1
|
Ouyang Z, Tan Z, Ali U, Zhang Y, Li B, Yao X, Yang B, Guo L. Ceramide-1-phosphate enhances defense responses against Sclerotinia sclerotiorum in Brassica napus. PLANT PHYSIOLOGY 2025; 197:kiae649. [PMID: 39928582 DOI: 10.1093/plphys/kiae649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 02/12/2025]
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases affecting the growth and production of Brassica napus. Sphingolipid metabolism plays a crucial role in plant response to pathogens. In this study, we show that ceramide kinase (CERK) is significantly induced during S. sclerotiorum infection to produce higher levels of ceramide-1-phosphate (C1P) in B. napus. The balance between ceramide (Cer) and C1P affects plant resistance to S. sclerotiorum, with CERK mutant lines exhibiting greater susceptibility to S. sclerotiorum and CERK overexpression lines showing enhanced resistance to this pathogen. Moreover, we identified candidate C1P-binding proteins by proteomic analysis and determined that C1P binds to and promotes the activity of a Gly-Asp-Ser-Leu lipase protein involved in B. napus resistance to S. sclerotiorum infection. In conclusion, our results indicate that C1P plays a key role in S. sclerotiorum resistance through metabolic regulation and signal transduction in B. napus.
Collapse
Affiliation(s)
- Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zengdong Tan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Usman Ali
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
2
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
3
|
Qin Y, Khan Q, Yan JW, Wang YY, Pan YF, Huang Y, Wei JL, Guo DJ, Li YR, Dong DF, Xing YX. Molecular mechanism of endophytic bacteria DX120E regulating polyamine metabolism and promoting plant growth in sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 15:1334907. [PMID: 38476689 PMCID: PMC10927768 DOI: 10.3389/fpls.2024.1334907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Introduction Sugarcane endophytic nitrogen-fixing bacterium Klebsiella variícola DX120E displayed broad impact on growth, but the exact biological mechanism, especially polyamines (PAs) role, is still meager. Methods To reveal this relationship, the content of polyamine oxidase (PAO), PAs, reactive oxygen species (ROS)-scavenging antioxidative enzymes, phytohormones, 1-aminocyclopropane-1-carboxylic synthase (ACS), chlorophyll content, and biomass were determined in sugarcane incubated with the DX120E strain. In addition, expression levels of the genes associated with polyamine metabolism were measured by transcriptomic analysis. Results Genomic analysis of Klebsiella variícola DX120E revealed that 39 genes were involved in polyamine metabolism, transport, and the strain secrete PAs in vitro. Following a 7-day inoculation period, DX120E stimulated an increase in the polyamine oxidase (PAO) enzyme in sugarcane leaves, however, the overall PAs content was reduced. At 15 days, the levels of PAs, ROS-scavenging antioxidative enzymes, and phytohormones showed an upward trend, especially spermidine (Spd), putrescine (Put), catalase (CAT), auxin (IAA), gibberellin (GA), and ACS showed a significant up-regulation. The GO and KEGG enrichment analysis found a total of 73 differentially expressed genes, involving in the cell wall (9), stimulus response (13), peroxidase activity (33), hormone (14) and polyamine metabolism (4). Discussion This study demonstrated that endophytic nitrogen-fixing bacteria stimulated polyamine metabolism and phytohormones production in sugarcane plant tissues, resulting in enhanced growth. Dual RNA-seq analyses provided insight into the early-stage interaction between sugarcane seedlings and endophytic bacteria at the transcriptional level. It showed how diverse metabolic processes selectively use distinct molecules to complete the cell functions under present circumstances.
Collapse
Affiliation(s)
- Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- Ecology College, Lishui University, Lishui, China
| | - Jia-Wei Yan
- College of Agriculture, Guangxi University, Nanning, China
| | - Yu-Yi Wang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Fei Pan
- College of Agriculture, Guangxi University, Nanning, China
| | - Ying Huang
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiang-Lu Wei
- Centre for Biotechnology Research, Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Wang W, Shi S, Kang W, He L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H 2O 2 production to increase antioxidant enzyme activity. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154139. [PMID: 37988872 DOI: 10.1016/j.jplph.2023.154139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Drought stress is a major factor limiting agricultural development, and exogenous polyamines (PAs) can increase plant drought resistance by enhancing antioxidant activity, but few studies have examined whether endogenous PAs enhance the plant antioxidant system. Here, to investigate the effects of endogenous PAs on the antioxidant system of alfalfa under drought stress and the underlying mechanisms, two alfalfa cultivars, Longzhong (drought resistant) and Gannong No. 3 (drought sensitive), were used as test materials, and their seedlings were treated with polyethylene glycol (PEG-6000) for 8 days at -1.2 MPa to simulate drought stress. The levels of free PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)], hydrogen peroxide (H2O2), malondialdehyde (MDA), key PA metabolism enzyme [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO)] activities, and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] activities were measured. These physiological indicators were used for correlation analysis to investigate the relationship between PA metabolism and the antioxidant enzyme system. The results showed that PA synthesis in alfalfa under drought stress was dominated by the ADC pathway. Spd and Spm played an important role in improving drought tolerance. The high levels of ADC and SAMDC activities were facilitated by the conversion of Put to Spd and Spm. H2O2 generation by oxidative decomposition of PAs was mainly dependent on the oxidative decomposition of DAO but not PAO. Low DAO activity favored low H2O2 production. Spd, Spm, ADC, ODC and SAMDC were positively correlated with the antioxidant enzymes SOD, CAT and POD in both cultivars under drought. Therefore, we concluded that high ADC and SAMDC activities in alfalfa promoted the conversion of Put to Spd and Spm, leading to high accumulation of Spd and Spm and low Put accumulation. Low Put levels led to low H2O2 production through low DAO activity, and low H2O2 levels induced the expression of antioxidant enzyme-encoding genes to improve antioxidant enzyme activity and reduce MDA accumulation and thereby enhanced drought resistance in alfalfa.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Wenjuan Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Long He
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
6
|
Ye M, Jiang Z, Wang Z, Wang Y, Fang S, Sun Y, Guan H, Sun D, Ma X, Zhang C, Ge Y. Physiological and proteomic responses of Chlamydomonas reinhardtii to arsenate and lead mixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113856. [PMID: 35809392 DOI: 10.1016/j.ecoenv.2022.113856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) and lead (Pb) are frequently emitted from various sources into environment, but microbial responses to their combined toxicity have not been systematically investigated. In this study, Chlamydomonas reinhardtii was exposed to two levels of arsenate (As (V), 50, 500 μg/L), Pb (II) (500, 5000 μg/L) and their mixture (50 μg/L As (V) + 500 μg/L Pb (II); 500 μg/L As (V) + 5000 μg/L Pb (II)). The growth of C. reinhardtii was inhibited more remarkably by As (V) than by Pb (II). The As stress was alleviated by Pb in the 50 μg/L As (V) + 500 μg/L Pb (II) treatment, but was enhanced upon the 500 μg/L As (V) + 5000 μg/L Pb (II) exposure, with more pronounced changes in a number of physiological parameters of the algal cells. Proteomic results showed that 71 differently expressed proteins (DEPs) in the treatment of 50 μg/L As (V) + 500 μg/L Pb (II), and 167 DEPs were identified in that of 500 μg/L As (V) + 5000 μg/L Pb (II). These proteins were involved in energy metabolism, photosynthetic carbon fixation, reactive oxygen scavenging and defense, and amino acid synthesis. Taken together, these physiological and proteomic data demonstrated that C. reinhardtii could resist the As (V) and Pb (II) combined treatments through extracellular complexation and intracellular pathways.
