1
|
Zhang H, Zhang P, Niu Y, Tao T, Liu G, Dong C, Zheng Z, Zhang Z, Li Y, Niu Z, Liu W, Guo Z, Hu S, Yang Y, Li M, Sun H, Renner SS, Liu J. Genetic basis of camouflage in an alpine plant and its long-term co-evolution with an insect herbivore. Nat Ecol Evol 2025; 9:628-638. [PMID: 40065027 DOI: 10.1038/s41559-025-02653-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/31/2025] [Indexed: 04/09/2025]
Abstract
Camouflage through colour change can involve reversible or permanent changes in response to cyclic predator or herbivore pressures. The evolution of background matching in camouflaged phenotypes partly depends on the genetics of the camouflage trait, but this has received little attention in plants. Here we clarify the genetic pathway underlying the grey-leaved morph of fumewort, Corydalis hemidicentra, of the Qinghai-Tibet Plateau that by being camouflaged escapes herbivory from caterpillars of host-specialized Parnassius butterflies. Field experiments show that camouflaged grey leaves matching the surrounding scree habitat experience reduced oviposition by female butterflies and herbivory by caterpillars, resulting in higher fruit set than that achieved by green-leaved plants. The defence is entirely visual. Multi-omics data and functional validation reveal that a 254-bp-inserted transposon causes anthocyanin accumulation in leaves, giving them a rock-like grey colour. Demographic analyses of plant and butterfly effective population sizes over the past 500 years indicate that plant populations have been more stable at sites with camouflage than at sites with only green-leaved plants. In the recent past, populations of Parnassius butterflies have declined at sites with camouflaged plants. These findings provide insights into the genetics of a plant camouflage trait and its potential role in the rapidly changing dynamics of plant-herbivore interactions.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yang Niu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tongzhou Tao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Congcong Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zeyu Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zengzhu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhimin Niu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Wenyu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zemin Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yang Yang
- Building No. 10, Anwai Xiaoguanbeili, Chaoyang District, Beijing, China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA.
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
3
|
Majumder J, Subrahmanyeswari T, Gantait S. Natural biosynthesis, pharmacological applications, and sustainable biotechnological production of ornamental plant-derived anthocyanin: beyond colorants and aesthetics. 3 Biotech 2024; 14:175. [PMID: 38855146 PMCID: PMC11153417 DOI: 10.1007/s13205-024-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jayoti Majumder
- Department of Floriculture and Landscaping, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Tsama Subrahmanyeswari
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| |
Collapse
|
4
|
Zhang W, Wu J, He J, Liu C, Yi W, Xie J, Wu Y, Xie T, Ma J, Zhong Z, Yang M, Chen C, Luan A, He Y. AcMYB266, a key regulator of the red coloration in pineapple peel: a case of subfunctionalization in tandem duplicated genes. HORTICULTURE RESEARCH 2024; 11:uhae116. [PMID: 38919552 PMCID: PMC11197299 DOI: 10.1093/hr/uhae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
Red fruit peel is an attractive target for pineapple breeding. Various pineapple accessions with distinct red coloration patterns exist; however, the precise molecular mechanism accounting for these differences remains unknown, which hinders the pineapple breeding process from combining high fruit quality with red peel. In this study, we characterized a transcription factor, AcMYB266, which is preferentially expressed in pineapple peel and positively regulates anthocyanin accumulation. Transgenic pineapple, Arabidopsis, and tobacco plants overexpressing AcMYB266 exhibited significant anthocyanin accumulation. Conversely, transient silencing of this gene led to decreased anthocyanin accumulation in pineapple red bracts. In-depth analysis indicated that variations of AcMYB266 sequences in the promoter instead of the protein-coding region seem to contribute to different red coloration patterns in peels of three representative pineapple varieties. In addition, we found that AcMYB266 was located in a cluster of four MYB genes exclusive to and conserved in Ananas species. Of this cluster, each was proved to regulate anthocyanin synthesis in different pineapple tissues, illustrating an interesting case of gene subfunctionalization after tandem duplication. In summary, we have characterized AcMYB266 as a key regulator of pineapple red fruit peel and identified an MYB cluster whose members were subfunctionalized to specifically regulate the red coloration of different pineapple tissues. The present study will assist in establishing a theoretical mechanism for pineapple breeding for red fruit peel and provide an interesting case for the investigation of gene subfunctionalization in plants.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Jing Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Junhu He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Wen Yi
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Jingyao Xie
- School of Landscape Architecture, Guangdong Eco-Engineering Polytechnic, No. 297, Guangshan 1st Road, Tianhe District, Guangzhou, Guangdong, 510520, China
| | - Ya Wu
- Environment and plant protection institute, Chinese Academy of Tropical Agricultural Sciences, No. 4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Tao Xie
- Department of Horticulture, Foshan University, No. 18, Jiangwan 1st Road, Chancheng District, Foshan, Guangdong, 528231, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan, 610000, China
| | - Ziqin Zhong
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Mingzhe Yang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Chengjie Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
5
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. Identification of HpMYB1 inducing anthocyanin accumulation in Hippeastrum Hybridum tepals by RNA-seq. BMC PLANT BIOLOGY 2023; 23:594. [PMID: 38012575 PMCID: PMC10683291 DOI: 10.1186/s12870-023-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cultivated Hippeastrum × hybridum is a popular ornamental plant with large and colorful flowers, long flowering duration, and high commercial value. As its main ornamental feature, its flower color is related to the anthocyanin content in the tepals. However, the molecular regulatory mechanisms of anthocyanin biosynthesis in H. × hybridum have not yet been elucidated. RESULTS In the present study, 12 cDNA libraries of four stages of H.× hybridum 'Royal Velvet' tepal development were used for RNA-seq, obtaining 79.83 gigabases (GB) of clean data. The data were assembled into 148,453 unigenes, and 11,262 differentially expressed genes were identified. Forty key enzymes participating in anthocyanin biosynthesis were investigated, and the results showed that most of the anthocyanin structural genes were expressed at low levels in S1 and were markedly upregulated in S2 and S3. The expression profiles of 12 selected genes were verified by qRT-PCR. Furthermore, the R2R3-MYB transcription factor (TF), HpMYB1, involved in the regulation of anthocyanin biosynthesis was identified by sequence, expression pattern, and subcellular localization analyses. Its overexpression in tobacco significantly increased the anthocyanin levels in various tissues and activated anthocyanin-related genes. CONCLUSIONS Using RNA-seq technology, we successfully identified a potential R2R3-MYB gene, HpMYB1, that regulates anthocyanin biosynthesis in H.× hybridum 'Royal Velvet'. Our findings provide basic transcript information and valuable transcriptome data for further identification of key genes involved in anthocyanin biosynthesis and can be applied in the artificial breeding of new H. × hybridum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
6
|
Pereira AG, Guzmán-Rodriguez S, Freitas LB. Phylogenetic Analyses of Some Key Genes Provide Information on Pollinator Attraction in Solanaceae. Genes (Basel) 2022; 13:2278. [PMID: 36553545 PMCID: PMC9778481 DOI: 10.3390/genes13122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Floral syndromes are known by the conserved morphological traits in flowers associated with pollinator attraction, such as corolla shape and color, aroma emission and composition, and rewards, especially the nectar volume and sugar concentration. Here, we employed a phylogenetic approach to investigate sequences of genes enrolled in the biosynthetic pathways responsible for some phenotypes that are attractive to pollinators in Solanaceae genomes. We included genes involved in visible color, UV-light response, scent emission, and nectar production to test the hypothesis that these essential genes have evolved by convergence under pollinator selection. Our results refuted this hypothesis as all four studied genes recovered the species' phylogenetic relationships, even though some sites were positively selected. We found differences in protein motifs among genera in Solanaceae that were not necessarily associated with the same floral syndrome. Although it has had a crucial role in plant diversification, the plant-pollinator interaction is complex and still needs further investigation, with genes evolving not only under the influence of pollinators, but by the sum of several evolutionary forces along the speciation process in Solanaceae.
Collapse
Affiliation(s)
| | | | - Loreta B. Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
7
|
Khairul-Anuar MA, Mazumdar P, Othman RY, Harikrishna JA. DhMYB22 and DhMYB60 regulate pigment intensity and floral organ shape in Dendrobium hybrid. ANNALS OF BOTANY 2022; 130:579-594. [PMID: 35980362 PMCID: PMC9510950 DOI: 10.1093/aob/mcac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flower pigment and shape are determined by the coordinated expression of a set of structural genes during flower development. R2R3-MYB transcription factors are known regulators of structural gene expression. The current study focused on two members of this large family of transcription factors that were predicted to have roles in pigment biosynthesis and organ shape development in orchids. METHODS Phylogenetic analysis was used to identify candidate Dendrobium catenatum R2R3-MYB (DcaMYB) sequences associated with pigment and cell shape development. Gene silencing of candidate DhMYBs in Dendrobium hybrid by direct application of dsRNA to developing flowers was followed by observation of gene expression level and flower phenotypes. Silencing of the structural gene chalcone synthase was used as a comparative control. KEY RESULTS Ten candidate flower-associated DcaMYBs were identified. Flowers treated with dsRNA of DhMYB22 and DhMYB60 sequences were less pigmented and had relatively low expression of anthocyanin biosynthetic genes (F3'H and DFR), lower total anthocyanin concentration and markedly lower levels of cyanidin-3-glucoside and cyanidin-3-rutinoside. Petals of DhMYB22-treated flowers and sepals of DhMYB60-treated flowers showed the greatest colour difference relative to the same organs in untreated flowers. DhMYB22-treated flowers had relatively narrow and constricted lips, while DhMYB60-treated flowers had narrow and constricted sepals. No significant difference in shape was observed for DhCHS-treated or untreated flowers. CONCLUSIONS Our results demonstrate that DhMYB22 and DhMYB60 regulate pigment intensity and floral organ shape in Dendrobium. This is a first report of MYB regulation of floral organ shape in orchids.
