1
|
Bańkowski S, Wójcik ZB, Grabara M, Ozner D, Pałka T, Stanek A, Sadowska-Krępa E. Does curcumin supplementation affect inflammation, blood count and serum brain-derived neurotropic factor concentration in amateur long-distance runners? PLoS One 2025; 20:e0317446. [PMID: 39808679 PMCID: PMC11731706 DOI: 10.1371/journal.pone.0317446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15). Venous blood samples were collected at rest, immediately post-exercise, and 1h post-exercise. The participants underwent a graded exercise stress test, with an increasing inclination angle after reaching a speed of 14 km/h, both before and after the 6-week supplementation period. Blood samples were collected at rest, 3 minutes post-stress test, and after 1 hour of recovery. The results showed no significant changes in C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), interleukin-1 β (IL-1β), or blood morphology due to curcumin supplementation. However, BDNF levels increased by 21% in the CUR group post-supplementation, while a 5% decrease was observed in the PLA group. These findings do not support a significant effect of curcumin supplementation on inflammatory markers, blood count, or BDNF concentration. Further research is warranted to determine the potential benefits of curcumin supplementation for endurance athletes during the preparatory period for a training cycle.
Collapse
Affiliation(s)
- Sebastian Bańkowski
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | | | - Małgorzata Grabara
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Dariusz Ozner
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Agata Stanek
- Department of Internal Medicine and Metabolic Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Upper-Silesian Medical Centre of the Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
2
|
Hsueh CL, Huang WS, Chang CK. A Multi-ingredient Supplement Reduced Markers of Muscle Damage after a Rugby Match in Collegiate Male Players. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:293-297. [PMID: 39600087 DOI: 10.4103/ejpi.ejpi-d-24-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024]
Abstract
ABSTRACT Eccentric exercise and collisions that lead to muscle damage are common place among athletes. This study aimed to investigate the effect of a multi-ingredient supplement (MIS), containing the extracts of turmeric, chicken meat, and apple and ancient peat, on markers of muscle damage in collegiate male players following a rugby match. A position-matched, double-blind, randomized, and crossover design was employed in this study. Each trial consisted of a 14-day supplementation period, followed by a 15-a-side rugby match. A total of 13 participants, eight forward and five backs, with a mean height of 1.76 ± 0.08 m and a mean weight of 86.0 ± 22.8 kg, were included. Blood samples were collected before, immediately, 24 h, and 48 h after the match. Both the MIS ( P < 0.001, d = 1.86) and placebo trials ( P = 0.002, d = 1.97) exhibited a significant increase in plasma creatine kinase and lactate dehydrogenase (LDH) concentrations from the baseline immediately after the match. However, plasma creatine kinase concentration in the MIS trial was significantly lower at 24 h postmatch compared to the placebo trial ( P = 0.029, d = 0.90). Moreover, plasma LDH concentration returned to the baseline level 24 h after the match in the MIS trial, while it remained elevated in the placebo trial ( P = 0.001, d = 1.07). In either trials, the plasma tumor necrosis factor-α and malondialdehyde concentrations were not significantly different. In conclusion, the MIS can alleviate muscle damage markers after a rugby match without changes in inflammation and oxidative stress markers.
Collapse
Affiliation(s)
- Chang-Li Hsueh
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | | | | |
Collapse
|
3
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Liu X, Lin L, Hu G. Meta-analysis of the effect of curcumin supplementation on skeletal muscle damage status. PLoS One 2024; 19:e0299135. [PMID: 39008500 PMCID: PMC11249235 DOI: 10.1371/journal.pone.0299135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES Meta-analysis was conducted to examine the effect of supplemental curcumin intake on skeletal muscle injury status and to propose an optimal intervention program. METHODS In accordance with the procedures specified in the PRISMA statement for systematic reviews and meta-analyses of randomized controlled trials, the Review Manager 5.3 was used to analyze the results of creatine kinase (CK), muscle soreness, interleukin-6 (IL-6), and range of motion (ROM) as outcome indicators in the 349 subjects included in the 14 articles. RESULTS The effect size of curcumin supplementation on muscle soreness, mean difference (MD) = -0.61; the relationship between curcumin supplementation and muscle soreness for time of measurement (I2 = 83.6%)、the relationship between curcumin supplementation and muscle soreness for period of intervention (I2 = 26.2%)、the relationship between whether one had been trained (I2 = 0%) and supplementation dose (I2 = 0%) were not heterogeneous for the relationship between curcumin supplementation and muscle soreness; The effect size on CK, MD = -137.32; the relationship between curcumin supplementation and CK (I2 = 79.7%)、intervention period (I2 = 91.9%)、whether or not trained (I2 = 90.7%)、and no heterogeneity in the relationship between curcumin supplementation and CK for the time of measurement (I2 = 0%); The effect size MD = 4.10 for the effect on ROM; The effect size for IL-6 was MD = -0.33. CONCLUSIONS This meta-analysis highlights that curcumin supplementation significantly mitigates skeletal muscle damage, with notable improvements in CK levels, muscle soreness, IL-6 levels, and ROM. The results highlight the importance of curcumin dosage and timing, revealing that prolonged supplementation yields the best results, especially for untrained individuals or those less exposed to muscle-damaging exercise. For muscle soreness and ROM enhancement, a pre-emptive, low-dose regimen is beneficial, while immediate post-exercise supplementation is most effective at reducing CK and IL-6 levels.
Collapse
Affiliation(s)
- Xiaoyang Liu
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| | - Lihan Lin
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| | - Guopeng Hu
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
7
|
Oxley RA, Peart DJ. The effect of curcumin supplementation on functional strength outcomes and markers of exercise-induced muscle damage: A systematic review and meta-analysis. Nutr Health 2024; 30:77-92. [PMID: 37408367 PMCID: PMC10924700 DOI: 10.1177/02601060231186439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Background: Curcumin is a polyphenol derived from the Curcuma longa L (turmeric) plant and has gained attention through its perceived anti-inflammatory characteristics. The potential interaction with exercise-induced muscle damage (EIMD) and delayed onset muscle soreness (DOMS) has led to investigation of curcumin as a post-exercise strategy that may have the potential to lessen acute reductions in functional strength (FS) following physical activity. Aim: The purpose of this review is to assess the evidence examining curcumin in relation to four outcome measures: FS, EIMD, DOMS and inflammation. Methods: A Medline, SPORTDiscus and CINAHL database search was undertaken with no publication date limit. Sixteen papers met the inclusion criteria and were included in this review. Three meta-analyses were completed for EIMD, DOMS and inflammation, respectively, with FS being excluded due to limited research. Results: Effect sizes were as follows: EIMD (0.15, -0.12, -0.04, -0.2 and -0.61 corresponding to 0, 24, 48, 72 and 96 h post-exercise, respectively), DOMS (-0.64, -0.33, 0.06, -0.53 and -1.16 corresponding to 0, 24, 48, 72 and 96 h post-exercise, respectively) and inflammation (-0.10, 0.26, 0.15 and 0.26 corresponding to 0, 24, 48 and 72 h post-exercise, respectively). A 96 h post-exercise inflammation meta-analysis was not conducted due to limited data. Conclusion: No effect sizes were statistically significant for EIMD (p = 0.644, 0.739, 0.893, 0.601 and 0.134), DOMS (p = 0.054, 0.092, 0.908, 0.119 and 0.074) and inflammation (p = 0.729, 0.603, 0.611 and 0.396). Further research is needed to thoroughly examine whether an effect exists.