Collapse
Affiliation(s)
- Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhongyang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanyan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yutong Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huize Guan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Danqing Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuening Ma
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Lulai EC, Olson LL, Fugate KK, Neubauer JD, Campbell LG. Inhibitors of tri- and tetra- polyamine oxidation, but not diamine oxidation, impair the initial stages of wound-induced suberization. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153092. [PMID: 32065919 DOI: 10.1016/j.jplph.2019.153092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms regulating, and modulating potato wound-healing processes are of great importance in reducing tuber infections, reducing shrinkage and maintaining quality and nutritional value for growers and consumers. Wound-induced changes in tuber polyamine metabolism have been linked to the modulation of wound healing (WH) and in possibly providing the crucial amount of H2O2 required for suberization processes. In this investigation we determined the effect of inhibition of specific steps within the pathway of polyamine metabolism on polyamine content and the initial accumulation of suberin polyphenolics (SPP) during WH. The accumulation of SPP represents a critical part of the beginning or inchoate phase of tuber WH during closing-layer formation because it serves as a barrier to bacterial infection and is a requisite for the accumulation of suberin polyaliphatics which provide the barrier to fungal infection. Results showed that the inhibitor treatments that caused changes in polyamine content generally did not influence wound-induced accumulation of SPP. Such lack of correlation was found for inhibitors involved in metabolism and oxidation of putrescine (arginine decarboxylase, ornithine decarboxylase, and diamine oxidase). However, accumulation of SPP was dramatically reduced by treatment with guazatine, a potent inhibitor of polyamine oxidase (PAO), and methylglyoxal-bis(guanylhydrazone), a putative inhibitor of S-adenosylmethione decarboxylase which may also cross-react to inhibit PAO. The mode of action of these inhibitors is presumed to be blockage of essential H2O2 production within the WH cell wall. These results are of great importance in understanding the mechanisms modulating WH and ultimately controlling related infections and associated postharvest losses.
Collapse
Affiliation(s)
- Edward C Lulai
- United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, United States.
| | - Linda L Olson
- United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, United States
| | - Karen K Fugate
- United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, United States
| | - Jonathan D Neubauer
- United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, United States
| | - Larry G Campbell
- United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, United States
| |
Collapse
|
8
|
Li Y, Ma Y, Zhang T, Bi Y, Wang Y, Prusky D. Exogenous polyamines enhance resistance to Alternaria alternata by modulating redox homeostasis in apricot fruit. Food Chem 2019; 301:125303. [DOI: 10.1016/j.foodchem.2019.125303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
|
9
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
10
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
11
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Tang C, Zhang R, Hu X, Song J, Li B, Ou D, Hu X, Zhao Y. Exogenous spermidine elevating cadmium tolerance in Salix matsudana involves cadmium detoxification and antioxidant defense. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:305-315. [PMID: 30648425 DOI: 10.1080/15226514.2018.1524829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
In this study, exogenous spermidine role on Salix matsudana tolerance to cadmium was evaluated. Spermidine and cadmium presented antagonistic effects on the biomass, copper and zinc concentrations in S. matsudana. cadmium mainly distributed in the cell wall of subcellular fraction; 46.97%-60.43% of cadmium existed in a sodium chloride-extracted form. Cadmium contents in roots, leaves, and twigs ranged from 2002.67 to 3961.00, 111.59 to 229.72, and 102.56 to 221.27 mg/kg, respectively. Spermidine application elevated cadmium concentrations in the roots, cuttings, and cell wall and the ratio of deionized water-extracted cadmium, but decreased cadmium levels in the twigs and leaves and the fractions of cadmium extracted by ethanol and sodium chloride, respectively. Putrescine and malondialdehyde were important indicators of cadmium-induced oxidative damage. Exogenous spermidine alleviated the accumulation of superoxide anion, hydrogen peroxide, malondialdehyde via promoting the levels of spermidine, soluble protein, superoxide dismutase, reductive ascorbate, glutathione reductase, and glutathione peroxidase in S. matsudana leaves under the corresponding cadmium stress. The results indicated that S. matsudana was a candidate for cadmium rhizoremediation and extraction in leaves; the spermidine application enhanced the cadmium tolerance of S. matsudana through promoting cadmium accumulation in roots, cell wall, and less bioactive chemical forms and the antioxidative ability.
Collapse
Affiliation(s)
- Chunfang Tang
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Riqing Zhang
- b College of Forestry , Central South University of Forestry and Technology , Changsha , China
| | - Xinjiang Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| | - Jinfeng Song
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Bing Li
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Danling Ou
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Xi Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Yunlin Zhao
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| |
Collapse
|
13
|
Eliášová K, Vondráková Z, Gemperlová L, Neděla V, Runštuk J, Fischerová L, Malbeck J, Trávníčková A, Cvikrová M, Vágner M. The Response of Picea abies Somatic Embryos to UV-B Radiation Depends on the Phase of Maturation. FRONTIERS IN PLANT SCIENCE 2018; 9:1736. [PMID: 30538715 PMCID: PMC6277568 DOI: 10.3389/fpls.2018.01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Ultraviolet-B (UV-B) radiation is a key environmental signal which initiates diverse responses that affect the metabolism, development, and viability of plants. In keeping with our previous studies, we concentrated primarily on how UV-B radiation affects Norway spruce [Picea abies (L.) Karst.] somatic embryo maturation and how phenolics and polyamines (PAs) are linked to the defense response invoked by UV-B irradiation. We treated clusters of Norway spruce embryogenic culture (EC) with UV-B during the five stages of embryo maturation (early, cylindrical, precotyledonary, cotyledonary, and mature embryos). For the first time, we take an advantage of the unique environmental scanning electron microscope AQUASEM II to characterize somatic embryos in their native state. The severity of the irradiation effect on embryonal cell viability was shown to be dependent on the intensity of radiation as well as the stage of embryo development, and might be related to the formation of protoderm. The response of early embryos was characterized by an increase in malondialdehyde (MDA), a marked decrease in PA contents and a decline in phenolics. The reduced ability to activate the defense system seems to be responsible not only for the severe cell damage and decrease in viability but also for the inhibition of embryo development. The significant reduction in spermidine (Spd), which has been reported to be crucial for the somatic embryo development of several coniferous species, may be causally linked to the limited development of embryos. The pronounced decrease in cell wall-bound ferulic acid might correspond to failure of somatic embryos to reach more advanced stages of development. Embryos at later stages of development showed stress defense responses that were more efficient against UV-B exposure.
