1
|
Warecki B, Vega G, Fowler S, Hartzog G, Karr TL, Sullivan W. Wolbachia-mediated reduction in the glutamate receptor mGluR promotes female promiscuity and bacterial spread. Cell Rep 2025:115629. [PMID: 40347951 DOI: 10.1016/j.celrep.2025.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The molecular mechanisms by which parasites mediate host behavioral changes remain largely unexplored. Here, we examine Drosophila melanogaster infected with Wolbachia, a symbiont transmitted through the maternal germline, and find Wolbachia infection increases female receptivity to male courtship and hybrid mating. Wolbachia colonize regions of the brain that control sense perception and behavior. Quantitative global proteomics identify 177 differentially abundant proteins in infected female larval brains. Genetic alteration of the levels of three of these proteins in adults, the metabotropic glutamate receptor mGluR, the transcription factor TfAP-2, and the odorant binding protein Obp99b, each mimic the effect of Wolbachia on female receptivity. Furthermore, >700 Wolbachia proteins are detected in infected brains. Through abundance and molecular modeling analyses, we distinguish several Wolbachia-produced proteins as potential effectors. These results identify potential networks of host and Wolbachia proteins that modify behavior to promote mating success and aid the spread of Wolbachia.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Giovanni Vega
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sommer Fowler
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Grant Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
El-Danaf RN, Kapuralin K, Rajesh R, Simon F, Drou N, Pinto-Teixeira F, Özel MN, Desplan C. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila. Nat Commun 2025; 16:698. [PMID: 39814708 PMCID: PMC11735856 DOI: 10.1038/s41467-025-56059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain. To address their origin, we used single-cell mRNA sequencing to define the transcriptome of LCN subtypes and identified lines that are expressed throughout their development. We show that LCNs originate from stem cells in four distinct brain regions exhibiting different modes of neurogenesis, including the ventral and dorsal tips of the outer proliferation center, the ventral superficial inner proliferation center and the central brain. We show that this convergence of similar neurons illustrates the complexity of generating neuronal diversity, and likely reflects the evolutionary origin of each subtype that detects a specific visual feature and might influence behaviors specific to each species.
Collapse
Affiliation(s)
- Rana Naja El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Félix Simon
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Nizar Drou
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Filipe Pinto-Teixeira
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Mehmet Neset Özel
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA.
| |
Collapse
|
3
|
Zhang X, Sun D, Wong K, Salkini A, Najafi H, Kim WJ. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Fly (Austin) 2024; 18:2368336. [PMID: 38884422 PMCID: PMC11185185 DOI: 10.1080/19336934.2024.2368336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ammar Salkini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hadi Najafi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
5
|
Banach-Latapy A, Rincheval V, Briand D, Guénal I, Spéder P. Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila. PLoS Biol 2023; 21:e3002352. [PMID: 37943883 PMCID: PMC10635556 DOI: 10.1371/journal.pbio.3002352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.
Collapse
Affiliation(s)
- Agata Banach-Latapy
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | | | - David Briand
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
6
|
Zúñiga-Hernández JM, Olivares GH, Olguín P, Glavic A. Low-nutrient diet in Drosophila larvae stage causes enhancement in dopamine modulation in adult brain due epigenetic imprinting. Open Biol 2023; 13:230049. [PMID: 37161288 PMCID: PMC10170216 DOI: 10.1098/rsob.230049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.
Collapse
Affiliation(s)
- J M Zúñiga-Hernández
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Gonzalo H Olivares
- Escuela de Kinesiología, Facultad de Medicina, Center of Integrative Biology (CIB), Universidad Mayor, Chile
| | - Patricio Olguín
- Programa de Genética Humana, ICBM, Biomedical Neuroscience Institute, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile
| | - Alvaro Glavic
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| |
Collapse
|
7
|
Lapraz F, Boutres C, Fixary-Schuster C, De Queiroz BR, Plaçais PY, Cerezo D, Besse F, Préat T, Noselli S. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. Nat Commun 2023; 14:1052. [PMID: 36828820 PMCID: PMC9958012 DOI: 10.1038/s41467-023-36644-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Left-Right (LR) asymmetry of the nervous system is widespread across animals and is thought to be important for cognition and behaviour. But in contrast to visceral organ asymmetry, the genetic basis and function of brain laterality remain only poorly characterized. In this study, we performed RNAi screening to identify genes controlling brain asymmetry in Drosophila. We found that the conserved NetrinB (NetB) pathway is required for a small group of bilateral neurons to project asymmetrically into a pair of neuropils (Asymmetrical Bodies, AB) in the central brain in both sexes. While neurons project unilaterally into the right AB in wild-type flies, netB mutants show a bilateral projection phenotype and hence lose asymmetry. Developmental time course analysis reveals an initially bilateral connectivity, eventually resolving into a right asymmetrical circuit during metamorphosis, with the NetB pathway being required just prior symmetry breaking. We show using unilateral clonal analysis that netB activity is required specifically on the right side for neurons to innervate the right AB. We finally show that loss of NetB pathway activity leads to specific alteration of long-term memory, providing a functional link between asymmetrical circuitry determined by NetB and animal cognitive functions.