Collapse
Affiliation(s)
- Robert A Oxley
- Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Daniel J Peart
- Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Dehzad MJ, Ghalandari H, Askarpour M. Curcumin/turmeric supplementation could improve blood pressure and endothelial function: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 59:194-207. [PMID: 38220376 DOI: 10.1016/j.clnesp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND PURPOSE A number of studies have examined the impact of curcumin/turmeric on blood pressure and the factors allegedly responsible for hypertension. In this systematic review and meta-analysis, we tried to sum up the existing literature on randomized controlled trials (RCTs) investigating this hypothesis. METHODS Online databases (PubMed, Scopus, Web of Science Core Collection, Cochrane Library, and Google Scholar) were searched from inception up to October 2022. We used the cochrane quality assessment tool to evaluate the risk of bias. Outcomes of interest included systolic blood pressure (SBP), diastolic blood pressure (DBP), blood levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), flow-mediated vasodilation (FMD), and pulse-wave velocity (PWV). Weighted mean differences (WMDs) were derived and reported. In case of significant between-study heterogeneity, subgroup analyses were carried out. Significance level was considered as P-values<0.05. RESULTS Finally, 35 RCTs out of 4182 studies were included. Our findings suggested that curcumin/turmeric supplementation significantly improved SBP (WMD: -2.02 mmHg; 95 % CI: -2.85, -1.18), DBP (WMD: -0.82 mmHg; 95 % CI: -1.46, -0.18), VCAM-1 (WMD: -39.19 ng/mL; 95 % CI: -66.15, -12.23), and FMD (WMD: 2.00 %; 95 % CI: 1.07, 2.94). However, it did not significantly change levels of ICAM-1 (WMD: -17.05 ng/ml; 95 % CI: -80.79, 46.70), or PWV (WMD: -79.53 cm/s; 95 % CI: -210.38, 51.33). CONCLUSION It seems that curcumin/turmeric supplementation could be regarded as a complementary method to improve blood pressure and endothelial function. However, further research is needed to clarify its impact on inflammatory adhesion molecules in the circulation.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Clayton DJ, Burbeary R, Parker C, James RM, Saward C, Procter EL, Mode WJA, Baker C, Hough J, Williams NC, Rossington H, Varley I. Combined Turmeric, Vitamin C, and Vitamin D Ready-to-Drink Supplements Reduce Upper Respiratory Illness Symptoms and Gastrointestinal Discomfort in Elite Male Football Players. Nutrients 2024; 16:243. [PMID: 38257136 PMCID: PMC10819629 DOI: 10.3390/nu16020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Elite football is associated with the increased risk of illness, although targeted supplementation can reduce illness risk. This study assessed the effects of a supplement containing turmeric root within a black pepper and fat-soluble blend, vitamin C and vitamin D, on upper respiratory symptoms (URS), gastrointestinal symptoms (GIS), muscle soreness, and markers of inflammation and gut permeability in elite male footballers. Twenty-three footballers completed 3 weeks of no intervention (CON), followed by 16 weeks of daily consuming 60 mL of a commercially available supplement containing raw turmeric root (17.5 g, estimated to contain 700 mg of curcumin), vitamin C (1000 mg), and vitamin D3 (3000 IU/75 mcg) (SUP). URS and GIS were measured daily. Immediately (0 h), 40, and 64 h after six competitive matches (two in CON, four in SUP), the subjective soreness and plasma concentrations of creatine kinase [CK], c-reactive protein [CRP], and intestinal fatty-acid binding protein [I-FABP] were assessed. URS incidence (p < 0.001), GIS (p < 0.05), and plasma [I-FABP] at 0 h (p < 0.05) were greater during CON versus SUP. At 40 h, [CRP] was greater than 0 h during CON (p < 0.01) but not SUP (p = 0.204). There were no differences in soreness or [CK]. This study indicates that turmeric root, vitamin C, and vitamin D supplementation over 16 weeks can reduce URS, GIS, and post-match [I-FABP] in elite footballers.
Collapse
Affiliation(s)
- David J. Clayton
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Ross Burbeary
- Derby County Football Club, Pride Park, Derby DE24 8XL, UK;
| | - Connor Parker
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Ruth M. James
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Chris Saward
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Eleanor L. Procter
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - William J. A. Mode
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Carla Baker
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - John Hough
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | - Neil C. Williams
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| | | | - Ian Varley
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (R.M.J.); (C.S.); (E.L.P.); (W.J.A.M.); (C.B.); (J.H.); (N.C.W.); (I.V.)
| |
Collapse
|
10
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Yehya M, Boulghobra D, Grillet PE, Fleitas-Paniagua PR, Bideaux P, Gayrard S, Sicard P, Thireau J, Reboul C, Cazorla O. Natural Extracts Mitigate the Deleterious Effects of Prolonged Intense Physical Exercise on the Cardiovascular and Muscular Systems. Antioxidants (Basel) 2023; 12:1474. [PMID: 37508012 PMCID: PMC10376415 DOI: 10.3390/antiox12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.
Collapse
Affiliation(s)
- Marc Yehya
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Doria Boulghobra
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre-Edouard Grillet
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- Département de Biochimie et d'Hormonologie, CHU Montpellier, 34295 Montpellier, France
| | | | - Patrice Bideaux
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Sandrine Gayrard
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Cyril Reboul
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Olivier Cazorla
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
12
|
Choi Y, Ra SG, Nishijima T, Maeda S. Effect of curcumin supplementation on inflammatory status and muscle damage in competitive female soccer players: a placebo-controlled, singleblind, nonrandomized, crossover pilot study. Phys Act Nutr 2023; 27:34-38. [PMID: 37583070 PMCID: PMC10440175 DOI: 10.20463/pan.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Curcumin, a major component of turmeric, has anti-inflammatory and antioxidative properties, which are associated with protective effects against muscle damage. This study examined the effects of dietary curcumin on inflammation and muscle damage in female competitive soccer players. METHODS A single-blinded, placebo-controlled, nonrandomized, crossover pilot study was conducted. Six competitive female soccer players (20.0 ± 2.0 yearsold) who participated in a 2-week preseason training program were assigned to two conditions: placebo and curcumin. The participants ingested a placebo or curcumin dosage (270 mg/day) during 2 weeks of preseason training, with 1 week of washout. Fasting blood samples were collected under resting conditions before (day 0) and after (day 15) the training period to examine changes in the concentration of interleukin 6 (IL-6), an inflammatory marker, and indices reflective of muscle damage. RESULTS Curcumin decreased the concentration of IL-6 released (mean decrease, -30.2 ± 28.1%), whereas no decrease was observed in the placebo condition (13.4 ± 17.4%). Changes in plasma IL-6 concentrations were significantly greater in the curcumin condition than in the placebo condition (p < 0.05). However, curcumin supplementation had no significant effects on muscle damage indices. CONCLUSION The present study shows that curcumin supplementation could attenuate inflammation, as indicated by IL-6 concentrations, in competitive female soccer players during the training period.
