1
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Xu Q, Zhang X, Hao M, Dang X, Xu Q, Cyganek L, Akin I, Tang D, Liao B, Zhou X, Lan H. Esophageal Cancer-Related Gene-4 Contributes to Lipopolysaccharide-Induced Ion Channel Dysfunction in hiPSC-Derived Cardiomyocytes. J Inflamm Res 2024; 17:10183-10197. [PMID: 39649417 PMCID: PMC11624686 DOI: 10.2147/jir.s470828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background and Purpose Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown. This study aimed to test our hypothesis that ECRG4 contributes to inflammation-induced ion channel dysfunctions in cardiomyocytes. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three donors were treated with lipopolysaccharide (LPS) to establish an endotoxin-induced inflammatory model. Immunostaining, real-time PCR, and patch-clamp techniques were used for the study. Results ECRG4 was detected in hiPSC-CMs at different differentiation time. LPS treatment increased ECRG4 expression in hiPSC-CMs. Knockdown of ECRG4 decreased the expression level of Toll-Like-Receptor 4 (TLR4, a LPS receptor) and its associated genes and inflammatory cytokines. Furthermore, ECRG4 knockdown shortened the action potential duration (APD) and intercepted LPS-induced APD prolongation by enhancing ISK (small conductance calcium-activated K channel current) and attenuating INCX (Na/Ca exchanger current). Overexpression of ECRG4 mimicked LPS effects on ISK and INCX, which could be prevented by NFκB signaling blockers. Conclusion This study demonstrated that LPS effects on cardiac ion channel function were mediated by the upregulation of ECRG4, which affects NFκB signaling. Our findings support the roles of ECRG4 in inflammatory responses and the ion channel dysfunctions induced by LPS challenge.
Collapse
Affiliation(s)
- Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xiangjie Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maolin Hao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xitong Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - QianQian Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Dan Tang
- The First People’s Hospital of Longquanyi District, Chengdu/West China Longquan Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
3
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Kakimoto Y, Ueda A, Kimura Y, Akiyama T, Tanaka M, Ikeda H, Isozaki S, Maeda K, Osawa M. Layer-specific proteomic profiling of human normal heart. Pathol Res Pract 2024; 260:155453. [PMID: 39003999 DOI: 10.1016/j.prp.2024.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The organized functioning of the anisotropic myocardial layers-including the inner longitudinal, middle circular, and outer longitudinal layers-is essential for stable systemic circulation. However, the proteomic profile of each myocardial layer has not been studied yet. Here, we aimed to elucidate the layer-specific proteomic profile of human cardiac tissue using microscopic sampling. METHODS Normal hearts were obtained from five autopsy cases, and cardiomyocytes were microdissected separately from the three myocardial layers of the left ventricle. Histological analysis and shotgun proteomic profiling were performed, followed by immunohistochemical analysis. RESULTS Histologically, no significant changes were observed among the three layers regarding cardiomyocyte diameter and myocardial fibrosis. Totally 1220 proteins-comprising 9404 peptides-were identified from 15 samples, of which the expression levels of 92 proteins were significantly altered among the layers. Gene ontology enrichment analysis revealed that the proteins specifically elevated in the inner and outer layers mostly belonged to the actin filament-binding protein group. In particular, MYH1 was highly expressed in cardiomyocytes in the outer layer, and CTNNA3 was highly expressed at the intercalated disc in the inner layer. CONCLUSIONS This is the first report on layer-specific proteomic profiling of human normal hearts. Anisotropic profiles of actin filament-binding proteins in myocardial layers may contribute to the anisotropic contractile and conductive abilities of the heart. Knowledge of the layer-specific proteome profiles of a human heart in the normal state can aid in further research on cardiac pathology, such as the prognosis and treatment of focal myocardial infarction.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
| | - Atsushi Ueda
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa 236-0004, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Kanagawa 236-0004, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa 259-1193, Japan
| | - Haruka Ikeda
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Shotaro Isozaki
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Kazuho Maeda
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| |
Collapse
|
5
|
Xiong S, Liu Q, Zhou S, Xiao Y. Identification of key genes and regulatory networks involved in the Comorbidity of atrial fibrillation and chronic obstructive pulmonary disease. Heliyon 2023; 9:e22430. [PMID: 39811093 PMCID: PMC11731475 DOI: 10.1016/j.heliyon.2023.e22430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2025] Open
Abstract
Background The underlying molecular processes of atrial fibrillation (AF) and chronic obstructive pulmonary disease (COPD) are frequently linked to increased morbidity and mortality when they co-occur. However, their underlying molecular mechanisms are questioned due to their incomplete analysis. Objective This study aimed to identify common differentially expressed genes (DEGs) in AF and COPD patients and investigate their potential biological functions and pathways. We hope to complement and update previous research through clearer figure presentation and different bioinformatic analysis methods with different datasets. Methods We used statistical analysis to identify DEGs in the expression profiles of AF and COPD patients using datasets from the Gene Expression Omnibus database. To ascertain whether the common DEGs were functionally enriched, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used. In addition, we generated protein‒protein interaction networks and identified significant hub genes. Furthermore, the hub genes were used to analyze transcription factor (TF)-gene interactions and TF-miRNA coregulatory networks, and their expression levels were validated in additional datasets. Results We identified a total of 15 DEGs that were upregulated, whereas 36 were downregulated in AF and COPD patients. The DEGs were commonly expressed in both AF and COPD patients, with functional enrichment analysis revealing their involvement in metabolic processes and neuron-to-neuron synapses. We identified significant hub genes, including TGM2, ITPR1, CHL1, ALDOC, RPS3, FBLN2, NDUFS2, ITGA5, CTNNB1, RBP1, CLSTN2, FABP5, EPHA4, LDHA, and HNRNPL, and analyzed their coexpression and biological functions. TF-gene interaction and TF-miRNA coregulatory network analyses revealed the regulatory relationships of the hub genes. Additional datasets were analyzed to validate hub gene expression, and ALDOC, HNRNPL, and NDUFS2 displayed similar processes in AF and COPD patients. Conclusions In our study, we demonstrate that metabolic processes and neuron-to-neuron synaptic connections may contribute to the cooccurrence of AF and COPD. The identified hub genes and regulatory networks may act as potential biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
7
|
Darkow E, Yusuf D, Rajamani S, Backofen R, Kohl P, Ravens U, Peyronnet R. Meta-Analysis of Mechano-Sensitive Ion Channels in Human Hearts: Chamber- and Disease-Preferential mRNA Expression. Int J Mol Sci 2023; 24:10961. [PMID: 37446137 DOI: 10.3390/ijms241310961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The cardiac cell mechanical environment changes on a beat-by-beat basis as well as in the course of various cardiac diseases. Cells sense and respond to mechanical cues via specialized mechano-sensors initiating adaptive signaling cascades. With the aim of revealing new candidates underlying mechano-transduction relevant to cardiac diseases, we investigated mechano-sensitive ion channels (MSC) in human hearts for their chamber- and disease-preferential mRNA expression. Based on a meta-analysis of RNA sequencing studies, we compared the mRNA expression levels of MSC in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and from patients in sinus rhythm (underlying diseases: heart failure, coronary artery disease, heart valve disease) or with atrial fibrillation. Our results suggest that a number of MSC genes are expressed chamber preferentially, e.g., CHRNE in the atria (compared to the ventricles), TRPV4 in the right atrium (compared to the left atrium), CACNA1B and KCNMB1 in the left atrium (compared to the right atrium), as well as KCNK2 and KCNJ2 in ventricles (compared to the atria). Furthermore, 15 MSC genes are differentially expressed in cardiac disease, out of which SCN9A (lower expressed in heart failure compared to donor tissue) and KCNQ5 (lower expressed in atrial fibrillation compared to sinus rhythm) show a more than twofold difference, indicative of possible functional relevance. Thus, we provide an overview of cardiac MSC mRNA expression in the four cardiac chambers from patients with different cardiac diseases. We suggest that the observed differences in MSC mRNA expression may identify candidates involved in altered mechano-transduction in the respective diseases.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Dilmurat Yusuf
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA 91320, USA
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023; 12:e77408. [PMID: 37184369 PMCID: PMC10185342 DOI: 10.7554/elife.77408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
Collapse
Affiliation(s)
- Kendall E Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of MedicineCincinnatiUnited States
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Manu Beerens
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
9
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
10
|
Qin X, Zhang Y, Zheng Q. Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23158291. [PMID: 35955426 PMCID: PMC9368187 DOI: 10.3390/ijms23158291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis.
