1
|
Brunkhorst M, Brunkhorst L, Martens H, Papizh S, Besouw M, Grasemann C, Turan S, Sikora P, Chromek M, Cornelissen E, Fila M, Lilien M, Allgrove J, Neuhaus TJ, Eltan M, Espinosa L, Schnabel D, Gokce I, González-Rodríguez JD, Khandelwal P, Keijzer-Veen MG, Lechner F, Szczepańska M, Zaniew M, Bacchetta J, Emma F, Haffner D. Presentation and outcome in carriers of pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter NPT 2a and 2c. Kidney Int 2025; 107:116-129. [PMID: 39461557 DOI: 10.1016/j.kint.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter 2a and 2c are rare causes of phosphate wasting. Since data on presentation and outcomes are scarce, we collected clinical, biochemical and genetic data via an online questionnaire and the support of European professional organizations. One hundred thirteen patients (86% children) from 90 families and 17 countries with pathogenic or likely pathogenic variants in SLC34A1 or SLC34A3 and a median follow-up of three years were analyzed. Biallelic SLC34A1 variant carriers showed polyuria, failure to thrive, vomiting, constipation, hypercalcemia and nephrocalcinosis in infancy, while biallelic SLC34A3 carriers presented in childhood or even adulthood with rickets/osteomalacia and/or osteopenia/osteoporosis, hypophosphatemia and, less frequently, nephrocalcinosis, while the prevalences of kidney stones were comparable. Adult biallelic SLC34A3 carriers had a six-fold increase chronic kidney disease (CKD) prevalence compared to the general population. All biallelic variant carriers shared a common biochemical pattern including elevated 1,25(OH)2D and alkaline phosphatase levels, suppressed parathyroid hormone (PTH), and hypercalciuria. Heterozygous carriers showed similar but less pronounced phenotypes. In biallelic SLC34A1 carriers, an attenuation of clinical features was observed after infancy, independent of treatment. Phosphate treatment was given in 55% of patients, median duration two years, and resulted in significant reduction, although not normalization, of alkaline phosphatase and of hypercalciuria but an increase in PTH levels, while 1,25(OH)2D levels remained elevated. Thus, our study indicates that biallelic SLC34A1 and SLC34A3 carriers show distinct, albeit overlapping phenotypes, with the latter having an increased risk of CKD in adulthood. Phosphate treatment may promote kidney phosphate loss and enhance 1,25(OH)2D synthesis via increased PTH production.
Collapse
Affiliation(s)
- Max Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lena Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Division of Inherited & Acquired Kidney Diseases, Hannover Medical School, Hannover, Germany
| | - Svetlana Papizh
- Department of Hereditary and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Children Surgery of Pirogov Russian National Research Medical University, Moscow, Russia
| | - Martine Besouw
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Cornelissen
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Fila
- Pediatric Nephrology Department, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire (CHU) of Montpellier, Montpellier, France
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeremy Allgrove
- Endocrinology Department, Great Ormond Street Hospital, London, UK
| | - Thomas J Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Mehmet Eltan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Dirk Schnabel
- Division of Pediatric Endocrinology, Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| | - Ibrahim Gokce
- Department of Pediatric Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Priyanka Khandelwal
- Department of Pediatrics, Division of Pediatric Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Mandy G Keijzer-Veen
- Division of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Felix Lechner
- Department of Pediatrics, Children's Hospital Memmingen, Memmingen, Germany
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, SUM in Katowice, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hospices Civils de Lyon, INSERM 1033 Research Unit, Lyon, France
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
3
|
Salcedo-Betancourt JD, Moe OW. The Effects of Acid on Calcium and Phosphate Metabolism. Int J Mol Sci 2024; 25:2081. [PMID: 38396761 PMCID: PMC10889523 DOI: 10.3390/ijms25042081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A variety of changes in mineral metabolism aiming to restore acid-base balance occur in acid loading and metabolic acidosis. Phosphate plays a key role in defense against metabolic acidosis, both as an intracellular and extracellular buffer, as well as in the renal excretion of excess acid in the form of urinary titratable acid. The skeleton acts as an extracellular buffer in states of metabolic acidosis, as the bone matrix demineralizes, leading to bone apatite dissolution and the release of phosphate, calcium, carbonate, and citrate into the circulation. The renal handling of calcium, phosphate and citrate is also affected, with resultant hypercalciuria, hyperphosphaturia and hypocitraturia.
Collapse
Affiliation(s)
- Juan D. Salcedo-Betancourt
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Orson W. Moe
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Petzold F, Schönauer R, Werner A, Halbritter J. Clinical and Functional Assessment of Digenicity in Renal Phosphate Wasting. Nutrients 2023; 15:2081. [PMID: 37432176 DOI: 10.3390/nu15092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Apart from increased fluid intake, patients with kidney stone disease (KSD) due to renal phosphate wasting require specific metaphylaxis. NaPi2a, NaPi2c, and NHERF1 regulate plasma phosphate concentration by reabsorbing phosphate in proximal kidney tubules and have been found altered in monogenic hypophosphatemia with a risk of KSD. In this study, we aimed at assessing the combined genetic alterations impacting NaPi2a, NaPi2c, and NHERF1. Therefore, we screened our hereditary KSD registry for cases of oligo- and digenicity, conducted reverse phenotyping, and undertook functional studies. As a result, we identified three patients from two families with digenic alterations in NaPi2a, NaPi2c, and NHERF1. In family 1, the index patient, who presented with severe renal calcifications and a bone mineralization disorder, carried digenic alterations affecting both NaPi transporter 2a and 2c. Functional analysis confirmed an additive genetic effect. In family 2, the index patient presented with kidney function decline, distinct musculature-related symptoms, and intracellular ATP depletion. Genetically, this individual was found to harbor variants in both NaPi2c and NHERF1 pointing towards genetic interaction. In summary, digenicity and gene dosage are likely to impact the severity of renal phosphate wasting and should be taken into account in terms of metaphylaxis through phosphate substitution.