Collapse
Affiliation(s)
- Youngju Choi
- Institute of Specialized Teaching and Research, Inha University, Incheon, Republic of Korea
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Song-Gyu Ra
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Takahiko Nishijima
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
13
|
Clayton DJ, Burbeary R, Hennis PJ, James RM, Saward C, Colledge A, Scott R, Gilpin S, McMahon R, Varley I. Turmeric supplementation improves markers of recovery in elite male footballers: a pilot study. Front Nutr 2023; 10:1175622. [PMID: 37293669 PMCID: PMC10244580 DOI: 10.3389/fnut.2023.1175622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Football match-play causes muscle damage and provokes an inflammatory response. Rapid recovery is paramount to optimising subsequent performance and reducing injury risk. Turmeric contains high concentrations of curcumin, a polyphenol that has been shown to reduce muscle damage and soreness post-exercise in recreational exercisers. However, it is unknown whether a curcumin-containing supplement can support elite footballers recovery between matches. This applied study explored whether a turmeric supplement could improve performance, subjective and physiological markers of recovery, in elite male footballers. Twenty-four elite male footballers divided into a turmeric group, who consumed 60 mL of a turmeric drink twice per day, or a control group who did not. After 96 h of rest, baseline measurements of subjective soreness (leg and whole-body), plasma creatine kinase ([CK]), plasma C-reactive protein ([CRP]), isometric mid-thigh pull (IMTP) and counter movement jump (CMJ), were collected. Following eight competitive matches, subjective leg and whole-body soreness and plasma concentrations of inflammation markers ([CK] and [CRP]) were assessed immediately (0 h), 40 and 64 h post-match. Performance markers (IMTP and CMJ) were also assessed at 40 and 64 h post-match. Percentage change from baseline showed a main effect of group (p = 0.035, p = 0.005) and time (p = 0.002, p = 0.002) for both leg and whole-body soreness, respectively. There was a group by time interaction effect (p = 0.049) for [CRP]. There were no effects of turmeric on [CK], CMJ or IMTP. This applied study is the first in elite footballers to show that a curcumin-containing supplementation may attenuate a biomarker of inflammation [CRP] and soreness post-match play.
Collapse
Affiliation(s)
- David J. Clayton
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ross Burbeary
- Derby County Football Club, Pride Park Stadium, Derby, United Kingdom
| | - Philip J. Hennis
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ruth M. James
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Christopher Saward
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amy Colledge
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Reece Scott
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Steve Gilpin
- Rotherham United Football Club, AESSEAL New York Stadium, Rotherham, United Kingdom
| | - Ryan McMahon
- Rotherham United Football Club, AESSEAL New York Stadium, Rotherham, United Kingdom
| | - Ian Varley
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
14
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on lipid profile: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 75:102955. [PMID: 37230418 DOI: 10.1016/j.ctim.2023.102955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Numerous approaches have been assigned to treat dyslipidemia (DLP). Turmeric/curcumin have been widely investigated with this regard. In the current study, we explored the effect of curcumin/turmeric supplementation on lipid profile. METHODS Online databases were searched up to October 2022. The outcomes included triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), apolipoprotein B (Apo-B), and apolipoprotein A (Apo-A). We used the Cochrane quality assessment tool to evaluate the risk of bias. The effect sizes were estimated as weighted mean difference (WMD) and 95% confidence intervals (CIs). RESULTS Out of 4182 articles retrieved from the initial search, 64 randomized clinical trials (RCTs) were included in the study. Between-study heterogeneity was significant. Meta-analysis showed that turmeric/curcumin supplementation exerts statistically significant improvements on blood levels of TC (WMD = -3.99mg/dL; 95% CI = -5.33, -2.65), TG (WMD = -6.69mg/dL; 95% CI = -7.93, -5.45), LDL-c (WMD = -4.89mg/dL; 95% CI = -5.92, -3.87), and HDL-c (WMD = 1.80mg/dL; 95% CI = 1.43, 2.17). However, turmeric/curcumin supplementation was not associated with improvements in blood levels of Apo-A or Apo-B. The studies did not thoroughly address the issues of potency, purity, or consumption with other foods. CONCLUSION Turmeric/curcumin supplementation seems to be effective in improving blood levels of TC, TG, LDL-c, and HDL-c; but may not be capable of improving their pertinent apolipoproteins. Since the evidence was assessed to be low and very low concerning the outcomes, these findings should be dealt with caution.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
16
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on liver function in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 74:102952. [PMID: 37178581 DOI: 10.1016/j.ctim.2023.102952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Liver conditions are major burdens upon health systems around the world. Turmeric /curcumin is believed to possess therapeutic features in ameliorating various metabolic disorders. In this systematic review and meta-analysis of the randomized controlled trials (RCTs), we examined the effect of turmeric/curcumin supplementation on some liver function tests (LFTs). METHODS We comprehensively searched online databases (i.e. PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar) from inception up to October 2022. Final outcomes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Weighted mean differences (WMDs) were reported. In case of between-study heterogeneity, subgroup analysis was conducted. Non-linear dose-response analysis was carried out to detect the potential effect of dosage and duration. The registration code is CRD42022374871. RESULTS Thirty-one RCTs were included in the meta-analysis. Turmeric/curcumin supplementation significantly reduced blood levels of ALT (WMD = -4.09 U/L; 95 % CI = -6.49, -1.70) and AST (WMD = -3.81 U/L; 95 % CI = -5.71, -1.91), but not GGT (WMD: -12.78 U/L; 95 % CI: -28.20, 2.64). These improvements, though statistically significant, do not ensure clinical effectiveness. CONCLUSION It seems that turmeric/curcumin supplementation might be effective in improving AST and ALT levels. However, further clinical trials are needed to examine its effect on GGT. Quality of the evidence across the studies was low for AST and ALT and very low for GGT. Therefore, more studies with high quality are needed to assess this intervention on hepatic health.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
18
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164:156144. [PMID: 36804260 DOI: 10.1016/j.cyto.2023.156144] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Turmeric and its prominent bioactive compound, curcumin, have been the subject of many investigations with regard to their impact on inflammatory and oxidative balance in the body. In this systematic review and meta-analysis, we summarized the existing literature on randomized controlled trials (RCTs) which examined this hypothesis. Major databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were searched from inception up to October 2022. Relevant studies meeting our eligibility criteria were obtained. Main outcomes included inflammatory markers (i.e. C-reactive protein(CRP), tumour necrosis factorα(TNF-α), interleukin-6(IL-6), and interleukin 1 beta(IL-1β)) and markers of oxidative stress (i.e. total antioxidant capacity (TAC), malondialdehyde(MDA), and superoxide dismutase (SOD) activity). Weighted mean differences (WMDs) were reported. P-values < 0.05 were considered significant. Sixty-six RCTs were included in the final analysis. We observed that turmeric/curcumin supplementation significantly reduces levels of inflammatory markers, including CRP (WMD: -0.58 mg/l, 95 % CI: -0.74, -0.41), TNF-α (WMD: -3.48 pg/ml, 95 % CI: -4.38, -2.58), and IL-6 (WMD: -1.31 pg/ml, 95 % CI: -1.58, -0.67); except for IL-1β (WMD: -0.46 pg/ml, 95 % CI: -1.18, 0.27) for which no significant change was found. Also, turmeric/curcumin supplementation significantly improved anti-oxidant activity through enhancing TAC (WMD = 0.21 mmol/l; 95 % CI: 0.08, 0.33), reducing MDA levels (WMD = -0.33 µmol /l; 95 % CI: -0.53, -0.12), and SOD activity (WMD = 20.51 u/l; 95 % CI: 7.35, 33.67). It seems that turmeric/curcumin supplementation might be used as a viable intervention for improving inflammatory/oxidative status of individuals.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
20
|
Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int J Mol Sci 2023; 24:4476. [PMID: 36901908 PMCID: PMC10003109 DOI: 10.3390/ijms24054476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Medicinal properties of turmeric (Curcuma longa L.), a plant used for centuries as an anti-inflammatory, are attributed to its polyphenolic curcuminoids, where curcumin predominates. Although "curcumin" supplements are a top-selling botanical with promising pre-clinical effects, questions remain regarding biological activity in humans. To address this, a scoping review was conducted to assess human clinical trials reporting oral curcumin effects on disease outcomes. Eight databases were searched using established guidelines, yielding 389 citations (from 9528 initial) that met inclusion criteria. Half focused on obesity-associated metabolic disorders (29%) or musculoskeletal disorders (17%), where inflammation is a key driver, and beneficial effects on clinical outcomes and/or biomarkers were reported for most citations (75%) in studies that were primarily double-blind, randomized, and placebo-controlled trials (77%, D-RCT). Citations for the next most studied disease categories (neurocognitive [11%] or gastrointestinal disorders [10%], or cancer [9%]), were far fewer in number and yielded mixed results depending on study quality and condition studied. Although additional research is needed, including systematic evaluation of diverse curcumin formulations and doses in larger D-RCT studies, the preponderance of current evidence for several highly studied diseases (e.g., metabolic syndrome, osteoarthritis), which are also clinically common, are suggestive of clinical benefits.