Collapse
Affiliation(s)
- Xinghua Qin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- Correspondence: or
| |
Collapse
|
11
|
Premont A, Saadeh K, Edling C, Lewis R, Marr CM, Jeevaratnam K. Cardiac ion channel expression in the equine model - In-silico prediction utilising RNA sequencing data from mixed tissue samples. Physiol Rep 2022; 10:e15273. [PMID: 35880716 PMCID: PMC9316921 DOI: 10.14814/phy2.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023] Open
Abstract
Understanding cardiomyocyte ion channel expression is crucial to understanding normal cardiac electrophysiology and underlying mechanisms of cardiac pathologies particularly arrhythmias. Hitherto, equine cardiac ion channel expression has rarely been investigated. Therefore, we aim to predict equine cardiac ion channel gene expression. Raw RNAseq data from normal horses from 9 datasets was retrieved from ArrayExpress and European Nucleotide Archive and reanalysed. The normalised (FPKM) read counts for a gene in a mix of tissue were hypothesised to be the average of the expected expression in each tissue weighted by the proportion of the tissue in the mix. The cardiac-specific expression was predicted by estimating the mean expression in each other tissues. To evaluate the performance of the model, predicted gene expression values were compared to the human cardiac gene expression. Cardiac-specific expression could be predicted for 91 ion channels including most expressed Na+ channels, K+ channels and Ca2+ -handling proteins. These revealed interesting differences from what would be expected based on human studies. These differences included predominance of NaV 1.4 rather than NaV 1.5 channel, and RYR1, SERCA1 and CASQ1 rather than RYR2, SERCA2, CASQ2 Ca2+ -handling proteins. Differences in channel expression not only implicate potentially different regulatory mechanisms but also pathological mechanisms of arrhythmogenesis.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charlotte Edling
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Rebecca Lewis
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Celia M. Marr
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
- Rossdales Equine Hospital and Diagnostic CentreExningSuffolkUK
| | | |
Collapse
|
12
|
Abdul-Ghani S, Skeffington KL, Kim M, Moscarelli M, Lewis PA, Heesom K, Fiorentino F, Emanueli C, Reeves BC, Punjabi PP, Angelini GD, Suleiman MS. Effect of cardioplegic arrest and reperfusion on left and right ventricular proteome/phosphoproteome in patients undergoing surgery for coronary or aortic valve disease. Int J Mol Med 2022; 49:77. [PMID: 35425992 PMCID: PMC9083849 DOI: 10.3892/ijmm.2022.5133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Our earlier work has shown inter‑disease and intra‑disease differences in the cardiac proteome between right (RV) and left (LV) ventricles of patients with aortic valve stenosis (AVS) or coronary artery disease (CAD). Whether disease remodeling also affects acute changes occuring in the proteome during surgical intervention is unknown. This study investigated the effects of cardioplegic arrest on cardiac proteins/phosphoproteins in LV and RV of CAD (n=6) and AVS (n=6) patients undergoing cardiac surgery. LV and RV biopsies were collected during surgery before ischemic cold blood cardioplegic arrest (pre) and 20 min after reperfusion (post). Tissues were snap frozen, proteins extracted, and the extracts were used for proteomic and phosphoproteomic analysis using Tandem Mass Tag (TMT) analysis. The results were analysed using QuickGO and Ingenuity Pathway Analysis softwares. For each comparision, our proteomic analysis identified more than 3,000 proteins which could be detected in both the pre and Post samples. Cardioplegic arrest and reperfusion were associated with significant differential expression of 24 (LV) and 120 (RV) proteins in the CAD patients, which were linked to mitochondrial function, inflammation and cardiac contraction. By contrast, AVS patients showed differential expression of only 3 LV proteins and 2 RV proteins, despite a significantly longer duration of ischaemic cardioplegic arrest. The relative expression of 41 phosphoproteins was significantly altered in CAD patients, with 18 phosphoproteins showing altered expression in AVS patients. Inflammatory pathways were implicated in the changes in phosphoprotein expression in both groups. Inter‑disease comparison for the same ventricular chamber at both timepoints revealed differences relating to inflammation and adrenergic and calcium signalling. In conclusion, the present study found that ischemic arrest and reperfusion trigger different changes in the proteomes and phosphoproteomes of LV and RV of CAD and AVS patients undergoing surgery, with markedly more changes in CAD patients despite a significantly shorter ischaemic period.
Collapse
Affiliation(s)
- Safa Abdul-Ghani
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
- Department of Physiology, Faculty of Medicine, Al-Quds University, Abu-Dis, Palestine
| | - Katie L. Skeffington
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Minjoo Kim
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Marco Moscarelli
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- GVM Care and Research, Anthea Hospital, I-70124 Bari, Italy
| | - Philip A. Lewis
- University of Bristol Proteomics/Bioinformatics Facility, University of Bristol, Bristol BS8 1TD, UK
| | - Kate Heesom
- University of Bristol Proteomics/Bioinformatics Facility, University of Bristol, Bristol BS8 1TD, UK
| | | | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Barnaby C. Reeves
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | | | - Gianni D. Angelini
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - M-Saadeh Suleiman
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| |
Collapse
|
13
|
Liang J, Huang X, Li W, Hu Y. Identification and external validation of the hub genes associated with cardiorenal syndrome through time-series and network analyses. Aging (Albany NY) 2022; 14:1351-1373. [PMID: 35133974 PMCID: PMC8876909 DOI: 10.18632/aging.203878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Cardiorenal syndrome (CRS), defined as acute or chronic damage to the heart or kidney triggering impairment of another organ, has a poor prognosis. However, the molecular mechanisms underlying CRS remain largely unknown. The RNA-sequencing data of the left ventricle tissue isolated from the sham-operated and CRS model rats at different time points were downloaded from the Gene Expression Omnibus (GEO) database. Genomic differences, protein–protein interaction networks, and short time-series analyses, revealed fibronectin 1 (FN1) and periostin (POSTN) as hub genes associated with CRS progression. The transcriptome sequencing data of humans obtained from the GEO revealed that FN1 and POSTN were both significantly associated with many different heart and kidney diseases. Peripheral blood samples from 20 control and 20 CRS patients were collected from the local hospital, and the gene expression levels of FN1 and POSTN were detected by real-time quantitative polymerase chain reaction. FN1 (area under the curve [AUC] = 0.807) and POSTN (AUC = 0.767) could distinguish CRS in the local cohort with high efficacy and were positively correlated with renal and heart damage markers, such as left ventricular ejection fraction. To improve the diagnostic ability, diagnosis models comprising FN1 and POSTN were constructed by logistic regression (F-Score = 0.718), classification tree (F-Score = 0.812), and random forest (F-Score = 1.000). Overall, the transcriptome data of CRS rat models were systematically analyzed, revealing that FN1 and POSTN were hub genes, which were validated in different public datasets and the local cohort.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Cardiology, Shunde Hospital of Southern Medical University, Foshan 528000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital of Southern Medical University, Foshan 528000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital of Southern Medical University, Foshan 528000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Zhu Y, Jackson D, Hunter B, Beattie L, Turner L, Hambly BD, Jeremy RW, Malecki C, Robertson EN, Li A, Remedios C, Richmond D, Semsarian C, O'Sullivan JF, Bannon PG, Lal S. Models of cardiovascular surgery biobanking to facilitate translational research and precision medicine. ESC Heart Fail 2021; 9:21-30. [PMID: 34931483 PMCID: PMC8787984 DOI: 10.1002/ehf2.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Biobanking in health care has evolved over the last few decades from simple biological sample repositories to complex and dynamic units with multi‐organizational infrastructure networks and has become an essential tool for modern medical research. Cardiovascular tissue biobanking provides a unique opportunity to utilize cardiac and vascular samples for translational research into heart failure and other related pathologies. Current techniques for diagnosis, classification, and treatment monitoring of cardiac disease relies primarily on interpretation of clinical signs, imaging, and blood biomarkers. Further research at the disease source (i.e. myocardium and blood vessels) has been limited by a relative lack of access to quality human cardiac tissue and the inherent shortcomings of most animal models of heart disease. In this review, we describe a model for cardiovascular tissue biobanking and databasing, and its potential to facilitate basic and translational research. We share techniques to procure endocardial samples from patients with hypertrophic cardiomyopathy, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction, in addition to aortic disease samples. We discuss some of the issues with respect to data collection, privacy, biobank consent, and the governance of tissue biobanking. The development of tissue biobanks as described here has significant scope to improve and facilitate translational research in multi‐omic fields such as genomics, transcriptomics, proteomics, and metabolomics. This research heralds an era of precision medicine, in which patients with cardiovascular pathology can be provided with optimized and personalized medical care for the treatment of their individual phenotype.
