fatness Index following reduced exertion high-intensity interval training versus moderate-intensity continuous training in physically inactive adults. Front Sports Act Living 2022; 4:961957. [PMID: 35992158 PMCID: PMC9388827 DOI: 10.3389/fspor.2022.961957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMany adults do not reach the recommended exercise participation guidelines, often citing lack of time as a barrier. Reduced exertion high-intensity training (REHIT) is a mode of exercise that takes as few as 10 min and has been shown to be as effective as other modalities. The Fitness Fatness Index (FFI) is a recently developed index that is used to predict cardiovascular disease (CVD) risk. The aim of this study was to determine the efficacy of a REHIT vs. a traditional moderate-intensity continuous training (MICT) on FFI in physically inactive adults.MethodsThirty-two participants were randomized into one of two 8-week exercise intervention groups: (i) REHIT (n = 16); (ii) MICT (n = 16). The REHIT group performed 10 min of individualized cycling intervals on 2–4 days of the week. The MICT group were prescribed aerobic exercise at 50–65% of their heart rate reserve (HRR) on 3–5 days of the week. FFI was recorded at baseline and post 8-weeks, with FFI being calculated as cardiorespiratory fitness (CRF) (expressed as metabolic equivalents) divided by waist to height ratio (WtHR). A 1-unit increase in FFI was recognized as a clinically significant change in FFI.ResultsThe REHIT group showed significantly greater (+1.95, ±0.63) improvements in FFI compared to those in the MICT (+0.99, ±0.47) group (between group difference, p < 0.001). Furthermore, there was a greater proportion of participants who achieved a clinically significant change in FFI in the REHIT group (12/12, 100%) than in the MICT group (8/15, 53%) (between group difference, p = 0.01).ConclusionThis study suggests that REHIT may be a more efficacious exercise modality to increase FFI than MICT. This outcome is beneficial as the clinician can prescribe REHIT to physically inactive adults who cite lack of time as a barrier to physical activity participation and achieve significant reductions in CVD risk.
Collapse
Affiliation(s)
- Daniel J. Leahy
- Caring Futures Institute, SHAPE Research Centre, Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Lance C. Dalleck
- Caring Futures Institute, SHAPE Research Centre, Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
- Recreation, Exercise and Sport, Western Colorado University, Gunnison, CO, United States
| | - Joyce S. Ramos
- Caring Futures Institute, SHAPE Research Centre, Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
- *Correspondence: Joyce S. Ramos
| |
Collapse
|
40
|
Nie M, Liu Q, Yan C. Skeletal Muscle Transcriptomic Comparison Between Men and Women in Response to Acute Sprint Exercise. Front Genet 2022; 13:860815. [PMID: 35903364 PMCID: PMC9315096 DOI: 10.3389/fgene.2022.860815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute sprint exercise is a time-efficient physical activity that improves cardiorespiratory fitness in younger and middle-aged adults. Growing evidence has demonstrated that acute sprint exercise provides equal to or superior health benefits compared with moderate-intensity continuous training, which will dramatically increase aerobic capacity, insulin sensitivity, and muscle capillarization. Although the beneficial effects of acute sprint exercise are well documented, the mechanisms behind how acute sprint exercise prevents disease and benefits health are less understood. Method: We obtained differentially expressed genes in muscle (vastus lateralis) from men and women before and after an acute sprint exercise. Then, we identified hub genes from the protein–protein interaction (PPI) network of differentially expressed genes (DEGs) and key transcription factors in men and women related to acute sprint exercise. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses are performed on DEGs and sex-biased genes, respectively. Results: First, we identified 127 sexually dimorphic genes in men (90 upregulated and 37 downregulated) and 75 genes in women (90 upregulated and 37 downregulated) in response to acute sprint exercise. Second, CEBPB, SMAD3, and CDKN1A are identified as the top three hub genes related to men-biased genes. Accordingly, the top three hub genes related to women-biased genes are JUN, ACTB, and SMAD7. In addition, CLOCK, ZNF217, and KDM2B are the top three enriched transcriptional factors in men-biased genes, while XLR, SOX2, JUND, and KLF4 are transcription factors enriched most in women-biased genes. Furthermore, based on GO and KEGG enrichment analyses, we identified potential key pathways in regulating the exercise-related response in men and women, respectively. Conclusion: In this study, we found the difference in gene expression and enrichment pathways in muscle in men and women in response to acute sprint exercise. These results will shed new light on the mechanism underlying sex-based differences in skeletal muscle remodeling and metabolism related to acute sprint exercise, which may illustrate the mechanisms behind how acute sprint exercise prevents disease and benefits health.