Collapse
Affiliation(s)
- Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Vilém Neděla
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Jiří Runštuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Fischerová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Malbeck
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Trávníčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Vágner
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
14
|
Recalde L, Vázquez A, Groppa MD, Benavides MP. Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants. PROTOPLASMA 2018; 255:1295-1307. [PMID: 29511833 DOI: 10.1007/s00709-018-1227-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 05/23/2023]
Abstract
Polyamines (PAs) produce H2O2 and nitric oxide (NO) during their normal catabolism and modulate plant growth and development. To explore the biochemical basis of PAs-induced growth inhibition in Triticum aestivum L seedlings, we examined the role of O2·-, H2O2 or NO in shoot and root development. Although all PA treatments resulted in a variable reduction of root and shoot elongation, spermine (Spm) caused the greater inhibition in a similar way to that observed with the NO donor, sodium nitroprusside (SNP). In both cases, O2·- production was completely blocked whereas H2O2 formation was high in the root apex under SNP or Spm treatments. Catalase recovered root and shoot growth in SNP but not in Spm-treated plants, revealing the involvement of H2O2 in SNP-root length reduction. The addition of the NO scavenger, cPTIO, restored root length in SNP- or Spm-treated plants, respectively, and partially recovered O2·- levels, compared to the plants exposed to PAs or SNP without cPTIO. A strong correlation was observed between root growth restoration and O2·- accumulation after treating roots with SNP + aminoguanidine, a diamine oxidase inhibitor, and with SNP + 1,8-diaminoctane, a polyamine oxidase inhibitor, confirming the essential role of O2·- formation for root growth and the importance of the origin and level of H2O2. The differential modulation of wheat growth by PAs through reactive oxygen species or NO is discussed. Graphical abstract Polyamines, nitric oxide and ROS interaction in plants during plant growth.
Collapse
Affiliation(s)
- Laura Recalde
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Vegetal, Universidad de Buenos Aires, Junín 956 1º piso, C1113AAC, Buenos Aires, Argentina
| | - Analía Vázquez
- IQUIFIB-CONICET, Junín 956, C1113AAC, Buenos Aires, Argentina
| | - María D Groppa
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Vegetal, Universidad de Buenos Aires, Junín 956 1º piso, C1113AAC, Buenos Aires, Argentina
- IQUIFIB-CONICET, Junín 956, C1113AAC, Buenos Aires, Argentina
| | - María Patricia Benavides
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Vegetal, Universidad de Buenos Aires, Junín 956 1º piso, C1113AAC, Buenos Aires, Argentina.
- IQUIFIB-CONICET, Junín 956, C1113AAC, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Gémes K, Mellidou Ι, Karamanoli K, Beris D, Park KY, Matsi T, Haralampidis K, Constantinidou HI, Roubelakis-Angelakis KA. Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:1-12. [PMID: 28135604 DOI: 10.1016/j.jplph.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 05/02/2023]
Abstract
Polyamine (PA) homeostasis is associated with plant development, growth and responses to biotic/abiotic stresses. Apoplastic PA oxidase (PAO) catalyzes the oxidation of PAs contributing to cellular homeostasis of reactive oxygen species (ROS) and PAs. In tobacco, PAs decrease with plant age, while apoplastic PAO activity increases. Our previous results with young transgenic tobacco plants with enhanced/reduced apoplastic PAO activity (S-ZmPAO/AS-ZmPAO, respectively) established the importance of apoplastic PAO in controlling tolerance to short-term salt stress. However, it remains unclear if the apoplastic PAO pathway is important for salt tolerance at later stages of plant development. In this work, we examined whether apoplastic PAO controls also plant development and tolerance of adult plants during long-term salt stress. The AS-ZmPAO plants contained higher Ca2+ during salt stress, showing also reduced chlorophyll content index (CCI), leaf area and biomass but taller phenotype compared to the wild-type plants during salt. On the contrary, the S-ZmPAO had more leaves with slightly greater size compared to the AS-ZmPAO and higher antioxidant genes/enzyme activities. Accumulation of proline in the roots was evident at prolonged stress and correlated negatively with PAO deregulation as did the transcripts of genes mediating ethylene biosynthesis. In contrast to the strong effect of apoplastic PAO to salt tolerance in young plants described previously, the effect it exerts at later stages of development is rather moderate. However, the different phenotypes observed in plants deregulating PAO reinforce the view that apoplastic PAO exerts multifaceted roles on plant growth and stress responses. Our data suggest that deregulation of the apoplastic PAO can be further examined as a potential approach to breed plants with enhanced/reduced tolerance to abiotic stress with minimal associated trade-offs.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece; Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvari krt. 62, Hungary
| | | | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Ky Young Park
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea
| | - Theodora Matsi
- School of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
16
|
Chen D, Cao B, Qi L, Yin L, Wang S, Deng X. Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. ANNALS OF BOTANY 2016; 118:305-15. [PMID: 27325899 PMCID: PMC4970372 DOI: 10.1093/aob/mcw111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/03/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the alleviating effect of Si on potassium (K) deficiency and its underlying mechanism are poorly understood. Here, we examined whether Si-regulated putrescine (Put) metabolisms are involved in Si-alleviated K deficiency. METHODS Sorghum seedlings were grown in K deficiency solution with and without Si for 15 d. The influence of K deficiency and Si on leaf chlorosis symptoms, K(+) concentration, polyamine (PA) levels, amine oxidase activities, the transcription of Put synthesis genes, antioxidant enzyme activities and H2O2 accumulation were measured. KEY RESULTS Under K-sufficient conditions, plant growth was not affected by Si application. Si application significantly alleviated the growth inhibition induced by K-deficient stress, however. K deficiency induced leaf chlorosis and reduction in several leaf chlorosis-related metrics, including photosynthesis, efficiency of photosystem II photochemistry, chlorophyll content and chlorophyll a/b ratio; all of these changes were moderated by Si application. Si application did not influence the K(+) concentration in leaves under K-sufficient or K-deficient conditions. It did, however, decrease the excessive accumulation of Put that was otherwise induced by K deficiency. Simultaneously, Put synthesis gene transcription and activation of amine oxidases were down-regulated by Si application under K-deficient conditions. In addition, Si reduced K-deficiency-enhanced antioxidant enzyme activities and decreased K-deficiency-induced H2O2 accumulation. CONCLUSIONS These results indicate that Si application could reduce K-deficiency-induced Put accumulation by inhibiting Put synthesis and could decrease H2O2 production via PA oxidation. Decreased H2O2 accumulation contributes to the alleviation of cell death, thereby also alleviating K-deficiency-induced leaf chlorosis and necrosis.