Collapse
Affiliation(s)
- YingYan Zhu
- Department of Cardiothoracic Surgery Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Dan Jackson
- Department of Cardiothoracic Surgery Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Benjamin Hunter
- Cardiovascular Precision Laboratory The University of Sydney Sydney New South Wales 2006 Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Lorna Beattie
- Department of Cardiothoracic Surgery Royal Prince Alfred Hospital Sydney New South Wales Australia
- The Baird Institute for Applied Heart and Lung Surgical Research Sydney New South Wales Australia
| | - Lisa Turner
- Department of Cardiothoracic Surgery Royal Prince Alfred Hospital Sydney New South Wales Australia
- The Baird Institute for Applied Heart and Lung Surgical Research Sydney New South Wales Australia
| | - Brett D. Hambly
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Richmond W. Jeremy
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- The Baird Institute for Applied Heart and Lung Surgical Research Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Cassandra Malecki
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Elizabeth N. Robertson
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Amy Li
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Pharmacy & Biomedical Sciences La Trobe University Melbourne Victoria Australia
| | - Cris Remedios
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - David Richmond
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Christopher Semsarian
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute Sydney New South Wales Australia
| | - John F. O'Sullivan
- Cardiovascular Precision Laboratory The University of Sydney Sydney New South Wales 2006 Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Heart Research Institute The University of Sydney Sydney New South Wales Australia
| | - Paul G. Bannon
- Department of Cardiothoracic Surgery Royal Prince Alfred Hospital Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- The Baird Institute for Applied Heart and Lung Surgical Research Sydney New South Wales Australia
- RPA Institute of Academic Surgery (IAS) Royal Prince Alfred Hospital and the University of Sydney Sydney New South Wales Australia
| | - Sean Lal
- Cardiovascular Precision Laboratory The University of Sydney Sydney New South Wales 2006 Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- The Baird Institute for Applied Heart and Lung Surgical Research Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| |
Collapse
|
15
|
Liu P, Sun H, Zhou X, Wang Q, Gao F, Fu Y, Li T, Wang Y, Li Y, Fan B, Li X, Jiang T, Qin X, Zheng Q. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis 2021; 12:813. [PMID: 34453039 PMCID: PMC8397768 DOI: 10.1038/s41419-021-04109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is an increasingly prevalent arrhythmia with significant health and socioeconomic impact. The underlying mechanism of AF is still not well understood. In this study, we sought to identify hub genes involved in AF, and explored their functions and underlying mechanisms based on bioinformatics analysis. Five microarray datasets in GEO were used to identify the differentially expressed genes (DEGs) by Robust Rank Aggregation (RRA), and hub genes were screened out using protein-protein interaction (PPI) network. AF model was established using a mixture of acetylcholine and calcium chloride (Ach-CaCl2) by tail vein injection. We totally got 35 robust DEGs that mainly involve in extracellular matrix formation, leukocyte transendothelial migration, and chemokine signaling pathway. Among these DEGs, we identified three hub genes involved in AF, of which CXCL12/CXCR4 axis significantly upregulated in AF patients stands out as one of the most potent targets for AF prevention, and its effect on AF pathogenesis and underlying mechanisms were investigated in vivo subsequently with the specific CXCR4 antagonist AMD3100 (6 mg/kg). Our results demonstrated an elevated transcription and translation of CXCL12/CXCR4 axis in AF patients and mice, accompanied with the anabatic atrial inflammation and fibrosis, thereby providing the substrate for AF maintenance. Blocking its signaling via AMD3100 administration in AF model mice reduced AF inducibility and duration, partly ascribed to decreased atrial inflammation and structural remodeling. Mechanistically, these effects were achieved by reducing the recruitment of CD3+ T lymphocytes and F4/80+ macrophages, and suppressing the hyperactivation of ERK1/2 and AKT/mTOR signaling in atria of AF model mice. In conclusion, this study provides new evidence that antagonizing CXCR4 prevents the development of AF, and suggests that CXCL12/CXCR4 axis may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongke Sun
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuping Fu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Internal Medicine, Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol 2021; 19:e3001229. [PMID: 34003819 PMCID: PMC8130971 DOI: 10.1371/journal.pbio.3001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart. Multi-omic analyses of the four chambers of the human and mouse heart, including transcriptome, DNA methylation and chromatin accessibility, reveals characteristic patterns of gene regulation at the level of heart regions.
Collapse
|
17
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
18
|
Atrial fibrillation rhythm is associated with marked changes in metabolic and myofibrillar protein expression in left atrial appendage. Pflugers Arch 2021; 473:461-475. [PMID: 33454842 DOI: 10.1007/s00424-021-02514-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is strongly associated with risk of stroke and heart failure. AF promotes atrial remodeling that increases risk of stroke due to left atrial thrombogenesis, and increases energy demand to support high rate electrical activity and muscle contraction. While many transcriptomic studies have assessed AF-related changes in mRNA abundance, fewer studies have assessed proteomic changes. We performed a proteomic analysis on left atrial appendage (LAA) tissues from 12 patients with a history of AF undergoing elective surgery; atrial rhythm was documented at time of surgery. Proteomic analysis was performed using liquid chromatography with mass spectrometry (LC/MS-MS). Data-dependent analysis identified 3090 unique proteins, with 408 differentially expressed between sinus rhythm and AF. Ingenuity Pathway Analysis of differentially expressed proteins identified mitochondrial dysfunction, oxidative phosphorylation, and sirtuin signaling among the most affected pathways. Increased abundance of electron transport chain (ETC) proteins in AF was accompanied by decreased expression of ETC complex assembly factors, tricarboxylic acid cycle proteins, and other key metabolic modulators. Discordant changes were also evident in the contractile unit with both up and downregulation of key components. Similar pathways were affected in a comparison of patients with a history of persistent vs. paroxysmal AF, presenting for surgery in sinus rhythm. Together, these data suggest that while the LAA attempts to meet the energetic demands of AF, an uncoordinated response may reduce ATP availability, contribute to tissue contractile and electrophysiologic heterogeneity, and promote a progression of AF from paroxysmal episodes to development of a substrate amenable to persistent arrhythmia.