Collapse
Affiliation(s)
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Ohno S, Yamada H, Maruyama K, Deguchi A, Kato Y, Yokota M, Tatsuzawa F, Hosokawa M, Doi M. A novel aldo-keto reductase gene is involved in 6'-deoxychalcone biosynthesis in dahlia (Dahlia variabilis). PLANTA 2022; 256:47. [PMID: 35871668 DOI: 10.1007/s00425-022-03958-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A novel gene belonging to the aldo-keto reductase 13 family is involved in isoliquiritigenin biosynthesis in dahlia. The yellow pigments of dahlia flowers are derived from 6'-deoxychalcones, which are synthesized via a two-step process, involving the conversion of 3-malonyl-CoA and 4-coumaloyl-CoA into isoliquiritigenin in the first step, and the subsequent generation of butein from isoliquiritigenin. The first step reaction is catalyzed by chalcone synthase (CHS) and aldo-keto reductase (AKR). AKR has been implicated in the isoflavone biosynthesis in legumes, however, isolation of butein biosynthesis related AKR members are yet to be reported. A comparative RNA-seq analysis between two dahlia cultivars, 'Shukuhai' and its butein-deficient lateral mutant 'Rinka', was used in this study to identify a novel AKR gene involved in 6'-deoxychalcone biosynthesis. DvAKR1 encoded a AKR 13 sub-family protein with significant differential expression levels, and was phylogenetically distinct from the chalcone reductases, which belongs to the AKR 4A sub-family in legumes. DNA sequence variation and expression profiles of DvAKR1 gene were correlated with 6'-deoxychalcone accumulation in the tested dahlia cultivars. A single over-expression analysis of DvAKR1 was not sufficient to initiate the accumulation of isoliquiritigenin in tobacco, in contrast, its co-overexpression with a chalcone 4'-O-glucosyltransferase (Am4'CGT) from Antirrhinum majus and a MYB transcription factor, CaMYBA from Capsicum annuum successfully induced isoliquiritigenin accumulation. In addition, DvAKR1 homologous gene expression was detected in Coreopsideae species accumulating 6'-deoxychalcone, but not in Asteraceae species lacking 6'-deoxychalcone production. These results not only demonstrate the involvement of DvAKR1 in the biosynthesis of 6'-deoxychalcone in dahlia, but also show that 6'-deoxychalcone occurrence in Coreopsideae species developed evolutionarily independent from legume species.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Chiba University, Chiba, 271-8510, Japan
| | - Yasunari Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Iwate, Morioka, 020-8550, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Kindai University, Nara, 631-0052, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. AcMYB1 Interacts With AcbHLH1 to Regulate Anthocyanin Biosynthesis in Aglaonema commutatum. FRONTIERS IN PLANT SCIENCE 2022; 13:886313. [PMID: 35928704 PMCID: PMC9344012 DOI: 10.3389/fpls.2022.886313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Aglaonema commutatum is one of the most popular foliage plants with abundant leaf phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum. However, the molecular mechanisms underlying anthocyanin biosynthesis and its regulation remain unclear. In this study, AcMYB1 and AcbHLH1, transcription factor genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH), respectively, were isolated from A. commutatum "Red Valentine" and functionally characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay. AcMYB1 was grouped into the AN2 subgroup and shared high homology with the known regulators of anthocyanin biosynthesis. Gene expression analysis showed that both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural genes and correlate with anthocyanin distribution in different tissues of A. commutatum. Light strongly promoted anthocyanin accumulation by upregulating the expression of anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1 in tobacco remarkably increased anthocyanin accumulation in both vegetative and reproductive tissues at various developmental stages. These results provide insights into the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding new A. commutatum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Xu B, Chen B, Qi X, Liu S, Zhao Y, Tang C, Meng X. Genome-wide Identification and Expression Analysis of RcMYB Genes in Rhodiola crenulata. Front Genet 2022; 13:831611. [PMID: 35432456 PMCID: PMC9008588 DOI: 10.3389/fgene.2022.831611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Modern research has proved that the main medicinal component of Rhodiola crenulata, which has a wide range of medicinal value, is its secondary metabolite salidroside. The MYB transcription factor family is widely involved in biosynthesis of second metabolism and other roles in the stress response in plants, so a genome-wide identification and analysis for this family in R. crenulata is worth conducting. In this research, genome-wide analysis identified 139 MYB genes based on conserved domains in the R. crenulata genome, and 137 genes were used to construct a phylogenetic tree and modified with expression files to reveal evolutionary characteristics. Physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze RcMYBs. Additionally, cis-acting elements related to transcription, hormone, and MYB binding were found in the promoter region of the selected RcMYBs. Four RcMYBs were cloned, sequenced, and their gene expression pattern was analyzed for further analysis of their functions. The research results lay the foundation for further research on the function of RcMYB and R. crenulata.
Collapse
Affiliation(s)
- Binjie Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Resources Sanjiu (Ya’an) Pharmaceutical Co., Ltd., Ya’an, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| | - Bang Chen
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Qi
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunli Liu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yibing Zhao
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| |
Collapse
|
12
|
Li D, Wang Z, Sun S, Xiao K, Cao M, Li X, Ma C, Zhang C, Wang L, Lian H, Wang S. VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction. FRONTIERS IN PLANT SCIENCE 2021; 12:789002. [PMID: 34956287 PMCID: PMC8695491 DOI: 10.3389/fpls.2021.789002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In most grapevine planting regions, especially in south of China, plenty of rainfall and high water level underground are the characteristic of the area, a series of problem during fruit ripening easily caused poor color quality. Thereby affecting fruit quality, yield and economic benefits. The accumulation of anthocyanin is regulated by transcriptional regulatory factor and a series of cultivation measures, root restriction can make plants in the environment of stress and stress relief, root restriction induced the higher expression of VvMYB15 and VvWRKY40, and consistent with anthocyanin accumulation. Whether and how root restriction-inducible VvMYB15 and VvWRKY40 transcription factor regulate anthocyanin synthesis in grape berry is still unclear. In this study, we identified that the transient overexpression of VvMYB15 and VvWRKY40 alone or both in strawberry fruits and grape berries can promote anthocyanin accumulation and increase the expression level of anthocyanin biosynthetic genes, indicating VvMYB15 and VvWRKY40 play a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both VvMYB15 and VvWRKY40 specifically bind to the promoter region of VvF3'5'H and VvUFGT, and the expression of VvF3'5'H and VvUFGT is further activated through the heterodimer formation between VvMYB15 and VvWRKY40. Finally, we confirmed that VvMYB15 promoted anthocyanin accumulation by interacting with VvWRKY40 in grape berries, our findings provide insights into a mechanism involving the synergistic regulation of root restriction-dependent coloration and biosynthesis via a VvMYB15 and VvWRKY40 alone or both in grape berries.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenping Wang
- School of Agriculture and Biology, Ningxia University, Yinchuan, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghao Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Agro-Food Science and Technology, Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
13
|
Wang Y, Jia N, Wang P, Liu J, Sun J, Ye W, Fan B. Flavonoid biosynthesis in four Dendrobium species based on transcriptome sequencing and metabolite analysis. Mol Biol Rep 2021; 49:2047-2057. [PMID: 34851480 DOI: 10.1007/s11033-021-07023-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dendrobium is a genus of plants used as traditional Chinese herbal medicines, with high economic and medicinal value. METHODS AND RESULTS To reveal the mechanism of flavonoid biosynthesis in Dendrobium, the metabolites and transcriptomes of four Dendrobium species (D. chrysotoxum, D. nobile, D. fimbriatum, and D. denneanum) were analyzed comprehensively. Ultra-high-performance liquid chromatography-tandem mass spectrometry analysis revealed ten flavonoid compounds in Dendrobium. In total, 100,096 unigenes were obtained from the transcript database of the four Dendrobium species. Among the identified differentially expressed genes, 51 were associated with flavonoid biosynthesis, and 670 differentially expressed transcription factors were predicted, including 194 MYB, 87 bHLH, and 100 WRKY family transcription factors, respectively. Transcriptome analysis showed that the expression levels of structural genes such as chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H), and flavonoid 3'-hydroxylase (F3'H) were lower in D. chrysotoxum, D. nobile, and D. fimbriatum than those in D. denneanum, which may be the main reason for the low flavonoid contents in D. chrysotoxum, D. nobile, and D. fimbriatum. CONCLUSIONS The expression level of structural genes corresponded to the accumulation level of flavonols in the different Dendrobium species. The results deepen the understanding of the molecular mechanism of flavonoid biosynthesis in Dendrobium and provide novel insights into the synthesis and accumulation of flavonoids in Dendrobium.