Collapse
Affiliation(s)
- Mingkun Nie
- School of Physical Education, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
- *Correspondence: Cheng Yan,
| |
Collapse
|
41
|
Bogdanis GC, Mastorakos G, Tsirigkakis S, Stavrinou PS, Kabasakalis A, Mantzou A, Mougios V. Bout duration in high-intensity interval exercise modifies hematologic, metabolic and antioxidant responses. J Exerc Sci Fit 2022; 20:216-223. [PMID: 35510255 PMCID: PMC9035712 DOI: 10.1016/j.jesf.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 10/26/2022] Open
Abstract
Objective This study compared hematologic, metabolic and antioxidant responses between three high-intensity interval exercise (HIIE) trials of different bout duration and a continuous exercise trial (CON), all with equal average intensity, total work, and duration. Methods Eleven healthy young males performed four trials involving 20 min of cycling, either continuously (49% of power at VO2max, PPO), or intermittently with 48 10-s bouts (HIIE10), 16 30-s bouts (HIIE30) or 8 60-s bouts (HIIE60) at 100% PPO, with a 1:1.5 work-to-recovery ratio at 15% PPO. Venous blood was obtained before, immediately after, and 1 h post-exercise to evaluate hematologic, metabolic and antioxidant responses. Blood lactate concentration was measured in capillary blood during exercise, while urine lactate was measured before and 1 h post-exercise. Results Post-exercise leukocyte count (mean ± SD; 9.7 ± 2.8 k μL-1), uric acid concentration (0.35 ± 0.10 mmol L-1), glucose concentration (6.56 ± 1.44 mmol L-1), and plasma volume change (-13.5 ± 4.4%) were greater in HIIE60 compared to all other trials (p < 0.05). One-hour post-exercise, lymphocytes decreased below pre-exercise values in all HIIE trials, and uric acid increased in the HIIE60 trial (p < 0.05). Urine lactate concentration 1 h post-exercise increased compared to pre-exercise only in HIIE60 (19-fold, p < 0.001), and this was related with the higher blood lactate concentration during exercise in that trial. Conclusions These findings highlight the importance of bout duration, given that shorter bouts of HIIE (30 s or 10 s) induce lower blood cell perturbations, metabolic stress, and antioxidant responses compared to the commonly used 1-min bouts, despite equal total work, duration, and work-to-recovery ratio.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- School of P.E. and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Metabolism and Endocrinology of Physical Activity and Sport, Department of Medicine, National & Kapodistrian University of Athens, Aretaieion Hospital, Athens, Greece.,Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Athanasios Kabasakalis
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Greece
| | - Aimilia Mantzou
- Unit of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
42
|
Beaudry KM, Surdi JC, Mari A, Devries MC. Exercise mode influences post-exercise glucose sensitivity and insulin clearance in young, healthy males and females in a sex-dependent manner: A randomized control trial. Physiol Rep 2022; 10:e15354. [PMID: 35785485 PMCID: PMC9251832 DOI: 10.14814/phy2.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023] Open
Abstract
