1
|
Dai A, Zheng Z, Ma D, Wu R, Mo Y, Duan L, Tan W. Synthesis, Biological Activity and Mechanism of Action of Pyridine-Containing Arylthiourea Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8865-8875. [PMID: 40126174 DOI: 10.1021/acs.jafc.5c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A well-developed root system is a key factor in improving crop quality, as it can absorb water, nourish and resist stress. A series of arylthiourea derivatives were synthesized and their biological activities were evaluated in this study. The results indicate that compound A2 significantly promotes rice root growth, exhibiting effects more than twice those of the naphthylacetic acid (NAA). Additionally, A2 enhances dry matter accumulation and increases chlorophyll content, thereby improving the disease resistance of rice. Preliminary mechanistic studies suggest that compound A2 mimics auxin-like activity, similar to NAA, A2 interacts with SER438 and PHE82, demonstrating strong binding affinity to the auxin receptor TIR1. Moreover, compound A2 upregulates the auxin-responsive gene ARF, promoting cell elongation and accelerating lateral root development, leading to a larger root system in rice. Compound A2 may have application potential as an auxin receptor agonist, providing a molecular basis for the design of root growth regulators.
Collapse
Affiliation(s)
- Ali Dai
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhiguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dengke Ma
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ronghao Wu
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - You Mo
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Liusheng Duan
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Weiming Tan
- Engineering Research Centre of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Park J, Morinaga K, Houki Y, Tsushima A, Aoki K. Involvement of MID1-COMPLEMENTING ACTIVITY 1 encoding a mechanosensitive ion channel in prehaustorium development of the stem parasitic plant Cuscuta campestris. PLANT & CELL PHYSIOLOGY 2025; 66:400-410. [PMID: 39821429 PMCID: PMC11957263 DOI: 10.1093/pcp/pcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
Parasitic plants pose a substantial threat to agriculture as they attack economically important crops. The stem parasitic plant Cuscuta campestris invades the host's stem with a specialized organ referred to as the haustorium, which absorbs nutrients and water from the host. Initiation of the parasitic process in C. campestris requires mechanical stimuli to its stem. However, the mechanisms by which C. campestris perceives mechanical stimuli are largely unknown. Previous studies have shown that mechanosensitive ion channels (MSCs) are involved in the perception of mechanical stimuli. To examine if MSCs are involved in prehaustorium development upon tactile stimuli, we treated C. campestris plants with an MSC inhibitor, GsMTx-4, which resulted in a reduced density of prehaustoria. To identify the specific MSC gene involved in prehaustorium development, we analyzed the known functions and expression patterns of Arabidopsis MSC genes and selected MID1-COMPLEMENTING ACTIVITY 1 (MCA1) as a primary candidate. The MSC activity of CcMCA1 was confirmed by its ability to complement the phenotype of a yeast mid1 mutant. To evaluate the effect of CcMCA1 silencing on prehaustorium development, we performed host-induced gene silencing using Nicotiana tabacum plants that express an artificial microRNA-targeting CcMCA1. In the CcMCA1-silenced C. campestris, the number of prehaustoria per millimeter of stem length decreased, and the interval length between prehaustoria increased. Additionally, the expression levels of known genes involved in prehaustorium development, such as CcLBD25, decreased significantly in the CcMCA1-silenced plants. The results suggest that CcMCA1 is involved in prehaustorium development in C. campestris.
Collapse
Affiliation(s)
- Jihwan Park
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Kyo Morinaga
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Yuma Houki
- College of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Ayako Tsushima
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| | - Koh Aoki
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
3
|
Wang D, Zheng K, Long W, Zhao L, Li W, Xue X, Han S. Cytosolic and Nucleosolic Calcium-Regulated Long Non-Coding RNAs and Their Target Protein-Coding Genes in Response to Hyperosmolarity and Salt Stresses in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2086. [PMID: 40076708 PMCID: PMC11900983 DOI: 10.3390/ijms26052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in plant biotic and abiotic stress responses, in which Ca2+ also plays a significant role. There is diversity in the regulation of different gene expressions by cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc). However, no studies have yet explored the interrelationship between lncRNAs and calcium signaling, nor how calcium signaling regulates the expression of lncRNAs. Here, we use transgenic materials PV-NES and NLS-PV, which simulate [Ca2+]cyt- and [Ca2+]nuc-deficient mutants, respectively, and wild type (WT) materials in response to hyperosmolarity (250 mM sorbitol) or salt stresses (125 mM NaCl) at different time points to obtain RNA-seq data, respectively. Then, we proceed with the screening of lncRNAs, adding 688 new lncRNAs to the known Arabidopsis lncRNA database. Subsequently, through the analysis of differentially expressed lncRNA genes, it was found that cytosolic or nucleosolic calcium signals have distinct regulatory effects on differentially expressed lncRNAs (DElncRNAs) and differentially expressed protein-coding genes (DEPCGs) treated with high-concentration NaCl and sorbitol at different times. Furthermore, through weighted correlation network analysis (WGCNA), it is discovered that under hyperosmolarity and salt stresses, lncRNA-associated PCGs are related to the cell wall structure, the plasma membrane component, and osmotic substances through trans-regulation. In addition, by screening for cis-regulatory target PCGs of Ca2+-regulated lncRNAs related to osmotic stress, we obtain a series of lncRNA-PCG pairs related to water transport, cell wall components, and lateral root formation. Therefore, we expand the existing Arabidopsis lncRNA database and obtain a series of lncRNAs and PCGs regulated by [Ca2+]cyt or [Ca2+]nuc in response to salt and hyperosmolarity stress, providing a new perspective for subsequent research on lncRNAs. We also explore the trans- and cis-regulated target PCGs of lncRNAs regulated by calcium signaling, providing new insights for further studying salt stress and osmotic stress.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wenfen Long
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Liang Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
4
|
Lee S, Bae SH, Jeon Y, Seo PJ, Choi Y. DEMETER DNA demethylase reshapes the global DNA methylation landscape and controls cell identity transition during plant regeneration. BMC Genomics 2024; 25:1234. [PMID: 39716048 DOI: 10.1186/s12864-024-11144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Plants possess a high potential for somatic cell reprogramming, enabling the transition from differentiated tissue to pluripotent callus, followed by the formation of de novo shoots during plant regeneration. Despite extensive studies on the molecular network and key genetic factors involved in this process, the underlying epigenetic landscape remains incompletely understood. RESULTS Here, we explored the dynamics of the methylome and transcriptome during the two-step plant regeneration process. During the leaf-to-callus transition in Arabidopsis Ler, CG methylation shifted across genic regions, exhibiting a similar number of differentially methylated regions (DMRs) for both hypo- and hypermethylation. Pericentromeric regions underwent substantial CG and extensive CHH hypomethylation, alongside some CHG hypermethylation. Upon shoot regeneration from callus, genic regions displayed extensive reconfiguration of CG methylation, while pericentromeric methylation levels highly increased across all cytosine contexts, coinciding with the activation of the RNA-directed DNA methylation (RdDM) pathway. However, mutation in DEMETER (DME) DNA demethylase gene resulted in significant genic CG redistribution and global non-CG hypomethylation in pericentromeric regions, particularly during shoot regeneration. This non-CG hypomethylation observed in dme-2 mutants was, at least partly, due to RdDM downregulation. The dme-2 mutants affected gene expression involved in pluripotency and shoot meristem development, resulting in enhanced shoot regeneration through a reprogrammed state established by pericentromeric hypomethylation compared to wild type. CONCLUSION Our study demonstrates epigenetic changes, accompanied by transcriptome alterations, during pluripotency acquisition (leaf-to-callus) and regeneration (callus-to-de novo shoot). Additionally, it highlights the functions of the DME demethylase, particularly its close association with the RdDM pathway, which underlies pericentromeric non-CG methylation maintenance. These results provide important insights into the epigenetic reconfiguration associated with cell identity transition during somatic cell reprogramming.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Yunji Jeon