Collapse
Affiliation(s)
- Yajuan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Ning Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Peiyu Wang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, 365050, Fujian, China
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Wei Ye
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, 365050, Fujian, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
14
|
Sakuta M, Tanaka A, Iwase K, Miyasaka M, Ichiki S, Hatai M, Inoue YT, Yamagami A, Nakano T, Yoshida K, Shimada S. Anthocyanin synthesis potential in betalain-producing Caryophyllales plants. JOURNAL OF PLANT RESEARCH 2021; 134:1335-1349. [PMID: 34477986 PMCID: PMC8930957 DOI: 10.1007/s10265-021-01341-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 05/15/2023]
Abstract
Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.
Collapse
Affiliation(s)
- Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan.
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 214-8571, Kanagawa, Japan.
| | - Asuka Tanaka
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Kaori Iwase
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Mizuki Miyasaka
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Sachiko Ichiki
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Miho Hatai
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Yoriko T Inoue
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, 606-8502, Kyoto, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, 606-8502, Kyoto, Japan
| | - Kazuko Yoshida
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
| | - Setsuko Shimada
- Department of Biological Sciences, Ochanomizu University, 112-8610, Tokyo, Japan
- Synthetic Genomics Research group, RIKEN Center for Sustainable Resource Science, 230-0045, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Yamagishi M. High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp. Mol Genet Genomics 2021; 296:1005-1015. [PMID: 34052932 DOI: 10.1007/s00438-021-01799-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
The spatially and temporally distinct expression of R2R3-MYB positive regulators is among the major mechanisms that create various anthocyanin color patterns in many flowers. However, we do not know how these positive regulators have gained different expression profiles. In the Asiatic hybrid lily 'Lollypop' (derived from the crosses of species belonging to Sinomartagon/Daurolirion section), MYB12 and MYB19S regulate the pigmentation at whole tepals and raised tepal spots, respectively. In the Oriental hybrid lily 'Sorbonne' (derived from the crosses of species belonging to the Archelirion section), MYB12 regulates both whole tepal and raised spot pigmentation. The genes have similar amino acid sequences with similar protein functions but exhibit different expression profiles in lily flowers. As promoters are among the most significant factors affecting gene expression profiles, their promoter sequences were determined in this study. The three genes had very different promoter sequences, and putative cis-regulatory elements were not conserved in numbers or order. To further confirm the promoter functions, tobacco plants were transformed with native promoter-driven MYB12 or MYB19S genes of 'Lollypop.' Expression levels of MYB12 were higher in corolla tubes than in lobes, while those of MYB19S were higher in corolla lobes than in tubes. Thus, the diverse promoter functions were likely to be the leading causes of their different expression profiles and generation of unique color patterns. Finally, the history of R2R3-MYB gene establishment during lily evolution was estimated using sequence data.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
16
|
Cui D, Zhao S, Xu H, Allan AC, Zhang X, Fan L, Chen L, Su J, Shu Q, Li K. The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. PLANT MOLECULAR BIOLOGY 2021; 106:407-417. [PMID: 34117570 DOI: 10.1007/s11103-021-01160-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Sunlight enhanced peel color and significantly up-regulated the expression of PyMYB10 and PybHLH genes. MYB-bHLH-WD40 transcriptional complex forms in the light and is involved in regulating anthocyanin accumulation in the peel. Anthocyanin is the major pigment in the peel of Yunnan red pear (Pyrus pyrifolia (Burm.) Nak.). A transcriptional activation protein complex, involving members of the transcription factor classes of MYB, bHLH and WD40, regulates anthocyanin biosynthesis. This complex was examined in the peel of red pear. In order to clarify the interaction of PyMYB10, PybHLH and PyWD40, fruit were bagged then peel samples collected 0, 3, 5, and 7 days after bag removal. Samples were used for Western blotting and protein interaction analysis. The results showed that sunlight enhanced peel color and significantly up-regulated the expression of both PyMYB10 and PybHLH genes. Co-immunoprecipitation (Co-IP) analysis showed that PybHLH interacted with PyMYB10 or PyWD40, and PyMYB10 interacted with PyWD40. Using onion cells as a model system, bimolecular fluorescence complementation (BiFC) confirmed these interactions and showed that the interaction localized to the nuclei. GST Pull down and Far-Western blotting assays demonstrated that PybHLH interacted with PyMYB10 or PyWD40, respectively, and PyMYB10 interacted with PyWD40 in vitro. In addition, EMSA assay showed that PyMYB10 can directly bind to the promoter of the gene encoding the anthocyanin biosynthesis enzyme anthocyanidin synthase (PyANS). Taken together, these results showed that the ternary complex of PyMYB10, PybHLH and PyWD40 transcription factors forms to regulate anthocyanin biosynthesis and accumulation in Yunnan red pear.
Collapse
Affiliation(s)
- Daolei Cui
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
- School of Ecology and Environment, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China
| | - Shuxin Zhao
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Huini Xu
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Andrew C Allan
- Plant and Food Research, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Xiaodong Zhang
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Lei Fan
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Limei Chen
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Jun Su
- Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Quan Shu
- Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Kunzhi Li
- Biotechnology Research Centre, Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China.
| |
Collapse
|
17
|
Fan Y, Peng J, Wu J, Zhou P, He R, Allan AC, Zeng L. NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC PLANT BIOLOGY 2021; 21:275. [PMID: 34134615 PMCID: PMC8207774 DOI: 10.1186/s12870-021-03050-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. RESULTS In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. CONCLUSIONS Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.
Collapse
Affiliation(s)
- Yuxin Fan
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayu Peng
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiacheng Wu
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zhou
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruijie He
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Lihui Zeng
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Fan Y, Peng J, Wu J, Zhou P, He R, Allan AC, Zeng L. NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC PLANT BIOLOGY 2021; 21:275. [PMID: 34134615 DOI: 10.1186/s12870-021-03050-3051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. RESULTS In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. CONCLUSIONS Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.
Collapse
Affiliation(s)
- Yuxin Fan
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayu Peng
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiacheng Wu
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zhou
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruijie He
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Lihui Zeng
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT DIRECT 2021; 5:e00305. [PMID: 33532692 PMCID: PMC7833464 DOI: 10.1002/pld3.305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are key regulators of plant specialized metabolites, including terpenoid indole alkaloids (TIAs) in Catharanthus roseus. Two previously characterized subgroup-IVa bHLH TFs, BIS1 (bHLH Iridoid Synthesis 1) and BIS2 regulate iridoid biosynthesis in the TIA pathway. We reanalyzed the recently updated C. roseus genome sequence and discovered that BIS1 and BIS2 are clustered on the same genomic scaffold with a previously uncharacterized bHLH gene, designated as BIS3. Only a few bHLH gene clusters have been studied to date. Comparative analysis of 49 genome sequences from different plant lineages revealed the presence of analogous bHLH clusters in core angiosperms, including the medicinal plants Calotropis gigantea (giant milkweed) and Gelsemium sempervirens (yellow jessamine), but not in the analyzed basal angiosperm and lower plants. Similar to the iridoid pathway genes, BIS3 is highly expressed in roots and induced by methyl jasmonate. BIS3 activates the promoters of iridoid branch genes, geraniol synthase (GES), geraniol 10-hydroxylase (G10H), 8-hydroxygeraniol oxidoreductase (8HGO), iridoid synthase (IS), 7-deoxyloganetic acid glucosyl transferase (7-DLGT), and 7-deoxyloganic acid hydroxylase (7DLH), but not iridoid oxidase (IO). Transactivation of the promoters was abolished when BIS3 is converted to a dominant repressor by fusing with the ERF-associated amphiphilic repression (EAR) sequence. In addition, BIS3 acts synergistically with BIS1 and BIS2 to activate the G10H promoter in tobacco cells. Mutation of the known bHLH TF binding motif, G-box (CACGTG) in the G10H promoter significantly reduced but did not abolish the transactivation by BIS3. Promoter deletion analysis of G10H suggests that the sequences adjacent to the G-box are also involved in the regulation by BIS3. Overexpression of BIS3 in C. roseus flower petals significantly upregulated the expression of iridoid biosynthetic genes and increased loganic acid accumulation. BIS2 expression was significantly induced by BIS3 although BIS3 did not directly activate the BIS2 promoter. Our results advance our understanding of the regulation of plant specialized metabolites by bHLH TF clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Barunava Patra
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Priyanka Paul
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
| | - Yongliang Liu
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Ling Yuan
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
21
|
Zhao L, Song Z, Wang B, Gao Y, Shi J, Sui X, Chen X, Zhang Y, Li Y. R2R3-MYB Transcription Factor NtMYB330 Regulates Proanthocyanidin Biosynthesis and Seed Germination in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:819247. [PMID: 35111187 PMCID: PMC8801704 DOI: 10.3389/fpls.2021.819247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- *Correspondence: Lu Zhao,
| | - Zhongbang Song
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bingwu Wang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yulong Gao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Junli Shi
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xueyi Sui
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yihan Zhang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yongping Li
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Yongping Li,
| |
Collapse
|
22
|
Li L, Ye J, Li H, Shi Q. Characterization of Metabolites and Transcripts Involved in Flower Pigmentation in Primula vulgaris. FRONTIERS IN PLANT SCIENCE 2020; 11:572517. [PMID: 33329630 PMCID: PMC7714730 DOI: 10.3389/fpls.2020.572517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 05/28/2023]
Abstract
Primula vulgaris exhibits a wide range of flower colors and is a valuable ornamental plant. The combination of flavonols/anthocyanins and carotenoids provides various colorations ranging from yellow to violet-blue. However, the complex metabolic networks and molecular mechanisms underlying the different flower colors of P. vulgaris remain unclear. Based on comprehensive analysis of morphological anatomy, metabolites, and gene expression in different-colored flowers of P. vulgaris, the mechanisms relating color-determining compounds to gene expression profiles were revealed. In the case of P. vulgaris flower color, hirsutin, rosinin, petunidin-, and cyanidin-type anthocyanins and the copigment herbacetin contributed to the blue coloration, whereas peonidin-, cyandin-, and delphinidin-type anthocyanins showed high accumulation levels in pink flowers. The color formation of blue and pink were mainly via the regulation of F3'5'H (c53168), AOMT (c47583, c44905), and 3GT (c50034). Yellow coloration was mainly due to gossypetin and carotenoid, which were regulated by F3H (c43100), F3 1 (c53714), 3GT (c53907) as well as many carotenoid biosynthetic pathway-related genes. Co-expression network and transient expression analysis suggested a potential direct link between flavonoid and carotenoid biosynthetic pathways through MYB transcription factor regulation. This work reveals that transcription changes influence physiological characteristics, and biochemistry characteristics, and subsequently results in flower coloration in P. vulgaris.