Collapse
Affiliation(s)
- Daoqian Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation College of Life Sciences
| | - Beibei Cao
- College of Nat Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingyun Qi
- College of Nat Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation College of Life Sciences,
| |
Collapse
|
17
|
Gupta DB, Rai Y, Gayali S, Chakraborty S, Chakraborty N. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights. FRONTIERS IN PLANT SCIENCE 2016; 7:460. [PMID: 27148291 PMCID: PMC4829595 DOI: 10.3389/fpls.2016.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/29/2023]
Abstract
Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.
Collapse
Affiliation(s)
- Deepti B. Gupta
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Yogita Rai
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| |
Collapse
|
18
|
Mellidou I, Moschou PN, Ioannidis NE, Pankou C, Gėmes K, Valassakis C, Andronis EA, Beris D, Haralampidis K, Roussis A, Karamanoli A, Matsi T, Kotzabasis K, Constantinidou HI, Roubelakis-Angelakis KA. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:379. [PMID: 27064210 PMCID: PMC4814703 DOI: 10.3389/fpls.2016.00379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) are nitrogenous molecules that are indispensable for cell viability and with an agreed-on role in the modulation of stress responses. Tobacco plants with downregulated SAMDC (AS-SAMDC) exhibit reduced PAs synthesis but normal levels of PA catabolism. We used AS-SAMDC to increase our understanding on the role of PAs in stress responses. Surprisingly, at control conditions AS-SAMDC plants showed increased biomass and altered developmental characteristics, such as increased height and leaf number. On the contrary, during salt stress AS-SAMDC plants showed reduced vigor when compared to the WT. During salt stress, the AS-SAMDC plants although showing compensatory readjustments of the antioxidant machinery and of photosynthetic apparatus, they failed to sustain their vigor. AS-SAMDC sensitivity was accompanied by inability to effectively control H2O2 levels and concentrations of monovalent and divalent cations. In accordance with these findings, we suggest that PAs may regulate the trade-off between growth and tolerance responses.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology and Linnean Center of Plant Sciences, Uppsala BioCentrum, Swedish University of Agricultural SciencesUppsala, Sweden
| | | | - Chryssa Pankou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Katalin Gėmes
- Biological Research Centre, Hungarian Academy of SciencesSzeged, Hungary
| | | | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Andreas Roussis
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Aikaterini Karamanoli
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Theodora Matsi
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | | - Helen-Isis Constantinidou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | |
Collapse
|
19
|
Yu Y, Jin C, Sun C, Wang J, Ye Y, Lu L, Lin X. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:280-288. [PMID: 26142157 DOI: 10.1016/j.jhazmat.2015.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 06/04/2023]
Abstract
Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
20
|
Iakimova E, Atanassov A, Woltering E. Chemical- and Pathogen-Induced Programmed Cell Death in Plants. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
22
|
Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem 2014; 1:42. [PMID: 24790970 PMCID: PMC3982577 DOI: 10.3389/fchem.2013.00042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Collapse
Affiliation(s)
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, México
| |
Collapse
|
23
|
Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:132. [PMID: 24765099 PMCID: PMC3982065 DOI: 10.3389/fpls.2014.00132] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.
Collapse
Affiliation(s)
- Efthimios A. Andronis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| | - Imene Toumi
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
| | - Kalliopi A. Roubelakis-Angelakis
- Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of CreteHeraklion, Greece
- *Correspondence: Kalliopi A. Roubelakis-Angelakis, Laboratory of Plant Physiology and Biotechnology, Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece e-mail:
| |
Collapse
|
24
|
Wang H, Liang W, Huang J. Putrescine Mediates Aluminum Tolerance in Red Kidney Bean by Modulating Aluminum-Induced Oxidative Stress. CROP SCIENCE 2013; 53:2120-2128. [PMID: 0 DOI: 10.2135/cropsci2013.04.0215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Huahua Wang
- College of Life Sciences; Henan Normal Univ.; Xinxiang, 453007 Henan Province China
| | - Weihong Liang
- College of Life Sciences; Henan Normal Univ.; Xinxiang, 453007 Henan Province China
| | - Junjun Huang
- College of Life Sciences; Henan Normal Univ.; Xinxiang, 453007 Henan Province China
| |
Collapse
|
25
|
Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2523-38. [PMID: 23606413 DOI: 10.1093/jxb/ert115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.
Collapse
Affiliation(s)
- Tingting Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
26
|
Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 2013; 8:e59924. [PMID: 23533660 PMCID: PMC3606239 DOI: 10.1371/journal.pone.0059924] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/19/2013] [Indexed: 01/07/2023] Open
Abstract
Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na(+)/K(+) ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.
Collapse
Affiliation(s)
- Yan-Guo Sun
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Bo Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Shang-Hui Jin
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Xiao-Xia Qu
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
27
|
Comparison of intact Arabidopsis thaliana leaf transcript profiles during treatment with inhibitors of mitochondrial electron transport and TCA cycle. PLoS One 2012; 7:e44339. [PMID: 23028523 PMCID: PMC3445595 DOI: 10.1371/journal.pone.0044339] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/02/2012] [Indexed: 01/02/2023] Open
Abstract
Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Mitochondrial reactive oxygen species (mtROS) are a MRR signaling component, but whether all MRR requires ROS is not established. Inhibition of the cytochrome respiratory pathway by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA), each of which initiates MRR, can increase ROS production in some plant cells. We found that for AA and MFA applied to leaves of soil-grown Arabidopsis thaliana plants, ROS production increased with AA, but not with MFA, allowing comparison of transcript profiles under different ROS conditions during MRR. Variation in transcript accumulation over time for eight nuclear encoded mitochondrial protein genes suggested operation of both common and distinct signaling pathways between the two treatments. Consequences of mitochondrial perturbations for the whole transcriptome were examined by microarray analyses. Expression of 1316 and 606 genes was altered by AA and MFA, respectively. A subset of genes was similarly affected by both treatments, including genes encoding photosynthesis-related proteins. MFA treatment resulted in more down-regulation. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from AA or MFA inhibition were most similarly affected by biotic stresses such as pathogens. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.
Collapse
|
28
|
Yao Y, Xu G, Mou D, Wang J, Ma J. Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese. CHEMOSPHERE 2012; 89:150-7. [PMID: 22694775 DOI: 10.1016/j.chemosphere.2012.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/07/2023]
Abstract
To explore the underlying mechanism for the high tolerance to excess manganese stress in the grape species (Vitis vinifera Linn), we observed the subcellular compartment of Mn element, anatomic and biochemical responses of two grape cultivars (Combier and Shuijin) under excess Mn stress in semi-controlled environmental condition. Grape species exhibited typical detoxifying or tolerant mechanism as following: first, majority of Mn element accumulated in leaf was excluded into cell wall or comparted into cell vacuole to avoid cellular Mn-toxicity; Mn and other elements were also secreted into leaf surface or deposited in vascular wall; second, only small amount of Mn was located in cellular organ, and excess Mn in chloroplast was detoxified by depositing in starch granule, which serve as a novel detoxifying strategy; additionally, the cellular Mn was further chelated by phytochelatins; third, to quench the toxic oxygen radicals, the total phenolic compounds and polyamine (putrescine and spermidine) were enhanced. Although the obvious symptom of Mn-toxicity was not detected, we observed the dessication symptom under high level of Mn treatment in the two cultivars, such as sunk stomata, thickened palisade tissue, enhanced palisade/spongy tissue ratio and abscisic acid concentration. The growth inhibition and dessication symptom in the two grape cultivars could be largely associated with osmotic stress resulted from high concentration of leaf Mn.