Collapse
Affiliation(s)
- Friederike Petzold
- Division of Nephrology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ria Schönauer
- Division of Nephrology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Department of Nephrology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Werner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jan Halbritter
- Division of Nephrology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Department of Nephrology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Abstract
Phosphate homeostasis is dependent on the interaction and coordination of four main organ systems: thyroid/parathyroids, gastrointestinal tract, bone and kidneys, and three key hormonal regulators, 1,25-hydroxyvitamin D3, parathyroid hormone and FGF23 with its co- factor klotho. Phosphorus is a critical nutritional element for normal cellular function, but in excess can be toxic to tissues, particularly the vasculature. As phosphate, it also has an important interaction and inter-dependence with calcium and calcium homeostasis sharing some of the same controlling hormones, although this is not covered in our article. We have chosen to provide a current overview of phosphate homeostasis only, focusing on the role of two major organ systems, the gastrointestinal tract and kidneys, and their contribution to the control of phosphate balance. We describe in some detail the mechanisms of intestinal and renal phosphate transport, and compare and contrast their regulation. We also consider a significant example of phosphate imbalance, with phosphate retention, which is chronic kidney disease; why consequent hyperphosphatemia is important, and some of the newer means of managing it.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Robert J Unwin
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Sasaki S, Koike M, Tanifuji K, Uga M, Kawahara K, Komiya A, Miura M, Harada Y, Hamaguchi Y, Sasaki S, Shiozaki Y, Kaneko I, Miyamoto KI, Segawa H. Dietary polyphosphate has a greater effect on renal damage and FGF23 secretion than dietary monophosphate. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:173-179. [DOI: 10.2152/jmi.69.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sumire Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minori Uga
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kota Kawahara
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aoi Komiya
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mizuki Miura
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yamato Harada
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Hamaguchi
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shohei Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
7
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
9
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
10
|
Wubuli A, Reyer H, Muráni E, Ponsuksili S, Wolf P, Oster M, Wimmers K. Tissue-Wide Gene Expression Analysis of Sodium/Phosphate Co-Transporters in Pigs. Int J Mol Sci 2019; 20:ijms20225576. [PMID: 31717287 PMCID: PMC6888643 DOI: 10.3390/ijms20225576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Sodium/phosphate co-transporters are considered to be important mediators of phosphorus (P) homeostasis. The expression of specific sodium/phosphate co-transporters is routinely used as an immediate response to dietary interventions in different species. However, a general understanding of their tissue-specificity is required to elucidate their particular contribution to P homeostasis. In this study, the tissue-wide gene expression status of all currently annotated sodium/phosphate co-transporters were investigated in two pig trials focusing on a standard commercial diet (trial 1) or divergent P-containing diets (trial 2). A wide range of tissues including the gastrointestinal tract (stomach, duodenum, jejunum, ileum, caecum, and colon), kidney, liver, bone, muscle, lung, and aorta were analyzed. Both trials showed consistent patterns in the overall tissue-specific expression of P transporters. While SLC34A2 was considered as the most important intestinal P transporter in other species including humans, SLC34A3 appeared to be the most prominent intestinal P transporter in pigs. In addition, the P transporters of the SLC17 family showed basal expression in the pig intestine and might have a contribution to P homeostasis. The expression patterns observed in the distal colon provide evidence that the large intestine may also be relevant for intestinal P absorption. A low dietary P supply induced higher expressions of SLC20A1, SLC20A2, SLC34A1, and SLC34A3 in the kidney cortex. The results suggest that the expression of genes encoding transcellular P transporters is tissue-specific and responsive to dietary P supply, while underlying regulatory mechanisms require further analyses.
Collapse
Affiliation(s)
- Aisanjiang Wubuli
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
| | - Petra Wolf
- Nutrition Physiology and Animal Nutrition, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany;
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.W.); (H.R.); (E.M.); (S.P.); (M.O.)
- Animal Breeding and Genetics, University of Rostock, Justus-von-Liebig-Weg 7, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68600
| |
Collapse
|
11
|
Levi M, Gratton E. Visualizing the regulation of SLC34 proteins at the apical membrane. Pflugers Arch 2019; 471:533-542. [PMID: 30613865 PMCID: PMC6436987 DOI: 10.1007/s00424-018-02249-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
The cloning of the renal NaPi-2a (SLC34A1) and NaPi-2c (SLC34A3) phosphate transporters has made it possible to characterize the molecular and biophysical regulation of renal proximal tubular reabsorption of inorganic phosphate (Pi). Dietary factors, such as Pi and K, and several hormones and phosphatonins, including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and glucocorticoids, regulate the transporters through various transcriptional, translational, and post-translational mechanisms that involve acute trafficking via endocytosis or exocytosis, interactions with PDZ domain proteins, lipid microdomains, and diffusion and clustering in the apical brush border membrane. The visualization of these trafficking events by means of novel microscopy techniques that includes fluorescence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), fluctuation correlation spectroscopy (FCS), and modulation tracking (MT), is the primary focus of this review.
Collapse
Affiliation(s)
- Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Enrico Gratton
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Clin Exp Nephrol 2019; 23:898-907. [DOI: 10.1007/s10157-019-01725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
|
13
|
Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 2019; 471:83-98. [PMID: 30393837 PMCID: PMC6326012 DOI: 10.1007/s00424-018-2231-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.
Collapse
Affiliation(s)
- Grégory Jacquillet
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Robert J Unwin
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- AstraZeneca IMED ECD CVRM R&D, Gothenburg, Sweden.
| |
Collapse
|
14
|
Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Hanazaki A, Noguchi M, Kirino R, Sasaki S, Tanifuji K, Koike M, Yokoyama M, Arima Y, Kaneko I, Tatsumi S, Ito M, Miyamoto KI. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Clin Exp Nephrol 2018; 23:313-324. [PMID: 30317447 DOI: 10.1007/s10157-018-1653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.
Collapse
Affiliation(s)
- Toru Fujii
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiori Nishiguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miwa Noguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ruri Kirino
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumire Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kazuya Tanifuji
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Megumi Koike
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mizuki Yokoyama
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuki Arima
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mikiko Ito
- Human Science and Environment, University of Hyogo Graduate School, Hyogo, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
15
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
16
|
Abstract
Our understanding of the regulation of phosphate balance has benefited tremendously from the molecular identification and characterization of genetic defects leading to a number of rare inherited or acquired disorders affecting phosphate homeostasis. The identification of the key phosphate-regulating hormone, fibroblast growth factor 23 (FGF23), as well as other molecules that control its production, such as the glycosyltransferase GALNT3, the endopeptidase PHEX, and the matrix protein DMP1, and molecules that function as downstream effectors of FGF23 such as the longevity factor Klotho and the phosphate transporters NPT2a and NPT2c, has permitted us to understand the complex interplay that exists between the kidneys, bone, parathyroid, and gut. Such insights from genetic disorders have allowed not only the design of potent targeted treatment of FGF23-dependent hypophosphatemic conditions, but also provide clinically relevant observations related to the dysregulation of mineral ion homeostasis in health and disease.