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
5
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00268-1. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
6
|
Rong M, Gao SX, Wen D, Xu YH, Wei JH. The LOB domain protein, a novel transcription factor with multiple functions: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108922. [PMID: 39038384 DOI: 10.1016/j.plaphy.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
7
|
Chang C, Yang B, Guo X, Gao C, Wang B, Zhao X, Tang Z. Genome-Wide Survey of the Potential Function of CrLBDs in Catharanthus roseus MIA Biosynthesis. Genes (Basel) 2024; 15:1140. [PMID: 39336732 PMCID: PMC11431567 DOI: 10.3390/genes15091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Catharanthus roseus (C. roseus) can produce over 150 types of monoterpenoid indole alkaloids (MIAs), including vinblastine and vincristine, which are currently the primary sources of these alkaloids. Exploring the complex regulatory mechanisms of C. roseus is significant for resolving MIA biosynthesis. The Lateral Organ Boundaries Domain (LBD) is a plant-specific transcription factor family that plays crucial roles in the physiological processes of plant growth, stress tolerance, and specialized metabolism. However, the LBD gene family has not been extensively characterized in C. roseus, and whether its members are involved in MIA biosynthesis is still being determined. A total of 34 C. roseus LBD (CrLBD) genes were identified. RNA-Seq data were investigated to examine the expression patterns of CrLBD genes in various tissues and methyl jasmonate (MeJA) treatments. The results revealed that the Class Ia member CrLBD4 is positively correlated with iridoid biosynthetic genes (p < 0.05, r ≥ 0.8); the Class IIb member CrLBD11 is negatively correlated with iridoid biosynthetic genes (p < 0.05, r ≤ -0.8). Further validation in leaves at different growth stages of C. roseus showed that CrLBD4 and CrLBD11 exhibited different potential expression trends with iridoid biosynthetic genes and the accumulation of vindoline and catharanthine. Yeast one-hybrid (Y1H) and subcellular localization assays demonstrated that CrLBD4 and CrLBD11 could bind to the "aattatTCCGGccgc" cis-element and localize to the nucleus. These findings suggest that CrLBD4 and CrLBD11 may be potential candidates for regulating MIA biosynthesis in C. roseus. In this study, we systematically analyzed the CrLBD gene family and provided insights into the roles of certain CrLBDs in the MIA biosynthesis of C. roseus.
Collapse
Affiliation(s)
- Chunhao Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Bingrun Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Chunyan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Biying Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaoju Zhao
- Bioengineering Institute, Daqing Normal University, Daqing 163712, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Lee S, Park YS, Rhee JH, Chu H, Frost JM, Choi Y. Insights into plant regeneration: cellular pathways and DNA methylation dynamics. PLANT CELL REPORTS 2024; 43:120. [PMID: 38634973 PMCID: PMC11026228 DOI: 10.1007/s00299-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Young Seo Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Hyojeong Chu
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Jennifer M Frost
- Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
9
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
10
|
Wu X, Wang Z, Du A, Gao H, Liang J, Yu W, Yu H, Fan S, Chen Q, Guo J, Xiao Y, Peng F. Transcription factor LBD16 targets cell wall modification/ion transport genes in peach lateral root formation. PLANT PHYSIOLOGY 2024; 194:2472-2490. [PMID: 38217865 DOI: 10.1093/plphys/kiae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.
Collapse
Affiliation(s)
- Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Zhe Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Anqi Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Huaifeng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Wenying Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Qiuju Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| |
Collapse
|
11
|
Koo D, Lee HG, Bae SH, Lee K, Seo PJ. Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis. MOLECULAR PLANT 2024; 17:395-408. [PMID: 38297841 DOI: 10.1016/j.molp.2024.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production. Hypoxic conditions, with oxygen levels ranging between 1% and 5%, usually limit aerobic respiration and affect plant growth and development. Here, we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regeneration competence of the callus in Arabidopsis thaliana. We showed that hypoxia-repressed plant regeneration is mediated by the RELATED TO APETALA 2.12 (RAP2.12) protein, a member of the Ethylene Response Factor VII (ERF-VII) family. We found that the hypoxia-activated RAP2.12 protein promotes salicylic acid (SA) biosynthesis and defense responses, thereby inhibiting pluripotency acquisition and de novo shoot regeneration in calli. Molecular and genetic analyses revealed that RAP2.12 could bind directly to the SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) gene promoter and activate SA biosynthesis, repressing plant regeneration possibly via a PLETHORA (PLT)-dependent pathway. Consistently, the rap2.12 mutant calli exhibits enhanced shoot regeneration, which is impaired by SA treatment. Taken together, these findings uncover that the cell proliferation-dependent hypoxic microenvironment reduces cellular pluripotency and plant regeneration through the RAP2.12-SID2 module.
Collapse
Affiliation(s)
- Dohee Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyounghee Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
12
|
Libao C, Shiting L, Chen Z, Shuyan L. NnARF17 and NnARF18 from lotus promote root formation and modulate stress tolerance in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:163. [PMID: 38431568 PMCID: PMC10908128 DOI: 10.1186/s12870-024-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Cheng Libao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Liang Shiting
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
13
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
14
|
Jiang Q, Wu X, Zhang X, Ji Z, Cao Y, Duan Q, Huang J. Genome-Wide Identification and Expression Analysis of AS2 Genes in Brassica rapa Reveal Their Potential Roles in Abiotic Stress. Int J Mol Sci 2023; 24:10534. [PMID: 37445710 DOI: 10.3390/ijms241310534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.
Collapse
Affiliation(s)
- Qiwei Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
15
|
Agrawal R, Singh A, Giri J, Magyar Z, Thakur JK. MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:1548-1568. [PMID: 36852886 PMCID: PMC10231372 DOI: 10.1093/plphys/kiad129] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Sucrose and auxin are well-known determinants of root system architecture (RSA). However, the factors that connect the signaling pathways evoked by these two critical factors during root development are poorly understood. In this study, we report the role of MEDIATOR SUBUNIT17 (MED17) in RSA and its involvement in the transcriptional integration of sugar and auxin signaling pathways in Arabidopsis (Arabidopsis thaliana). Sucrose regulates root meristem activation through the TARGET OF RAPAMYCIN-E2 PROMOTER BINDING FACTOR A (TOR-E2FA) pathway, and auxin regulates lateral root (LR) development through AUXIN RESPONSE FACTOR-LATERAL ORGAN BOUNDARIES DOMAIN (ARF-LBDs). Both sucrose and auxin play a vital role during primary and LR development. However, there is no clarity on how sucrose is involved in the ARF-dependent regulation of auxin-responsive genes. This study establishes MED17 as a nodal point to connect sucrose and auxin signaling. Transcription of MED17 was induced by sucrose in an E2FA/B-dependent manner. Moreover, E2FA/B interacted with MED17, which can aid in the recruitment of the Mediator complex on the target promoters. Interestingly, E2FA/B and MED17 also occupied the promoter of ARF7, but not ARF19, leading to ARF7 expression, which then activates auxin signaling and thus initiates LR development. MED17 also activated cell division in the root meristem by occupying the promoters of cell-cycle genes, thus regulating their transcription. Thus, MED17 plays an important role in relaying the transcriptional signal from sucrose to auxin-responsive and cell-cycle genes to regulate primary and lateral root development, highlighting the role of the Mediator as the transcriptional processor for optimal root system architecture in Arabidopsis.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amrita Singh
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Giri
- Plant Nutritional Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Zoltan Magyar
- Molecular Regulation of Plant Development and Adaptation, Institute of Plant Biology, Biological Research Centre, Szeged 6728, Hungary
| | - Jitendra Kumar Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
16
|
Li Y, Jin F, Wu X, Teixeira da Silva JA, Xiong Y, Zhang X, Ma G. Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153866. [PMID: 36399836 DOI: 10.1016/j.jplph.2022.153866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Feng Jin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiuju Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150040, China.
| | | | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
17
|
Du J, Du C, Ge X, Wen S, Zhou X, Zhang L, Hu J. Genome-Wide Analysis of the AAAP Gene Family in Populus and Functional Analysis of PsAAAP21 in Root Growth and Amino Acid Transport. Int J Mol Sci 2022; 24:ijms24010624. [PMID: 36614067 PMCID: PMC9820651 DOI: 10.3390/ijms24010624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The adventitious root (AR) is the basis for successful propagation by plant cuttings and tissue culture and is essential for maintaining the positive traits of a variety. Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolisms and have few studies on root growth and amino acid transport. In this study, with a systematic bioinformatics analysis of the Populus AAAP family, 83 PtrAAAPs were identified from Populus trichocarpa and grouped into 8 subfamilies. Subsequently, chromosomal distribution, genetic structure, cis-elements analysis, and expression pattern analysis of the AAAP family were performed and the potential gene AAAP21 regulating root development was screened by combining the results of RNA-Seq and QTL mapping. PsAAAP21 was proven as promoting root development by enhancing AR formation. Differentially expressed genes (DEGs) from RNA-seq results of overexpressing lines were enriched to multiple amino acid-related pathways, and the amino acid treatment to transgenic lines indicated that PsAAAP21 regulated amino acid transport, including tyrosine, methionine, and arginine. Analysis of the AAAP gene family provided a theoretical basis for uncovering the functions of AAAP genes. The identification of PsAAAP21 on root promotion and amino acid transport in Populus will help with breeding new woody plant species with strong rooting ability.
Collapse
Affiliation(s)
- Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shuangshuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (L.Z.); (J.H.); Tel.: +86-10-62889642 (L.Z.); +86-10-62888862 (J.H.)
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (L.Z.); (J.H.); Tel.: +86-10-62889642 (L.Z.); +86-10-62888862 (J.H.)
| |
Collapse
|
18
|
Transcriptome Analysis Reveals the Molecular Regularity Mechanism Underlying Stem Bulblet Formation in Oriental Lily 'Siberia'; Functional Characterization of the LoLOB18 Gene. Int J Mol Sci 2022; 23:ijms232315246. [PMID: 36499579 PMCID: PMC9738039 DOI: 10.3390/ijms232315246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The formation of underground stem bulblets in lilies is a complex biological process which is key in their micropropagation. Generally, it involves a stem-to-bulblet transition; however, the underlying mechanism remains elusive. It is important to understand the regulatory mechanism of bulblet formation for the reproductive efficiency of Lilium. In this study, we investigated the regulatory mechanism of underground stem bulblet formation under different conditions regarding the gravity point angle of the stem, i.e., vertical (control), horizontal, and slanting. The horizontal and slanting group displayed better formation of bulblets in terms of quality and quantity compared with the control group. A transcriptome analysis revealed that sucrose and starch were key energy sources for bulblet formation, auxin and cytokinin likely promoted bulblet formation, and gibberellin inhibited bulblet formation. Based on transcriptome analysis, we identified the LoLOB18 gene, a homolog to AtLOB18, which has been proven to be related to embryogenic development. We established the stem bud growth tissue culture system of Lilium and silenced the LoLOb18 gene using the VIGS system. The results showed that the bulblet induction was reduced with down-regulation of LoLOb18, indicating the involvement of LoLOb18 in stem bulblet formation in lilies. Our research lays a solid foundation for further molecular studies on stem bulblet formation of lilies.
Collapse
|
19
|
Wu R, Xu B, Shi F. Leaf transcriptome analysis of Medicago ruthenica revealed its response and adaptive strategy to drought and drought recovery. BMC PLANT BIOLOGY 2022; 22:562. [PMID: 36460952 PMCID: PMC9716755 DOI: 10.1186/s12870-022-03918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought is one of the main causes of losses in forage crop yield and animal production. Medicago ruthenica (L.) cv. Zhilixing is a high-yielding alfalfa cultivar also known for its high tolerance to drought. We analyzed the transcriptome profile of this cultivar throughout drought stress and recovery and we were able to describe its phased response through the expression profiles of overlapping gene networks and drought-specific genes. RESULTS The ABA and auxin signal transduction pathways are overlapping pathways in response to drought and drought recovery in forage crops. Medicago ruthenica (L.) cv. Zhilixing adopts different strategies at different degrees of drought stress. On the 9th day of drought, transcriptional regulations related to osmoregulation are enhanced mainly through increased activities of carbohydrate and amino acid metabolism, while photosynthetic activities were reduced to slow down growth. With drought prolonging, on the 12th day of drought, the synthesis of proline and other stored organic substances was suppressed in general. After recovery, Medicago ruthenica synthesizes flavonoids through the flavonoid biosynthesis pathway to remove accumulated ROS and repair the oxidative damage from water stress. In addition, the regulation of circadian rhythm seems to accelerate the drought recovery process. CONCLUSIONS Medicago ruthenica adapts to drought by regulating the osmoregulatory system and photosynthesis, which appears to involve the ABA and auxin signaling pathways as key regulators. Furthermore, the synthesis of flavonoids and the regulation of the circadian rhythm can accelerate the recovery process. These results enriched our knowledge of molecular responses to drought and drought recovery in Medicago ruthenica and provide useful information for the development of new legume forage grass varieties with improved adaptability to drought stress.
Collapse
Affiliation(s)
- Rina Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Xu
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
20
|
Wang H, Han X, Fu X, Sun X, Chen H, Wei X, Cui S, Liu Y, Guo W, Li X, Xing J, Zhang Y. Overexpression of TaLBD16-4D alters plant architecture and heading date in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:911993. [PMID: 36212357 PMCID: PMC9533090 DOI: 10.3389/fpls.2022.911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Lateral organ boundaries domain (LBD) proteins, a class of plant-specific transcription factors with a special domain of lateral organ boundaries (LOB), play essential roles in plant growth and development. However, there is little known about the functions of these genes in wheat to date. Our previous study demonstrated that TaLBD16-4D is conducive to increasing lateral root number in wheat. In the present work, we further examined important agronomical traits of the aerial part of transgenic wheat overexpressing TaLBD16-4D. Interestingly, it was revealed that overexpressing TaLBD16-4D could lead to early heading and multiple alterations of plant architecture, including decreased plant height, increased flag leaf size and stem diameter, reduced spike length and tillering number, improved spike density and grain width, and decreased grain length. Moreover, auxin-responsive experiments demonstrated that the expression of TaLBD16-4D in wild-type (WT) wheat plants showed a significant upregulation through 2,4-D treatment. TaLBD16-4D-overexpression lines displayed a hyposensitivity to 2,4-D treatment and reduced shoot gravitropic response. The expressions of a set of auxin-responsive genes were markedly different between WT and transgenic plants. In addition, overexpressing TaLBD16-4D affected the transcript levels of flowering-related genes (TaGI, TaCO1, TaHd1, TaVRN1, TaVRN2, and TaFT1). Notably, the expression of TaGI, TaCO1, TaHd1, TaVRN1, and TaFT1 displayed significant upregulation under IAA treatment. Collectively, our observations indicated that overexpressing TaLBD16-4D could affect aerial architecture and heading time possibly though participating in the auxin pathway.