Type 2 diabetes (T2D) risk is lower in females than males. It has been reported that females have greater pancreatic 𝛽-cell function than males, which may at least in part contribute to the T2D risk in females. 𝛽-cell function is influenced by exercise training; however, previous trials comparing 𝛽-cell function between the sexes have not included participants matched for training status. Furthermore, the acute effects of different modes of exercise on 𝛽-cell function, and whether sex inherently influences these effects, are largely unexamined. Males and females (12/sex) completed a 120-min oral glucose tolerance test (OGTT) at rest (CON) and following acute bouts of high-intensity interval exercise (HIIE), moderate intensity continuous (MIC) exercise, and low-load high-repetition (LLHR) resistance exercise to assess whether sex inherently influences baseline and/or post-exercise pancreatic function in the absence of pathology. We found no sex differences in basal pancreatic 𝛽-cell function. Females had greater basal insulin clearance following MIC exercise compared to males (p = 0.01) and males tended to have a higher potentiation ratio following HIIE (p = 0.07). Females also had lower glucose sensitivity following MIC exercise compared to HIIE (p = 0.007) and LLHR (p = 0.003). Insulin clearance during the OGTT was greater following HIIE as compared with CON and MIC exercise (p = 0.02). 2-H oral glucose insulin sensitivity was greater following LLHR compared to CON (p = 0.01). Acute bouts of different modes of exercise do not differentially influence 𝛽-cell function but do influence insulin clearance and insulin sensitivity. Therefore, sex and exercise mode interact to differentially influence insulin clearance and glucose sensitivity.
Collapse
Affiliation(s)
| | - Julian C. Surdi
- Department of KinesiologyUniversity of WaterlooWaterlooCanada
| | - Andrea Mari
- Institute of Neuroscience, National Research CouncilPadovaItaly
| | | |
Collapse
|
43
|
Mandić M, Hansson B, Lovrić A, Sundblad P, Vollaard NBJ, Lundberg TR, Gustafsson T, Rullman E. Improvements in Maximal Oxygen Uptake After Sprint-Interval Training Coincide with Increases in Central Hemodynamic Factors. Med Sci Sports Exerc 2022; 54:944-952. [PMID: 35136000 DOI: 10.1249/mss.0000000000002872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sprint-interval training has been shown to improve maximal oxygen uptake, in part through peripheral muscle adaptations that increase oxygen utilization. In contrast, the adaptations of central hemodynamic factors in this context remain unexplored. PURPOSE The aim of the current study was to explore the effects of sprint-interval training on maximal oxygen uptake and central hemodynamic factors. METHODS Healthy men and women (n = 29; mean age, 27 ± 5 yr; height, 175 ± 8 cm; body mass, 72.5 ± 12.0 kg) performed 6 wk of sprint-interval training consisting of three weekly sessions of 10-min low-intensity cycling interspersed with 3 × 30-s all-out sprints. Maximal oxygen uptake, total blood volume, and maximal cardiac output were measured before and after the intervention. RESULTS Maximal oxygen uptake increased by 10.3% (P < 0.001). Simultaneously, plasma volume, blood volume, total hemoglobin mass, and cardiac output increased by 8.1% (276 ± 234 mL; P < 0.001), 6.8% (382 ± 325 mL; P < 0.001), 5.7% (42 ± 41 g; P < 0.001), and 8.5% (1.0 ± 0.9 L·min-1; P < 0.001), respectively. Increased total hemoglobin mass along with measures of body surface area had a significant impact on the improvements in maximal oxygen uptake. CONCLUSIONS Six weeks of sprint-interval training results in significant increases in hemoglobin mass, blood volume, and cardiac output. Because these changes were associated with marked improvements in maximal oxygen uptake, we conclude that central hemodynamic adaptations contribute to the improvement in maximal oxygen uptake during sprint-interval training.