Collapse
Affiliation(s)
- Marta Christov
- Division of Nephrology, Department of Medicine, New York Medical College, Valhalla, NY, USA
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
18
|
Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, Kido S, Tatsumi S, Miyamoto KI. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 62:209-18. [PMID: 26399350 DOI: 10.2152/jmi.62.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation.
Collapse
Affiliation(s)
- Yuji Shiozaki
- Department of Molecular Nutrition, University of Tokushima Graduate School
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 2014; 29:iv45-iv54. [DOI: 10.1093/ndt/gfu217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
20
|
Tatsumi S, Kaneko I, Segawa H, Miyamoto K. Inorganic phosphate homeostasis: crosstalk between kidney and other organs. ACTA ACUST UNITED AC 2014. [DOI: 10.2745/dds.29.408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Ichiro Kaneko
- Department of Molecular Nutrition Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Hiroko Segawa
- Department of Molecular Nutrition Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Kenichi Miyamoto
- Department of Molecular Nutrition Institute of Health Biosciences, The University of Tokushima Graduate School
| |
Collapse
|
21
|
Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00743] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Wu H, Mao C, Duenstl G, Su W, Qian S. Assay development of inducible human renal phosphate transporter Npt2A (SLC34A1) in Flp-In-Trex-HEK293 cells. Eur J Pharmacol 2013; 721:332-40. [PMID: 24056120 DOI: 10.1016/j.ejphar.2013.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
Hyperphosphatemia is associated with severe decline of renal function in chronic kidney disease and elevates cardiovascular mortality. Type II sodium dependent phosphate transporter 2A (Npt2A) plays a major role in renal phosphate reabsorption and could be explored as a target for anti-hyperphosphatemia therapy. Human Npt2A transporter activity was examined upon transfection into CHO, MDCK, HEK293, Flp-In-CHO and Flp-In-HEK293 cells. Only kidney-derived cells expressed functional Npt2A. HEK293 and Flp-In-HEK293 cell lines stably transfected with hNpt2A could be selected, but these cells were inactive in phosphate transport. This suggests that high-level, constitutive Npt2A expression has deleterious effects on the cell. By using the conditional promoter in the Flp-In-Trex vector, functional expression of Npt2A was achieved by doxycycline induction in HEK293 cells. The EGFP tagged and non-tagged, inducible stable hNpt2A-HEK293 cell lines afforded development of a robust phosphate uptake assay mediated by hNpt2A, which can be used to screen hNpt2A inhibitors and inducers of hNpt2A expression. Using this assay, the small molecule LC-1 was identified as a potent inhibitor of hNpt2A, suggesting that it is feasible to develop potent specific hNpt2A inhibitors to control phosphate overloading for hyperphosphatemia therapy.
Collapse
Affiliation(s)
- Hongzhong Wu
- Biology Department, Sundia MediTech Company, Ltd., Shanghai 201203, China; Metabolic Disease Franchise, ChemPartern Research Company, Ltd., Shanghai, China.
| | | | | | | | | |
Collapse
|
23
|
The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch 2013; 465:1557-72. [PMID: 23708836 DOI: 10.1007/s00424-013-1298-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023]
Abstract
Renal reabsorption of inorganic phosphate (Pi) is mediated by the phosphate transporters NaPi-IIa, NaPi-IIc, and Pit-2 in the proximal tubule brush border membrane (BBM). Dietary Pi intake regulates these transporters; however, the contribution of the specific isoforms to the rapid and slow phase is not fully clarified. Moreover, the regulation of PTH and FGF23, two major phosphaturic hormones, during the adaptive phase has not been correlated. C57/BL6 and NaPi-IIa(-/-) mice received 5 days either 1.2 % (HPD) or 0.1 % (LPD) Pi-containing diets. Thereafter, some mice were acutely switched to LPD or HPD. Plasma Pi concentrations were similar under chronic diets, but lower when mice were acutely switched to LPD. Urinary Pi excretion was similar in C57/BL6 and NaPi-IIa(-/-) mice under HPD. During chronic LPD, NaPi-IIa(-/-) mice lost phosphate in urine compensated by higher intestinal Pi absorption. During the acute HPD-to-LPD switch, NaPi-IIa(-/-) mice exhibited a delayed decrease in urinary Pi excretion. PTH was acutely regulated by low dietary Pi intake. FGF23 did not respond to low Pi intake within 8 h whereas the phospho-adaptator protein FRS2α necessary for FGF-receptor cell signaling was downregulated. BBM Pi transport activity and NaPi-IIa but not NaPi-IIc and Pit-2 abundance acutely adapted to diets in C57/BL6 mice. In NaPi-IIa(-/-), Pi transport activity was low and did not adapt. Thus, NaPi-IIa mediates the fast adaptation to Pi intake and is upregulated during the adaptation to low Pi despite persistently high FGF23 levels. The sensitivity to FGF23 may be regulated by adapting FRS2α abundance and phosphorylation.
Collapse
|
24
|
Cinacalcet for the treatment of hyperparathyroidism in kidney transplant recipients: a systematic review and meta-analysis. Transplantation 2013; 94:1041-8. [PMID: 23069843 DOI: 10.1097/tp.0b013e31826c3968] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hyperparathyroidism is present in up to 50% of transplant recipients 1 year after transplant, often despite good graft function. Posttransplant patients frequently have hypercalcemia-associated hyperparathyroidism, limiting the role of vitamin D analogues and sometimes requiring parathyroidectomy. Multiple observational studies have investigated treatment of posttransplant hyperparathyroidism with the calcimimetic agent cinacalcet. METHODS We performed a systematic review and meta-analysis of prospective and retrospective studies from 2004 through January 26, 2012, using MEDLINE. We identified studies evaluating treatment with cinacalcet in renal transplant recipients with hyperparathyroidism. We performed random effects meta-analysis to determine changes in calcium, phosphorus, parathyroid hormone, and serum creatinine. RESULTS Twenty-one studies with 411 kidney transplant recipients treated with cinacalcet for hyperparathyroidism met inclusion criteria. Patients were treated for 3 to 24 months. By meta-analysis, calcium decreased by 1.14 mg/dL (95% confidence interval, -1.00 to -1.28), phosphorus increased by 0.46 mg/dL (95% confidence interval, 0.28-0.64), parathyroid hormone decreased by 102 pg/mL (95% confidence interval, -69 to -134), and there was no significant change in creatinine (0.02 mg/dL decrease; 95% confidence interval, -0.09 to 0.06). Cinacalcet resulted in hypocalcemia in seven patients. The most common side effect was gastrointestinal intolerance. CONCLUSIONS From nonrandomized studies, cinacalcet appears to be safe and effective for the treatment of posttransplant hyperparathyroidism. Larger observational studies and randomized controlled trials, performed over longer follow-up times and looking at clinical outcomes, are needed to corroborate these findings.