Collapse
Affiliation(s)
- Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofeng Fu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xinling Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Hailong Chen
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xirui Wei
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Shubin Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yiguo Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Dong H, Zheng Q, Zhou Y, Zhou Y, Bao Z, Lan Q, Li X. MdWOX4-2 modulated MdLBD41 functioning in adventitious shoot of apple (Malus domestica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:11-18. [PMID: 35797915 DOI: 10.1016/j.plaphy.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Apple (Malus domestica Borkh.) is not only an important fruit crop distributed worldwide, but also a common model plant. However, the lack of efficient genetic transformation procedures for apples limits the in-depth studies of their gene functions. Although leaf-regenerated adventitious shoots (LRAS) are a prerequisite for successful genetic transformation of apple, little is known about the underlying molecular mechanism of LRAS. Here, we identified the WUSCHEL-related homeobox (WOX) transcription factor in apple, MdWOX4-2, which was a transcriptional activator. Gene expression as well as morphological and histological observations revealed that MdWOX4-2 is involved in the development of LRAS. Overexpression of MdWOX4-2 conferred higher regenerative capacity in transgenic tobacco (Nicotiana tabacum) as compared to the wild type (WT). The combined results of the yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), dual luciferase assays, and transient transactivation assay, revealed that MdWOX4-2 directly bound to and activated the MdLBD41 promoter. Moreover, transgenic experiments further demonstrated that MdLBD41 could significantly enhance the formation of adventitious shoot in transgenic tobacco. Collectively, our findings demonstrate that MdWOX4-2 is important for regulating the LRAS development by activating MdLBD41.
Collapse
Affiliation(s)
- Haiqiang Dong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Qingbo Zheng
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 10093, China
| | - Yufei Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Yuwen Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Zeyang Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Qingqing Lan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Xu Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
22
|
Wang H, Huang H, Shang Y, Song M, Ma H. Identification and characterization of auxin response factor (ARF) family members involved in fig ( Ficus carica L.) fruit development. PeerJ 2022; 10:e13798. [PMID: 35898939 PMCID: PMC9310797 DOI: 10.7717/peerj.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.
Collapse
Affiliation(s)
- Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Yongkai Shang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, Beijing, China
| |
Collapse
|
23
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Feng S, Shi J, Hu Y, Li D, Guo L, Zhao Z, Lee GS, Qiao Y. Genome-Wide Analysis of Soybean Lateral Organ Boundaries Domain Gene Family Reveals the Role in Phytophthora Root and Stem Rot. FRONTIERS IN PLANT SCIENCE 2022; 13:865165. [PMID: 35599907 PMCID: PMC9116278 DOI: 10.3389/fpls.2022.865165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific lateral organ boundaries (LOB) domain (LBD) proteins, a family of transcription factors, play important roles in plant growth and development, as well as in responses to various stresses. However, little is known about the functions of LBD genes in soybean (Glycine max). In this study, we investigated the evolution and classification of the LBD family in soybean by a phylogenetic tree of the LBD gene family from 16 species. Phylogenetic analysis categorized these proteins into two classes (Class I and Class II) with seven subgroups. Moreover, we found that all the 18 LBD ancestors in angiosperm were kept in soybean, common bean genomes, and genome-wide duplication, suggesting the main force for the expansion of LBD from common bean to soybean. Analysis of gene expression profiling data indicated that 16 GmLBD genes were significantly induced at different time points after inoculation of soybean plants (cv. Huachun 6) with Phytophthora sojae (P. sojae). We further assessed the role of four highly upregulated genes, GmLBD9, GmLBD16, GmLBD23, and GmLBD88, in plant defense in soybean hairy roots using the transient overexpression and knockdown assays. The results showed that GmLBD9 and GmLBD23 negatively regulate plant immunity against P. sojae, whereas GmLBD16 and GmLBD88 positively manipulate plant immunity against P. sojae. Collectively, our findings expand our knowledge of the origin and evolution of the GmLBD gene family in soybean and promote the potential application of these genes in soybean genetic improvement.
Collapse
Affiliation(s)
- Siqi Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeonju, South Korea
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
25
|
Li C, Wang J, Li L, Li J, Zhuang M, Li B, Li Q, Huang J, Du Y, Wang J, Fan Z, Mao X, Jing R. TaMOR is essential for root initiation and improvement of root system architecture in wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:862-875. [PMID: 34890129 PMCID: PMC9055823 DOI: 10.1111/pbi.13765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Optimal root system architecture is beneficial for water-fertilizer use efficiency, stress tolerance and yield improvement of crops. However, because of the complexity of root traits and difficulty in phenotyping deep roots, the study on mechanisms of root development is rarely reported in wheat (Triticum aestivum L.). In this study, we identified that the LBD (LATERAL ORGAN BOUNDARIES DOMAIN) gene TaMOR (MORE ROOT in wheat) determines wheat crown root initiation. The mor mutants exhibited less or even no crown root, dwarfism, less grain number and lodging caused by few roots. The observation of cross sections showed that crown root initiation is inhibited in the mor mutants. Molecular assays revealed that TaMOR interacts with the auxin response factor ARF5 to directly induce the expression of the auxin transporter gene PIN2 (PIN-FORMED 2) in the root base to regulate crown root initiation. In addition, a 159-bp MITE (miniature inverted-repeat transposable element) insertion causing DNA methylation and lower expression of TaMOR-B was identified in TaMOR-B promoter, which is associated with lower root dry weight and shorter plant height. The results bring new light into regulation mechanisms of crown root initiation and offer a new target for the improvement of root system architecture in wheat.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mengjia Zhuang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Bo Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qiaoru Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Junfang Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Du
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
26
|
Zhao Y, Wang Y, Zhao X, Yan M, Ren Y, Yuan Z. ARF6s Identification and Function Analysis Provide Insights Into Flower Development of Punica granatum L. FRONTIERS IN PLANT SCIENCE 2022; 13:833747. [PMID: 35321445 PMCID: PMC8937018 DOI: 10.3389/fpls.2022.833747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Based on the genome and small-RNA sequencing of pomegranate, miRNA167 and three target genes PgARF6 were identified in "Taishanhong" genome. Three PgARF6 genes and their corresponding protein sequences, expression patterns in pomegranate flower development and under exogenous hormones treatments were systematically analyzed in this paper. We found that PgARF6s are nuclear proteins with conserved structures. However, PgARF6s had different protein structures and expression profiles in pomegranate flower development. At the critical stages of pomegranate ovule sterility (8.1-14.0 mm), the expression levels of PgARF6s in bisexual flowers were lower than those in functional male flowers. Interestingly, PgARF6c expression level was significantly higher than PgARF6a and PgARF6b. Under the treatment of exogenous IBA and 6-BA, PgARF6s were down-regulated, and the expression of PgARF6c was significantly inhibited. PgmiR167a and PgmiR167d had the binding site on PgARF6 genes sequences, and PgARF6a has the directly targeted regulatory relationship with PgmiR167a in pomegranate. At the critical stage of ovule development (8.1-12.0 mm), exogenous IBA and 6-BA promoted the content of GA and ZR accumulation, inhibited BR accumulation. There was a strong correlation between the expression of PgARF6a and PgARF6b. Under exogenous hormone treatment, the content of ZR, BR, GA, and ABA were negatively correlated with the expressions of PgARF6 genes. However, JA was positively correlated with PgARF6a and PgARF6c under IBA treatment. Thus, our results provide new evidence for PgARF6 genes involving in ovule sterility in pomegranate flowers.