Collapse
Affiliation(s)
- Yinan Yao
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China.
| | | | | | | | | |
Collapse
|
29
|
Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:49-58. [PMID: 22118615 DOI: 10.1016/j.plantsci.2011.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 05/18/2023]
Abstract
The effect of heat stress on the accumulation of proline and on the level of polyamines (PAs) in tobacco plants was investigated. Responses to heat stress were compared in the upper and lower leaves and roots of tobacco plants that constitutively over-express a modified gene for the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase (P5CSF129A) and in the corresponding wild-type. In the initial phases of heat stress (after 2h at 40°C), the accumulation of proline increased in the wild type but slightly decreased in the transformants. The response to heat stress in proline-over-producing tobacco plants involved a transient increase in the levels of free and conjugated putrescine (Put) and in the levels of free spermidine (Spd), norspermidine (N-Spd) and spermine (Spm) after a 2-h lag phase, which correlated with stimulation of the activity of the corresponding biosynthetic enzymes. Diamine oxidase (DAO) activity increased in both plant genotypes, most significantly in the leaves of WT plants. Polyamine oxidase (PAO) activity increased in the roots of WT plants and decreased in the leaves and roots of the transformants. After 6h of heat stress, proline accumulation was observed in the transformants, especially in the lower leaves; much more modest increase was observed in the WT plants. A decrease in the levels of free and conjugated Put coincided with down-regulation of the activity of ornithine decarboxylase and marked stimulation of DAO activity in the leaves and roots of the transformants. PAO activity increased in the roots of the transformants but decreased in the leaves. Conversely, in WT tobacco subjected to 6h of heat stress, slight increases in free and conjugated PA levels were observed and the activity of DAO only increased in the roots; PAO activity did not change from the value observed during the initial phase of heat stress. 6 Hours' heat stress had no effect on the level of malondialdehyde (MDA; a product of lipid peroxidation), in the upper leaves of either genotype. After a recovery period (2h at 25°C), most of the studied parameters exhibited values comparable to those observed in untreated plants. The coordination of the proline and polyamine biosynthetic pathways during heat stress conditions is discussed.
Collapse
Affiliation(s)
- Milena Cvikrová
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes. PLANT PHYSIOLOGY 2011; 157:2167-80. [PMID: 21980172 PMCID: PMC3327209 DOI: 10.1104/pp.111.179671] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/03/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K(+) and Ca(2+) fluxes induced by hydroxyl radicals (OH(•)) in pea (Pisum sativum) roots. OH(•), but not hydrogen peroxide, activated a rapid Ca(2+) efflux and a more slowly developing net Ca(2+) influx concurrent with a net K(+) efflux. In isolated protoplasts, OH(•) evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K(+) efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca(2+). Active OH(•)-induced Ca(2+) efflux in roots was suppressed by the PM Ca(2+) pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH(•)-induced ionic currents in root protoplasts and K(+) efflux and Ca(2+) influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH(•)-induced cation fluxes. The net OH(•)-induced Ca(2+) efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH(•)-induced net K(+) efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca(2+) homeostasis by modulating both Ca(2+) influx and efflux transport systems at the root cell PM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor I. Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Mexico (I.Z.-J., A.M.V.-B., R.E.-F., J.M.-M., I.I.P.); School of Agricultural Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.B., S.S.)
| |
Collapse
|
31
|
Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, Lers A. Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. MOLECULAR PLANT 2011; 4:1062-73. [PMID: 21665915 DOI: 10.1093/mp/ssr045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant senescence- or PCD-associated nucleases share significant homology with nucleases from different organisms. However, knowledge of their function is limited. Intracellular localization of the Arabidopsis senescence- and PCD-associated nuclease BFN1 was investigated. Analysis of BFN1-GFP localization in transiently transformed tobacco protoplasts revealed initial localization in filamentous structures spread throughout the cytoplasm, which then clustered around the nuclei as the protoplasts senesced. These filamentous structures were identified as being of ER origin. In BFN1-GFP-transgenic Arabidopsis plants, similar localization of BFN1-GFP was observed in young leaves, that is, in filamentous structures that reorganized around the nuclei only in senescing cells. In late senescence, BFN1-GFP was localized with fragmented nuclei in membrane-wrapped vesicles. BFN1's postulated function as a nucleic acid-degrading enzyme in senescence and PCD is supported by its localization pattern. Our results suggest the existence of a dedicated compartment mediating nucleic acid degradation in senescence and PCD processes.
Collapse
Affiliation(s)
- Sarit Farage-Barhom
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Mechanisms of Cd Hyperaccumulation and Detoxification in Heavy Metal Hyperaccumulators: How Plants Cope with Cd. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-22746-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi A, Tari I. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. PHYSIOLOGIA PLANTARUM 2011; 142:179-92. [PMID: 21338371 DOI: 10.1111/j.1399-3054.2011.01461.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Plant Biology, University of Szeged, PO Box 654, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
34
|
Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H₂O₂ production and transcriptional alteration. BMC PLANT BIOLOGY 2011; 11:55. [PMID: 21439092 PMCID: PMC3078878 DOI: 10.1186/1471-2229-11-55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene. RESULTS In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents. Pinprick inoculation demonstrated that the transgenic lines were less susceptible to Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus canker, than the wild type plants (WT). In addition, our data showed that upon Xac attack TG9 had significantly higher free spermine (Spm) and polyamine oxidase (PAO) activity when compared with the WT, concurrent with an apparent hypersensitive response and the accumulation of more H₂O₂. Pretreatment of TG9 leaves with guazatine acetate, an inhibitor of PAO, repressed PAO activity and reduced H₂O₂ accumulation, leading to more conspicuous disease symptoms than the controls when both were challenged with Xac. Moreover, mRNA levels of most of the defense-related genes involved in synthesis of pathogenesis-related protein and jasmonic acid were upregulated in TG9 than in the WT regardless of Xac infection. CONCLUSION Our results demonstrated that overexpression of the MdSPDS1 gene prominently lowered the sensitivity of the transgenic plants to canker. This may be, at least partially, correlated with the generation of more H₂O₂ due to increased production of polyamines and enhanced PAO-mediated catabolism, triggering hypersensitive response or activation of defense-related genes.