Collapse
|
25
|
Giral H, Cranston D, Lanzano L, Caldas Y, Sutherland E, Rachelson J, Dobrinskikh E, Weinman EJ, Doctor RB, Gratton E, Levi M. NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J Biol Chem 2012; 287:35047-35056. [PMID: 22904329 DOI: 10.1074/jbc.m112.392415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P(i) uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary P(i) but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2(BBE) cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1(-/-) mice, but not PDZK1(-/-) mice, had a diminished adaptation of NaPi-2b expression in response to a low P(i) diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation.
Collapse
Affiliation(s)
- Hector Giral
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - DeeAnn Cranston
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Luca Lanzano
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California 92697
| | - Yupanqui Caldas
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Eileen Sutherland
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Joanna Rachelson
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Edward J Weinman
- Department of Medicine and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - R Brian Doctor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045
| | - Enrico Gratton
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California 92697
| | - Moshe Levi
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and the Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80045.
| |
Collapse
|
26
|
Lederer E, Miyamoto KI. Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol 2012; 7:1179-87. [PMID: 22516291 DOI: 10.2215/cjn.09090911] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three families of sodium phosphate cotransporters have been described. Their specific roles in human health and disease have not been defined. Review of the literature reveals that the type II sodium phosphate cotransporters play a significant role in transepithelial transport in a number of tissues including kidney, intestine, salivary gland, mammary gland, and lung. The type I transporters seem to play a major role in renal urate handling and mutations in these proteins have been implicated in susceptibility to gout. The ubiquitously expressed type III transporters play a lesser role in phosphate homeostasis but contribute to cellular phosphate uptake, mineralization, and inflammation. The recognition of species differences in the expression, regulation, and function of these transport proteins suggests an urgent need to find ways to study them in humans.
Collapse
Affiliation(s)
- Eleanor Lederer
- University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | |
Collapse
|
27
|
Kuwahara S, Aranami F, Segawa H, Onitsuka A, Honda N, Tominaga R, Hanabusa E, Kaneko I, Yamanaka S, Sasaki S, Ohi A, Nomura K, Tatsumi S, Kido S, Ito M, Miyamoto KI. Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 59:116-26. [DOI: 10.2152/jmi.59.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shoji Kuwahara
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Fumito Aranami
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Akemi Onitsuka
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Naoko Honda
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Rieko Tominaga
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Etsuyo Hanabusa
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Setsuko Yamanaka
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Shohei Sasaki
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Akiko Ohi
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Shinsuke Kido
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Mikiko Ito
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
- University of Hyogo School of Human Science and Environment
| | - Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
28
|
Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, Aranami F, Sasaki S, Mori A, Kido S, Tatsumi S, Segawa H, Miyamoto KI. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol 2011; 302:C1316-30. [PMID: 22159077 DOI: 10.1152/ajpcell.00314.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.
Collapse
Affiliation(s)
- Sakiko Haito-Sugino
- Department of Molecular Nutrition, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kaneko I, Segawa H, Furutani J, Kuwahara S, Aranami F, Hanabusa E, Tominaga R, Giral H, Caldas Y, Levi M, Kato S, Miyamoto KI. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Pflugers Arch 2010; 461:77-90. [PMID: 21057807 DOI: 10.1007/s00424-010-0888-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
We analyzed vitamin D receptor (VDR) (-/-) mice fed either a normal diet or a rescue diet. Weanling VDR (-/-) mice had hypophosphatemia and hyperphosphaturia. Renal Na(+)-dependent inorganic phosphate (Pi) cotransport activity was significantly decreased in weanling VDR (-/-) mice. In VDR (+/+) mice, renal Npt2a/Npt2c/PiT-2 protein levels were significantly increased at 21 and 28 days of age compared with that at 1 day of age. Npt2c and PiT-2 protein levels were maximally expressed at 28 days of age. Npt2a protein levels were significantly decreased in mice at 28 days of age compared with 21 and 60 days of age. In VDR (-/-) mice, Npt2a/Npt2c/PiT-2 protein levels were considerably lower than those in age-matched VDR (+/+) mice at 21 and 28 days of age. The reduced Npt2a/Npt2c/PiT-2 protein recovered completely in VDR-null mice fed the rescue diet. Although Pi transport activity and Npt2b were reduced in the proximal intestine in VDR (-/-) mice, Npt2b protein levels were not reduced in the distal intestine in VDR (-/-) mice. The rescue diet did not affect intestinal Npt2b protein levels in VDR (-/-) mice. Thus, reduced intestinal Pi absorption in VDR (-/-) mice does not seem to be the only factor that causes hypophosphatemia; reduced Npt2a, Npt2c, or PiT-2 protein levels during development might also cause hypophosphatemia and rickets in VDR (-/-) mice. Furthermore, dietary intervention completely normalized the expression of the renal phosphate transporters (Npt2a/Npt2c/PiT-2) in VDR (-/-) mice, suggesting that the lack of VDR activity is not the cause of impaired renal phosphate reabsorption.
Collapse
Affiliation(s)
- Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-Cho 3, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cho HY, Choi HJ, Sun HJ, Yang JY, An JH, Cho SW, Kim SW, Kim SY, Kim JE, Shin CS. Transgenic mice overexpressing secreted frizzled-related proteins (sFRP)4 under the control of serum amyloid P promoter exhibit low bone mass but did not result in disturbed phosphate homeostasis. Bone 2010; 47:263-71. [PMID: 20472109 DOI: 10.1016/j.bone.2010.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 04/27/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
Secreted frizzled-related protein-4 (sFRP4) is a member of secreted modulators of Wnt signaling pathways and has been recognized to play important role in the pathogenesis of oncogenic osteomalacia as a potential phosphatonin. To investigate the role of sFRP4 in bone biology and phosphorus homeostasis in postnatal life, we generated transgenic mice that overexpress sFRP4 under the control of the serum amyloid P promoter (SAP-sFRP4), which drives transgene expression postnatally. Serum phosphorus level and urinary phosphorus excretion were slightly lower and higher, respectively, in SAP-sFRP4 compared to wild-type (WT) littermate, but the difference did not reach statistical significance. However, renal Na(+/-)/Pi co-transporter (Npt) 2a and 1alpha-hydroxylase gene expression were up-regulated in SAP-sFRP4 mice. In addition, the level of serum 1,25-dihydroxyvitamin D(3) was higher in SAP-sFRP4 mice. At 5 weeks of age, bone mineral density (BMD) in SAP-sFRP4 was similar to that in WT. However, with advancing age, SAP-sFRP4 mice gained less BMD so that areal BMD of SAP-sFRP4 mice was significantly lower compared to WT at 15 weeks of age. Histomorphometric analysis of proximal tibia showed that trabecular bone volume (BV/TV) and thickness (Tb.Th) were significantly lower in SAP-sFRP4 mice. There was no evidence of osteomalacia in histological analysis. Our data do not support the role of sFRP4 per se as a phosphatonin but suggest that sFRP4 negatively regulates bone formation without disrupting phosphorus homeostasis.