Collapse
Affiliation(s)
- Yujie Zhao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yuying Wang
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xueqing Zhao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ming Yan
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yuan Ren
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhaohe Yuan
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
27
|
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved superlocus regulates above- and belowground root initiation. Science 2022; 375:eabf4368. [PMID: 35239373 DOI: 10.1101/2020.11.11.377937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evyatar Steiner
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Idan Efroni
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
28
|
Xu P, Ma W, Hu J, Cai W. The nitrate-inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genet 2022; 18:e1010090. [PMID: 35263337 PMCID: PMC8989337 DOI: 10.1371/journal.pgen.1010090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/07/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrate can affect many aspects of plant growth and development, such as promoting root growth and inhibiting the synthesis of secondary metabolites. However, the mechanisms underlying such effects and how plants can integrate nitrate signals and root growth needs further exploration. Here, we identified a nitrate-inducible NAC family transcription factor (TF) NAC056 which promoted both nitrate assimilation and root growth in Arabidopsis. NAC056 is a nuclear-localized transcription activator, which is predominantly expressed in the root system and hypocotyl. Using the yeast one-hybrid assay, we identified the NAC056-specific binding sequence (NAC56BM), T [T/G/A] NCTTG. We further showed that the nac056 mutant compromised root growth. NAC056 overexpression promotes LR Initiation and nitrate deficiency tolerance. Using RNA sequencing analysis and in vitro biochemical experiment, we found NAC056 regulated the expression of genes required for NO3- assimilation, directly targeting the key nitrate assimilation gene NIA1. In addition, mutation of NIA1 suppresses LR development and nitrate deficiency tolerance in the 35S::NAC056 transgenic plants. Therefore, NAC056 mediates the response of plants to environmental nitrate signals to promote root growth in Arabidopsis.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Ma
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Sathasivam M, Swamy BK, Krishnan K, Sharma R, Nayak SN, Uppar DS, Hosamani R. Insights into the molecular basis of hypergravity-induced root growth phenotype in bread wheat (Triticum aestivum L.). Genomics 2022; 114:110307. [PMID: 35143884 DOI: 10.1016/j.ygeno.2022.110307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 01/20/2023]
Abstract
Hypergravity is a condition where the force of gravity exceeds that on the surface of the Earth and can be simulated by centrifugation. Previously, a significant increase in root growth phenotype was observed when wheat seeds were exposed to hypergravity (10 g for 12 h). In the present study, we investigated the molecular basis of this change through root transcriptome. The data revealed a total of 3765 up-regulated and 2102 down-regulated transcripts in response to hypergravity. GO enrichment analysis revealed hormonal responses, cell division, and cell-wall-related terms were significantly enriched in hypergravity. The increased isoform level expression of transcripts involved in auxin biosynthesis, transport, and signaling was observed. Further, enhanced expression of cell division transcripts and down-regulation of cell number regulator genes suggests rapid cell division. Overexpression of cellulose and hemicellulose biosynthesis transcripts suggests demand for cell-wall constituents. Collectively, this study identified candidate genes associated with hypergravity-induced enhanced root growth.
Collapse
Affiliation(s)
- Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Kushagra Krishnan
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Rajasthan 333031, India
| | - Spurthi N Nayak
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - D S Uppar
- Department of Seed Science and Technology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India.
| |
Collapse
|
30
|
Shim S, Lee HG, Park OS, Shin H, Lee K, Lee H, Huh JH, Seo PJ. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis. Epigenetics 2022; 17:41-58. [PMID: 33406971 PMCID: PMC8812807 DOI: 10.1080/15592294.2021.1872927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Plant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step in vitro tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated. Here, we compared genome-wide DNA methylation profiles between leaf and callus tissues in Arabidopsis using whole-genome bisulphite-sequencing. Global distribution of DNA methylation showed that CHG methylation was increased, whereas CHH methylation was reduced especially around transposable element (TE) regions during the leaf-to-callus transition. We further analysed differentially expressed genes around differentially methylated TEs (DMTEs) during the leaf-to-callus transition and found that genes involved in cell cycle regulation were enriched and also constituted a coexpression gene network along with pluripotency regulators. In addition, a conserved DNA sequence analysis for upstream cis-elements led us to find a putative transcription factor associated with cell fate transition. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration, and consistently, the cca1lhy mutant displayed altered phenotypes in callus proliferation. Overall, these results suggest that DNA methylation coordinates cell cycle regulation during callus formation, and CCA1 may act as a key upstream coordinator at least in part in the processes.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Hosub Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
| | - Kyounghee Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jin Hoe Huh
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Pélissier PM, Motte H, Beeckman T. Lateral root formation and nutrients: nitrogen in the spotlight. PLANT PHYSIOLOGY 2021; 187:1104-1116. [PMID: 33768243 PMCID: PMC8566224 DOI: 10.1093/plphys/kiab145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
32
|
Shim S, Lee HG, Seo PJ. MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis. Mol Cells 2021; 44:746-757. [PMID: 34711691 PMCID: PMC8560584 DOI: 10.14348/molcells.2021.0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Plant somatic cells can be reprogrammed into a pluripotent cell mass, called callus, which can be subsequently used for de novo shoot regeneration through a two-step in vitro tissue culture method. MET1-dependent CG methylation has been implicated in plant regeneration in Arabidopsis, because the met1-3 mutant exhibits increased shoot regeneration compared with the wild-type. To understand the role of MET1 in de novo shoot regeneration, we compared the genome-wide DNA methylomes and transcriptomes of wild-type and met1-3 callus and leaf. The CG methylation patterns were largely unchanged during leaf-to-callus transition, suggesting that the altered regeneration phenotype of met1-3 was caused by the constitutively hypomethylated genes, independent of the tissue type. In particular, MET1-dependent CG methylation was observed at the blue light receptor genes, CRYPTOCHROME 1 (CRY1) and CRY2, which reduced their expression. Coexpression network analysis revealed that the CRY1 gene was closely linked to cytokinin signaling genes. Consistently, functional enrichment analysis of differentially expressed genes in met1-3 showed that gene ontology terms related to light and hormone signaling were overrepresented. Overall, our findings indicate that MET1-dependent repression of light and cytokinin signaling influences plant regeneration capacity and shoot identity establishment.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
33
|
Li J, Jiang Y, Zhang J, Ni Y, Jiao Z, Li H, Wang T, Zhang P, Guo W, Li L, Liu H, Zhang H, Li Q, Niu J. Key auxin response factor (ARF) genes constraining wheat tillering of mutant dmc. PeerJ 2021; 9:e12221. [PMID: 34616635 PMCID: PMC8462377 DOI: 10.7717/peerj.12221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
Tillering ability is a key agronomy trait for wheat (Triticum aestivum L.) production. Studies on a dwarf monoculm wheat mutant (dmc) showed that ARF11 played an important role in tillering of wheat. In this study, a total of 67 ARF family members were identified and clustered to two main classes with four subgroups based on their protein structures. The promoter regions of T. aestivum ARF (TaARF) genes contain a large number of cis-acting elements closely related to plant growth and development, and hormone response. The segmental duplication events occurred commonly and played a major role in the expansion of TaARFs. The gene collinearity degrees of the ARFs between wheat and other grasses, rice and maize, were significantly high. The evolution distances among TaARFs determine their expression profiles, such as homoeologous genes have similar expression profiles, like TaARF4-3A-1, TaARF4-3A-2 and their homoeologous genes. The expression profiles of TaARFs in various tissues or organs indicated TaARF3, TaARF4, TaARF9 and TaARF22 and their homoeologous genes played basic roles during wheat development. TaARF4, TaARF9, TaARF12, TaARF15, TaARF17, TaARF21, TaARF25 and their homoeologous genes probably played basic roles in tiller development. qRT-PCR analyses of 20 representative TaARF genes revealed that the abnormal expressions of TaARF11 and TaARF14 were major causes constraining the tillering of dmc. Indole-3-acetic acid (IAA) contents in dmc were significantly less than that in Guomai 301 at key tillering stages. Exogenous IAA application significantly promoted wheat tillering, and affected the transcriptions of TaARFs. These data suggested that TaARFs as well as IAA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of ARFs in wheat.