Collapse
Affiliation(s)
- Xing-Zheng Fu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuan-Wu Chen
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Takaya Moriguchi
- National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
35
|
Fortes AM, Costa J, Santos F, Seguí-Simarro JM, Palme K, Altabella T, Tiburcio AF, Pais MS. Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. PLANT SIGNALING & BEHAVIOR 2011; 6:258-69. [PMID: 21415599 PMCID: PMC3121987 DOI: 10.4161/psb.6.2.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/10/2010] [Accepted: 12/16/2010] [Indexed: 05/29/2023]
Abstract
Hop (Humulus lupulus L.) is an economically important plant species used in beer production and as a health-promoting medicine. Hop internodes develop upon stress treatments organogenic nodules which can be used for genetic transformation and micropropagation. Polyamines are involved in plant development and stress responses. Arginine decarboxylase (ADC; EC 4·1.1·19) is a key enzyme involved in the biosynthesis of putrescine in plants. Here we show that ADC protein was increasingly expressed at early stages of hop internode culture (12h). Protein continued accumulating until organogenic nodule formation after 28 days, decreasing thereafter. The same profile was observed for ADC transcript suggesting transcriptional regulation of ADC gene expression during morphogenesis. The highest transcript and protein levels observed after 28 days of culture were accompanied by a peak in putrescine levels. Reactive oxygen species accumulate in nodular tissues probably due to stress inherent to in vitro conditions and enhanced polyamine catabolism. Conjugated polyamines increased during plantlet regeneration from nodules suggesting their involvement in plantlet formation and/or in the control of free polyamine levels. Immunogold labeling revealed that ADC is located in plastids, nucleus and cytoplasm of nodular cells. In vacuolated cells, ADC immunolabelling in plastids doubled the signal of proplastids in meristematic cells. Location of ADC in different subcellular compartments may indicate its role in metabolic pathways taking place in these compartments. Altogether these data suggest that polyamines play an important role in organogenic nodule formation and represent a progress towards understanding the role played by these growth regulators in plant morphogenesis.
Collapse
Affiliation(s)
- Ana M Fortes
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), ICAT, FCUL, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443-64. [PMID: 20433195 DOI: 10.1021/pr901098p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water-deficit or dehydration impairs almost all physiological processes and greatly influences the geographical distribution of many crop species. It has been postulated that higher plants rely mostly on induction mechanisms to maintain cellular integrity during stress conditions. Plant cell wall or extracellular matrix (ECM) forms an important conduit for signal transduction between the apoplast and symplast and acts as front-line defense, thereby playing a key role in cell fate decision under various stress conditions. To better understand the molecular mechanism of dehydration response in plants, four-week-old rice seedlings were subjected to progressive dehydration by withdrawing water and the changes in the ECM proteome were examined using two-dimensional gel electrophoresis. Dehydration-responsive temporal changes revealed 192 proteins that change their intensities by more than 2.5-fold, at one or more time points during dehydration. The proteomic analysis led to the identification of about 100 differentially regulated proteins presumably involved in a variety of functions, including carbohydrate metabolism, cell defense and rescue, cell wall modification, cell signaling and molecular chaperones, among others. The differential rice proteome was compared with the dehydration-responsive proteome data of chickpea and maize. The results revealed an evolutionary divergence in the dehydration response as well as organ specificity, with few conserved proteins. The differential expression of the candidate proteins, in conjunction with previously reported results, may provide new insight into the underlying mechanisms of the dehydration response in plants. This may also facilitate the targeted alteration of metabolic routes in the cell wall for agricultural and industrial exploitation.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. PLANT PHYSIOLOGY 2010; 152:968-84. [PMID: 19965964 PMCID: PMC2815906 DOI: 10.1104/pp.109.150557] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/28/2009] [Indexed: 05/18/2023]
Abstract
Cyst nematodes are sedentary plant parasites that cause dramatic cellular changes in the plant root to form feeding cells, so-called syncytia. 10A06 is a cyst nematode secretory protein that is most likely secreted as an effector into the developing syncytia during early plant parasitism. A homolog of the uncharacterized soybean cyst nematode (Heterodera glycines), 10A06 gene was cloned from the sugar beet cyst nematode (Heterodera schachtii), which is able to infect Arabidopsis (Arabidopsis thaliana). Constitutive expression of 10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii as well as to other plant pathogens. Using yeast two-hybrid assays, we identified Spermidine Synthase2 (SPDS2), a key enzyme involved in polyamine biosynthesis, as a specific 10A06 interactor. In support of this protein-protein interaction, transgenic plants expressing 10A06 exhibited elevated SPDS2 mRNA abundance, significantly higher spermidine content, and increased polyamine oxidase (PAO) activity. Furthermore, the SPDS2 promoter was strongly activated in the nematode-induced syncytia, and transgenic plants overexpressing SPDS2 showed enhanced plant susceptibility to H. schachtii. In addition, in planta expression of 10A06 or SPDS2 increased mRNA abundance of a set of antioxidant genes upon nematode infection. These data lend strong support to a model in which the cyst nematode effector 10A06 exerts its function through the interaction with SPDS2, thereby increasing spermidine content and subsequently PAO activity. Increasing PAO activity results in stimulating the induction of the cellular antioxidant machinery in syncytia. Furthermore, we observed an apparent disruption of salicylic acid defense signaling as a function of 10A06. Most likely, increased antioxidant protection and interruption of salicylic acid signaling are key aspects of 10A06 function in addition to other physiological and morphological changes caused by altered polyamines, which are potent plant signaling molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011 (T.H., P.J.H., T.R.M., T.J.B.); Department of Plant Pathology, University of Georgia, Athens, Georgia 30602 (R.S.H.); Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.); and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 (E.L.D.)
| |
Collapse
|
38
|
Andronis EA, Roubelakis-Angelakis KA. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. PLANTA 2010; 231:437-48. [PMID: 19937341 DOI: 10.1007/s00425-009-1060-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/30/2009] [Indexed: 05/08/2023]
Abstract
Recent results have identified mitochondria as centers of stress-induced generation of reactive oxygen species in plants. Depolarization of plant mitochondrial membrane during stress results the release of programmed cell death (PCD)-inducing factors in the cytosol in a fashion similar to the onset of animal-like PCD. Herein, we report significant similarities of animal-like PCD and salinity stress-induced plant PCD. Short-term salinity stress (3 h) led to depolarization of the mitochondrial membrane, release of cytochrome c (CYT-c), which was visualized using a contemporary molecular technique, activation of caspase-3 type proteases and the onset of PCD in wild type tobacco plants, Nicotiana tabacum cv. Petit Havana. However, PCD was not manifested during long-term salinity stress (24 h). Interestingly long-term salinity stress led to necrotic-like features, which were accompanied by collapse of respiration, reduction of key components of the respiratory chain, such as CYT-c and alternative oxidase, ATP depletion and high proteolytic activity. The results suggest that salinity stress of tobacco plants in planta leads to the onset of animal-like PCD only during the early stages post-stress, while long-term stress leads to necrotic-like features.