Collapse
Affiliation(s)
- Hwa Young Cho
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors. Biochem J 2010; 429:583-92. [DOI: 10.1042/bj20100484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The type II sodium-dependent phosphate co-transporters Npt2a and Npt2c play critical roles in the reabsorption of Pi by renal proximal tubular cells. The vitamin A metabolite ATRA (all-trans-retinoic acid) is important for development, cell proliferation and differentiation, and bone formation. It has been reported that ATRA increases the rate of Pi transport in renal proximal tubular cells. However, the molecular mechanism is still unknown. In the present study, we observed the effects of a VAD (vitamin A-deficient) diet on Pi homoeostasis and the expression of Npt2a and Npt2c genes in rat kidney. There was no change in the plasma levels of Pi, but VAD rats significantly increased renal Pi excretion. Renal brush-border membrane Pi uptake activity and renal Npt2a and Npt2c expressions were significantly decreased in VAD rats. The transcriptional activity of a luciferase reporter plasmid containing the promoter region of human Npt2a and Npt2c genes was increased markedly by ATRA and a RAR (retinoic acid receptor)-specific analogue TTNPB {4-[E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetra-methyl-2-naphtalenyl)-1-propenyl] benzoic acid} in renal proximal tubular cells overexpressing RARs and RXRs (retinoid X receptors). Furthermore, we identified RAREs (retinoic acid-response elements) in both gene promoters. Interestingly, the half-site sequences (5′-GGTTCA-3′: −563 to −558) of 2c-RARE1 overlapped the vitamin D-responsive element in the human Npt2c gene and were functionally important motifs for transcriptional regulation of human Npt2c by ATRA and 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3), in both independent or additive actions. In summary, we conclude that VAD induces hyperphosphaturia through the down-regulation of Npt2a and Npt2c gene expression in the kidney.
Collapse
|
32
|
Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, Biber J, Wagner CA. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch 2010; 460:677-87. [DOI: 10.1007/s00424-010-0841-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/16/2010] [Accepted: 04/13/2010] [Indexed: 11/29/2022]
|
33
|
Amatschek S, Haller M, Oberbauer R. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias? Eur J Clin Invest 2010; 40:552-60. [PMID: 20412291 DOI: 10.1111/j.1365-2362.2010.02286.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Renal reabsorption of inorganic phosphate is critical for the maintenance of phosphate homeostasis. The sodium dependent phosphate cotransporters NaPi-IIa and NaPi-IIc have been identified to fulfill this task at the brush border membrane of proximal tubule cells. Various factors including dietary phosphate intake, parathyroid hormone, or the so called phosphatonins such as FGF23 have been shown to regulate activity of these transporters. DESIGN This review seeks to give an update on our current knowledge about regulatory mechanisms involved in human renal phosphate reabsorption. RESULTS Recently, an increasing number of genes have been identified that are directly associated with inherited phosphate wasting disorders (Klotho, PHEX, DMP1 and NHERF1). Several of these genes are predominantly expressed by osteocytes and osteoclasts in the bone suggesting indispensable signalling pathways between kidneys and the skeleton. CONCLUSION In this review, the affected gene products in these inherited hypophosphataemias and their contribution to phosphate homeostasis are discussed.
Collapse
|
34
|
Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, Sugino S, Uehata Y, Kamahara A, Sakata M, Tatsumi S, Kuwahata M, Taketani Y, Segawa H, Miyamoto KI. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol 2010; 299:F243-54. [PMID: 20410212 DOI: 10.1152/ajprenal.00189.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type IIc Na(+)-dependent phosphate cotransporter (NaPi-IIc) is specifically targeted to, and expressed on, the apical membrane of renal proximal tubular cells and mediates phosphate transport. In the present study, we investigated the signals that determine apical expression of NaPi-IIc with a focus on the role of the N- and the C-terminal tails of mouse NaPi-IIc in renal epithelial cells [opossum kidney (OK) and Madin-Darby canine kidney cells]. Wild-type NaPi-IIc, the cotransporter NaPi-IIa, as well as several IIa-IIc chimeras and deletion mutants, were fused to enhanced green fluorescent protein (EGFP), and their cellular localization was analyzed in polarized renal epithelial cells by confocal microscopy and by cell-surface biotinylation. Fluorescent EGFP-fused NaPi-IIc transporter proteins are correctly expressed in the apical membrane of OK cells. The apical expression of N-terminal deletion mutants (deletion of N-terminal 25, 50, or 69 amino acids) was not affected by truncation. In contrast, C-terminal deletion mutants (deletion of C-terminal 45, 50, or 62 amino acids) did not have correct apical expression. A more detailed mutational analysis indicated that a domain (amino acids WLHSL) in the cytoplasmic C terminus is required for apical expression of NaPi-IIc in renal epithelial cells. We conclude that targeting of NaPi-IIc to the apical cell surface is regulated by a unique amino acid motif in the cytoplasmic C-terminal domain.
Collapse
Affiliation(s)
- Mikiko Ito
- Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Phosphate is critical for the maintenance of skeletal integrity, is a necessary component of important biomolecules, and is central to signal transduction and cell metabolism. It is becoming clear that endocrine communication between the skeleton, kidney, and the intestine is involved in maintaining appropriate serum phosphate concentrations, and that the kidney is the primary site for minute-to-minute regulation of phosphate levels. The identification of genetic alterations in Mendelian disorders of hypophosphatemia and hyperphosphatemia has led to the isolation of novel genes and the identification of new roles for existing proteins--such as fibroblast growth factor 23 and its processing systems, the co-receptor alpha-klotho, and phosphate transporters--in the control of renal phosphate handling. Recent findings also indicate that fibroblast growth factor 23 has feedback mechanisms involving parathyroid hormone and vitamin D that control phosphate homeostasis. This Review will highlight genetic, in vitro and in vivo findings, and will discuss how these clinical and experimental discoveries have uncovered novel aspects of renal phosphate handling and opened new research and therapeutic avenues.