Collapse
Affiliation(s)
- Long Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Jing Ye
- College of Forestry, Northwest A&F University, Yangling, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Luo Q, Liu R, Zeng L, Wu Y, Jiang Y, Yang Q, Nie Q. Isolation and molecular characterization of NtMYB4a, a putative transcription activation factor involved in anthocyanin synthesis in tobacco. Gene 2020; 760:144990. [PMID: 32721476 DOI: 10.1016/j.gene.2020.144990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
The MYB transcription factors are involved in the regulation of plant secondary metabolism, cell development and morphogenesis, and stress response. Here, a full-length, 816-bp NtMYB4a cDNA, which encodes a protein comprising 271 amino acids, was isolated from tobacco leaves. Phylogenetic analysis revealed that NtMYB4a is most similar to Nicotiana. attenuata MYB4, followed by Eriobotrya japonica MYB4, and NtMYB4a clustered with transcriptional activators rather than repressors. Subcellular localization assays showed that NtMYB4 localized in the nucleus, membrane, and cytoplasm. Expression analyses revealed differential expression of NtMYB4a among different tissues and organs and between different developmental stages, with most expression occurring in the stems and leaves during the full-bloom stage. Moreover, NtMYB4a expression was induced by cold, NaCl, PEG, abscisic acid, methyl jasmonate, and dark stressors, and the expression patterns and maximum expression levels varied with the type of stress. Overexpression of NtMYB4a upregulated NtPAL, Nt4CL, NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, which resulted in increased anthocyanin content in the tobacco corolla and darker colors. However, CRISPR/Cas9-mediated knockout of NtMYB4a downregulated NtPAL, NtC4H, Nt4CL, NtCHS, NtCHI, NtF3H, NtANS, and NtUFGT, which resulted in reduced anthocyanin content, and lighter corolla colors. These results indicated that NtMYB4a positively regulates anthocyanin biosynthesis and is involved in abiotic stress responses in tobacco plants.
Collapse
Affiliation(s)
- Qian Luo
- Key Laboratory of Tobacco Quality in Guizhou Province, College of Tobacco, Guizhou University, Guiyang 550025, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou Province, College of Tobacco, Guizhou University, Guiyang 550025, China
| | - Lugui Zeng
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yuyao Wu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yue Jiang
- Key Laboratory of Tobacco Quality in Guizhou Province, College of Tobacco, Guizhou University, Guiyang 550025, China
| | - Qin Yang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou Province, College of Tobacco, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Singh SK, Richmond MD, Pearce RC, Bailey WA, Hou X, Pattanaik S, Yuan L. Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development. PLANTA 2020; 252:64. [PMID: 32968874 DOI: 10.1007/s00425-020-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Transcriptomic analysis revealed maleic hydrazide suppresses apical and axillary bud development by altering the expression of genes related to meristem development, cell division, DNA replication, DNA damage and recombination, and phytohormone signaling. Topping (removal of apical buds) is a common agricultural practice for some crop plants including cotton, cannabis, and tobacco. Maleic hydrazide (MH) is a systemic suckercide, a chemical that inhibits shoot bud growth, used to control the growth of apical (ApB) and axillary buds (AxB) following topping. However, the influence of MH on gene expression and the underlying molecular mechanism of controlling meristem development are not well studied. Our RNA sequencing analysis showed that MH significantly influences the transcriptomic landscape in ApB and AxB of chemically topped tobacco. Gene ontology (GO) enrichment analysis revealed that upregulated genes in ApB were enriched for phosphorelay signal transduction, and the regulation of transition timing from vegetative to reproductive phase, whereas downregulated genes were largely associated with meristem maintenance, cytokinin metabolism, cell wall synthesis, photosynthesis, and DNA metabolism. In MH-treated AxB, GO terms related to defense response and oxylipin metabolism were overrepresented in upregulated genes. GO terms associated with cell cycle, DNA metabolism, and cytokinin metabolism were enriched in downregulated genes. Expression of KNOX and MADS transcription factor (TF) family genes, known to be involved in meristem development, were affected in ApB and AxB by MH treatment. The promoters of MH-responsive genes are enriched for several known cis-acting elements, suggesting the involvement of a subset of TF families. Our findings suggest that MH affects shoot bud development in chemically topped tobacco by altering the expression of genes related to meristem development, DNA repair and recombination, cell division, and phytohormone signaling.
Collapse
Affiliation(s)
- Sanjay K Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Mitchell D Richmond
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Canadian Tobacco Research Foundation, Tillsonburg, ON, N4G 4H5, Canada
| | - Robert C Pearce
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - William A Bailey
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xin Hou
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
- Department of Tobacco, College of Plant Protection, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai`an, 271018, China
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
25
|
Huo D, Liu X, Zhang Y, Duan J, Zhang Y, Luo J. A Novel R2R3-MYB Transcription Factor PqMYB4 Inhibited Anthocyanin Biosynthesis in Paeonia qiui. Int J Mol Sci 2020; 21:E5878. [PMID: 32824291 PMCID: PMC7461502 DOI: 10.3390/ijms21165878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/04/2022] Open
Abstract
Paeonia qiui is a wild tree peony native to China. Its leaves show a clear purple-red color from the germination to the flowering stage, and it has high leaf-viewing value. A MYB transcription factor gene, designated as PqMYB4, was isolated from leaves of P. qiui based on transcriptome datas. The full-length cDNA of PqMYB4 was 693 bp, encoding 230 amino acids. Sequence alignment and phylogenetic analysis revealed that PqMYB4 was a R2R3-MYB transcription factor clustered with AtMYB4 in Arabidopsis thaliana. Moreover, it contained a C1 motif, an EAR repression motif and a TLLLFR motif in the C-terminal domains, which were unique in transcription repression MYB. Subcellular location analysis showed that PqMYB4 was located in the cell nucleus. PqMYB4 was highly expressed in the late stage of leaf development, and was negatively correlated with the anthocyanin content. The petiole of wild-type Arabidopsis seedlings was deeper in color than the transgenic lines of PqMYB4 and showed a little purple-red color. The seed coat color of Arabidopsis seeds that overexpressed PqMYB4 gene was significantly lighter than that of wild-type seeds. In transgenic Arabidopsis, the expression level of AtCHS, AtCHI, AtDFR and AtANS were down-regulated significantly. These results showed that PqMYB4 was involved in the negative regulation of anthocyanin biosynthesis in tree peony leaves, which can control the anthocyanin pathway genes. Together, these findings provide a valuable resource with which to further study the regulatory mechanism of anthocyanin biosynthesis in the leaf of P. qiui. They also benefit the molecular breeding of tree peony cultivars with colored leaf.
Collapse
Affiliation(s)
- Dan Huo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
| | - Xiaokun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
| | - Yue Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
| | - Jingjing Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (D.H.); (X.L.); (Y.Z.); (J.D.); (Y.Z.)