Collapse
Affiliation(s)
- Efthimios A Andronis
- Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklion Crete, Greece.
| | | |
Collapse
|
39
|
Ozawa R, Bertea CM, Foti M, Narayana R, Arimura GI, Muroi A, Horiuchi JI, Nishioka T, Maffei ME, Takabayashi J. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid. PLANT & CELL PHYSIOLOGY 2009; 50:2183-99. [PMID: 19884250 DOI: 10.1093/pcp/pcp153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M. Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata. CHEMOSPHERE 2009; 76:1372-1379. [PMID: 19577789 DOI: 10.1016/j.chemosphere.2009.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
In this work, we have analyzed the changes in the protein expression profile elicited by chromium (Cr) exposure in the freshwater green alga Pseudokirchneriella subcapitata, a well known bio-indicator of water pollution. We tested two experimental conditions, namely 0.2 and 1ppm of potassium dichromate; this concentration range includes the environmentally-relevant concentrations. Results show that neither concentration of potassium dichromate tested inhibited algal growth. However, the proteomic approach allowed the identification of relevant modifications in protein expression. In fact, among 800 protein spots detected by two-dimensional electrophoresis, 16 Cr-regulated proteins, including predicted and novel ones, were identified using tandem mass spectromic protein analysis. The results demonstrate a Cr-specific action in altering several photosynthetic proteins, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), RuBisCO activase, Light Harvesting Chla/b protein complex, and stress related Chla/b binding protein1. Although Cr toxicity with respect to photosynthesis has been already documented, here we have identified, for the first time, the target proteins of this toxicity. Cr also induced a modulation of some proteins involved in the metabolism of the amino acids glutamine, arginine and methionine. These data are supported by changes in cellular polyamine (PA) accumulation. Present findings provide new insight into the molecular mechanisms underlying Cr toxicity in P. subcapitata.
Collapse
Affiliation(s)
- Candida Vannini
- Dipartimento Ambiente, Salute, Sicurezza, Università degli Studi dell'Insubria, via G.B. Vico 46, Varese, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T. Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 2009; 19:91-103. [DOI: 10.1007/s11248-009-9296-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 06/08/2009] [Indexed: 01/28/2023]
|
42
|
Szepesi A, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:914-25. [PMID: 19185387 DOI: 10.1016/j.jplph.2008.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 05/02/2023]
Abstract
Pre-treatment with 10(-4)M salicylic acid (SA) in hydroponic culture medium provided protection against salinity stress in tomato plants (Solanum lycopersicum L. cv. Rio Fuego). The effect of 10(-7) or 10(-4)M SA on the water status of plants was examined in relation to the biosynthesis and accumulation of abscisic acid (ABA) in order to reveal the role of SA in the subsequent response to salt stress. Both pre-treatments inhibited the K+(86Rb+) uptake of plants, reduced the K+ content of leaves, and caused a decrease in leaf water potential (psi(w)). Due to the changes in the cellular water status, SA triggered the accumulation of ABA. Since the decrease in psi(w) proved to be transient, the effect of SA on ABA synthesis may also develop via other mechanisms. In spite of osmotic adaptation, the application of 10(-4)M, but not 10(-7)M SA, led to prolonged ABA accumulation and to enhanced activity of aldehyde oxidase (AO1, EC.1.2.3.1.), an enzyme responsible for the conversion of ABA-aldehyde to ABA, both in root and leaf tissues. AO2-AO4 isoforms from the root extracts also exhibited increased activities. The fact that the activities of AO are significantly enhanced both in the leaves and roots of plants exposed to 10(-4)M SA, may indicate a positive feedback regulation of ABA synthesis by ABA in this system. Moreover, during a 100mM NaCl treatment, higher levels of free putrescine or spermine were found in these leaves or roots, respectively, than in the salt-stressed controls, suggesting that polyamines may be implicated in the protection response of the cells. As a result, Na+ could be transported to the leaf mesophyll cells without known symptoms of salt toxicity.
Collapse
Affiliation(s)
- Agnes Szepesi
- Department of Plant Biology, University of Szeged, H-6701 Szeged, Középfasor 52, P.O. Box 654, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Yoda H, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H. Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. PLANT MOLECULAR BIOLOGY 2009; 70:103-12. [PMID: 19190986 DOI: 10.1007/s11103-009-9459-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/15/2009] [Indexed: 05/22/2023]
Abstract
The hypersensitive response (HR) is a powerful resistance system that plants have developed against pathogen attack. There are two major pathways for HR induction; one is through recognition of the pathogen by a specific host protein, and is known as the host HR. The other is through common biochemical changes upon infection--the nonhost HR. We previously demonstrated that hydrogen peroxide derived from polyamine degradation by polyamine oxidase triggers the typical host HR in tobacco plants upon infection with tobacco mosaic virus. However, it remains to be determined whether or not polyamines are involved in the nonhost HR in tobacco, and in the host HR in other plant species. When tobacco plants were infected with Pseudomonas cichorii, a representative nonhost pathogen, transcripts for six genes encoding enzymes for polyamine metabolism were simultaneously induced, and polyamines were accumulated in apoplasts. Hydrogen peroxide was concomitantly produced and hypersensitive cell death occurred at infected sites. Silencing of polyamine oxidase by the virus-induced gene silencing method resulted in suppression of hydrogen peroxide production and in disappearance of visible hypersensitive cell death with an increase in bacterial growth. Our results indicated that polyamines served as the source of hydrogen peroxide during the nonhost HR in tobacco plants. Further analysis revealed that polyamines were accumulated in apoplasts of Arabidopsis thaliana infected with Pseudomonas syringae, and of rice infected with Magnaporthe grisea, both causing the typical host HR. As in tobacco, it is conceivable that the same mechanism operates for nonhost HR in these plants. Our present observations thus suggested that polyamines are commonly utilized as the source of hydrogen peroxide during host- and nonhost HRs in higher plants.
Collapse
Affiliation(s)
- Hiroshi Yoda
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Mohapatra S, Minocha R, Long S, Minocha SC. Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:262-271. [PMID: 19136266 DOI: 10.1016/j.plaphy.2008.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/07/2008] [Accepted: 12/08/2008] [Indexed: 05/27/2023]
Abstract
While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigraxmaximowiczii) differing in their PA contents. Whereas the control cell line was transformed with beta-glucuronidase (GUS), the other, called HP (High Putrescine), was transformed with a mouse ornithine decarboxylase (mODC) gene. The expression of mODC resulted in several-fold increased production of putrescine as well its enhanced catabolism. The two cell lines followed a similar trend of growth over the seven-day culture cycle, but the HP cells had elevated levels of soluble proteins. Accumulation of H(2)O(2) was higher in the HP cells than the control cells, and so were the activities of glutathione reductase and monodehydroascorbate reductase; the activity of ascorbate peroxidase was lower in the former. The contents of reduced glutathione and glutamate were significantly lower in the HP cells but proline was higher on some days of analysis. There was a small difference in mitochondrial activity between the two cell lines, and the HP cells showed increased membrane damage. In the HP cells, increased accumulation of Ca was concomitant with lower accumulation of K. We conclude that, while increased putrescine accumulation may have a protective role against ROS in plants, enhanced turnover of putrescine actually can make them vulnerable to increased oxidative damage.