Collapse
Affiliation(s)
- Emily G Farrow
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
36
|
Morales E, Gutierrez E, Andres A. Treatment with calcimimetics in kidney transplantation. Transplant Rev (Orlando) 2010; 24:79-88. [DOI: 10.1016/j.trre.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/18/2010] [Indexed: 11/26/2022]
|
37
|
Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflugers Arch 2010; 460:207-17. [PMID: 20354864 DOI: 10.1007/s00424-010-0832-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
We have recently shown that the abundance of the renal sodium (Na)/inorganic phosphate (Pi) cotransporter NaPi-IIa is increased in the absence of the GABA(A) receptor-associated protein (GABARAP). Accordingly, GABARAP-deficient mice have a reduced urinary excretion of Pi. However, their circulating levels of Pi do not differ from wild-type animals, suggesting the presence of a compensatory mechanism responsible for keeping serum Pi values constant. Here, we aimed first to identify the molecular basis of this compensation by analyzing the expression of Na/Pi cotransporters known to be expressed in the kidney and intestine. We found that, in the kidney, the upregulation of NaPi-IIa is not accompanied by changes on the expression of either NaPi-IIc or PiT2, the other cotransporters known to participate in renal Pi reabsorption. In contrast, the intestinal expression of NaPi-IIb is downregulated in mutant animals, suggesting that a reduced intestinal absorption of Pi could contribute to maintain a normophosphatemic status despite the increased renal retention. The second goal of this work was to study whether the alterations on the expression of NaPi-IIa induced by chronic dietary Pi are impaired in the absence of GABARAP. Our data indicate that, in response to high Pi diets, GABARAP-deficient mice downregulate the expression of NaPi-IIa to levels comparable to those seen in wild-type animals. However, in response to low Pi diets, the upregulation of NaPi-IIa is greater in the mutant mice. Thus, both the basal expression and the dietary-induced upregulation of NaPi-IIa are increased in the absence of GABARAP.
Collapse
Affiliation(s)
- Sonja C Reining
- Institute of Physiology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto KI. The roles of Na/Pi-II transporters in phosphate metabolism. Bone 2009; 45 Suppl 1:S2-7. [PMID: 19232403 DOI: 10.1016/j.bone.2009.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 01/23/2009] [Accepted: 02/04/2009] [Indexed: 12/25/2022]
Abstract
The renal type II Na/Pi cotransporters, Na/Pi-IIa and Na/Pi-IIc, are expressed in the brush border membrane (BBM) of the renal proximal tubule cells. Because it has long been thought that Na/Pi-IIa alone can regulate the reabsorption of phosphate in the proximal renal tubules, Na/Pi-IIc has not been paid much attention by the renal research community. Recent studies, however, have identified Na/Pi-IIc mutations as the defective cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). This finding indicates that Na/Pi-IIc has a rather important role in renal Pi reabsorption and bone mineralization, and that it may be a key determinant of plasma Pi concentrations in humans. Studies of Na/Pi-IIc mice indicate that Na/Pi-IIc is necessary for normal calcium homeostasis, but its role in the regulation of Pi metabolism and bone physiology may be different from that in HHRH patients. Of note, Na/Pi-IIc KO mice display abnormal vitamin D regulation without hypophosphatemia or hyperphosphaturia. Thus, Na/Pi-IIc may be involved in regulating renal vitamin D synthesis in the proximal tubular cells. The identification of proteins that interact with Na/Pi-IIc is an important area of future research. The physiologic roles of Na/Pi-IIa and Na/Pi-IIc require future elucidation.
Collapse
Affiliation(s)
- Hiroko Segawa
- Department of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School, Kuramoto-Cho 3, Tokushima 770-8503, Japan.
| | | | | | | | | |
Collapse
|
39
|
Reining SC, Gisler SM, Fuster D, Moe OW, O'Sullivan GA, Betz H, Biber J, Murer H, Hernando N. GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Am J Physiol Renal Physiol 2009; 296:F1118-28. [PMID: 19225049 PMCID: PMC2681362 DOI: 10.1152/ajprenal.90492.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/13/2009] [Indexed: 01/04/2023] Open
Abstract
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.
Collapse
Affiliation(s)
- Sonja C Reining
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 2009; 296:F691-9. [PMID: 19073637 PMCID: PMC2670642 DOI: 10.1152/ajprenal.90623.2008] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/08/2008] [Indexed: 12/26/2022] Open
Abstract
The principal mediators of renal phosphate (P(i)) reabsorption are the SLC34 family proteins NaPi-IIa and NaPi-IIc, localized to the proximal tubule (PT) apical membrane. Their abundance is regulated by circulatory factors and dietary P(i). Although their physiological importance has been confirmed in knockout animal studies, significant P(i) reabsorptive capacity remains, which suggests the involvement of other secondary-active P(i) transporters along the nephron. Here we show that a member of the SLC20 gene family (PiT-2) is localized to the brush-border membrane (BBM) of the PT epithelia and that its abundance, confirmed by Western blot and immunohistochemistry of rat kidney slices, is regulated by dietary P(i). In rats treated chronically on a high-P(i) (1.2%) diet, there was a marked decrease in the apparent abundance of PiT-2 protein in kidney slices compared with those from rats kept on a chronic low-P(i) (0.1%) diet. In Western blots of BBM from rats that were switched from a chronic low- to high-P(i) diet, NaPi-IIa showed rapid downregulation after 2 h; PiT-2 was also significantly downregulated at 24 h and NaPi-IIc after 48 h. For the converse dietary regime, NaPi-IIa showed adaptation within 8 h, whereas PiT-2 and NaPi-IIc showed a slower adaptive trend. Our findings suggest that PiT-2, until now considered as a ubiquitously expressed P(i) housekeeping transporter, is a novel mediator of P(i) reabsorption in the PT under conditions of acute P(i) deprivation, but with a different adaptive time course from NaPi-IIa and NaPi-IIc.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The kidney is a key player in phosphate balance. Inappropriate renal phosphate transport may alter serum phosphate concentration and bone mineralization, and increase the risk of renal lithiasis or soft tissue calcifications. The recent identification of fibroblast growth factor 23 (FGF23) as a hormone regulating phosphate and calcitriol metabolism and of klotho has changed the understanding of phosphate homeostasis; and a bone-kidney axis has emerged. In this review, we present recent findings regarding the consequences of mutations affecting several human genes encoding renal phosphate transporters or proteins regulating phosphate transport activity. We also describe the role played by the FGF23-klotho axis in phosphate homeostasis and its involvement in the pathophysiology of phosphate disturbances in chronic kidney disease.