Collapse
|
19
|
Haas Bueno R, Recamonde-Mendoza M. Meta-analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol Diagn Ther 2020; 24:737-751. [PMID: 33095430 DOI: 10.1007/s40291-020-00497-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a complex disease and affects millions of people around the world. The biological mechanisms that are involved with AF are complex and still need to be fully elucidated. Therefore, we performed a meta-analysis of transcriptome data related to AF to explore these mechanisms aiming at more sensitive and reliable results. METHODS Ten public transcriptomic datasets were downloaded, analyzed for quality control, and individually pre-processed. Differential expression analysis was carried out for each dataset, and the results were meta-analytically aggregated using the rth ordered p value method. We analyzed the final list of differentially expressed genes through network analysis, namely topological and modularity analysis, and functional enrichment analysis. RESULTS The meta-analysis of transcriptomes resulted in 1197 differentially expressed genes, whose protein-protein interaction network presented 39 hubs-bottlenecks and four main identified functional modules. These modules were enriched for 39, 20, 64, and 10 biological pathways involved with the pathophysiology of AF, especially with the disease's structural and electrical remodeling processes. The stress of the endoplasmic reticulum, protein catabolism, oxidative stress, and inflammation are some of the enriched processes. Among hub-bottlenecks genes, which are highly connected and probably have a key role in regulating these processes, HSPA5, ANK2, CTNNB1, and MAPK1 were identified. CONCLUSION Our approach based on transcriptome meta-analysis revealed a set of key genes that demonstrated consistent overall changes in expression patterns associated with AF despite data heterogeneity related, among others, to type of tissue. Further experimental investigation of our findings may shed light on the pathophysiology of the disease and contribute to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Ahn J, Wu H, Lee K. Integrative Analysis Revealing Human Heart-Specific Genes and Consolidating Heart-Related Phenotypes. Front Genet 2020; 11:777. [PMID: 32903789 PMCID: PMC7438927 DOI: 10.3389/fgene.2020.00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Abstract
Elucidating expression patterns of heart-specific genes is crucial for understanding developmental, physiological, and pathological processes of the heart. The aim of the present study is to identify functionally and pathologically important heart-specific genes by performing the Ingenuity Pathway Analysis (IPA). Through a median-based analysis of tissue-specific gene expression based on the Genotype-Tissue Expression (GTEx) data, we identified 56 genes with heart-specific or elevated expressions in the heart (heart-specific/enhanced), among which three common heart-specific/enhanced genes and four atrial appendage-specific/enhanced genes were unreported regarding the heart. Differential expression analysis further revealed 225 differentially expressed genes (DEGs) between atrial appendage and left ventricle. Our integrative analyses of those heart-specific/enhanced genes and DEGs with IPA revealed enriched heart-related traits and diseases, consolidating evidence of relationships between these genes and heart function. Our reports on comprehensive identification of heart-specific/enhanced genes and DEGs and their relation to pathways associated with heart-related traits and diseases provided molecular insights into essential regulators of cardiac physiology and pathophysiology and potential new therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Huiguang Wu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Development, physiological growth and the response of the heart to injury are accompanied by changes of the transcriptome and epigenome of cardiac myocytes. Recently, cell sorting and next generation sequencing techniques have been applied to determine cardiac myocyte-specific transcriptional and epigenetic mechanisms. This review provides a comprehensive overview of studies analysing the transcriptome and epigenome of cardiac myocytes in mouse and human hearts during development, physiological growth and disease. RECENT FINDINGS Adult cardiac myocytes express > 12,600 genes, and their expression levels correlate positively with active histone marks and inversely with gene body DNA methylation. DNA methylation accompanied the perinatal switch in sarcomere or metabolic isoform gene expression in cardiac myocytes, but remained rather stable in heart disease. DNA methylation and histone marks identified > 100,000 cis-regulatory regions in the cardiac myocyte epigenome with a dynamic spectrum of transcription factor binding sites. The ETS-related transcription factor ETV1 was identified as an atrial-specific element involved in the pathogenesis of atrial fibrillation. Thus, dynamic development of the atrial vs. ventricular cardiac myocyte epigenome provides a basis to identify location and time-dependent mechanisms of epigenetic control to shape pathological gene expression during heart disease. Identifying the four dimensions of the cardiac myocyte epigenome, atrial vs. ventricular location, time during development and growth, and disease-specific signals, may ultimately lead to new treatment strategies for heart disease.
Collapse
|
22
|
Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, Montefiori L, Bogomolovas J, Joslin AC, Zhou B, Chen J, Nobrega MA, Evans SM. Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circ Res 2019; 123:428-442. [PMID: 29903739 PMCID: PMC6092109 DOI: 10.1161/circresaha.118.311339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type–specific requirement for TBX20 in early myocardial development remains to be explored. Objective: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. Methods and Results: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. Conclusions: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Collapse
Affiliation(s)
- Cornelis J. Boogerd
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Xiaoming Zhu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Ivy Aneas
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Noboru Sakabe
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lunfeng Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Debora R. Sobreira
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lindsey Montefiori
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Julius Bogomolovas
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.B.)
| | - Amelia C. Joslin
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Bin Zhou
- Department of Genetics, Medicine and Pediatrics, Albert Einstein College of Medicine of Yeshiva University, New York, NY (B.Z.)
| | - Ju Chen
- Department of Medicine (J.B., J.C., S.M.E.)
| | - Marcelo A. Nobrega
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Sylvia M. Evans
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Pharmacology (S.M.E.)
| |
Collapse
|
23
|
Argenziano MA, Doss MX, Tabler M, Sachinidis A, Antzelevitch C. Transcriptional changes associated with advancing stages of heart failure underlie atrial and ventricular arrhythmogenesis. PLoS One 2019; 14:e0216928. [PMID: 31083689 PMCID: PMC6513089 DOI: 10.1371/journal.pone.0216928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/01/2019] [Indexed: 01/14/2023] Open
Abstract
Background Heart failure (HF) is a leading cause of mortality and is associated with cardiac remodeling. Vulnerability to atrial fibrillation (AF) has been shown to be greater in the early stages of HF, whereas ventricular tachycardia/fibrillation develop during late stages. Here, we explore changes in gene expression that underlie the differential development of fibrosis and structural alterations that predispose to atrial and ventricular arrhythmias. Objective To study transcriptomic changes associated with the development of cardiac arrhythmias in early and late stages of heart failure. Methods Dogs were tachy-paced from right ventricle (RV) for 2–3 or 5–6 weeks (early and late HF). We performed transcriptomic analysis of right atria (RA) and RV isolated from control dogs and those in early and late HF. Transcripts with mean relative log2-fold change ≥2 were included in the differential analysis with significance threshold adjusted to p<0.05. Results Early HF remodeling was more prominent in RA with enrichment of extracellular matrix, circulatory system, wound healing and immune response pathways; many of these processes were not present in RA in late HF. RV showed no signs of remodeling in early HF but enrichment of extracellular matrix and wound healing in late HF. Conclusion Our transcriptomic data indicate significant fibrosis-associated transcriptional changes in RA in early HF and in RV in late HF, with strong atrial predominance. These alterations in gene expression are consistent with the development of arrhythmogenesis in atria in early but not late HF and in the ventricle in late but not early HF.