Collapse
Affiliation(s)
- Sridev Mohapatra
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | |
Collapse
|
45
|
Rodríguez-Kessler M, Jiménez-Bremont JF. Ustilago maydis induced accumulation of putrescine in maize leaves. PLANT SIGNALING & BEHAVIOR 2009; 4:310-2. [PMID: 19794848 PMCID: PMC2664492 DOI: 10.4161/psb.4.4.8089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 05/28/2023]
Abstract
Polyamines are implicated in the regulation of many processes in the plant cell, including functioning of ion channels, DNA replication, gene transcription, mRNA translation, cell proliferation and programmed cell death. Plant polyamines occur either in free form, covalently bound to proteins, or conjugated to hydroxycinnamic acids forming phenol amides. Ustilago maydis is a dimorphic and biotrophic pathogenic fungus responsible for common smut or “huitlacoche” in maize; and it is considered an excellent model for the study of plant-pathogen interactions. Recently, we reported alterations in polyamine metabolism of maize tumors induced on leaf blades by Ustilago maydis infection. Our data revealed a striking increase in maize polyamine biosynthesis, mainly free and conjugated putrescine in the tumors and in the green plant tissue surrounding the tumor. In this addendum, we describe that changes in polyamine metabolism take place even in earlier stages of maize plant infection with Ustilago maydis .
Collapse
Affiliation(s)
- Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca, Morelos México
| | - Juan Francisco Jiménez-Bremont
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí; San Luis Potosí, México
| |
Collapse
|
46
|
Barceló AR, Laura VGR. Reactive Oxygen Species in Plant Cell Walls. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP. The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. THE PLANT CELL 2008; 20:2909-25. [PMID: 18978034 PMCID: PMC2590718 DOI: 10.1105/tpc.107.056341] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 10/03/2008] [Accepted: 10/15/2008] [Indexed: 05/18/2023]
Abstract
Leaf senescence in Arabidopsis thaliana is a strict, genetically controlled nutrient recovery program, which typically progresses in an age-dependent manner. Leaves of the Arabidopsis onset of leaf death5 (old5) mutant exhibit early developmental senescence. Here, we show that OLD5 encodes quinolinate synthase (QS), a key enzyme in the de novo synthesis of NAD. The Arabidopsis QS was previously shown to carry a Cys desulfurase domain that stimulates reconstitution of the oxygen-sensitive Fe-S cluster that is required for QS activity. The old5 lesion in this enzyme does not affect QS activity but it decreases its Cys desulfurase activity and thereby the long-term catalytic competence of the enzyme. The old5 mutation causes increased NAD steady state levels that coincide with increased activity of enzymes in the NAD salvage pathway. NAD plays a key role in cellular redox reactions, including those of the tricarboxylic acid cycle. Broad-range metabolite profiling of the old5 mutant revealed that it contains higher levels of tricarboxylic acid cycle intermediates and nitrogen-containing amino acids. The mutant displays a higher respiration rate concomitant with increased expression of oxidative stress markers. We postulate that the alteration in the oxidative state is integrated into the plant developmental program, causing early ageing of the mutant.
Collapse
Affiliation(s)
- Jos H M Schippers
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM. Cadmium toxicity in cultured tomato cells--role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 2008; 32:1521-9. [PMID: 18801448 DOI: 10.1016/j.cellbi.2008.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/15/2008] [Accepted: 08/19/2008] [Indexed: 01/08/2023]
Abstract
Our aim was to investigate the ability of cadmium to induce programmed cell death in tomato suspension cells and to determine the involvement of proteolysis, oxidative stress and ethylene. Tomato suspension cells were exposed to treatments with CdSO(4) and cell death was calculated after fluorescein diacetate staining of the living cells. Ethylene was measured in a flow-through system using a laser-driven photo acoustic detector; hydrogen peroxide was determined by chemiluminescence in a ferricyanide-catalysed oxidation of luminol. We have demonstrated that cadmium induces cell death in tomato suspension cells involving caspase-like proteases, indicating that programmed cell death took place. Using range of inhibitors, we found that cysteine and serine peptidases, oxidative stress, calcium and ethylene are players in the cadmium-induced cell death signaling. Cadmium-induced cell death in tomato suspension cells exhibits morphological and biochemical similarities to plant hypersensitive response and to cadmium effects in animal systems.
Collapse
Affiliation(s)
- Elena T Iakimova
- Wageningen University & Research Centre, Department of Horticultural Supply Chains (HSC) and Agrotechnology and Food Science Group (AFSG) P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 2008; 7:3803-17. [PMID: 18672926 DOI: 10.1021/pr8000755] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.
Collapse
Affiliation(s)
- Lalit Agrawal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
50
|
Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1845-57. [PMID: 18583528 PMCID: PMC2492618 DOI: 10.1104/pp.108.123802] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/18/2008] [Indexed: 05/18/2023]
Abstract
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to back-convert Spm to Put. Arabidopsis (Arabidopsis thaliana) genome contains at least five putative PA oxidase (PAO) members with yet-unknown localization and physiological role(s). AtPAO1 was recently identified as an enzyme similar to the mammalian Spm oxidase, which converts Spm to spermidine (Spd). In this work, we have performed in silico analysis of the five Arabidopsis genes and have identified PAO3 (AtPAO3) as a nontypical PAO, in terms of homology, compared to other known PAOs. We have expressed the gene AtPAO3 and have purified a protein corresponding to it using the inducible heterologous expression system of Escherichia coli. AtPAO3 catalyzed the sequential conversion/oxidation of Spm to Spd, and of Spd to Put, thus exhibiting functional homology to the mammalian PAOs. The best substrate for this pathway was Spd, whereas the N(1)-acetyl-derivatives of Spm and Spd were oxidized less efficiently. On the other hand, no activity was detected when diamines (agmatine, cadaverine, and Put) were used as substrates. Moreover, although AtPAO3 does not exhibit significant similarity to the other known PAOs, it is efficiently inhibited by guazatine, a potent PAO inhibitor. AtPAO3 contains a peroxisomal targeting motif at the C terminus, and it targets green fluorescence protein to peroxisomes when fused at the N terminus but not at the C terminus. These results reveal that AtPAO3 is a peroxisomal protein and that the C terminus of the protein contains the sorting information. The overall data reinforce the view that plants and mammals possess a similar PA oxidation system, concerning both the subcellular localization and the mode of its action.
Collapse
|