Collapse
Affiliation(s)
- Mirko Mandić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Björn Hansson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Alen Lovrić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Patrik Sundblad
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UNITED KINGDOM
| | - Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| |
Collapse
|
44
|
Khalafi M, Ravasi AA, Malandish A, Rosenkranz SK. The impact of high-intensity interval training on postprandial glucose and insulin: A systematic review and meta-analysis. Diabetes Res Clin Pract 2022; 186:109815. [PMID: 35271876 DOI: 10.1016/j.diabres.2022.109815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS We performed a systematic review and meta-analysis to investigate the effects of high-intensity interval training (HIIT) on postprandial glucose (PPG) and insulin (PPI) versus non-exercise control and moderate-intensity continuous training (MICT) in participants with both normal and impaired glucose. METHODS The PubMed, Scopus, and Web of Science electronic databases were searched up to October 2021 for randomized trials evaluating HIIT versus control and/or versus MICT on glucose and insulin AUC using oral glucose tolerance testing. Subgroup analyses based on intervention duration (short-duration < 8 weeks, moderate-duration ≥ 8 weeks), baseline glucose levels (normal glucose and impaired glucose) and type of HIIT (L-HIIT and SIT) were also conducted across included studies. RESULTS A total of 25 studies involving 870 participants were included in the current meta-analysis. HIIT effectively reduced glucose [-0.37 (95% CI -0.60 to -0.13), p = 0.002] and insulin [-0.36 (95% CI -0.68 to -0.04), p = 0.02] AUC when compared with a CON group. Reductions in glucose AUC were significant for those with impaired glucose at baseline (p = 0.03), but not for those with normal glucose levels (p = 0.11) and following moderate-duration (p = 0.01), but not short-duration interventions (p = 0.18). However, there were no differences in glucose (p = 0.76) or insulin (p = 0.43) AUC between HIIT and MICT intervention arms. CONCLUSIONS Our results demonstrated that both HIIT and MICT are effective for reducing postprandial glycemia and insulinemia, particularly by moderate-duration interventions, and in those with impaired glucose.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Ali A Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
45
|
Estafanos S, Friesen B, Govette A, Gillen JB. Carbohydrate-Energy Replacement Following High-Intensity Interval Exercise Blunts Next-Day Glycemic Control in Untrained Women. Front Nutr 2022; 9:868511. [PMID: 35392288 PMCID: PMC8980852 DOI: 10.3389/fnut.2022.868511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundImproved glycemic control has been reported for ∼24 h following low-volume high-intensity interval exercise (HIIE), but it is unclear if this is a direct effect of exercise or an indirect effect of the exercise-induced energy deficit. The purpose of this study was to investigate the effect of carbohydrate-energy replacement after low-volume HIIE on 24 h glycemic control in women.MethodsSeven untrained women (age: 22 ± 2 yr; BMI: 22 ± 3 kg/m2; VO2peak: 33 ± 7 ml/kg/min) completed three 2-day trials in the mid-follicular phase of the menstrual cycle. Continuous glucose monitoring was used to measure blood glucose concentrations during, and for 24 h following three conditions: (1) HIIE followed by a high-carbohydrate energy replacement drink (EX-HC); (2) HIIE followed by a non-caloric taste-matched placebo drink (EX-NC); and (3) seated control with no drink (CTL). HIIE involved an evening session (1,700 h) of 10 × 1-min cycling efforts at ∼90% maximal heart rate with 1 min recovery. Diet was standardized and identical across all three 2-day trials, apart from the post-exercise carbohydrate drink in EX-HC, which was designed to replenish the exercise-induced energy expenditure. Postprandial glycemic responses to the following days breakfast, snack, lunch, and dinner, as well as 24 h indices of glycemic control, were analyzed.ResultsThe day after HIIE, postprandial glycemia following breakfast and snack were reduced in EX-NC compared to EX-HC, as reflected by lower 3 h glucose mean (breakfast: 5.5 ± 0.5 vs. 6.7 ± 1, p = 0.01, Cohen’s d = 1.4; snack: 4.9 ± 0.3 vs. 5.7 ± 0.8 mmol/L, p = 0.02, d = 1.4) and/or area under the curve (AUC) (breakfast: 994 ± 86 vs. 1,208 ± 190 mmol/L x 3 h, p = 0.01, d = 1.5). Postprandial glycemic responses following lunch and dinner were not different across conditions (p > 0.05). The 24 h glucose mean (EX-NC: 5.2 ± 0.3 vs. EX-HC: 5.7 ± 0.7 mmol/L; p = 0.02, d = 1.1) and AUC (EX-NC: 7,448 ± 425 vs. EX-HC: 8,246 ± 957 mmol/L × 24 h; p = 0.02, d = 1.1) were reduced in EX-NC compared to EX-HC.ConclusionPost-exercise carbohydrate-energy replacement attenuates glycemic control the day following a single session of low-volume HIIE in women.