Collapse
Affiliation(s)
- Mariana A. Argenziano
- Children’s Hospital of Philadelphia, Department of Genetics, Philadelphia, Pennsylvania, United States of America
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Michael Xavier Doss
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Megan Tabler
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Lankenau Heart Institute, Wynnewood, Pennsylvania, United States of America
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Johnson EK, Matkovich SJ, Nerbonne JM. Regional Differences in mRNA and lncRNA Expression Profiles in Non-Failing Human Atria and Ventricles. Sci Rep 2018; 8:13919. [PMID: 30224797 PMCID: PMC6141608 DOI: 10.1038/s41598-018-32154-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023] Open
Abstract
The four chambers of the human heart play distinct roles in the maintenance of normal cardiac function, and are differentially affected by inherited/acquired cardiovascular disease. To probe the molecular determinants of these functional differences, we examined mRNA and lncRNA expression profiles in the left (LA) and right (RA) atria, the left (LV) and right (RV) ventricles, and the interventricular septum (IVS) of non-failing human hearts (N = 8). Analysis of paired atrial and ventricular samples (n = 40) identified 5,747 mRNAs and 2,794 lncRNAs that were differentially (>1.5 fold; FDR < 0.05) expressed. The largest differences were observed in comparisons between the atrial (RA/LA) and ventricular (RV/LV/IVS) samples. In every case (e.g., LA vs LV, LA vs RV, etc.), >2,300 mRNAs and >1,200 lncRNAs, corresponding to 17-28% of the total transcripts, were differentially expressed. Heterogeneities in mRNA/lncRNA expression profiles in the LA and RA, as well as in the LV, RV and IVS, were also revealed, although the numbers of differentially expressed transcripts were substantially smaller. Gender differences in mRNA and lncRNA expression profiles were also evident in non-failing human atria and ventricles. Gene ontology classification of differentially expressed gene sets revealed chamber-specific enrichment of numerous signaling pathways.
Collapse
Affiliation(s)
- Eric K Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scot J Matkovich
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Rat atrial engineered heart tissue: a new in vitro model to study atrial biology. Basic Res Cardiol 2018; 113:41. [DOI: 10.1007/s00395-018-0701-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
26
|
Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C, Henze S, Stauske M, Salinas G, Zimmermann WH, Hasenfuss G, Guan K. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 2018; 3:99941. [PMID: 29925689 DOI: 10.1172/jci.insight.99941] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.
Collapse
Affiliation(s)
- Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Malte Tiburcy
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, UMG, Göttingen, Germany
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kathleen Gerstenberg
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | | | - Christof Lenz
- Institute for Clinical Chemistry, UMG, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sarah Henze
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Michael Stauske
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory Core Unit, UMG, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, UMG, Göttingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Kaomei Guan
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018; 5:110. [PMID: 29740580 PMCID: PMC5928319 DOI: 10.3389/fmed.2018.00110] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Recent advances in the differentiation and production of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) have stimulated development of strategies to use these cells in human cardiac regenerative therapies. A prerequisite for clinical trials and translational implementation of hPSC-derived CMs is the ability to manufacture safe and potent cells on the scale needed to replace cells lost during heart disease. Current differentiation protocols generate fetal-like CMs that exhibit proarrhythmogenic potential. Sufficient maturation of these hPSC-derived CMs has yet to be achieved to allow these cells to be used as a regenerative medicine therapy. Insights into the native cardiac environment during heart development may enable engineering of strategies that guide hPSC-derived CMs to mature. Specifically, considerations must be made in regard to developing methods to incorporate the native intercellular interactions and biomechanical cues into hPSC-derived CM production that are conducive to scale-up.
Collapse
Affiliation(s)
- Kaitlin K Dunn
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| | - Sean P Palecek
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| |
Collapse
|
28
|
Bond AR, Iacobazzi D, Abdul-Ghani S, Ghorbel MT, Heesom KJ, George SJ, Caputo M, Suleiman MS, Tulloh RM. The cardiac proteome in patients with congenital ventricular septal defect: A comparative study between right atria and right ventricles. J Proteomics 2018; 191:107-113. [PMID: 29572163 DOI: 10.1016/j.jprot.2018.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 01/24/2023]
Abstract
Right ventricle (RV) remodelling occurs in neonatal patients born with ventricular septal defect (VSD). The presence of a defect between the two ventricles allows for shunting of blood from the left to right side. The resulting RV hypertrophy leads to molecular remodelling which has thus far been largely investigated using right atrial (RA) tissue. In this study we used proteomic and phosphoproteomic analysis in order to determine any difference between the proteomes for RA and RV. Samples were therefore taken from the RA and RV of five infants (0.34 ± 0.05 years, mean ± SEM) with VSD who were undergoing cardiac surgery to repair the defect. Significant differences in protein expression between RV and RA were seen. 150 protein accession numbers were identified which were significantly lower in the atria, whereas none were significantly higher in the atria compared to the ventricle. 19 phosphorylation sites (representing 19 phosphoproteins) were also lower in RA. This work has identified differences in the proteome between RA and RV which reflect differences in contractile activity and metabolism. As such, caution should be used when drawing conclusions based on analysis of the RA and extrapolating to the hypertrophied RV. SIGNIFICANCE: RV hypertrophy occurs in neonatal patients born with VSD. Very little is known about how the atria responds to RV hypertrophy, especially at the protein level. Access to tissue from age-matched groups of patients is very rare, and we are in the unique position of being able to get tissue from both the atria and ventricle during reparative surgery of these infants. Our findings will be beneficial to future research into heart chamber malformations in congenital heart defects.
Collapse
Affiliation(s)
- A R Bond
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - D Iacobazzi
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - S Abdul-Ghani
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - M T Ghorbel
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - K J Heesom
- Proteomics Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - S J George
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - M Caputo
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom; Department of Congenital Heart Disease, King David Building, Upper Maudlin Street, Bristol BS2 8BJ, United Kingdom
| | - M-S Suleiman
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom
| | - R M Tulloh
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom; Department of Congenital Heart Disease, King David Building, Upper Maudlin Street, Bristol BS2 8BJ, United Kingdom.
| |
Collapse
|
29
|
Medrano JL, Naya FJ. The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart. J Biol Chem 2017; 292:20975-20988. [PMID: 29054930 PMCID: PMC5743072 DOI: 10.1074/jbc.m117.806422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The distinct morphological and functional properties of the cardiac chambers arise from an elaborate developmental program involving cell lineage determination, morphogenesis, and dynamic spatiotemporal gene expression patterns. Although a number of transcription factors have been identified for proper gene regulation in the chambers, the complete transcriptional network that controls these patterns remains poorly defined. Previous studies have implicated the MEF2C transcription factor in the regulation of chamber-restricted enhancers. To better understand the mechanisms of MEF2-mediated regional gene regulation in the heart, we took advantage of MEF2A knock-out (KO) mice, a model that displays a predominantly ventricular chamber phenotype. Transcriptomic analysis of atrial and ventricular tissue from adult MEF2A KO hearts revealed a striking difference in chamber gene expression, with a larger proportion of dysregulated genes in the atrial chambers. Canonical pathway analysis of genes preferentially dysregulated in the atria and ventricles revealed distinct MEF2A-dependent cellular processes in each cardiac chamber. In the atria, MEF2A regulated genes involved in fibrosis and adhesion, whereas in the ventricles, it controlled inflammation and endocytosis. Finally, analysis of transcription factor-binding site motifs of differentially dysregulated genes uncovered distinct MEF2A co-regulators for the atrial and ventricular gene sets, and a subset of these was found to cooperate with MEF2A. In conclusion, our results suggest a mechanism in which MEF2 transcriptional activity is differentially recruited to fine-tune gene expression levels in each cardiac chamber. This regulatory mechanism ensures optimal output of these gene products for proper physiological function of the atrial and ventricular chambers.