Collapse
|
42
|
Abstract
Under physiological conditions, homeostasis of inorganic phosphate (Pi) is tightly controlled by a network of increasingly more complex interactions and direct or indirect feedback loops among classical players, such as vitamin D (1,25(OH)2D3), parathyroid hormone (PTH), intestinal and renal phosphate transporters, and the recently described phosphatonins and minhibins. A series of checks and balances offsets the effects of 1,25(OH)2D3 and PTH to enable fine-tuning of intestinal and renal Pi absorptive capacity and bone resorption and mineralization. The latter include PHEX, FGF-23, MEPE, DMP1, and secreted FRP4. Despite this large number of regulatory components with complex interactions, the system has limited redundancy and is prone to dysregulation under pathophysiological conditions. This article reviews and synthesizes recent advances to present a new model of Pi homeostasis.
Collapse
|
43
|
Serra AL, Wuhrmann C, Wüthrich RP. Phosphatemic effect of cinacalcet in kidney transplant recipients with persistent hyperparathyroidism. Am J Kidney Dis 2008; 52:1151-7. [PMID: 18950915 DOI: 10.1053/j.ajkd.2008.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/04/2008] [Indexed: 01/15/2023]
Abstract
BACKGROUND In kidney transplant recipients, persistent hyperparathyroidism leads to hypercalcemia and increased urinary phosphorus excretion. The calcimimetic drug cinacalcet effectively decreases parathyroid hormone (PTH) levels and corrects hypercalcemia in these patients. The purpose of the present study is to examine the effect of cinacalcet treatment on determinants of renal phosphorus reabsorption under steady-state conditions. STUDY DESIGN Open-label prospective uncontrolled trial. SETTING & PARTICIPANTS 10 stable kidney transplant recipients with persistent hyperparathyroidism. INTERVENTION Cinacalcet, 30 and 60 mg/d, for 2 weeks. OUTCOMES & MEASURES Changes in urinary phosphorus excretion in timed urine samples, intact and carboxy-terminal (C-term) fibroblast growth factor 23 (FGF-23), intact PTH, venous pH, and bicarbonate values at defined intervals over 24 hours. RESULTS Cinacalcet decreased renal phosphorus excretion in the first 8 hours by 30% to 40%, but not from 8 to 24 hours after drug administration. Serum phosphorus levels normalized in all patients. Cinacalcet markedly decreased plasma intact PTH levels (60%; P < 0.001). Cinacalcet also decreased mean intact FGF-23 levels from 67 +/- 8 (SE) to 51 +/- 5 and to 54 +/- 6 pg/mL (P < 0.001) and mean C-term FGF-23 levels from 108 +/- 15 to 87 +/- 9 and to 101 +/- 9 RU/mL (P < 0.01), respectively. There was high correlation between intact FGF-23 and C-term FGF-23 levels (r = 0.598; P < 0.001). Acid-base status was unchanged. LIMITATIONS This is a small study and does not examine the long-term effect of cinacalcet treatment. CONCLUSIONS Cinacalcet effectively corrected urinary phosphate wasting in kidney transplant recipients, resulting in normalization of serum phosphorus levels. The phosphatemic effects of cinacalcet correlated with a marked decrease in the phosphaturic hormone PTH, rather than with a change in FGF-23 levels or acid-base status, highlighting the importance of PTH in posttransplantation hypophosphatemia.
Collapse
Affiliation(s)
- Andreas L Serra
- Clinic for Nephrology, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
44
|
Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 2008; 457:539-49. [PMID: 18535837 DOI: 10.1007/s00424-008-0530-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
During metabolic acidosis (MA), urinary phosphate excretion increases and contributes to acid removal. Two Na(+)-dependent phosphate transporters, NaPi-IIa (Slc34a1) and NaPi-IIc (Slc34a3), are located in the brush border membrane (BBM) of the proximal tubule and mediate renal phosphate reabsorption. Transcriptome analysis of kidneys from acid-loaded mice revealed a large decrease in NaPi-IIc messenger RNA (mRNA) and a smaller reduction in NaPi-IIa mRNA abundance. To investigate the contribution of transporter regulation to phosphaturia during MA, we examined renal phosphate transporters in normal and Slc34a1-gene ablated (NaPi-IIa KO) mice acid-loaded for 2 and 7 days. In normal mice, urinary phosphate excretion was transiently increased after 2 days of acid loading, whereas no change was found in Slc34a1-/- mice. BBM Na/Pi cotransport activity was progressively and significantly decreased in acid-loaded KO mice, whereas in WT animals, a small increase after 2 days of treatment was seen. Acidosis increased BBM NaPi-IIa abundance in WT mice and NaPi-IIc abundance in WT and KO animals. mRNA abundance of NaPi-IIa and NaPi-IIc decreased during MA. Immunohistochemistry did not indicate any change in the localization of NaPi-IIa and NaPi-IIc along the nephron. Interestingly, mRNA abundance of both Slc20 phosphate transporters, Pit1 and Pit2, was elevated after 7 days of MA in normal and KO mice. These data demonstrate that phosphaturia during acidosis is not caused by reduced protein expression of the major Na/Pi cotransporters NaPi-IIa and NaPi-IIc and suggest a direct inhibitory effect of low pH mainly on NaPi-IIa. Our data also suggest that Pit1 and Pit2 transporters may play a compensatory role.
Collapse
|
45
|
Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V. Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int 2008; 73:456-64. [PMID: 18046316 PMCID: PMC2738937 DOI: 10.1038/sj.ki.5002703] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite similar molecular structures, the growth-related sodium/phosphate cotransporter NaPiIIc is regulated differently than the main NaPiIIa phosphate transporter. Using two-hybrid systems and immunoprecipitation, we identified several proteins that interact with NaPiIIc that might account for this differential regulation. NaPiIIc interacted with the PDZ domain-containing sodium-hydrogen exchange-regulating factor (NHERF) 1 and NHERF3 through novel binding motifs in its C terminus. NaPiIIc from brush-border membranes coprecipitated with both NHERF1 and NHERF3, with more NHERF3 co-precipitated in rats fed a low-phosphorus diet. NaPiIIc colocalizes with both NHERF1 and NHERF3 in brush-border membranes of rats fed either a low- or high-phosphorus diet. When mouse NaPiIIc was transfected into opossum kidney cells, it was localized mainly in apical microvilli and the trans-Golgi. Both confocal and total internal reflection microscopy show that NaPiIIc colocalizes with NHERF1 and NHERF3 in the apical microvilli, and this was not altered by truncation of the last three amino acids of NaPiIIc. Interactions of NaPiIIc with NHERF1 and NHERF3 were modulated by the membrane-associated 17 kDa protein (MAP17) similarly to NaPiIIa, but only the MAP17-NaPiIIc-NHERF3 complexes were internalized to the trans-Golgi. Our study shows that NaPiIIc interacts with a limited number of PDZ domain proteins, and the mechanisms and consequences of such interactions differ from those of NaPiIIa.