Collapse
|
46
|
Danek N, Michalik K, Zatoń M. Warm-Up With Added Respiratory Dead Space Volume Mask Improves the Performance of the Cycling Sprint Interval Exercise: Cross-Over Study. Front Physiol 2022; 13:812221. [PMID: 35370784 PMCID: PMC8964979 DOI: 10.3389/fphys.2022.812221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Special breathing exercises performed during warm-up lead to hypercapnia and stimulation of mechanisms leading to increased exercise performance, but the effect of a device that increases the respiratory dead space volume (ARDSv) during warm-up has not been studied. The purpose of this study was to investigate the effect of 10 min warm-up with ARDSv on performance, physiological and biochemical responses during sprint interval cycling exercise (SIE). During four laboratory visits at least 72 h apart, they completed: (1) an incremental exercise test (IET) on a cycloergometer, (2) a familiarization session, and cross-over SIE sessions conducted in random order on visits (3) and (4). During one of them, 1200 mL of ARDSv was used for breathing over a 10-min warm-up. SIE consisted of 6 × 10-s all-out bouts with 4-min active recovery. Work capacity, cardiopulmonary parameters, body temperature, respiratory muscle strength, blood acid-base balance, lactate concentration, and rating of perceived exertion (RPE) were analyzed. After warm-up with ARDSv, P ET CO2 was 45.0 ± 3.7 vs. 41.6 ± 2.5 (mm Hg) (p < 0.001). Body temperature was 0.6 (°C) higher after this form of warm-up (p < 0.05), bicarbonate concentration increased by 1.8 (mmol⋅L-1) (p < 0.01). As a result, work performed was 2.9% greater (p < 0.01) compared to the control condition. Respiratory muscle strength did not decreased. Warming up with added respiratory dead space volume mask prior to cycling SIE produces an ergogenic effect by increasing body temperature and buffering capacity.
Collapse
Affiliation(s)
- Natalia Danek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| | - Kamil Michalik
- Department of Human Motor Skills, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| | - Marek Zatoń
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Sport and Health Sciences, Wrocław, Poland
| |
Collapse
|
47
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
48
|
Metcalfe RS, Williams S, Fernandes GS, Astorino TA, Stork MJ, Phillips SM, Niven A, Vollaard NBJ. Affecting Effects on Affect: The Impact of Protocol Permutations on Affective Responses to Sprint Interval Exercise; A Systematic Review and Meta-Analysis of Pooled Individual Participant Data. Front Sports Act Living 2022; 4:815555. [PMID: 35252858 PMCID: PMC8891702 DOI: 10.3389/fspor.2022.815555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
Responses to sprint interval exercise (SIE) are hypothesized to be perceived as unpleasant, but SIE protocols are diverse, and moderating effects of various SIE protocol parameters on affective responses are unknown. We performed a systematic search to identify studies (up to 01/05/2021) measuring affective valence using the Feeling Scale during acute SIE in healthy adults. Thirteen studies involving 18 unique trials and 316 unique participant (142 women and 174 men) affective responses to SIE were eligible for inclusion. We received individual participant data for all participants from all studies. All available end-of-sprint affect scores from each trial were combined in a linear mixed model with sprint duration, mode, intensity, recovery duration, familiarization and baseline affect included as covariates. Affective valence decreased significantly and proportionally with each additional sprint repetition, but this effect was modified by sprint duration: affect decreased more during 30 s (0.84 units/sprint; 95% CI: 0.74–0.93) and 15–20 s sprints (1.02 units/sprint; 95% CI: 0.93–1.10) compared with 5–6 s sprints (0.20 units/sprint; 95% CI: 0.18–0.22) (both p < 0.0001). Although the difference between 15–20 s and 30 s sprints was also significant (p = 0.02), the effect size was trivial (d = −0.12). We observed significant but trivial effects of mode, sprint intensity and pre-trial familiarization, whilst there was no significant effect of recovery duration. We conclude that affective valence declines during SIE, but the magnitude of the decrease for an overall SIE session strongly depends on the number and duration of sprints. This information can be applied by researchers to design SIE protocols that are less likely to be perceived as unpleasant in studies of real-world effectiveness.