Collapse
Affiliation(s)
| | - Carol L. Howe
- The University of Arizona Health Science Library, Tucson, AZ 85724, USA
| | - Meg Hauer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Anthony M. Rossi
- Department of Physiology, Honors College, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine and School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
21
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
22
|
Córdova A, Drobnic F, Noriega-González D, Caballero-García A, Roche E, Alvarez-Mon M. Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023; 15:384. [PMID: 36678255 PMCID: PMC9860696 DOI: 10.3390/nu15020384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Physical activity in general and sports in particular, is a mechanism that produces stress and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons. In this systematic review, we focus more especially on the benefits of curcumin. The biological actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review. After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition, curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as well as the production of pro-inflammatory mediators at the site of inflammation.
Collapse
Affiliation(s)
- Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | - Franchek Drobnic
- Medical Department, Wolverhampton Wanderers FC, Wolverhampton WV1 4QR, UK
| | - David Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - Enrique Roche
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialty, Faculty of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital “Príncipe de Asturias”, 28871 Alcalá de Henares, Spain
| |
Collapse
|
23
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Bai KY, Liu GH, Fan CH, Kuo LT, Hsu WH, Yu PA, Chen CL. 12-week curcumin supplementation may relieve postexercise muscle fatigue in adolescent athletes. Front Nutr 2023; 9:1078108. [PMID: 36687718 PMCID: PMC9846492 DOI: 10.3389/fnut.2022.1078108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction High-intensity exercise causes oxidative stress, muscle soreness, and muscle fatigue, leading to reduced exercise performance. Curcumin possesses antioxidative and anti-inflammatory properties and thus alleviates postexercise damage. Therefore, this study evaluated the effect of curcumin on athletes' postexercise recovery. Methods A non-randomized prospective cohort investigation was done. We recruited middle and high school athletes engaged in wrestling, soccer, and soft tennis. During the 12-week daily exercise training, the participants were assigned to receive curcumin supplementation (curcumin group) or not (control group). Body composition, exercise performance, inflammatory factors, muscle fatigue, and muscle soreness were recorded at the baseline and end of the study. We used the Mann-Whitney U test to compare the participants' demographics, such as age, height, weight, and training years. The Wilcoxon test was used to compare the differences between the groups before and after curcumin supplementation. Results Of 28 participants (21 men and 7 women, with a mean age of 17 years), 13 were in the curcumin group and 15 in the control group. A significant decrease in muscle fatigue and muscle soreness scores was observed in the curcumin group after 12 weeks. Moreover, a significant decrease in the 8-hydroxy-2 deoxyguanosine level and a significant increase in basic metabolic rate and fat-free mass were observed in the curcumin group. Conclusion Curcumin can reduce muscle fatigue and soreness after exercise, indicating its potential to alleviate postexercise damage. It could be considered to cooperate with nutritional supplements in regular training in adolescent athletes.
Collapse
Affiliation(s)
- Kai-Yuan Bai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Gin-Hua Liu
- Department of Nutrition, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Hao Fan
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Liang-Tseng Kuo
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan,Division of Sports Medicine, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Liang-Tseng Kuo,
| | - Wei-Hsiu Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan,Division of Sports Medicine, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan,Wei-Hsiu Hsu,
| | - Pei-An Yu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan,Division of Sports Medicine, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chi-Lung Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan,Division of Sports Medicine, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
25
|
Curcumin Attenuates Delayed-Onset Muscle Soreness and Muscle Function Deficits Following a Soccer Match in Male Professional Soccer Players. Int J Sports Physiol Perform 2023; 18:347-353. [PMID: 36780901 DOI: 10.1123/ijspp.2022-0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 02/15/2023]
Abstract
PURPOSE To examine the effects of acute curcumin (CURC) supplementation on recovery from a soccer match in male professional players. METHODS In a randomized, placebo-controlled, crossover design, 11 players from the under-23 team of an English Premier League club (age 19 [1] y, body mass 79.4 [7.9] kg, height 180.8 [5.7] cm) consumed 500 mg of CURC or a control (medium-chain triglycerides) immediately and 12 and 36 hours after a 90-minute match. Countermovement jump height (CMJ), reactive strength index (RSI), delayed-onset muscle soreness (DOMS, 0-200 mm), and subjective well-being were measured before and 12, 36, and 60 hours postmatch. Global positioning systems measured external load during matches, and dietary intake was recorded across the testing period. RESULTS External load and dietary intake did not differ between conditions (P ≥ .246). CURC attenuated deficits in CMJ (P ≤ .004) and RSI (P ≤ .001) and reduced DOMS (P ≤ .004) at all postmatch time points (except 60 h post for RSI). The greatest difference between control and CURC was 12 hours post for CMJ (P < .001, 1.91 [4.40] cm, 95% CI, 1.25 to 2.57, g = 0.36) and RSI (P = .003, 0.40 [0.41] AU, 95% CI, 0.17 to 0.63, g = 0.90) and 36 hours post for DOMS (P < .001, 47 [23] mm, 95% CI, -67 to -27, g = 2.12). CONCLUSIONS CURC intake <36 hours after a soccer match attenuated DOMS and muscle function deficits, suggesting that CURC may aid recovery in professional male soccer players.