Collapse
Affiliation(s)
- Jose L Medrano
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
30
|
Duong TB, Ravisankar P, Song YC, Gafranek JT, Rydeen AB, Dohn TE, Barske LA, Crump JG, Waxman JS. Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Dev Biol 2017; 434:7-14. [PMID: 29157563 DOI: 10.1016/j.ydbio.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Determination of appropriate chamber size is critical for normal vertebrate heart development. Although Nr2f transcription factors promote atrial maintenance and differentiation, how they determine atrial size remains unclear. Here, we demonstrate that zebrafish Nr2f1a is expressed in differentiating atrial cardiomyocytes. Zebrafish nr2f1a mutants have smaller atria due to a specific reduction in atrial cardiomyocyte (AC) number, suggesting it has similar requirements to Nr2f2 in mammals. Furthermore, the smaller atria in nr2f1a mutants are derived from distinct mechanisms that perturb AC differentiation at the chamber poles. At the venous pole, Nr2f1a enhances the rate of AC differentiation. Nr2f1a also establishes the atrial-atrioventricular canal (AVC) border through promoting the differentiation of mature ACs. Without Nr2f1a, AVC markers are expanded into the atrium, resulting in enlarged endocardial cushions (ECs). Inhibition of Bmp signaling can restore EC development, but not AC number, suggesting that Nr2f1a concomitantly coordinates atrial and AVC size through both Bmp-dependent and independent mechanisms. These findings provide insight into conserved functions of Nr2f proteins and the etiology of atrioventricular septal defects (AVSDs) associated with NR2F2 mutations in humans.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular and Developmental Biology Master's Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Padmapriyadarshini Ravisankar
- The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yuntao Charlie Song
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ariel B Rydeen
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tracy E Dohn
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lindsey A Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Joshua S Waxman
- The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Developmental Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
31
|
Song Y, Song JW, Lee S, Jun JH, Kwak YL, Shim JK. Effects of remote ischemic preconditioning in patients with concentric myocardial hypertrophy: A randomized, controlled trial with molecular insights. Int J Cardiol 2017; 249:36-41. [PMID: 28893433 DOI: 10.1016/j.ijcard.2017.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Efficacy of remote ischemic preconditioning (RIPC) for cardioprotection in cardiac surgery is controversial. We aimed to evaluate the clinical and molecular effects of RIPC on the concentrically hypertrophied myocardium. METHODS Seventy-two aortic stenosis patients receiving aortic valve replacement (AVR) under sevoflurane anesthesia were randomly allocated to RIPC (3cycles of 5-min inflation [300mmHg] and deflation on the left arm) or control (deflated cuff placement) group. The primary endpoints were 24-h area under the curve (AUC) for serum creatine kinase (CK)-MB and troponin (Tn)-T levels. The secondary endpoints were myocardial activation of cell signaling pathways, including reperfusion injury salvage kinases (RISK), signal transducer and activator of transcription (STAT), nitric oxide synthase (NOS), and apoptosis related molecules, obtained from right atrial tissue before and after cardiopulmonary bypass (CPB). RESULTS There were no intergroup differences in 24-h AUCs of CK-MB and Tn-T. Phosphorylations of RISK pathway molecules were not enhanced by RIPC before and after CPB. Phosphorylation of STAT5 was significantly lower in the RIPC group before and after CPB. Phosphorylations of STAT3 and endothelial NOS were not enhanced by RIPC before and after CPB. Expression level of cleaved caspases-3/caspase-3 was significantly higher in the RIPC group before CPB. CONCLUSIONS RIPC did not provide clinical benefits or activate protective signaling in patients with concentric left ventricular hypertrophy undergoing AVR.
Collapse
Affiliation(s)
- Young Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Kane C, Terracciano CMN. Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells 2017; 35:1881-1897. [PMID: 28577296 PMCID: PMC5575566 DOI: 10.1002/stem.2649] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
Human pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) have great potential application in almost all areas of cardiovascular research. A current major goal of the field is to build on the past success of differentiation strategies to produce CMs with the properties of those originating from the different chambers of the adult human heart. With no anatomical origin or developmental pathway to draw on, the question of how to judge the success of such approaches and assess the chamber specificity of PSC‐CMs has become increasingly important; commonly used methods have substantial limitations and are based on limited evidence to form such an assessment. In this article, we discuss the need for chamber‐specific PSC‐CMs in a number of areas as well as current approaches used to assess these cells on their likeness to those from different chambers of the heart. Furthermore, describing in detail the structural and functional features that distinguish the different chamber‐specific human adult cardiac myocytes, we propose an evidence‐based tool to aid investigators in the phenotypic characterization of differentiated PSC‐CMs. Stem Cells2017;35:1881–1897
Collapse
Affiliation(s)
- Christopher Kane
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, BHF Centre for Regenerative Medicine, London, United Kingdom
| | - Cesare M N Terracciano
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, BHF Centre for Regenerative Medicine, London, United Kingdom
| |
Collapse
|
33
|
Pradhan A, Zeng XXI, Sidhwani P, Marques SR, George V, Targoff KL, Chi NC, Yelon D. FGF signaling enforces cardiac chamber identity in the developing ventricle. Development 2017; 144:1328-1338. [PMID: 28232600 DOI: 10.1242/dev.143719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood. Here, we show that FGF signaling plays an essential part in enforcing ventricular identity. Loss of FGF signaling results in a gradual accumulation of atrial cells, a corresponding loss of ventricular cells, and the appearance of ectopic atrial gene expression within the ventricle. These phenotypes reflect important roles for FGF signaling in promoting ventricular traits, both in early-differentiating cells that form the initial ventricle and in late-differentiating cells that append to its arterial pole. Moreover, we find that FGF signaling functions upstream of Nkx genes to inhibit ectopic atrial gene expression. Together, our data suggest a model in which sustained FGF signaling acts to suppress cardiomyocyte plasticity and to preserve the integrity of the ventricular chamber.
Collapse
Affiliation(s)
- Arjana Pradhan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sara R Marques
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Oh E, Jeremian R, Oh G, Groot D, Susic M, Lee K, Foy K, Laird PW, Petronis A, Labrie V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci Rep 2017; 7:41843. [PMID: 28139744 PMCID: PMC5282553 DOI: 10.1038/srep41843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Transcriptional variation in histologically- and genetically- identical cells is a widespread phenomenon in tissues, yet the processes conferring this heterogeneity are not well understood. To identify contributing factors, we analyzed epigenetic profiles associated with the in vivo transcriptional gradient of the mouse lactase gene (Lct), which occurs in enterocytes along the proximal-to-distal axis of the small intestine. We found that epigenetic signatures at enhancer and promoter elements aligns with transcriptional variation of Lct in enterocytes. Age and phenotype-specific environmental cues (lactose exposure after weaning) induced changes to epigenetic modifications and CTCF binding at select regulatory elements, which corresponded to the alterations in the intestinal Lct mRNA gradient. Thus, epigenetic modifications in combination with CTCF binding at regulatory elements account for the transcriptional gradient in Lct in cells of the same type. Epigenetic divergence within enterocytes may contribute to the functional specialization of intestinal subregions.
Collapse
Affiliation(s)
- Edward Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richie Jeremian
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Groot
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miki Susic
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - KwangHo Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kelly Foy
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter W. Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Arturas Petronis
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
35
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
36
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
37
|
Rizvi F, DeFranco A, Siddiqui R, Negmadjanov U, Emelyanova L, Holmuhamedov A, Ross G, Shi Y, Holmuhamedov E, Kress D, Tajik AJ, Jahangir A. Chamber-specific differences in human cardiac fibroblast proliferation and responsiveness toward simvastatin. Am J Physiol Cell Physiol 2016; 311:C330-9. [PMID: 27335167 DOI: 10.1152/ajpcell.00056.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
Fibroblasts, the most abundant cells in the heart, contribute to cardiac fibrosis, the substrate for the development of arrythmogenesis, and therefore are potential targets for preventing arrhythmic cardiac remodeling. A chamber-specific difference in the responsiveness of fibroblasts from the atria and ventricles toward cytokine and growth factors has been described in animal models, but it is unclear whether similar differences exist in human cardiac fibroblasts (HCFs) and whether drugs affect their proliferation differentially. Using cardiac fibroblasts from humans, differences between atrial and ventricular fibroblasts in serum-induced proliferation, DNA synthesis, cell cycle progression, cyclin gene expression, and their inhibition by simvastatin were determined. The serum-induced proliferation rate of human atrial fibroblasts was more than threefold greater than ventricular fibroblasts with faster DNA synthesis and higher mRNA levels of cyclin genes. Simvastatin predominantly decreased the rate of proliferation of atrial fibroblasts, with inhibition of cell cycle progression and an increase in the G0/G1 phase in atrial fibroblasts with a higher sensitivity toward inhibition compared with ventricular fibroblasts. The DNA synthesis and mRNA levels of cyclin A, D, and E were significantly reduced by simvastatin in atrial but not in ventricular fibroblasts. The inhibitory effect of simvastatin on atrial fibroblasts was abrogated by mevalonic acid (500 μM) that bypasses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibition. Chamber-specific differences exist in the human heart because atrial fibroblasts have a higher proliferative capacity and are more sensitive to simvastatin-mediated inhibition through HMG-CoA reductase pathway. This mechanism may be useful in selectively preventing excessive atrial fibrosis without inhibiting adaptive ventricular remodeling during cardiac injury.