Collapse
Affiliation(s)
- Richard S. Metcalfe
- Applied Sports Science, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Swansea, United Kingdom
| | - Sean Williams
- Department for Health, University of Bath, Bath, United Kingdom
| | - Gwen S. Fernandes
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Todd A. Astorino
- Department of Kinesiology, California State University San Marcos, San Marcos, CA, United States
| | - Matthew J. Stork
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC, Canada
| | - Shaun M. Phillips
- Human Performance Science Research Group, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailsa Niven
- Physical Activity for Health Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Niels B. J. Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
- *Correspondence: Niels B. J. Vollaard
| |
Collapse
|
49
|
Herold F, Behrendt T, Meißner C, Müller NG, Schega L. The Influence of Acute Sprint Interval Training on Cognitive Performance of Healthy Younger Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:613. [PMID: 35010873 PMCID: PMC8745010 DOI: 10.3390/ijerph19010613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
There is considerable evidence showing that an acute bout of physical exercises can improve cognitive performance, but the optimal exercise characteristics (e.g., exercise type and exercise intensity) remain elusive. In this regard, there is a gap in the literature to which extent sprint interval training (SIT) can enhance cognitive performance. Thus, this study aimed to investigate the effect of a time-efficient SIT, termed as "shortened-sprint reduced-exertion high-intensity interval training" (SSREHIT), on cognitive performance. Nineteen healthy adults aged 20-28 years were enrolled and assessed for attentional performance (via the d2 test), working memory performance (via Digit Span Forward/Backward), and peripheral blood lactate concentration immediately before and 10 min after an SSREHIT and a cognitive engagement control condition (i.e., reading). We observed that SSREHIT can enhance specific aspects of attentional performance, as it improved the percent error rate (F%) in the d-2 test (t (18) = -2.249, p = 0.037, d = -0.516), which constitutes a qualitative measure of precision and thoroughness. However, SSREHIT did not change other measures of attentional or working memory performance. In addition, we observed that the exercise-induced increase in the peripheral blood lactate levels correlated with changes in attentional performance, i.e., the total number of responses (GZ) (rm = 0.70, p < 0.001), objective measures of concentration (SKL) (rm = 0.73, p < 0.001), and F% (rm = -0.54, p = 0.015). The present study provides initial evidence that a single bout of SSREHIT can improve specific aspects of attentional performance and conforming evidence for a positive link between cognitive improvements and changes in peripheral blood lactate levels.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany; (F.H.); (N.G.M.)
- Department of Neurology, Medical Faculty, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Tom Behrendt
- Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany; (C.M.); (L.S.)
| | - Caroline Meißner
- Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany; (C.M.); (L.S.)
| | - Notger G. Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany; (F.H.); (N.G.M.)
- Department of Neurology, Medical Faculty, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany; (C.M.); (L.S.)
| |
Collapse
|
50
|
Acute RyR1 Ca 2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 2021; 12:7219. [PMID: 34893614 PMCID: PMC8664928 DOI: 10.1038/s41467-021-27422-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Collapse
|