Collapse
Affiliation(s)
- Junchang Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ting Wang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Peipei Zhang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenlong Guo
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongjie Liu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Hairong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Vega A, Fredes I, O'Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs SP, Gutiérrez RA. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep 2021; 22:e51813. [PMID: 34357701 PMCID: PMC8447600 DOI: 10.15252/embr.202051813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate commands genome‐wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild‐type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post‐translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.
Collapse
Affiliation(s)
- Andrea Vega
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Isabel Fredes
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - José O'Brien
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhouxin Shen
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Krisztina Ötvös
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Rashed Abualia
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Steven P Briggs
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
35
|
Zhang Y, Mitsuda N, Yoshizumi T, Horii Y, Oshima Y, Ohme-Takagi M, Matsui M, Kakimoto T. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation. NATURE PLANTS 2021; 7:633-643. [PMID: 34007039 DOI: 10.1038/s41477-021-00919-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/15/2021] [Indexed: 05/26/2023]
Abstract
The molecular basis of the competence of the pericycle cell to initiate lateral root primordium formation is totally unknown. Here, we report that in Arabidopsis, two types of basic helix-loop-helix (bHLH) transcription factors, named PERICYCLE FACTOR TYPE-A (PFA) proteins and PERICYCLE FACTOR TYPE-B (PFB) proteins, govern the competence of pericycle cells to initiate lateral root primordium formation. Overexpression of PFA genes confers hallmark pericycle characteristics, including specific marker gene expression and auxin-induced cell division, and multiple loss-of-function mutations in PFA genes or the repression of PFB target genes results in the loss of this specific pericycle function. PFA and PFB proteins physically interact and are under mutual- and self-regulation, forming a positive feedback loop. This study unveils the transcriptional regulatory system that determines pericycle participation in lateral root initiation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Global Zero Emission Research Center, AIST, Tsukuba, Japan
| | - Takeshi Yoshizumi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yoko Horii
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Greenbio Research Center, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
36
|
Shim S, Kim HK, Bae SH, Lee H, Lee HJ, Jung YJ, Seo PJ. Transcriptome comparison between pluripotent and non-pluripotent calli derived from mature rice seeds. Sci Rep 2020; 10:21257. [PMID: 33277567 PMCID: PMC7719183 DOI: 10.1038/s41598-020-78324-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
In vitro plant regeneration involves a two-step practice of callus formation and de novo organogenesis. During callus formation, cellular competence for tissue regeneration is acquired, but it is elusive what molecular processes and genetic factors are involved in establishing cellular pluripotency. To explore the mechanisms underlying pluripotency acquisition during callus formation in monocot plants, we performed a transcriptomic analysis on the pluripotent and non-pluripotent rice calli using RNA-seq. We obtained a dataset of differentially expressed genes (DEGs), which accounts for molecular processes underpinning pluripotency acquisition and maintenance. Core regulators establishing root stem cell niche were implicated in pluripotency acquisition in rice callus, as observed in Arabidopsis. In addition, KEGG analysis showed that photosynthetic process and sugar and amino acid metabolism were substantially suppressed in pluripotent calli, whereas lipid and antioxidant metabolism were overrepresented in up-regulated DEGs. We also constructed a putative coexpression network related to cellular pluripotency in rice and proposed potential candidates conferring pluripotency in rice callus. Overall, our transcriptome-based analysis can be a powerful resource for the elucidation of the molecular mechanisms establishing cellular pluripotency in rice callus.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Hee Kyoung Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hoonyoung Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea. .,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
37
|
Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, Wang H, Li S, Liang Y, Li G, Yang Z, Zuo L, Han M, Ren X, An N, Zhang D. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1150-1159. [PMID: 32597557 DOI: 10.1111/plb.13154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Malus hupehensis is an extensively used apple rootstock in China. In the current study, M. hupehensis seedlings were treated with exogenous 2.2 µm 6-benzyladenine (6-BA) so as to investigate the mechanism by which 6-BA affects lateral root development. The results indicate that 6-BA treatment promotes elongation and thickening of both root and shoot in M. hupehensis, but reduces the number of lateral roots, as well as reducing the auxin level after 6-BA treatment. Moreover, MhAHK4, MhRR1 and MhRR2 were also significantly up-regulated in response to 6-BA treatment. Expression levels of auxin synthesis- and transport-related genes, such as MhYUCCA6, MhYUCCA10, MhPIN1 and MhPIN2, were down-regulated, which corresponds with lower auxin levels in the 6-BA-treated seedlings. A negative regulator of auxin, MhIAA3, was induced by 6-BA treatment, leading to reduced expression of MhARF7 and MhARF19 in 6-BA-treated seedlings. As a result, expression of MhWOX11, MhWOX5, MhLBD16 and MhLBD29 was blocked, which in turn inhibited lateral root initiation. In addition, a lower auxin level decreased expression of MhRR7 and MhRR15, which repressed expression of key transcription factors associated with root development, thus inhibiting lateral root development. In contrast, 6-BA treatment promoted secondary growth (thickening) of the root by inducing expression of MhCYCD3;1 and MhCYCD3;2. Collectively, the changes in hormone levels and gene expression resulted in a reduced number of lateral roots and thicker roots in 6-BA-treated plants.
Collapse
Affiliation(s)
- J Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - C Niu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - K Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Mobeen Tahir
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - A Khan
- Department of Agricultural Sciences, the University of Haripur, Haripur, Pakistan
| | - H Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - S Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Y Liang
- Beijing Ori-Gene Science and Technology Corp., Ltd., Beijing, China
| | - G Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Z Yang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - L Zuo
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - X Ren
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - N An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - D Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
38
|
Shim S, Seo PJ. EAT-UpTF: Enrichment Analysis Tool for Upstream Transcription Factors of a Group of Plant Genes. Front Genet 2020; 11:566569. [PMID: 33024441 PMCID: PMC7516213 DOI: 10.3389/fgene.2020.566569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
EAT-UpTF (Enrichment Analysis Tool for Upstream Transcription Factors of a group of plant genes) is an open-source Python script that analyzes the enrichment of upstream transcription factors (TFs) in a group of genes-of-interest (GOIs). EAT-UpTF utilizes genome-wide lists of TF-target genes generated by DNA affinity purification followed by sequencing (DAP-seq) or chromatin immunoprecipitation followed by sequencing (ChIP-seq). Unlike previous methods based on the two-step prediction of cis-motifs and DNA-element-binding TFs, our EAT-UpTF analysis enabled a one-step identification of enriched upstream TFs in a set of GOIs using lists of empirically determined TF-target genes. The tool is designed particularly for plant researches, due to the lack of analytic tools for upstream TF enrichment, and available at https://github.com/sangreashim/EAT-UpTF and http://chromatindynamics.snu.ac.kr:8080/EatupTF.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:166-183. [PMID: 32031710 DOI: 10.1111/tpj.14717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phytohormonal interactions are crucial for plant development. Auxin and cytokinin (CK) both play critical roles in regulating plant growth and development; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a wild apple (Malus sieversii Roem) GRETCHEN HAGEN3 (GH3) gene, MsGH3.5, encoding an indole-3-acetic acid (IAA)-amido synthetase. Overexpression of MsGH3.5 significantly reduced the free IAA content and increased the content of some IAA-amino acid conjugates, and MsGH3.5-overexpressing lines were dwarfed and produced fewer adventitious roots (ARs) than the control. This phenotype is consistent with the role of GH3 in conjugating excess free active IAA to amino acids in auxin homeostasis. Surprisingly, overexpression of MsGH3.5 significantly increased CK concentrations in the whole plant, and altered the expression of genes involved in CK biosynthesis, metabolism and signaling. Furthermore, exogenous CK application induced MsGH3.5 expression through the activity of the CK type-B response regulator, MsRR1a, which mediates the CK primary response. MsRR1a activated MsGH3.5 expression by directly binding to its promoter, linking auxin and CK signaling. Plants overexpressing MsRR1a also displayed fewer ARs, in agreement with the regulation of MsGH3.5 expression by MsRR1a. Taken together, we reveal that MsGH3.5 affects apple growth and development by modulating auxin and CK levels and signaling pathways. These findings provide insight into the interaction between the auxin and CK pathways, and might have substantial implications for efforts to improve apple architecture.