Collapse
Affiliation(s)
- R Villa-Bellosta
- Laboratory of Molecular Toxicology, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| | - M Barac-Nieto
- Laboratory of Molecular Toxicology, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
- Department of Physiology, Kuwait University, Kuwait City, Kuwait
| | - SY Breusegem
- Departments of Medicine, Physiology and Biophysics, VA Medical Center and University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - NP Barry
- Departments of Medicine, Physiology and Biophysics, VA Medical Center and University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - M Levi
- Departments of Medicine, Physiology and Biophysics, VA Medical Center and University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - V Sorribas
- Laboratory of Molecular Toxicology, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
46
|
Miyamoto KI, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 2007; 27:503-15. [PMID: 17687185 DOI: 10.1159/000107069] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/30/2007] [Indexed: 12/14/2022]
Abstract
Abnormalities of the inorganic phosphate (Pi) reabsorption in the kidney result in various metabolic disorders. Na+-dependent Pi (Na/Pi) transporters in the brush border membrane of proximal tubular cells mediate the rate-limiting step in the overall Pi-reabsorptive process. Type IIa and type IIc Na/Pi cotransporters are expressed in the apical membrane of proximal tubular cells and mediate Na/Pi cotransport; the extent of Pi reabsorption in the proximal tubules is determined largely by the abundance of the type IIa Na/Pi cotransporter. However, several studies suggest that the type IIc cotransporter in Pi reabsorption may also play a role in this process. For example, mutation of the type IIc Na/Pi cotransporter gene results in hereditary hypophosphatemic rickets with hypercalciuria, suggesting that the type IIc transporter plays an important role in renal Pi reabsorption in humans and may be a key determinant of the plasma Pi concentration. The type IIc Na/Pi transporter is regulated by parathyroid hormone, dietary Pi, and fibroblast growth factor 23, and studies suggest a differential regulation of the IIa and IIc transporters. Indeed, differences in temporal and/or spatial expression of the type IIa and type IIc Na/Pi transporters may be required for normal phosphate homeostasis and bone development. This review will briefly summarize the regulation of renal Pi transporters in various Pi-wasting disorders and highlight the role of a relatively new member of the Na/Pi cotransporter family: the type IIc Na/Pi transporter/SLC34A3.
Collapse
Affiliation(s)
- Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
47
|
Kestenbaum B. PHOSPHORUS METABOLISM AND MANAGEMENT IN CHRONIC KIDNEY DISEASE: Phosphate Metabolism in the Setting of Chronic Kidney Disease: Significance and Recommendations for Treatment. Semin Dial 2007; 20:286-94. [PMID: 17635817 DOI: 10.1111/j.1525-139x.2007.00303.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorus is an essential mineral that plays a crucial role in cell structure and metabolism. In living organisms, phosphorus exists surrounded by four oxygen atoms to form phosphate (PO(4)). Within cells, PO(4) regulates enzymatic activity and serves as an essential component of nucleic acids, adenosine triphosphate, and phospholipid membranes. Outside cells, PO(4) primarily resides in bone and teeth as hydroxyapatite. A small amount of inorganic PO(4) circulates in serum, with levels balanced by gastrointestinal intake, renal excretion, and a set of specific hormones. Under normal conditions, PO(4) is excreted through the kidneys. Among patients with end stage renal disease (ESRD) receiving chronic dialysis, circulating PO(4) levels typically rise to levels well above the normal laboratory range. Higher serum PO(4) levels are strongly associated with arterial calcification and mortality in this setting. Among predialysis patients with chronic kidney disease (CKD), phosphaturic hormones enhance renal PO(4) excretion to maintain serum PO(4) levels within the high-normal laboratory range. Recently, high-normal serum PO(4) levels have been associated with cardiovascular (CV) events and mortality among individuals who have CKD and among those who have normal kidney function. This review discusses PO(4) metabolism in the context of CKD, examines associations of PO(4) levels with adverse outcomes in the CKD setting, and suggests treatment strategies for moderating serum PO(4) levels.
Collapse
Affiliation(s)
- Bryan Kestenbaum
- Division of Nephrology, Harborview Medical Center, University of Washington, Seattle, Washington 98104, USA.
| |
Collapse
|
48
|
Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 2007; 293:F643-54. [PMID: 17581921 DOI: 10.1152/ajprenal.00228.2007] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i) cotransporter. J Membr Biol 2007; 212:177-90. [PMID: 17342377 DOI: 10.1007/s00232-006-0016-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/08/2006] [Indexed: 10/23/2022]
Abstract
The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV <or= V <or= 0 mV the voltage dependence of the empty carrier was the main determinant of the curvilinear steady-state cotransport characteristic. External protons partially inhibited NaPi-IIb steady-state activity, independent of the titration of mono- and divalent Pi, and immobilized pre-steady-state charge movements associated with the first Na(+) binding step.
Collapse
Affiliation(s)
- Ian C Forster
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Inorganic phosphate (P(i)) is required for energy metabolism, nucleic acid synthesis, bone mineralization, and cell signaling. The activity of cell-surface sodium-phosphate (Na(+)-P(i)) cotransporters mediates the uptake of P(i) from the extracellular environment. Na(+)-P(i) cotransporters and organ-specific P(i) absorptive processes are regulated by peptide and sterol hormones, such as parathyroid hormone (PTH) and 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D(3)), which interact in a coordinated fashion to regulate P(i) homeostasis. Recently, several phosphaturic peptides such as fibroblast growth factor-23 (FGF-23), secreted frizzled related protein-4 (sFRP-4), matrix extracellular phosphoglycoprotein, and fibroblast growth factor-7 have been demonstrated to play a pathogenic role in several hypophosphatemic disorders. By inhibiting Na(+)-P(i) transporters in renal epithelial cells, these proteins increase renal P(i) excretion, resulting in hypophosphatemia. FGF-23 and sFRP-4 inhibit 25-hydroxyvitamin D 1alpha-hydroxylase activity, reducing 1alpha,25(OH)(2)D(3) synthesis and thus intestinal P(i) absorption. This review examines the role of these factors in P(i) homeostasis in health and disease.
Collapse
Affiliation(s)
- Theresa Berndt
- Nephrology and Hypertension Research, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|