Collapse
Affiliation(s)
- Farhan Rizvi
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Alessandra DeFranco
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Ramail Siddiqui
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Ulugbek Negmadjanov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Larisa Emelyanova
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Alisher Holmuhamedov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Gracious Ross
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Yang Shi
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - Ekhson Holmuhamedov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and
| | - David Kress
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - A Jamil Tajik
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Arshad Jahangir
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; and Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| |
Collapse
|
38
|
Wang T, Wang B. Identification of microRNA-mRNA interactions in atrial fibrillation using microarray expression profiles and bioinformatics analysis. Mol Med Rep 2016; 13:4535-40. [PMID: 27082053 PMCID: PMC4878535 DOI: 10.3892/mmr.2016.5106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/21/2016] [Indexed: 11/11/2022] Open
Abstract
The present study integrated microRNA (miRNA) and mRNA expression data obtained from atrial fibrillation (AF) tissues and healthy tissues, in order to identify miRNAs and target genes that may be important in the development of AF. The GSE28954 miRNA expression profile and GSE2240 mRNA gene expression profile were downloaded from the Gene Expression Omnibus. Differentially expressed miRNAs and genes (DEGs) in AF tissues, compared with in control samples, were identified and hierarchically clustered. Subsequently, differentially expressed miRNAs and DEGs were searched for in the miRecords database and TarBase, and were used to construct a regulatory network using Cytoscape. Finally, functional analysis of the miRNA-targeted genes was conducted. After data processing, 71 differentially expressed miRNAs and 390 DEGs were identified between AF and normal tissues. A total of 3,506 miRNA-mRNA pairs were selected, of which 372 were simultaneously predicted by both miRecords and TarBase, and were therefore used to construct the miRNA-mRNA regulatory network. Furthermore, 10 miRNAs and 12 targeted mRNAs were detected, which formed 14 interactive pairs. The miRNA-targeted genes were significantly enriched into 14 Gene Ontology (GO) categories, of which the most significant was gene expression regulation (GO 10468), which was associated with 7 miRNAs and 8 target genes. These results suggest that the screened miRNAs and target genes may be target molecules in AF development, and may be beneficial for the early diagnosis and future treatment of AF.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiology, Shandong Jiaotong Hospital, Jinan, Shandong 250031, P.R. China
| | - Bin Wang
- Department of Otorhinolaryngology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
39
|
Kakimoto Y, Tanaka M, Kamiguchi H, Hayashi H, Ochiai E, Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 2016; 211:43-8. [PMID: 26974694 DOI: 10.1016/j.ijcard.2016.02.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. METHODS AND RESULTS We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. CONCLUSIONS Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
40
|
Wu SP, Yu CT, Tsai SY, Tsai MJ. Choose your destiny: Make a cell fate decision with COUP-TFII. J Steroid Biochem Mol Biol 2016; 157:7-12. [PMID: 26658017 PMCID: PMC4724268 DOI: 10.1016/j.jsbmb.2015.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/04/2015] [Accepted: 11/15/2015] [Indexed: 02/06/2023]
Abstract
Cell fate specification is a critical process to generate cells with a wide range of characteristics from stem and progenitor cells. Emerging evidence demonstrates that the orphan nuclear receptor COUP-TFII serves as a key regulator in determining the cell identity during embryonic development. The present review summarizes our current knowledge on molecular mechanisms by which COUP-TFII employs to define the cell fates, with special emphasis on cardiovascular and renal systems. These novel insights pave the road for future studies of regenerative medicine.
Collapse
Affiliation(s)
- San-Pin Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Cheng-Tai Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Ahuja S, Dogra D, Stainier DYR, Reischauer S. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development. Dev Biol 2016; 412:71-82. [PMID: 26892463 DOI: 10.1016/j.ydbio.2016.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/20/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium.
Collapse
Affiliation(s)
- Suchit Ahuja
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deepika Dogra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| |
Collapse
|
42
|
Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, Jin M, Yokota T, Ishikawa Y, Nakano A, Goda N, Minamisawa S. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol 2016; 310:H92-103. [DOI: 10.1152/ajpheart.00411.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
Sarcolipin (SLN) is a small proteolipid and a regulator of sarco(endo)plasmic reticulum Ca2+-ATPase. In heart tissue, SLN is exclusively expressed in the atrium. Previously, we inserted Cre recombinase into the endogenous SLN locus by homologous recombination and succeeded in generating SLN-Cre knockin (SlnCre/+) mice. This SlnCre/+ mouse can be used to generate an atrium-specific gene-targeting mutant, and it is based on the Cre-loxP system. In the present study, we used adult SlnCre/+ mice atria and analyzed the effects of heterozygous SLN deletion by Cre knockin before use as the gene targeting mouse. Both SLN mRNA and protein levels were decreased in SlnCre/+ mouse atria, but there were no morphological, physiological, or molecular biological abnormalities. The properties of contractility and Ca2+ handling were similar to wild-type (WT) mice, and expression levels of several stress markers and sarcoplasmic reticulum-related protein levels were not different between SlnCre/+ and WT mice. Moreover, there was no significant difference in sarco(endo)plasmic reticulum Ca2+-ATPase activity between the two groups. We showed that SlnCre/+ mice were not significantly different from WT mice in all aspects that were examined. The present study provides basic characteristics of SlnCre/+ mice and possibly information on the usefulness of SlnCre/+ mice as an atrium-specific gene-targeting model.
Collapse
Affiliation(s)
- Daisuke Shimura
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Biofunctional Informatics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Gaku Nakai
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Qibin Jiao
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Meihua Jin
- Cardiovascular Research Institute, Yokohama City University, Kanagawa, Japan
| | - Tomohiro Yokota
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Kanagawa, Japan
| | - Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California; and
- Molecular Biology Institute, University of California, Los Angeles, California
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
44
|
Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nat Commun 2015; 6:8245. [PMID: 26356605 PMCID: PMC4568566 DOI: 10.1038/ncomms9245] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. Transcription factor COUP-TFII is elevated in the hearts of non-ischaemic cardiomyopathy patients, but the nature of this correlation is unknown. Here the authors show that forced cardiac expression of COUP-TFII in mice causes dilated cardiomyopathy because of altered mitochondrial function and impaired metabolic remodelling.