Collapse
Affiliation(s)
- Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Peng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinwei Guo
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zefeng Zhai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoshuai Shen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
40
|
Asim M, Ullah Z, Oluwaseun A, Wang Q, Liu H. Signalling Overlaps between Nitrate and Auxin in Regulation of The Root System Architecture: Insights from the Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2880. [PMID: 32326090 PMCID: PMC7215989 DOI: 10.3390/ijms21082880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrate (NO3-) and auxin are key regulators of root growth and development, modulating the signalling cascades in auxin-induced lateral root formation. Auxin biosynthesis, transport, and transduction are significantly altered by nitrate. A decrease in nitrate (NO3-) supply tends to promote auxin translocation from shoots to roots and vice-versa. This nitrate mediated auxin biosynthesis regulating lateral roots growth is induced by the nitrate transporters and its downstream transcription factors. Most nitrate responsive genes (short-term and long-term) are involved in signalling overlap between nitrate and auxin, thereby inducing lateral roots initiation, emergence, and development. Moreover, in the auxin signalling pathway, the varying nitrate supply regulates lateral roots development by modulating the auxin accumulation in the roots. Here, we focus on the roles of nitrate responsive genes in mediating auxin biosynthesis in Arabidopsis root, and the mechanism involved in the transport of auxin at different nitrate levels. In addition, this review also provides an insight into the significance of nitrate responsive regulatory module and their downstream transcription factors in root system architecture in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aluko Oluwaseun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
| |
Collapse
|
41
|
Yu J, Xie Q, Li C, Dong Y, Zhu S, Chen J. Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. PLANTA 2020; 251:81. [PMID: 32185507 DOI: 10.1007/s00425-020-03364-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/13/2020] [Indexed: 05/16/2023]
Abstract
A comprehensive account of the LBD gene family of Gossypium was provided in this work. Expression analysis and functional characterization revealed that LBD genes might play different roles in G. hirsutum and G. barbadense. The Lateral Organ Boundaries Domain (LBD) proteins comprise a plant-specific transcription factor family, which plays crucial roles in physiological processes of plant growth, development, and stress tolerance. In the present work, a systematical analysis of LBD gene family from two allotetraploid cotton species, G. hirsutum and G. barbadense, together with their genomic donor species, G. arboreum and G. raimondii, was conducted. There were 131, 128, 62, and 68 LBDs identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. The LBD proteins could be classified into two main classes, class I and class II, based on the structure of their lateral organ boundaries domain and traits of phylogenetic tree, and class I was further divided into five subgroups. The gene structure and motif composition analyses conducted in both G. hirsutum and G. barbadense revealed that LBD genes kept relatively conserved within the subfamilies. Synteny analysis suggested that segmental duplication acted as an important mechanism in expansion of the cotton LBD gene family. Cis-element analysis predicated the possible functions of LBD genes. Public RNA-seq data were investigated to analyze the expression patterns of cotton LBD genes in various tissues as well as gene expression under abiotic stress treatments. Furthermore, RT-qPCR results found that GhLBDs had various expression regulation under MeJA treatments. Expression analysis indicated the differential functions of cotton LBD genes in response to abiotic stress and hormones.
Collapse
Affiliation(s)
- Jingwen Yu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianwen Xie
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yating Dong
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Zhu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jinhong Chen
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
43
|
Yuan TT, Xu HH, Li J, Lu YT. Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:297-309. [PMID: 31403703 DOI: 10.1111/nph.16115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lateral roots (LRs), which form in the plant postembryonically, determine the architecture of the root system. While negative regulatory factors that inhibit LR formation and are counteracted by auxin exist in the pericycle, these factors have not been characterised. Here, we report that SHI-RELATED SEQUENCE5 (SRS5) is an intrinsic negative regulator of LR formation and that auxin signalling abolishes this inhibitory effect of SRS5. Whereas LR primordia (LRPs) and LRs were fewer and less dense in SRS5ox and Pro35S:SRS5-GFP plants than in the wild-type, they were more abundant and denser in the srs5-2 loss-of-function mutant. SRS5 inhibited LR formation by directly downregulating the expression of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) and LBD29. Auxin repressed SRS5 expression. Auxin-mediated repression of SRS5 expression was not observed in the arf7-1 arf19-1 double mutant, likely because ARF7 and ARF19 bind to the promoter of SRS5 and inhibit its expression in response to auxin. Taken together, our data reveal that SRS5 negatively regulates LR formation by repressing the expression of LBD16 and LBD29 and that auxin releases this inhibitory effect through ARF7 and ARF19.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Heng-Hao Xu
- Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
44
|
Wu Q, Du M, Wu J, Wang N, Wang B, Li F, Tian X, Li Z. Mepiquat chloride promotes cotton lateral root formation by modulating plant hormone homeostasis. BMC PLANT BIOLOGY 2019; 19:573. [PMID: 31864311 PMCID: PMC6925410 DOI: 10.1186/s12870-019-2176-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mepiquat chloride (MC), a plant growth regulator, enhances root growth by promoting lateral root formation in cotton. However, the underlying molecular mechanisms of this phenomenon is still unknown. METHODS In this study, we used 10 cotton (Gossypium hirsutum Linn.) cultivars to perform a seed treatment with MC to investigate lateral root formation, and selected a MC sensitive cotton cultivar for dynamic monitor of root growth and transcriptome analysis during lateral root development upon MC seed treatment. RESULTS The results showed that MC treated seeds promotes the lateral root formation in a dosage-depended manner and the effective promotion region is within 5 cm from the base of primary root. MC treated seeds induce endogenous auxin level by altering gene expression of both gibberellin (GA) biosynthesis and signaling and abscisic acid (ABA) signaling. Meanwhile, MC treated seeds differentially express genes involved in indole acetic acid (IAA) synthesis and transport. Furthermore, MC-induced IAA regulates the expression of genes related to cell cycle and division for lateral root development. CONCLUSIONS Our data suggest that MC orchestrates GA and ABA metabolism and signaling, which further regulates auxin biosynthesis, transport, and signaling to promote the cell division responsible for lateral root formation.