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| |
Collapse
|
26
|
Zhong C, Tang Y, Pang B, Li X, Yang Y, Deng J, Feng C, Li L, Ren G, Wang Y, Peng J, Sun S, Liang S, Wang X. The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida. HORTICULTURE RESEARCH 2020; 7:78. [PMID: 32435501 PMCID: PMC7237480 DOI: 10.1038/s41438-020-0296-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Anthocyanins and flavonols have vital roles in flower coloration, plant development, and defense. Because anthocyanins and flavonols share the same subcellular localization and common biosynthetic substrates, these pathways may compete for substrates. However, the mechanism regulating this potential competition remains unclear. Here, we identified GhMYB1a, an R2R3-MYB transcription factor involved in the regulation of anthocyanin and flavonol accumulation in gerbera (Gerberahybrida). GhMYB1a shares high sequence similarity with that of other characterized regulators of flavonol biosynthesis. In addition, GhMYB1a is also phylogenetically grouped with these proteins. The overexpression of GhMYB1a in gerbera and tobacco (Nicotianatabacum) resulted in decreased anthocyanin accumulation and increased accumulation of flavonols by upregulating the structural genes involved in flavonol biosynthesis. We further found that GhMYB1a functions as a homodimer instead of interacting with basic helix-loop-helix cofactors. These results suggest that GhMYB1a is involved in regulating the anthocyanin and flavonol metabolic pathways through precise regulation of gene expression. The functional characterization of GhMYB1a provides insight into the biosynthesis and regulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Chunmei Zhong
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Yi Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Bin Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xukun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yuping Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jing Deng
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Chengyong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004 China
| | - Guiping Ren
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jianzong Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shulan Sun
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shan Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
27
|
Wang J, Singh SK, Geng S, Zhang S, Yuan L. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus. PLANTA 2020; 251:93. [PMID: 32246349 DOI: 10.1007/s00425-020-03384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens. Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Siyu Geng
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Shanshan Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Ling Yuan
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
28
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110408. [PMID: 32081258 DOI: 10.1016/j.plantsci.2020.110408] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Transcription factor (TF) gene clusters in plants, such as tomato, potato, petunia, tobacco, and almond, have been characterized for their roles in the biosynthesis of diverse array of specialized metabolites. In Catharanthus roseus, three AP2/ERF TFs, ORCA3, ORCA4, and ORCA5, have been shown to be present on the same genomic scaffold, forming a cluster that regulates the biosynthesis of pharmaceutically important terpenoid indole alkaloids (TIAs). Our analysis of the recently updated C. roseus genome sequence revealed that the ORCA cluster comprises two additional AP2/ERFs, the previously characterized ORCA2 and a newly identified member designated as ORCA6. Transcriptomic analysis revealed that the ORCAs are highly expressed in stems, followed by leaves, roots and flowers. Expression of ORCAs was differentially induced in response to methyl-jasmonate and ethylene treatment. In addition, ORCA6 activated the strictosidine synthase (STR) promoter in tobacco cells. Activation of the STR promoter was significantly higher when ORCA2 or ORCA6 was coexpressed with the mitogen-activated protein kinase kinase, CrMPKK1. Furthermore, transient overexpression of ORCA6 in C. roseus flower petals activated TIA pathway gene expression and TIA accumulation. The results described here advance our understanding of regulation of TIA pathway by the ORCA gene cluster and the evolution for plant ERF gene clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
29
|
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, Xin Y, He N. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. HORTICULTURE RESEARCH 2020; 7:83. [PMID: 32528695 PMCID: PMC7261776 DOI: 10.1038/s41438-020-0302-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Mulberry fruits with high concentrations of anthocyanins are favored by consumers because of their good taste, bright color, and high nutritional value. However, neither the regulatory mechanism controlling flavonoid biosynthesis in mulberry nor the molecular basis of different mulberry fruit colors is fully understood. Here, we report that a flavonoid homeostasis network comprising activation and feedback regulation mechanisms determines mulberry fruit color. In vitro and in vivo assays showed that MYBA-bHLH3-TTG1 regulates the biosynthesis of anthocyanins, while TT2L1 and TT2L2 work with bHLH3 or GL3 and form a MYB-bHLH-WD40 (MBW) complex with TTG1 to regulate proanthocyanidin (PA) synthesis. Functional and expression analyses showed that bHLH3 is a key regulator of the regulatory network controlling mulberry fruit coloration and that MYB4 is activated by MBW complexes and participates in negative feedback control of the regulatory network to balance the accumulation of anthocyanins and proanthocyanidins. Our research demonstrates that the interaction between bHLH3 and MYB4 in the homeostasis regulatory network ensures that the fruits accumulate desirable flavonoids and that this network is stable in pigment-rich mulberry fruits. However, the abnormal expression of bHLH3 disrupts the balance of the network and redirects flavonoid metabolic flux in pale-colored fruits, resulting in differences in the levels and proportions of anthocyanins, flavones, and flavonols among differently colored mulberry fruits (red, yellow, and white). The results of our study reveal the molecular basis of the diversity of mulberry fruit colors.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Shibo Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| |
Collapse
|
30
|
Zong Y, Li S, Xi X, Cao D, Wang Z, Wang R, Liu B. Comprehensive Influences of Overexpression of a MYB Transcriptor Regulating Anthocyanin Biosynthesis on Transcriptome and Metabolome of Tobacco Leaves. Int J Mol Sci 2019; 20:E5123. [PMID: 31623091 PMCID: PMC6829574 DOI: 10.3390/ijms20205123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Overexpression of R2R3-MYB transcriptor can induce up-expression of anthocyanin biosynthesis structural genes, and improve the anthocyanin content in plant tissues, but it is not clear whether the MYB transcription factor overexpression does effect on other genes transcript and chemical compounds accumulation. In this manuscript, RNA-sequencing and the stepwise multiple ion monitoring-enhanced product ions (stepwise MIM-EPI) strategy were employed to evaluate the comprehensive effect of the MYB transcription factor LrAN2 in tobacco. Overexpression of LrAN2 could promote anthocyanin accumulation in a lot of tissues of tobacco cultivar Samsun. Only 185 unigenes express differently in a total of 160,965 unigenes in leaves, and 224 chemical compounds were differently accumulated. Three anthocyanins, apigeninidin chloride, pelargonidin 3-O-beta-D-glucoside and cyanidin 3,5-O-diglucoside, were detected only in transgenic lines, which could explain the phenotype of purple leaves. Except for anthocyanins, the phenylpropanoid, polyphenol (catechin), flavonoid, flavone and flavonol, belong to the same subgroups of flavonoids biosynthesis pathway with anthocyanin and were also up-accumulated. Overexpression of LrAN2 activated the bHLH (basic helix-loop-helix protein) transcription factor AN1b, relative to anthocyanin biosynthesis and the MYB transcription factor MYB3, relative to proanthocyanin biosynthesis. Then, the structural genes, relative to the phenylpropanoid pathway, were activated, which led to the up-accumulation of phenylpropanoid, polyphenol (catechin), flavonoid, flavone, flavonol and anthocyanin. The MYB transcription factor CPC, negative to anthocyanin biosynthesis, also induced up-expression in transgenic lines, which implied that a negative regulation mechanism existed in the anthocyanin biosynthesis pathway. The relative contents of all 19 differently accumulated amino and derivers were decreased in transgenic lines, which meant the phenylalanine biosynthesis pathway completed the same substrates with other amino acids. Interestingly, the acetylalkylglycerol acetylhydrolase was down-expressed in transgenic lines, which caused 19 lyso-phosphatidylcholine and derivatives of lipids to be up-accumulated, and 8 octodecane and derivatives were down-accumulated. This research will give more information about the function of MYB transcription factors on the anthocyanin biosynthesis and other chemical compounds and be of benefit to obtaining new plant cultivars with high anthocyanin content by biotechnology.
Collapse
Affiliation(s)
- Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
| | - Shiming Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
| | - Xinyuan Xi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhong Wang
- National Tobacco Research Center, Zhengzhou Tabacco Research Institute, Henan Zhengzhou 450001, China.
| | - Ran Wang
- National Tobacco Research Center, Zhengzhou Tabacco Research Institute, Henan Zhengzhou 450001, China.
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Tobacco Research Center, Zhengzhou Tabacco Research Institute, Henan Zhengzhou 450001, China.
| |
Collapse
|
31
|
Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth. Int J Mol Sci 2019; 20:ijms20194743. [PMID: 31554290 PMCID: PMC6801978 DOI: 10.3390/ijms20194743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. In our study, we clone a novel DFR gene from blue flowers of Muscari. aucheri. Quantitative real-time PCR (qRT-PCR) and anthocyanin analysis showed that the expression pattern of MaDFR had strong correlations with the accumulation of delphinidin, relatively weak correlations with cyanidin, and no correations with pelargonidin. However, in vitro enzymatic analysis revealed that the MaDFR enzyme can reduce all the three types of dihydroflavonols (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), although it most preferred dihydromyricetin as a substrate to produce leucodelphinidin, the precursor of blue-hued delphinidin. This indicated that there may be other functional genes responsible for the loss of red pelargonidin-based pigments in Muscari. To further verify the substrate-specific selection domains of MaDFR, an assay of amino acid substitutions was conducted. The activity of MaDFR was not affected whenever the N135 or E146 site was mutated. However, when both of them were mutated, the catalytic activity of MaDFR was lost completely. The results suggest that both the N135 and E146 sites are essential for the activity of MaDFR. Additionally, the heterologous expression of MaDFR in tobacco (Nicotiana tabacum) resulted in increasing anthocyanin accumulation, leading to a darker flower color, which suggested that MaDFR was involved in color development in flowers. In summary, MaDFR has a high preference for dihydromyricetin, and it could be a powerful candidate gene for genetic engineering for blue flower colour modification. Our results also make a valuable contribution to understanding the basis of color variation in the genus Muscari.