Collapse
|
26
|
Nanavati K, Rutherfurd-Markwick K, Lee SJ, Bishop NC, Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. Eur J Nutr 2022; 61:3835-3855. [PMID: 35831667 PMCID: PMC9596560 DOI: 10.1007/s00394-022-02943-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Collapse
Affiliation(s)
- K. Nanavati
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| | | | - S. J. Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - N. C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A. Ali
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| |
Collapse
|
27
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
28
|
Curcumin-Added Whey Protein Positively Modulates Skeletal Muscle Inflammation and Oxidative Damage after Exhaustive Exercise. Nutrients 2022; 14:nu14224905. [PMID: 36432591 PMCID: PMC9698604 DOI: 10.3390/nu14224905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Exhaustive exercise can induce muscle damage. The consumption of nutritional compounds with the ability to positively influence the oxidative balance and an exacerbated inflammatory process has been previously studied. However, little is known about the nutritional value of curcumin (CCM) when mixed with whey protein concentrate (WPC). This study was developed to evaluate the effect of CCM-added WPC on inflammatory and oxidative process control and histopathological consequences in muscle tissue submitted to an exhaustive swimming test (ET). (2) Methods: 48 animals were randomly allocated to six groups (n = 8). An ET was performed 4 weeks after the start of the diet and animals were euthanized 24 h post ET. (3) Results: WPC + CCM and CCM groups reduced IL-6 and increased IL-10 expression in muscle tissue. CCM reduced carbonyl protein after ET compared to standard AIN-93M ET and WPC + CCM ET diets. Higher nitric oxide concentrations were observed in animals that consumed WPC + CCM and CCM. Consumption of WPC + CCM or isolated CCM reduced areas of inflammatory infiltrate and fibrotic tissue in the muscle. (4) Conclusions: WPC + CCM and isolated CCM contribute to the reduction in inflammation and oxidative damage caused by the exhaustive swimming test.
Collapse
|
29
|
Nosrati‐Oskouie M, Aghili‐Moghaddam NS, Tavakoli‐Rouzbehani O, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin: A dietary phytochemical for boosting exercise performance and recovery. Food Sci Nutr 2022; 10:3531-3543. [PMID: 36348809 PMCID: PMC9632206 DOI: 10.1002/fsn3.2983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/07/2022] Open
Abstract
Curcumin, as the main natural compound in the turmeric plant (Curcuma longa), is a yellowish polyphenol that has been used traditionally in Asian countries as a medicinal herb for various types of disease and pathological conditions caused by inflammation and oxidative stress. In the present review, we conducted a comprehensive literature search for evidence that shows the effect of curcumin on factors influencing exercise performance, including muscle damage, muscle soreness, inflammation, and oxidative stress. During exercise, reactive oxygen species and inflammation are increased. Thus, if there is no balance between endogenous and exogenous antioxidants and increases in oxidative stress and inflammation, which is important for maintaining redox homeostasis in skeletal muscle, it can lead to muscle soreness and muscle damage and ultimately result in reduced exercise performance. Due to the anti-oxidant and anti-inflammatory properties of curcumin, it can increase exercise performance and decrease exercise-induced muscle soreness and muscle damage. It appears that curcumin supplementation can have positive effects on exercise performance and recovery, muscle damage and pain, inflammation, and oxidative stress. However, there is still a need to precisely evaluate factors to more accurately assess/quantify the beneficial therapeutic effects of curcumin with regard to enhancing exercise performance and recovery.
Collapse
Affiliation(s)
- Mohammad Nosrati‐Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Tannaz Jamialahmadi
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Science, School of PharmacyUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amirhossein Sahebkar
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- School of MedicineThe University of Western AustraliaPerthWestern AustraliaAustralia
- Department of Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
30
|
Doma K, Devantier-Thomas B, Gahreman D, Connor J. Selected root plant supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis. INT J VITAM NUTR RES 2022; 92:448-468. [PMID: 33196371 DOI: 10.1024/0300-9831/a000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
31
|
Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, Dawes JJ, Kieffer AJ, Harvey T, Kerksick CM, Stout JR, Ziegenfuss TN, Zapp A, Tartar JL, Heileson JL, VanDusseldorp TA, Kalman DS, Campbell BI, Antonio J, Kreider RB. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr 2022; 19:267-315. [PMID: 35813846 PMCID: PMC9261739 DOI: 10.1080/15502783.2022.2086017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
Abstract
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). General Recommendations Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. Military Recommendations Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. First Responder Recommendations Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| | - Matthew J. McAllister
- Texas State University, Metabolic and Applied Physiology Laboratory, Department of Health & Human Performance, San Marcos, TX, USA
| | - Hunter S. Waldman
- University of North Alabama, Department of Kinesiology, Florence, AL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jill Joyce
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK, USA
| | - Nicholas D. Barringer
- US. Army-Baylor Master’s Program in Nutrition, Department of Nutrition, San Antonio, TX, USA
| | - J. Jay Dawes
- Oklahoma State University, Department of Kinesiology, Applied Health, and Recreation, Stillwater, OK, USA
| | - Adam J. Kieffer
- Brooke Army Medical Center, Department of Nutritional Medicine, San Antonio, TX, USA
| | - Travis Harvey
- United States Special Operations Command, Preservation of the Force and Family, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Jeffrey R. Stout
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Sciences, School of Kinesiology and Physical Therapy, Orlando, FL, USA
| | | | | | - Jamie L. Tartar
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Jeffery L. Heileson
- Baylor University, Department of Health, Human Performance, and Recreation, Waco, TX, USA
| | | | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Jose Antonio
- Fight Science Laboratory, Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| |
Collapse
|
32
|
Beba M, Mohammadi H, Clark CCT, Djafarian K. The effect of curcumin supplementation on delayed-onset muscle soreness, inflammation, muscle strength, and joint flexibility: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2022; 36:2767-2778. [PMID: 35574627 DOI: 10.1002/ptr.7477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/29/2022] [Accepted: 04/09/2022] [Indexed: 11/09/2022]
Abstract
To quantify the effects of curcumin supplementation on exercise-induced muscle damage, muscle soreness, inflammatory biomarkers, muscle strength, and joint flexibility via assessment of creatine kinase (CK), visual analogue scale (VAS) score, maximal voluntary contraction (MVC), and range of motion (ROM), respectively. Online databases, including PubMed, Google Scholar, and Scopus, were searched up to February 2021. RevMan® software (version 5.3) was used for assessing the risk of bias to assess the quality of studies. The mean differences (MD) and confidence intervals (95% CI) of CK activity (IU/L), VAS score, tumor necrosis factor (TNF-α) (pg/ml), interleukin-6 (IL-6) (pg/ml), IL-8 (pg/ml), MVC (nm) and ROM (degree) were pooled using a random- or fixed-effect model. Between-study heterogeneity was assessed using χ-square or I2 statistic. Ten trials met the eligibility criteria and were included in the pooled analysis. Meta-analysis showed that curcumin supplementation significantly reduced serum CK activity [WMD = -65.98 IU/L, 95% CI (-99.53 to -32.44)], muscle soreness [WMD = -0.56, 95% CI (-0.84 to -0.27)], and TNF-α concentration [WMD = -0.22 pg/ml, 95% CI (-0.33 to -0.10)]. Also, curcumin supplementation elicited significant improvements in MVC [WMD = 3.10 nm, 95% CI (1.45-4.75)] and ROM [WMD = 6.49°, 95% CI (3.91-9.07)], although no significant changes in IL-6 and IL-8 levels were found. Dose-response analysis indicated that there is a significant non-linear association between the daily dose and the final effect size regarding TNF-α. Curcumin supplementation may improve some aspects of DOMS, including muscle damage, muscle soreness, inflammation, muscle strength, and joint flexibility. Further, well-designed and high-quality studies with larger sample sizes are needed to ascertain the long-term effects and safety of curcumin supplementation.