Collapse
Affiliation(s)
- Qian Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Mingwei Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jie Wu
- Plant Phenomics Research Center, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ning Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xiaoli Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
45
|
Schiessl K, Lilley JLS, Lee T, Tamvakis I, Kohlen W, Bailey PC, Thomas A, Luptak J, Ramakrishnan K, Carpenter MD, Mysore KS, Wen J, Ahnert S, Grieneisen VA, Oldroyd GED. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Curr Biol 2019; 29:3657-3668.e5. [PMID: 31543454 PMCID: PMC6839406 DOI: 10.1016/j.cub.2019.09.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
To overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability. CYTOKININ RESPONSE 1 (CRE1)-mediated signaling in the pericycle and in the cortex is necessary and sufficient for nodulation, whereas cytokinin is antagonistic to lateral root development, with cre1 showing increased lateral root emergence and decreased nodulation. To better understand the relatedness between nodule and lateral root development, we undertook a comparative analysis of these two root developmental programs. Here, we demonstrate that despite differential induction, lateral roots and nodules share overlapping developmental programs, with mutants in LOB-DOMAIN PROTEIN 16 (LBD16) showing equivalent defects in nodule and lateral root initiation. The cytokinin-inducible transcription factor NODULE INCEPTION (NIN) allows induction of this program during nodulation through activation of LBD16 that promotes auxin biosynthesis via transcriptional induction of STYLISH (STY) and YUCCAs (YUC). We conclude that cytokinin facilitates local auxin accumulation through NIN promotion of LBD16, which activates a nodule developmental program overlapping with that induced during lateral root initiation.
Collapse
Affiliation(s)
- Katharina Schiessl
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jodi L S Lilley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Tak Lee
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Ioannis Tamvakis
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Paul C Bailey
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Aaron Thomas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jakub Luptak
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Karunakaran Ramakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Matthew D Carpenter
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Sebastian Ahnert
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Veronica A Grieneisen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
46
|
Zhang X, He Y, He W, Su H, Wang Y, Hong G, Xu P. Structural and functional insights into the LBD family involved in abiotic stress and flavonoid synthases in Camellia sinensis. Sci Rep 2019; 9:15651. [PMID: 31666570 PMCID: PMC6821796 DOI: 10.1038/s41598-019-52027-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play a crucial role in growth and development, as well as metabolic processes. However, knowledge of the function of LBD proteins in Camellia sinensis is limited, and no systematic investigations of the LBD family have been reported. In this study, we identified 54 LBD genes in Camellia sinensis. The expression patterns of CsLBDs in different tissues and their transcription responses to exogenous hormones and abiotic stress were determined by RNA-seq, which showed that CsLBDs may have diverse functions. Analysis of the structural gene promoters revealed that the promoters of CsC4H, CsDFR and CsUGT84A, the structural genes involved in flavonoid biosynthesis, contained LBD recognition binding sites. The integrative analysis of CsLBD expression levels and metabolite accumulation also suggested that CsLBDs are involved in the regulation of flavonoid synthesis. Among them, CsLOB_3, CsLBD36_2 and CsLBD41_2, localized in the nucleus, were selected for functional characterization. Yeast two-hybrid assays revealed that CsLBD36_2 and CsLBD41_2 have self-activation activities, and CsLOB_3 and CsLBD36_2 can directly bind to the cis-element and significantly increase the activity of the CsC4H, CsDFR and CsUGT84A promoter. Our results present a comprehensive characterization of the 54 CsLBDs in Camellia sinensis and provide new insight into the important role that CsLBDs play in abiotic and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Wenda He
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China.
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Xu P, Cai W. Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008465. [PMID: 31626627 PMCID: PMC6821136 DOI: 10.1371/journal.pgen.1008465] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Plant root system architecture in response to nitrate availability represents a notable example to study developmental plasticity, but the underlying mechanism remains largely unknown. Xyloglucan endotransglucosylases (XTHs) play a critical role in cell wall biosynthesis. Here we assessed the gene expression of XTH1-11 belonging to group I of XTHs in lateral root (LR) primordia and found that XTH9 was highly expressed. Correspondingly, an xth9 mutant displayed less LR, while overexpressing XTH9 presented more LR, suggesting the potential function of XTH9 in controlling LR development. XTH9 gene mutation obviously alters the properties of the cell wall. Furthermore, nitrogen signals stimulated the expression of XTH9 to promote LRs. Genetic analysis revealed that the function of XTH9 was dependent on auxin-mediated ARF7/19 and downstream AFB3 in response to nitrogen signals. In addition, we identified another transcription factor, OBP4, that was also induced by nitrogen treatment, but the induction was much slower than that of XTH9. In contrast to XTH9, overexpressing OBP4 caused fewer LRs while OBP4 knockdown with OBP4-RNAi or an artificial miRNA silenced amiOBP4 line produced more LR. We further found OBP4 bound to the promoter of XTH9 to suppress XTH9 expression. In agreement with this, both OBP4-RNAi and crossed OBP4-RNAi & 35S::XTH9 lines led to more LR, but OBP4-RNAi & xth9 produced less LR, similar to xth9. Based on these findings we propose a novel mechanism by which OBP4 antagonistically controls XTH9 expression and the OBP4-XTH9 module elaborately sustains LR development in response to nitrate treatment. Nitrate is not only a nutrient, but also a signal that controls downstream signaling genes at the whole-plant level. In plants, changes in root system architecture in response to nitrate availability represent a notable example of developmental plasticity in response to environmental stimuli. However, the molecular mechanisms underlying nitrate-associated modulation are largely unknown. Here, we identified a nitrogen-responsive signaling module that comprises both xyloglucan endotransglucosylase 9 (XTH9) and the Dof transcription factor OBP4 and controls lateral root (LR) development. We used root gravitropic bending assays to observe the gene expression of group 1 xyloglucan endotransglucosylases (XTHs) involved in LR primordia. The results showed that XTH9 expression patterns were changed and that xth9 knockout mutants displayed altered LR growth. XTH9 was expressed in the LRs and in response to nitrate treatment, and the xth9 mutants were defective in nitrate-promoted LR growth. Moreover, XTH9 overexpression increased LR length and increased tolerance to low-nitrate stress. We found that OBP4 could negatively regulate XTH9 and inhibited root growth. OBP4 and XTH9 worked downstream of ARF7/9. We conclude that OBP4 and XTH9 constitute a regulatory module which contributes to LR growth in response to different environmental nitrate concentration signals.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
49
|
Torres-Martínez HH, Rodríguez-Alonso G, Shishkova S, Dubrovsky JG. Lateral Root Primordium Morphogenesis in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:206. [PMID: 30941149 PMCID: PMC6433717 DOI: 10.3389/fpls.2019.00206] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
50
|
Liu W, Yu J, Ge Y, Qin P, Xu L. Pivotal role of LBD16 in root and root-like organ initiation. Cell Mol Life Sci 2018; 75:3329-3338. [PMID: 29943076 PMCID: PMC11105430 DOI: 10.1007/s00018-018-2861-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
In the post-embryonic stage of Arabidopsis thaliana, roots can be initiated from the vascular region of the existing roots or non-root organs; they are designated as lateral roots (LRs) and adventitious roots (ARs), respectively. Some root-like organs can also be initiated from the vasculature. In tissue culture, auxin-induced callus, which is a group of pluripotent root-primordium-like cells, is formed via the rooting pathway. The formation of feeding structures from the vasculature induced by root-knot nematodes also borrows the rooting pathway. In this review, we summarize and discuss recent progress on the role of LATERAL ORGAN BOUNDARIES DOMAIN16 (LBD16; also known as ASYMMETRIC LEAVES2-LIKE18, ASL18), a member of the LBD/ASL gene family encoding plant-specific transcription factors, in roots and root-like organ initiation. Different root and root-like organ initiation processes have distinct priming mechanisms to specify founder cells. All these priming mechanisms converge to activate LBD16 expression in the primed founder cells. The activation of LBD16 expression leads to organ initiation via promotion of cell division and establishment of root-primordium identity. Therefore, LBD16 might play a common and pivotal role in root and root-like organ initiation.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jie Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yachao Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|