Collapse
|
32
|
Chen K, Du L, Liu H, Liu Y. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC PLANT BIOLOGY 2019; 19:390. [PMID: 31500571 PMCID: PMC6734322 DOI: 10.1186/s12870-019-1999-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/29/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The primary pigments in flowers are anthocyanins, the biosynthesis of which is mainly regulated by R2R3-MYBs. Muscari armeniacum is an ornamental garden plant with deep cobalt blue flowers containing delphinidin-based anthocyanins. An anthocyanin-related R2R3-MYB MaAN2 has previously been identified in M. armeniacum flowers; here, we also characterized a novel R2R3-MYB MaMybA, to determine its function and highlight similarities and differences between MaMybA and MaAN2. RESULTS In this study, a novel anthocyanin-related R2R3-MYB gene was isolated from M. armeniacum flowers and functionally identified. A sequence alignment showed that MaMybA contained motifs typically conserved with MaAN2 and its orthologs. However, the shared identity of the entire amino acid sequence between MaMybA and MaAN2 was 43.5%. Phylogenetic analysis showed that they were both clustered into the AN2 subgroup of the R2R3-MYB family, but not in the same branch. We also identified a IIIf bHLH protein, MabHLH1, in M. armeniacum flowers. A bimolecular fluorescence complementation assay showed that MabHLH1 interacted with MaMybA or MaAN2 in vivo; a dual luciferase assay indicated that MaMybA alone or in interaction with MabHLH1 could regulate the expression of MaDFR and AtDFR, but MaAN2 required MabHLH1 to do so. When overexpressing MaMybA in Nicotiana tabacum 'NC89', the leaves, petals, anthers, and calyx of transgenic tobacco showed intense and magenta anthocyanin pigments, whereas those of OE-MaAN2 plants had lighter pigmentation. However, the ovary wall and seed skin of OE-MaMybA tobacco were barely pigmented, while those of OE-MaAN2 tobacco were reddish-purple. Moreover, overexpressing MaMybA in tobacco obviously improved anthocyanin pigmentation, compared to the OE-MaAN2 and control plants, by largely upregulating anthocyanin biosynthetic and endogenous bHLH genes. Notably, the increased transcription of NtF3'5'H in OE-MaMybA tobacco might lead to additional accumulation of delphinidin 3-rutinoside, which was barely detected in OE-MaAN2 and control plants. We concluded that the high concentration of anthocyanin and the newly produced Dp3R caused the darker color of OE-MaMybA compared to OE-MaAN2 tobacco. CONCLUSION The newly identified R2R3-MYB transcription factor MaMybA functions in anthocyanin biosynthesis, but has some differences from MaAN2; MaMybA could also be useful in modifying flower color in ornamental plants.
Collapse
Affiliation(s)
- Kaili Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
33
|
Ectopic expression of tea MYB genes alter spatial flavonoid accumulation in alfalfa (Medicago sativa). PLoS One 2019; 14:e0218336. [PMID: 31265465 PMCID: PMC6605665 DOI: 10.1371/journal.pone.0218336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022] Open
Abstract
Flavonoids are one of the largest secondary metabolite groups, which are widely present in plants. Flavonoids include anthocyanins, proanthocyanidins, flavonols and isoflavones. In particular, proanthocyanidins possess beneficial effects for ruminant animals in preventing lethal pasture bloat. As a major legume forage, alfalfa (Medicago sativa) contains little proanthocyanidins in foliage to combat bloat. In an attempt to improve proanthocyanidin content in alfalfa foliage, we over-expressed two MYB transcription factors (CsMYB5-1 and CsMYB5-2) from tea plant that is rich in proanthocyanidins. We showed that, via targeted metabolite and transcript analyses, the transgenic alfalfa plants accumulated higher levels of flavonoids in stems/leaves than the control, in particular anthocyanins and proanthocyanidins. Over-expression of CsMYB5-1 and CsMYB5-2 induced the expression levels of genes involved in flavonoid pathway, especially anthocyanin/proanthocyanidin-specific pathway genes DFR, ANS and ANR in stems/leaves. Both anthocyanin/proanthocyanidin content and the expression levels of several genes were conversely decreased in flowers of the transgenic lines than in control. Our results indicated that CsMYB5-1 and CsMYB5-2 differently regulate anthocyanins/proanthocyanidins in stems/leaves and flowers. Our study provides a guide for increasing anthocyanin/proanthocyanidin accumulation in foliage of legume forage corps by genetic engineering. These results also suggest that it is feasible to cultivate new varieties for forage production to potentially solve pasture bloat, by introducing transcription factors from typical plants with high proanthocyanidin level.
Collapse
|
34
|
Identification and Characterization of MYB-bHLH-WD40 Regulatory Complex Members Controlling Anthocyanidin Biosynthesis in Blueberry Fruits Development. Genes (Basel) 2019; 10:genes10070496. [PMID: 31261791 PMCID: PMC6678982 DOI: 10.3390/genes10070496] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins is the main representative of flavonoids in blueberry fruits. The anthocyanins biosynthetic pathway has been extensively studied in numerous model plants and fruit crops at biochemical, genetic, and molecular levels. However, the mechanisms by which the MYB transcription factor/basic helix-loop-helix (bHLH) domain protein/WD-repeat (MYB-bHLH-WD40) complexes regulate anthocyanin biosynthesis in blueberry is still limited. In the present study, we identified 11 MYB, 7 bHLH, and 6 WD40 genes in blueberry fruits, using amino acid sequences of homologous MYB-bHLH-WD40 complexes in Arabidopsis, apple, grape, and strawberry. To understand these mechanisms, the expression patterns of MYB-bHLH-WD40 genes were examined and validated using differentially expressed gene (DEG) analysis and quantitative real-time reverse transcription PCR (qRT-PCR), respectively. The expression patterns of MYB-bHLH-WD40 genes positively correlated with anthocyanin accumulation and color development in blueberry fruits. Consistent with the effects of other transcriptional regulators, the VcMYBL1::GFP, VcbHLH1::GFP, and VcWDL2::GFP fusion proteins were only observed in the nucleus. The protein-protein interactions (PPIs) and bimolecular fluorescence complementation (BiFC) assay suggested a possible link between VcbHLHL1 and VcMYBL1. Finally, a model was proposed and discussed for how the expression of the MYB-bHLH-WD40 complexes can promote anthocyanin biosynthesis in blueberry fruits. To our knowledge, this study was the first to evaluate MYB-bHLH-WD40 complexes in blueberry fruits, and it provides a foundation to dissect the function of the mechanism.
Collapse
|
35
|
Sakai M, Yamagishi M, Matsuyama K. Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.). PLANT CELL REPORTS 2019; 38:609-622. [PMID: 30725168 DOI: 10.1007/s00299-019-02391-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 05/22/2023]
Abstract
Lily R3-MYB transcription factors are involved in negative regulation to limit anthocyanin accumulation in lily flowers and leaves and create notable color patterns on ectopically expressed petunia flowers. In eudicots, both positive and negative regulators act to precisely regulate the level of anthocyanin accumulation. The R3-MYB transcription factor is among the main factors repressing anthocyanin biosynthesis. Although, in monocots, the positive regulators have been well characterized, the negative regulators have not been examined. Two R3-MYBs, LhR3MYB1 and LhR3MYB2, which were identified in lily transcriptomes, were characterized in this study to understand the regulatory mechanisms of anthocyanin biosynthesis. LhR3MYB1 and LhR3MYB2 had a C2 suppressor motif downstream of a single MYB repeat; the similar amino acid motif appears only in AtMYBL2 among the eudicot R3-MYB proteins. Stable and transient overexpression of LhR3MYB1 and LhR3MYB2 in tobacco plants showed suppression of anthocyanin biosynthesis by both; however, suppression by LhR3MYB2 was stronger than that by LhR3MYB1. In the lily plant, the LhR3MYB2 transcript was detected in leaves with light stimulus-induced anthocyanin accumulation and in pink tepals. Although LhR3MYB1 was expressed in some, but not all tepals, its expression was not linked to anthocyanin accumulation. In addition, LhR3MYB1 expression levels in the leaves remained unchanged by the light stimulus, and LhR3MYB1 transcripts predominantly accumulated in the ovaries, which did not accumulate anthocyanins. Thus, although LhR3MYB1 and LhR3MYB2 have an ability to repress anthocyanin accumulation, LhR3MYB2 is more strongly involved in the negative regulation to limit the accumulation than that by LhR3MYB1. In addition, the overexpression of LhR3MYB2 generated notable color patterns in petunia flowers; thus, the usefulness of the LhR3MYB genes for creating unique color patterns by genetic engineering is discussed.
Collapse
Affiliation(s)
- Moeko Sakai
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589, Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Kohei Matsuyama
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
36
|
Zhang D, Jiang C, Huang C, Wen D, Lu J, Chen S, Zhang T, Shi Y, Xue J, Ma W, Xiang L, Sun W, Chen S. The light-induced transcription factor FtMYB116 promotes accumulation of rutin in Fagopyrum tataricum. PLANT, CELL & ENVIRONMENT 2019; 42:1340-1351. [PMID: 30375656 DOI: 10.1111/pce.13470] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 05/03/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) not only provides a supplement to primary grain crops in China but also has high medicinal value, by virtue of its rich content of flavonoids possessing antioxidant, anti-inflammatory, and anticancer properties. Light is an important environmental factor that can regulate the synthesis of plant secondary metabolites. In this study, we treated tartary buckwheat seedlings with different wavelengths of light and found that red and blue light could increase the content of flavonoids and the expression of genes involved in flavonoid synthesis pathways. Through coexpression analysis, we identified a new MYB transcription factor (FtMYB116) that can be induced by red and blue light. Yeast one-hybrid assays and an electrophoretic mobility shift assay showed that FtMYB116 binds directly to the promoter region of flavonoid-3'-hydroxylase (F3'H), and a transient luciferase activity assay indicated that FtMYB116 can induce F3'H expression. After transforming FtMYB116 into the hairy roots of tartary buckwheat, we observed significant increases in the content of rutin and quercetin. Collectively, our results indicate that red and blue light promote an increase in flavonoid content in tartary buckwheat seedlings; we also identified a new MYB transcription factor, FtMYB116, that promotes the accumulation of rutin via direct activation of F3'H expression.