Collapse
Affiliation(s)
- Mohammad Beba
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
33
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
34
|
Kumagai H, Miyamoto-Mikami E, Takaragawa M, Kuriki K, Goto C, Shibata K, Yamada N, Hosono A, Fuku M, Suzuki S, Fuku N. Genetic polymorphisms in CYP19A1 and ESR1 are associated with serum CK activity after prolonged running in men. J Appl Physiol (1985) 2022; 132:966-973. [PMID: 35175101 DOI: 10.1152/japplphysiol.00374.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to clarify 1) the influence of genetic polymorphisms in the cytochrome P450 aromatase gene (CYP19A1) on circulating estradiol levels in men and 2) whether estrogen-related genetic polymorphisms, such as the CYP19A1 rs936306 and estrogen receptor-α (ESR1) rs2234693 polymorphisms, predict exercise-induced muscle damage. Serum estradiol levels were examined in young men (n = 167). In a different cohort, serum creatine kinase (CK) activity, an index of skeletal muscle membrane disruption, was analyzed in a 2-days ultramarathon race: baseline, after the first day, and after the second day (114 males and 25 females). Genetic polymorphisms in CYP19A1 rs936306 C/T and ESR1 rs2234693 T/C were analyzed using the TaqMan SNP genotyping assay. Male subjects with the TT genotype of the CYP19A1 polymorphism exhibited significantly higher serum estradiol levels than the C allele carriers. Male runners had significantly higher post-race serum CK activity than female runners. The change in the CK activity during the ultramarathon race was significantly lower in male subjects with the CYP19A1 TT genotype than in those with the CC+CT genotypes, and was correlated with the number of C alleles in ESR1 rs2234693 in male subjects. Furthermore, the genotype scores of these two polymorphisms were significantly correlated with changes in serum CK activity during race (r = ‒0.279, P = 0.003). The results of this study suggest that genetic polymorphisms in CYP19A1 rs936306 influence serum estradiol levels in men, and genetic polymorphisms in CYP19A1 and ESR1 are associated with serum CK activity in men.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Kiyonori Kuriki
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Chiho Goto
- Faculty of Health and Human Life, Nagoya Bunri University, Inazawa, Japan
| | - Kiyoshi Shibata
- Department of Human Life and Sciences, Nagoya University of Economics, Nagoya, Japan
| | - Norihiro Yamada
- Faculty of Agriculture, Setsunan University, Neyagawa, Japan
| | - Akihiro Hosono
- Atsuta Health Center, City of Nagoya, Japan.,Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mizuho Fuku
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan.,Department of Rehabilitation Medicine, Tsudanuma Central General Hospital, Narashino, Japan
| | - Sadao Suzuki
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| |
Collapse
|
35
|
Effect of curcumin supplementation on muscle damage, antioxidant status and inflammatory factors after successive simulated taekwondo competitions. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
37
|
Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021; 14:nu14010070. [PMID: 35010943 PMCID: PMC8746365 DOI: 10.3390/nu14010070] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary supplements are widely used as a nutritional strategy to improve and maintain performance and achieve faster recovery in sports and exercise. Exercise-induced muscle damage (EIMD) is caused by mechanical stress and subsequent inflammatory responses including reactive oxygen species and cytokine production. Therefore, dietary supplements with anti-inflammatory and antioxidant properties have the potential to prevent and reduce muscle damage and symptoms characterized by loss of muscle strength and delayed-onset muscle soreness (DOMS). However, only a few supplements are considered to be effective at present. This review focuses on the effects of dietary supplements derived from phytochemicals and listed in the International Olympic Committee consensus statement on muscle damage evaluated by blood myofiber damage markers, muscle soreness, performance, and inflammatory and oxidative stress markers. In this review, the effects of dietary supplements are also discussed in terms of study design (i.e., parallel and crossover studies), exercise model, and such subject characteristics as physical fitness level. Future perspectives and considerations for the use of dietary supplements to alleviate EIMD and DOMS are also discussed.
Collapse
|
38
|
Komine S, Miura I, Miyashita N, Oh S, Tokinoya K, Shoda J, Ohmori H. Effect of a sulforaphane supplement on muscle soreness and damage induced by eccentric exercise in young adults: A pilot study. Physiol Rep 2021; 9:e15130. [PMID: 34927380 PMCID: PMC8685487 DOI: 10.14814/phy2.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Excessive exercise increases the production of reactive oxygen species in skeletal muscles. Sulforaphane activates nuclear factor erythroid 2-related factor 2 (Nrf2) and induces a protective effect against oxidative stress. In a recent report, sulforaphane intake suppressed exercise-induced oxidative stress and muscle damage in mice. However, the effect of sulforaphane intake on delayed onset muscle soreness after eccentric exercise in humans is unknown. We evaluated the effect of sulforaphane supplement intake in humans regarding the delayed onset muscle soreness (DOMS) after eccentric exercise. RESEARCH METHODS & PROCEDURES To determine the duration of sulforaphane supplementation, continuous blood sampling was performed and NQO1 mRNA expression levels were analyzed. Sixteen young men were randomly divided into sulforaphane and control groups. The sulforaphane group received sulforaphane supplements. Each group performed six set of five eccentric exercise with the nondominant arm in elbow flexion with 70% maximum voluntary contraction. We assessed muscle soreness in the biceps using the visual analog scale, range of motion (ROM), muscle damage markers, and oxidative stress marker (malondialdehyde; MDA). RESULTS Sulforaphane supplement intake for 2 weeks increased NQO1 mRNA expression in peripheral blood mononuclear cells (PBMCs). Muscle soreness on palpation and ROM were significantly lower 2 days after exercise in the sulforaphane group compared with the control group. Serum MDA showed significantly lower levels 2 days after exercise in the sulforaphane group compared with the control group. CONCLUSION Our findings suggest that sulforaphane intake from 2 weeks before to 4 days after the exercise increased NQO1, a target gene of Nrf2, and suppressed DOMS after 2 days of eccentric exercise.