Collapse
|
45
|
Lu ZQ, Sinha A, Sharma P, Kislinger T, Gramolini AO. Proteomic Analysis of Human Fetal Atria and Ventricle. J Proteome Res 2014; 13:5869-78. [DOI: 10.1021/pr5007685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Littlejohns B, Heesom K, Angelini GD, Suleiman MS. The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles. Clin Proteomics 2014; 11:34. [PMID: 25249829 PMCID: PMC4158351 DOI: 10.1186/1559-0275-11-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac diseases (e.g. coronary and valve) are associated with ventricular cellular remodeling. However, ventricular biopsies from left and right ventricles from patients with different pathologies are rare and thus little is known about disease-induced cellular remodeling in both sides of the heart and between different diseases. We hypothesized that the protein expression profiles between right and left ventricles of patients with aortic valve stenosis (AVS) and patients with coronary artery disease (CAD) are different and that the protein profile is different between the two diseases. Left and right ventricular biopsies were collected from patients with either CAD or AVS. The biopsies were processed for proteomic analysis using isobaric tandem mass tagging and analyzed by reverse phase nano-LC-MS/MS. Western blot for selected proteins showed strong correlation with proteomic analysis. RESULTS Proteomic analysis between ventricles of the same disease (intra-disease) and between ventricles of different diseases (inter-disease) identified more than 500 proteins detected in all relevant ventricular biopsies. Comparison between ventricles and disease state was focused on proteins with relatively high fold (±1.2 fold difference) and significant (P < 0.05) differences. Intra-disease protein expression differences between left and right ventricles were largely structural for AVS patients and largely signaling/metabolism for CAD. Proteins commonly associated with hypertrophy were also different in the AVS group but with lower fold difference. Inter-disease differences between left ventricles of AVS and CAD were detected in 9 proteins. However, inter-disease differences between the right ventricles of CAD and AVS patients were associated with differences in 73 proteins. The majority of proteins which had a significant difference in one ventricle compared to the other pathology also had a similar trend in the adjacent ventricle. CONCLUSIONS This work demonstrates for the first time that left and right ventricles have a different proteome and that the difference is dependent on the type of disease. Inter-disease differential expression was more prominent for right ventricles. The finding that a protein change in one ventricle was often associated with a similar trend in the adjacent ventricle for a large number of proteins suggests cross-talk proteome remodeling between adjacent ventricles.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - Kate Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
47
|
Mitchell LE, Agopian AJ, Bhalla A, Glessner JT, Kim CE, Swartz MD, Hakonarson H, Goldmuntz E. Genome-wide association study of maternal and inherited effects on left-sided cardiac malformations. Hum Mol Genet 2014; 24:265-73. [PMID: 25138779 DOI: 10.1093/hmg/ddu420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Congenital left-sided lesions (LSLs) are serious, heritable malformations of the heart. However, little is known about the genetic causes of LSLs. This study was undertaken to identify common variants acting through the genotype of the affected individual (i.e. case) or the mother (e.g. via an in utero effect) that influence the risk of LSLs. A genome-wide association study (GWAS) was performed using data from 377 LSL case-parent triads, with follow-up studies in an independent sample of 224 triads and analysis of the combined data. Associations with both the case and maternal genotypes were assessed using log-linear analyses under an additive model. An association between LSLs and the case genotype for one intergenic SNP on chromosome 16 achieved genome-wide significance in the combined data (rs8061121, combined P = 4.0 × 10(-9); relative risk to heterozygote: 2.6, 95% CI: 1.9-3.7). In the combined data, there was also suggestive evidence of association between LSLs and the case genotype for a variant in the synaptoporin gene (rs1975649, combined P = 3.4 × 10(-7); relative risk to heterozygote: 1.6, 95% CI: 1.4-2.0) and between LSLs and the maternal genotype for an intergenic SNP on chromosome 10 (rs11008222, combined P = 6.3 × 10(-7); relative risk to heterozygote: 1.6, 95% CI: 1.4-2.0). This is the first GWAS of LSLs to evaluate associations with both the case and maternal genotypes. The results of this study identify three candidate LSL susceptibility loci, including one that appears to be associated with the risk of LSLs via the maternal genotype.
Collapse
Affiliation(s)
- Laura E Mitchell
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | - A J Agopian
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | - Angela Bhalla
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | | | - Michael D Swartz
- Division of Biostatistics, University of Texas School of Public Health, Houston, TX 77030, USA and
| | - Hakon Hakonarson
- The Center for Applied Genomics and Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Ge G, Zhang Q, Ma J, Qiao Z, Huang J, Cheng W, Wang H. Protective effect of Salvia miltiorrhiza aqueous extract on myocardium oxidative injury in ischemic-reperfusion rats. Gene 2014; 546:97-103. [PMID: 24831834 DOI: 10.1016/j.gene.2014.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 05/10/2014] [Indexed: 01/13/2023]
Abstract
Salvia miltiorrhiza has strong antioxidative activity. They may have a strong potential as cardioprotective agents in ischemic-reperfusion injury. Experiments were carried out in Sprague-Dawley rats with myocardium ischemia reperfusion (IR). Myocardial injuries during IR were determined by changes in electrocardiogram analysis of arrhythmias, antioxidant enzyme activities, AST, CK-MB, lactate dehydrogenase (LDH) levels, and myocyte apoptosis. Results showed that S. miltiorrhiza aqueous extract (SAME) pre-treatment significantly decreased the ST-segment (ΣST120) and myocardium MDA, AST, CK-MB, lactate dehydrogenase (LDH) levels, increased myocardium antioxidant enzyme activities, and inhibit myocardium cell apoptosis. Furthermore, the SAME pre-treatment significantly upregulated p-JAK2 and p-STAT3 protein expression, decreased myocardium TNF-α and IL-6 concentrations in IR rats. The levels of TNF-α and IL-6 were positively correlated with the changes in myocardium p-JAK2 and p-STAT3 protein expression levels in IR rats. It can be concluded that the SAME pre-treatment has anti-ischemic and anti-apoptosis activity in heart IR rats. SAME pre-treatment protects heart against IR injury, at least in part, through its stimulating effects on injury-induced deactivation of JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guanghao Ge
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China
| | - Qiong Zhang
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China
| | - Jiangwei Ma
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China.
| | - Zengyong Qiao
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China.
| | - Jianhua Huang
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China
| | - Wenbo Cheng
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China
| | - Hongwei Wang
- Department of Cardiology, Fengxian Branch of Shanghai 6th People's Hospital, Shanghai 201400, China
| |
Collapse
|
49
|
Chapalamadugu KC, VandeVoort CA, Settles ML, Robison BD, Murdoch GK. Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 2014; 9:e89096. [PMID: 24586524 PMCID: PMC3934879 DOI: 10.1371/journal.pone.0089096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA) affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta) on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight) of BPA during early (50–100±2 days post conception, dpc) or late (100±2 dpc – term), gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6) was down-regulated in the left ventricle, and ‘A Disintegrin and Metalloprotease 12’, long isoform (Adam12-l) was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyan C. Chapalamadugu
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Catherine A. VandeVoort
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Matthew L. Settles
- Department of Computer Science, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Gordon K. Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
50
|
Lin H, Dolmatova EV, Morley MP, Lunetta KL, McManus DD, Magnani JW, Margulies KB, Hakonarson H, del Monte F, Benjamin EJ, Cappola TP, Ellinor PT. Gene expression and genetic variation in human atria. Heart Rhythm 2014; 11:266-71. [PMID: 24177373 PMCID: PMC3946863 DOI: 10.1016/j.hrthm.2013.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The human left and right atria have different susceptibilities to develop atrial fibrillation (AF). However, the molecular events related to structural and functional changes that enhance AF susceptibility are still poorly understood. OBJECTIVE The purpose of this study was to characterize gene expression and genetic variation in human atria. METHODS We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function. Gene expression was profiled using the Affymetrix GeneChip Human Genome U133A Array. Genetic variation was profiled using the Affymetrix Genome-Wide Human SNP Array 6.0. RESULTS We found that 109 genes were differentially expressed between left and right atrial tissues. A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a single nucleotide polymorphism at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. CONCLUSION We found a distinct transcriptional profile between the right and left atrium and extensive cis-associations between atrial transcripts and common genetic variants. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Elena V Dolmatova
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Kathryn L Lunetta
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - David D McManus
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Cardiology Division, Department of Medicine, and Epidemiology Division, Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jared W Magnani
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Federica del Monte
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Emelia J Benjamin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Section of Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Thomas P Cappola
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts; Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts; Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|