Collapse
Affiliation(s)
- Dong Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunli Jiang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Chenhao Huang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dong Wen
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiangnan Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianping Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Hirohata A, Sato I, Kaino K, Iwata Y, Koizumi N, Mishiba KI. CRISPR/Cas9-mediated homologous recombination in tobacco. PLANT CELL REPORTS 2019; 38:463-473. [PMID: 30006757 DOI: 10.1007/s00299-018-2320-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE Co-transformation of multiple T-DNA in a binary vector enabled CRISPR/Cas9-mediated HR in tobacco. HR occurred in a limited region around the gRNA target site. In this study, CRISPR/Cas9-mediated homologous recombination (HR) in tobacco (Nicotiana tabacum L. 'SR-1') was achieved using binary vectors comprising two (T1-T2) or three (T1-T2-T3) independent T-DNA regions. For HR donor with the tobacco acetolactate synthase gene, SuRB, T-DNA1 contained ΔSuRBW568L, which lacked the N-terminus region of SuRB and was created by three nucleotide substitutions (ATG to GCT; W568L), leading to herbicide chlorsulfuron (Cs) resistance, flanked by the hygromycin (Hm)-resistant gene. T-DNA2 consisted of the hSpCas9 gene and two gRNA inserts targeting SuRB and An2. For the 2nd HR donor with the tobacco An2 gene encoding a MYB transcription factor involved in anthocyanin biosynthesis, T-DNA3 had a 35S promoter-driven An2 gene lacking the 3rd exon resulting in anthocyanin accumulation after successful HR. After selecting for Hm and Cs resistance from among the 7462 Agrobacterium-inoculated explants, 77 independent lines were obtained. Among them, the ATG to GCT substitution of endogenous SuRB was detected in eight T1-T2-derived lines and two T1-T2-T3-derived lines. Of these mutations, four T1-T2-derived lines were bi-allelic. All the HR events occurred across the endogenous SuRB and 5' homology arm of the randomly integrated T-DNA1. HR of the SuRB paralog, SuRA, was also found in one of the T1-T2-derived lines. Sequence analysis of its SuRA-targeted region indicated that the HR occurred in a limited (< 153 bp) region around the gRNA target site. Even though some T1-T2-T3-derived lines introduced three different T-DNAs and modified the An2 gRNA target site, no signs of HR in the endogenous An2 could be observed.
Collapse
Affiliation(s)
- Ayumi Hirohata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Izumi Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kimihiko Kaino
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
38
|
Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H, Yang A. NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness. FRONTIERS IN PLANT SCIENCE 2019; 10:178. [PMID: 30846995 PMCID: PMC6393349 DOI: 10.3389/fpls.2019.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 andO 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 andO 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 andO 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.
Collapse
Affiliation(s)
- Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanli Qian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xuhao Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhenying Wu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chunxiang Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
39
|
Wang Y, Wang H, Gao M, Fan Z, Chen Y, Jin Y. Overexpression of kale ( Brassica oleracea L. var. acephala) BoMYB increases anthocyanin content in Arabidopsis thaliana. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1628662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yushu Wang
- Department of Horticulture, College of Life Sciences, Agriculture and Forestry, Qiqihaer University, Qiqihaer, PR China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihaer, PR China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer, PR China
| | - Meiling Gao
- Department of Horticulture, College of Life Sciences, Agriculture and Forestry, Qiqihaer University, Qiqihaer, PR China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihaer, PR China
| | - Zhenyu Fan
- Department of Horticulture, College of Life Sciences, Agriculture and Forestry, Qiqihaer University, Qiqihaer, PR China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihaer, PR China
| | - Yang Chen
- Department of Horticulture, College of Life Sciences, Agriculture and Forestry, Qiqihaer University, Qiqihaer, PR China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihaer, PR China
| | - Yifeng Jin
- Department of Horticulture, College of Life Sciences, Agriculture and Forestry, Qiqihaer University, Qiqihaer, PR China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihaer, PR China
| |
Collapse
|
40
|
Developmental Variation in Fruit Polyphenol Content and Related Gene Expression of a Red-Fruited versus a White-Fruited Fragaria vesca Genotype. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two cultivars of F. vesca, red-fruited Baron Solemacher (BS) and white-fruited Pineapple Crush (PC), were studied to compare and contrast the quantitative accumulation of major polyphenols and related biosynthetic pathway gene expression patterns during fruit development and ripening. Developing PC fruit showed higher levels of hydroxycinnamic acids in green stages and a greater accumulation of ellagitannins in ripe fruit in comparison to BS. In addition to anthocyanin, red BS fruit had greater levels of flavan-3-ols when ripe than PC. Expression patterns of key structural genes and transcription factors of the phenylpropanoid/flavonoid biosynthetic pathway, an abscisic acid (ABA) biosynthetic gene, and a putative ABA receptor gene that may regulate the pathway, were also analyzed during fruit development and ripening to determine which genes exhibited differences in expression and when such differences were first evident. Expression of all pathway genes differed between the red BS and white PC at one or more times during development, most notably at ripening when phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), flavanone-3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP:flavonoid-O-glucosyltransferase 1 (UFGT1) were significantly upregulated in the red BS fruit. The transcription factors MYB1 and MYB10 did not differ substantially between red and white fruit except at ripening, when both the putative repressor MYB1 and promoter MYB10 were upregulated in red BS but not white PC fruit. The expression of ABA-related gene 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) was higher in red BS fruit but only in the early green stages of development. Thus, a multigenic effect at several points in the phenylpropanoid/flavonoid biosynthetic pathway due to lack of MYB10 upregulation may have resulted in white PC fruit.
Collapse
|
41
|
Sui X, Singh SK, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L. Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4267-4281. [PMID: 29931167 DOI: 10.1093/jxb/ery229] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 05/24/2023]
Abstract
Biosynthesis of medicinally valuable terpenoid indole alkaloids (TIAs) in Catharanthus roseus is regulated by transcriptional activators such as the basic helix-loop-helix factor CrMYC2. However, the transactivation effects are often buffered by repressors, such as the bZIP factors CrGBF1 and CrGBF2, possibly to fine-tune the accumulation of cytotoxic TIAs. Questions remain as to whether and how these factors interact to modulate TIA production. We demonstrated that overexpression of CrMYC2 induces CrGBF expression and results in reduced alkaloid accumulation in C. roseus hairy roots. We found that CrGBF1 and CrGBF2 form homo- and heterodimers to repress the transcriptional activities of key TIA pathway gene promoters. We showed that CrGBFs dimerize with CrMYC2, and CrGBF1 binds to the same cis-elements (T/G-box) as CrMYC2 in the target gene promoters. Our findings suggest that CrGBFs antagonize CrMYC2 transactivation possibly by competitive binding to the T/G-box in the target promoters and/or protein-protein interaction that forms a non-DNA binding complex that prevents CrMYC2 from binding to its target promoters. Homo- and heterodimer formation allows fine-tuning of the amplitude of TIA gene expression. Our findings reveal a previously undescribed regulatory mechanism that governs the TIA pathway genes to balance metabolic flux for TIA production in C. roseus.
Collapse
Affiliation(s)
- Xueyi Sui
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Craig Schluttenhofer
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Wen Guo
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
42
|
Wang J, Wang X, Geng S, Singh SK, Wang Y, Pattanaik S, Yuan L. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. PLANTA 2018; 248:171-182. [PMID: 29644447 DOI: 10.1007/s00425-018-2888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Genome-wide identification, expression analysis, and functional characterization of previously uncharacterized hexokinase family of oil crop, Brassica napus, underscore the importance of this gene family in plant growth and development. In plants, the multi-gene family of dual-function hexokinases (HXKs) plays important roles in sugar metabolism and sensing that affect growth and development. Rapeseed (Brassica napus L.) is an important oil crop; however, little is known about the B. napus HXK gene family. We identified 19 putative HXKs in B. napus genome. B. rapa and B. oleracea, the two diploid progenitors of B. napus, contributed almost equally to the BnHXK genes. Phylogenetic analysis divided the 19 BnHXKs into four groups. The exon-intron structures of BnHXKs share high similarity to those of HXKs in Arabidopsis and rice. The group III and IV BnHXKs are highly expressed in roots, whereas group I members preferentially express in leaves. Analysis of seed transcriptomes at different developmental stages showed that most of group I and IV HXKs are highly expressed 2-weeks after pollination (2WAP), compared to 4WAP for group III. BnHKXs are differentially expressed in susceptible and tolerant B. napus cultivars after fungal infection, suggesting the possible involvement in defense response. We generated rapeseed RNAi lines for BnHXK9, a member of relatively less characterized group IV, by pollen-mediated gene transformation. The seedlings of BnHXK9-RNAi lines showed delayed growth compared to the wild type. The RNAi plants were dwarf with curly leaves, suggesting the involvement of BnHXK9 in plant development. Collectively, our findings provides a comprehensive account of BnHXK gene family in an important crop and a starting point for further elucidation of their roles in sugar metabolism and sensing, as well as plant growth and development.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Xiaomin Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Siyu Geng
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Yaohui Wang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Ling Yuan
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
43
|
Tripathi AM, Niranjan A, Roy S. Global gene expression and pigment analysis of two contrasting flower color cultivars of Canna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:1-10. [PMID: 29544208 DOI: 10.1016/j.plaphy.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/19/2023]
Abstract
Development of flower color in plants is a complex process. Among others, it is an important trait for ornamental flowering plants. Canna is a flowering ornamental plant of family Cannaceae. To understand the molecular mechanism of flower color development in Canna, RNA sequencing from flower tissues of two contrasting flower color cultivars, Red President (RP) and Tropical Sunrise (TS) was performed. More than 27.0 million and 19.0 million clean reads were obtained from RP and TS, respectively. The combined clean reads were assembled into 147,295 unigenes. The Canna unigenes showed maximum homology with Populus trichocarpa (26.79%). A total of 2702 unigenes expressed differentially between the two cultivars of which 1972 were up-regulated and 730 were down-regulated in RP. Phenylpropanoid and flavonoid biosynthetic processes were the significant processes in RP. Expression of a vast number of transcription factors including MYB, bHLH, ARF, and WRKY were higher in RP than TS. The expression analysis of RNA sequencing data was validated by qRT-PCR analysis. Further, concentration of measured anthocyanidins and flavonols were very low or absent in TS, corroborating largely with our transcriptome data. These findings may help in understanding flower color development in Canna and in future crop breeding program.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Abhishek Niranjan
- Central Instrumental Facility, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India.