Collapse
Affiliation(s)
- Shoichi Komine
- Faculty of Human CareTeikyo Heisei UniversityToshima‐kuJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Ikuru Miura
- Doctoral program in Sports MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Nao Miyashita
- Master's program in Physical Education, Health and Sport SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Sechang Oh
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Katsuyuki Tokinoya
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan UniversityHachioji‐shiJapan
- Japan Society for the Promotion of ScienceChiyoda‐kuJapan
| | - Junichi Shoda
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hajime Ohmori
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
39
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
40
|
Molinari C, Ruga S, Farghali M, Galla R, Bassiouny A, Uberti F. Preventing c2c12 muscular cells damage combining magnesium and potassium with vitamin D3 and curcumin. J Tradit Complement Med 2021; 11:532-544. [PMID: 34765517 PMCID: PMC8572722 DOI: 10.1016/j.jtcme.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background and aim Physical activity is defined as any bodily movement produced by skeletal muscles which causes energy consumption; moderate and constant physical activity is known to be beneficial and to slow the muscle loss process associated with aging. The aim of the present study was to test, in an in vitro exercise model, the biological effects of a new formulation composed of magnesium and potassium combined with vitamin D and curcumin created to support muscle activity and to prevent hypercontraction damage. Experimental procedure C2C12 cells were treated with vitamin D, buffered magnesium bisglycinate, curcumin, and potassium citrate. Cell viability, morpho-functional changes, calcium and magnesium movements, and the main kinases involved in glucose uptake were analyzed. The glycogen level and lactate were also evaluated. Results and conclusion Important results about a positive effect on mitochondrial activity, ATP production, oxygen consumption and in the physiological differentiation of C2C12 cells were obtained. Further experiments were performed under conditions that mimic the biological aspects of strenuous exercise. The combination of magnesium, vitamin D3, curcumin, and potassium citrate revealed beneficial effects on skeletal muscle cells under physiological conditions as well as while mimicking intense activity. In particular, in an in vitro model, they were able to control the hypercontraction, restoring ion fluxes, reducing inflammation signaling and supporting the main mechanism involved on aerobic activity. Our results have indicated for the first time that this new combination could be considered as a new nutraceutical formulation to improve physical performance and muscle recovery.
Collapse
Affiliation(s)
- Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Mahitab Farghali
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Ahmad Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
41
|
Cheshier BC, Jacobson BH, Diehl C. Effect of White Willow Bark on Delayed Onset Muscle Soreness Following Resistance Training: A Pilot Study. THE ASIAN JOURNAL OF KINESIOLOGY 2021. [DOI: 10.15758/ajk.2021.23.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Delayed onset muscle soreness (DOMS) is discomfort that occurs within 8-24hrs following an unaccustomed bout of physical activity that peaks within 24-27hrs and slowly resolves on its own. White willow bark (WWB) is a nutritional supplement that is believed to have anti-inflammatory and analgesic properties like aspirin but without the risk of GI adverse effects. The purpose of this investigation is to determine the effectiveness of WWB on alleviating the symptoms of DOMS following exercise.METHODS Twenty-five individuals volunteered to participate and were randomly assigned to take WWB (798mg salicin) or placebo for 5 days following a lower body resistance training session which consisted of 5X10 lunges at 40% body weight (BW) and 3X fatigue leg press at 75%BW. Test procedures included visual analog scale (VAS), mid-thigh circumference and pressure pain threshold. VAS was measured pre, all five days of the supplementation period and day 6 (post-supplementation). All other variables were measured at pre, immediate, day 3(72hrs), and day 6 (post-supplementation).RESULTS No condition X time interaction was observed (p > 0.05) for any variable. However, VAS scores were lower in the WWB compared to the placebo for all time frames. There was a significant main effect of time for VAS scores indicating muscle soreness for hamstrings (p < 0.001), gluteal (p < 0.001), gastrocnemius (p < 0.001) and quadriceps (p < 0.001). In addition, there was a significant main effect of time for right midthigh pressure pain threshold (p = 0.02), mid-right (p < 0.001) and mid-left (p < 0.001) thigh circumference.CONCLUSIONS WWB may reduce subjective feelings of muscle soreness and appears to have analgesic properties.
Collapse
|
42
|
Dias KA, da Conceição AR, Oliveira LA, Pereira SMS, Paes SDS, Monte LF, Sarandy MM, Novaes RD, Gonçalves RV, Della Lucia CM. Effects of Curcumin Supplementation on Inflammatory Markers, Muscle Damage, and Sports Performance during Acute Physical Exercise in Sedentary Individuals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9264639. [PMID: 34659641 PMCID: PMC8516555 DOI: 10.1155/2021/9264639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022]
Abstract
Exhaustive and acute unusual physical exercise leads to muscle damage. Curcumin has been widely studied due to the variety of its biological activities, attributed to its antioxidant and anti-inflammatory properties. Furthermore, it has shown positive effects on physical exercise practitioners. However, there is no literature consensus on the beneficial effects of curcumin in acute physical activities performed by sedentary individuals. Therefore, we systematically reviewed evidence from clinical trials on the main effects of curcumin supplementation on inflammatory markers, sports performance, and muscle damage during acute physical exercises in these individuals. We searched PubMed/MEDLINE, Scopus, Web of Science, and Embase databases, and only original studies were analyzed according to the PRISMA guidelines. The included studies were limited to supplementation of curcumin during acute exercise. A total of 5 studies were selected. Methodological quality assessments were examined using the SYRCLE's risk-of-bias tool. Most studies have shown positive effects of curcumin supplementation in sedentary individuals undergoing acute physical exercise. Overall, participants supplemented with curcumin showed less muscle damage, reduced inflammation, and better muscle performance. The studies showed heterogeneous data and exhibited methodological limitations; therefore, further research is necessary to ensure curcumin supplementation benefits during acute and high-intensity physical exercises. Additionally, mechanistic and highly controlled studies are required to improve the quality of the evidence and to elucidate other possible mechanisms. This study is registered with Prospero number CRD42021262718.
Collapse
Affiliation(s)
- Kelly Aparecida Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Lívya Alves Oliveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Stefany da Silva Paes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Larissa Farias Monte
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Ceres Mattos Della Lucia
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
43
|
Tanabe Y, Akazawa N, Nishimaki M, Shimizu K, Fujii N, Takahashi H. Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate Ingestion on Muscle Damage after Eccentric Exercise in Healthy Males: A Pilot Placebo-Controlled Double-Blind Crossover Study. J Diet Suppl 2021; 19:656-671. [PMID: 33938371 DOI: 10.1080/19390211.2021.1912244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An animal study demonstrated that 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Japanese pungent spice wasabi, has an action of inhibiting the activation of calpain-1 (a protease). Increases in calpain activity can cause continual strength loss after eccentric exercise. It remains to be determined in humans whether 6-MSITC intake would modulate calpain and/or muscle damage responses after eccentric exercise. We performed a randomized, double-blind, crossover design study wherein eight healthy young males were randomly assigned to ingest 9 mg/day of 6-MSITC or placebo from 1 day before exercise to 4 days after exercise (30 maximal isokinetic eccentric contractions of the elbow flexors using an isokinetic dynamometer). Calpain-1 concentration, inflammatory and muscle damage markers (creatine kinase activity, urinary titin concentration, muscle strength, range of motion, muscle soreness and transverse relaxation time) were assessed. Plasma calpain-1 concentration after eccentric exercise was similar between the placebo- and 6-MSITC-treated conditions. All muscle damage and inflammatory markers were not affected by 6-MSITC relative to those in the placebo-treated condition. Our results suggest that 6-MSITC has no effect on plasma calpain-1 concentration and muscle damage and inflammatory markers measured after eccentric exercise.