| |
Collapse
|
44
|
D'Amelia V, Aversano R, Ruggiero A, Batelli G, Appelhagen I, Dinacci C, Hill L, Martin C, Carputo D. Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. PLANT, CELL & ENVIRONMENT 2018; 41:1038-1051. [PMID: 28386931 DOI: 10.1111/pce.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Claudio Dinacci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
45
|
Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. PLANTA 2018; 247:301-315. [PMID: 28965159 DOI: 10.1007/s00425-017-2783-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Isolation and Characterization of Key Genes that Promote Flavonoid Accumulation in Purple-leaf Tea (Camellia sinensis L.). Sci Rep 2018; 8:130. [PMID: 29317677 PMCID: PMC5760735 DOI: 10.1038/s41598-017-18133-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023] Open
Abstract
There were several high concentrations of flavonoid components in tea leaves that present health benefits. A novel purple-leaf tea variety, 'Mooma1', was obtained from the natural hybrid population of Longjing 43 variety. The buds and young leaves of 'Mooma1' were displayed in bright red. HPLC and LC-MS analysis showed that anthocyanins and O-Glycosylated flavonols were remarkably accumulated in the leaves of 'Mooma1', while the total amount of catechins in purple-leaf leaves was slightly decreased compared with the control. A R2R3-MYB transcription factor (CsMYB6A) and a novel UGT gene (CsUGT72AM1), that were highly expressed in purple leaf were isolated and identified by transcriptome sequencing. The over-expression of transgenic tobacco confirmed that CsMYB6A can activate the expression of flavonoid-related structural genes, especially CHS and 3GT, controlling the accumulation of anthocyanins in the leaf of transgenic tobacco. Enzymatic assays in vitro confirmed that CsUGT72AM1 has catalytic activity as a flavonol 3-O-glucosyltransferase, and displayed broad substrate specificity. The results were useful for further elucidating the molecular mechanisms of the flavonoid metabolic fluxes in the tea plant.
Collapse
|
47
|
Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genomics 2017; 40:49-61. [PMID: 29892898 DOI: 10.1007/s13258-017-0609-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Flavonoids are a group of metabolites in Ginkgo biloba thought to provide health benefits. R2R3-MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthesis in plants. In this study, an R2R3-MYB transcription factor gene, GbMYBFL, was isolated from G. biloba and characterized. Results of bioinformatic analysis indicated that GbMYBFL is more closely related to the R2R3-MYB involved in flavonoid biosynthesis and displayed high similarity to MYB from other plants. The genmomic sequence of GbMYBFL had three exons and two introns, with its upstream sequence containing cis-acting regulatory elements Myb binding site, Myc recognition sites, and light, SA, MeJA responsive elements. Subcellular localization analysis indicates that GbMYBFL was located in the nucleus. Quantitative real-time PCR revealed that GbMYBFL was expressed in leaves, stems, roots, young fruits, male flower and female flower, and the level of transcription in male flower and leaves were higher than that in female flower, stems, roots, and young fruits. During G. biloba leaf growth, the transcription of GbMYBFL is positively correlated with the flavonoid content, suggesting that the GbMYBFL is involved in the flavonoid biosynthesis. Overexpression of GbMYBFL under the control of the CaMV35S promoter in Ginkgo callus notably enhanced the accumulation of flavonoids and anthocyanin compared with non-transformed callus. This finding suggested that GbMYBFL positively related to flavonoid biosynthesis, and the overexpression of GbMYBFL was sufficient to induce flavonoids and anthocyanin accumulation.
Collapse
|
48
|
Oertel A, Matros A, Hartmann A, Arapitsas P, Dehmer KJ, Martens S, Mock HP. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. PLANTA 2017; 246:281-297. [PMID: 28664422 DOI: 10.1007/s00425-017-2718-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration. Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato cultivars. Mainly hydroxylation and methylation patterns of the B-ring of dihydroflavonols, leading to the formation of specific anthocyanidin backbones, can be assigned to a distinct coloring of the potato cultivars and tuber tissues. However, basically the same glycosylation and acylation reactions occur regardless of the main anthocyanidin precursor present in the respective red and blue/purple tissue. Thus, the different anthocyanin profiles in red and blue potato cultivars likely relate to superior regulation of the expression and activities of hydroxylases and methyltransferases rather than to differences for downstream glycosyl- and acyltransferases. In this regard, the characterized potato cultivars represent a valuable resource for the molecular analysis of the genetic background and the regulation of anthocyanin side chain modification.
Collapse
Affiliation(s)
- Anne Oertel
- TRANSMIT GmbH, Project Division: PlantMetaChem (PMC), Kerkrader Straße 3, 35394, Giessen, Germany
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Anja Hartmann
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via E. Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Klaus J Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank Department/GLKS, Parkweg 3a, 18190, Gross Luesewitz, Germany
| | - Stefan Martens
- TRANSMIT GmbH, Project Division: PlantMetaChem (PMC), Kerkrader Straße 3, 35394, Giessen, Germany
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via E. Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany.
| |
Collapse
|
49
|
Passeri V, Martens S, Carvalho E, Bianchet C, Damiani F, Paolocci F. The R2R3MYB VvMYBPA1 from grape reprograms the phenylpropanoid pathway in tobacco flowers. PLANTA 2017; 246:185-199. [PMID: 28299441 DOI: 10.1007/s00425-017-2667-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION This work shows that, in tobacco, the ectopic expression of VvMYBPA1 , a grape regulator of proanthocyanidin biosynthesis, up- or down-regulates different branches of the phenylproanoid pathway, in a structure-specific fashion. Proanthocyanidins are flavonoids of paramount importance for animal and human diet. Research interest increasingly tilts towards generating crops enriched with these health-promoting compounds. Flavonoids synthesis is regulated by the MBW transcriptional complex, made of R2R3MYB, bHLH and WD40 proteins, with the MYB components liable for channeling the complex towards specific branches of the pathway. Hence, using tobacco as a model, here, we tested if the ectopic expression of the proanthocyanidin regulator VvMYBPA1 from grape induces the biosynthesis of these compounds in not-naturally committed cells. Here, we show, via targeted transcriptomic and metabolic analyses of primary transgenic lines and their progeny, that VvMYBPA1 alters the phenylpropanoid pathway in tobacco floral organs, in a structure-specific fashion. We also report that a modest VvMYBPA1 expression is sufficient to induce the expression of both proanthocyanidin-specific and early genes of the phenylpropanoid pathway. Consequently, proanthocyanidins and chlorogenic acids are induced or de novo synthetised in floral limbs, tubes and stamens. Other phenylpropanoid branches are conversely induced or depleted according to the floral structure. Our study documents a novel and distinct function of VvMYBPA1 with respect to other MYBs regulating proanthocyanidins. Present findings may have major implications in designing strategies for enriching crops with health-promoting compounds.
Collapse
Affiliation(s)
- Valentina Passeri
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach - IASMA, via E. Mach 1, 38010, San Michele All'adige, Italy
| | - Elisabete Carvalho
- Research and Innovation Center, Fondazione Edmund Mach - IASMA, via E. Mach 1, 38010, San Michele All'adige, Italy
| | - Chantal Bianchet
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Francesco Damiani
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy
| | - Francesco Paolocci
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128, Perugia, Italy.
| |
Collapse
|
50
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci Rep 2017; 7:5104. [PMID: 28698552 PMCID: PMC5506036 DOI: 10.1038/s41598-017-04909-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Phenolic acids and tanshinones are two major bioactive components in Salvia miltiorrhiza Bunge. A novel endogenous R2R3-MYB transcription factor, SmMYB36, was identified in this research. This transcript factor can simultaneously influence the content of two types of components in SmMYB36 overexpression hairy roots. SmMYB36 was mainly localized in the nucleus of onion epidermis and it has transactivation activity. The overexpression of SmMYB36 promoted tanshinone accumulation but inhibited phenolic acid and flavonoid biosynthesis in Salvia miltiorrhiza hairy roots. The altered metabolite content was due to changed metabolic flow which was regulated by transcript expression of metabolic pathway genes. The gene transcription levels of the phenylpropanoid general pathway, tyrosine derived pathway, methylerythritol phosphate pathway and downstream tanshinone biosynthetic pathway changed significantly due to the overexpression of SmMYB36. The wide distribution of MYB binding elements (MBS, MRE, MBSI and MBSII) and electrophoretic mobility shift assay results indicated that SmMYB36 may be an effective tool to regulate metabolic flux shifts.
Collapse
Affiliation(s)
- Kai Ding
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanyan Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|