Collapse
Affiliation(s)
- Yoko Tanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Nobuhiko Akazawa
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Mio Nishimaki
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan.,Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuhiro Shimizu
- Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Sports Research , Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
44
|
Hillman AR, Gerchman A, O'Hora E. Ten Days of Curcumin Supplementation Attenuates Subjective Soreness and Maintains Muscular Power Following Plyometric Exercise. J Diet Suppl 2021; 19:303-317. [PMID: 33480271 DOI: 10.1080/19390211.2021.1875101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Curcumin has become a popular product used to decrease inflammation and enhance recovery from exercise. PURPOSE To determine the effects of curcumin supplementation on delayed onset muscle soreness and muscle power following plyometric exercise. METHODS Participants (n = 22; five females, 17 males) consumed either curcumin (500 mg) or placebo twice daily for 10 days (6 days pre, day of and 3 days post exercise). Participants completed 5 x 20 drop jumps on day 7. Blood sampling and recovery tests were assessed at pre-supplementation, 24-hours and immediately pre-exercise, and immediately post-, 24, 48 and 72-hours post-exercise. Blood markers included serum creatine kinase (CK) and erythrocyte sedimentation rate (ESR), while soreness was measured during a squat and post vertical jump. RESULTS Both groups experienced muscle damage post-exercise with elevated CK (403 ± 390 ul; p < 0.01), soreness with squatting (38 ± 29 mm; p < 0.01), and vertical jump (36 ± 30 mm; p < 0.01). Soreness was greater in placebo vs. curcumin 48 h and 72 h post-exercise (p < 0.01); however, CK was not significantly different between groups (p = 0.28) despite being >200 IU·L-1 greater 24 hr post exercise in placebo vs. curcumin. ESR was significantly greater immediately post-exercise (6.3 ± 5.6 vs. 3.4 ± 2.6 mm/hr; p = 0.03), however these were within the normal range for this test and not significantly different between groups (p = 0.25). Vertical jump decreased over time in the placebo, but not curcumin group (19.8 ± 4.8 vs. 21.4 ± 3.2 in; p = 0.01). CONCLUSION These data suggest curcumin reduces soreness and maintains muscular power following plyometric exercise.
Collapse
Affiliation(s)
- Angela R Hillman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA.,College of Health Sciences and Professions, School of Applied Health Science and Wellness, Division of Exercise Physiology, Ohio University, Athens, OH, USA
| | - Alexa Gerchman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA
| | - Erin O'Hora
- Nutrition and Dietetics, Marywood University, Scranton, PA, USA
| |
Collapse
|
45
|
Fang W, Nasir Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 35:1768-1781. [PMID: 33174301 DOI: 10.1002/ptr.6912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND curcumin consumption may have a protective effect against exercise-induced muscle damage (EIMD) through stabilization of the cell membrane via inhibition of free radical formation. Evidence supporting a protective role of curcumin after physical activity induced muscle injury in humans, however, it is inconsistent. METHODS Medline, Scopus, and Google scholar were systematically searched up to May 2020. The Cochrane Collaboration tool for assessing the risk of bias was used for assessing the quality of studies. Random effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were used for estimating the overall effect. Between-study heterogeneity was assessed using the chi-squared and I2 statistic. RESULTS The results revealed a significant effect of curcumin supplementation on reducing creatine kinase (CK) (weighted mean difference [WMD] = -48.54 IU.L-1 ; 95% CI: -80.667, -16.420; p = .003) and muscle soreness index decrease (WMD = -0.476; 95% CI: -0.750, -0.202; p = .001). Moreover, a subgroup analysis resulted in a significant decrease in CK concentrations and muscle soreness index, according to follow-ups after exercise, dose of curcumin, duration of studies, exercise type, train status and study design. CONCLUSIONS The current evidence revealed a efficacy of curcumin in reducing CK serum levels and muscle soreness index among adults. Therefore, curcumin may be known as a priority EIMD recovery agent in interventions.
Collapse
Affiliation(s)
- Wang Fang
- Henan University of Technology Sports Institute, Zhengzhou, Henan, China
| | - Yasaman Nasir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Hayakawa T, Yaguchi T, Kawakami Y. Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3. Cancer Sci 2020; 111:4326-4335. [PMID: 33006786 PMCID: PMC7734012 DOI: 10.1111/cas.14675] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
PD‐1/PD‐L1 immune checkpoint inhibitors are promising cancer immunotherapies however responses are still limited and the development of more effective combination immunotherapy is needed. We previously reported that STAT3 activation in cancer cells and immune cells was involved in immune‐resistant mechanisms. In this study, we evaluated the effect of highly absorptive forms of curcumin extracts and synthetic curcumin on anti‐tumor T cell responses. The curcumin po administration resulted in the significant augmentation of in vivo induction of tumor antigen‐specific T cells through restoration of dendritic cells (DCs) by inhibiting directly STAT3 in DCs and indirectly via reduced IL‐6 production from STAT3 activated cancer cells in 2 syngeneic MC38 and CT26 murine tumor models. Curcumin also showed direct DC enhancing activity and enhanced T cell induction for the immunized antigens in non‐tumor‐bearing mice and human hosts. Curcumin restored DC functions in xenogeneic nude mouse model implanted with high IL‐6‐producing human clear cell ovarian cancer cells. The combination of curcumin and PD‐1/PD‐L1 Abs demonstrated a synergistic anti‐tumor activity in MC38 murine tumor models. These results indicated that curcumin augments the induction of tumor antigen‐specific T cells by restoring the T cell stimulatory activity of DCs targeting activated STAT3 in both cancer cells and immune cells. Combination immunotherapy with curcumin and PD‐1/PD‐L1 Ab is an attractive strategy in the development of effective immunotherapy against various cancers.
Collapse
Affiliation(s)
- Taeko Hayakawa
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
47
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
48
|
Yoon WY, Lee K, Kim J. Curcumin supplementation and delayed onset muscle soreness (DOMS): effects, mechanisms, and practical considerations. Phys Act Nutr 2020; 24:39-43. [PMID: 33108717 PMCID: PMC7669469 DOI: 10.20463/pan.2020.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 01/11/2023] Open
Abstract
[Purpose] In this literature review we aimed to investigate the effects of curcumin supplementation on delayed onset muscle soreness (DOMS), which occurs after exercise, and evaluate related parameters to propose practical recommendations for the field of exercise physiology. [Methods] Experimental studies conducted on curcumin supplementation and DOMS were systematically reviewed to determine (1) the effect of curcumin supplementation on DOMS, (2) potential mechanisms by which curcumin supplementation may attenuate DOMS, and (3) practical considerations for curcumin supplementation. [Results] While several studies have reported that curcumin supplementation attenuates DOMS after exercise, others have reported that curcumin supplementation has no effect on DOMS. Several mechanisms have been proposed by which curcumin supplementation may attenuate DOMS; the most probable of which is a reduction in inflammatory response. Other potential mechanisms include modulation of transient receptor potential vanilloid 1 (TRPV1) or changes in post-exercise capillary lactate levels; these require further examination. The usual recommended dose of curcumin is 150–1500 mg daily (sometimes up to 5 g), divided into 2–3 portions and taken before and after exercise. It is not necessary to take curcumin together with piperine. [Conclusion] Although conflicting results regarding the effects of curcumin supplementation on DOMS exist in literature, it may be considered as a method of nutritional intervention for reducing post-exercise DOMS.
Collapse
Affiliation(s)
- Wan-Young Yoon
- Department of Health Care Exercise, Seowon University, Cheongju, Republic of Korea
| | - Kihyuk Lee
- Department of Sport Culture, Dongguk University, Seoul, Republic of Korea
| | - Jooyoung Kim
- Office of Academic Affairs, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
49
|
Effect of Chlorella vulgaris supplementation with eccentric exercise on serum interleukin 6 and insulin resistance in overweight men. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|