Collapse
Affiliation(s)
- F Lapraz
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| | - C Boutres
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - P Y Plaçais
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - D Cerezo
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - F Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - T Préat
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - S Noselli
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
8
|
Nukala KM, Lilienthal AJ, Lye SH, Bassuk AG, Chtarbanova S, Manak JR. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep 2023; 42:112004. [PMID: 36641750 PMCID: PMC9942582 DOI: 10.1016/j.celrep.2023.112004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Previous work in our laboratory has shown that mutations in prickle (pk) cause myoclonic-like seizures and ataxia in Drosophila, similar to what is observed in humans carrying mutations in orthologous PRICKLE genes. Here, we show that pk mutant brains show elevated, sustained neuronal cell death that correlates with increasing seizure penetrance, as well as an upregulation of mitochondrial oxidative stress and innate immune response (IIR) genes. Moreover, flies exhibiting more robust seizures show increased levels of IIR-associated target gene expression suggesting they may be linked. Genetic knockdown in glia of either arm of the IIR (Immune Deficiency [Imd] or Toll) leads to a reduction in neuronal death, which in turn suppresses seizure activity, with oxidative stress acting upstream of IIR. These data provide direct genetic evidence that oxidative stress in combination with glial-mediated IIR leads to progression of an epilepsy disorder.
Collapse
Affiliation(s)
- Krishna M Nukala
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Shu Hui Lye
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; The Iowa Neuroscience Institute, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Makarova AA, Veko EN, Polilov AA. Metamorphosis and denucleation of the brain in the miniature wasp Megaphragma viggianii (Hymenoptera: Trichogrammatidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101200. [PMID: 35961234 DOI: 10.1016/j.asd.2022.101200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Holometabolan brains undergo structural and allometric changes and complex reorganizations during metamorphosis. In minute egg parasitoids, brain formation is shifted to the late larva and young pupa, due to extreme de-embryonization. The brains of Megaphragma wasps undergo denucleation, the details of which remained unknown. We describe the morphological and volumetric changes in the brain of Megaphragma viggianii (Trichogrammatidae) during pupal development with emphasis on the lysis of nuclei and show that the absolute and relative volume of the brain decrease by a factor of 5 from prepupa to adult at the expense of the cell body rind. The first foci of lysis appear during early pupal development, but most nuclei (up to 97%) are lost between pharate adult and adult. The first signs of lysis (destruction of the nuclear envelopes) occur in pupae with red eyes. The number of lysis foci (organelle destruction and increasing number of lysosomes and degree of chromatin compaction) strongly increases in pupae with black eyes. The cell body rind volume strongly decreases during pupal development (in larger insects it increases slightly or remains unchanged). Elucidation of the lysis of nuclei in neurons and of the functioning of an anucleate brain is an important objective for neuroscience.
Collapse
Affiliation(s)
| | - Egor N Veko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Farnworth MS, Bucher G, Hartenstein V. An atlas of the developing Tribolium castaneum brain reveals conservation in anatomy and divergence in timing to Drosophila melanogaster. J Comp Neurol 2022; 530:2335-2371. [PMID: 35535818 PMCID: PMC9646932 DOI: 10.1002/cne.25335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed, for example, in size, shape, and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood, although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage, and the adult, by combining wholemount immunohistochemical labeling of fiber bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in Drosophila melanogaster, we confirm an overall high degree of conservation. Fiber tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like antiacetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
Collapse
Affiliation(s)
- Max S Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California/Los Angeles, Los Angeles, USA
| |
Collapse
|
11
|
Eleftherianos I, Tafesh-Edwards G. Virus Infection of the Brain: Lessons from Drosophila for Illuminating Virus Disease and Nervous System Function. Neuroscience 2022; 484:80-82. [PMID: 34995715 DOI: 10.1016/j.neuroscience.2021.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Recent studies using genomic and functional approaches in the fruit fly Drosophila melanogaster have revealed the effects of viral infection on nervous system homeostasis. An established connection between viral infection and brain function is critical due to its significant contribution to several areas of biomedical research, particularly the molecular pathogenesis of neurotropic viruses, the neurobiology of viral disease, and understanding the genetic basis and pathophysiology of viral tropism.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC 20052, USA.
| | - Ghada Tafesh-Edwards
- Infection and Innate Immunity Lab, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
12
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
13
|
Gong S, Zhang Y, Tian A, Deng W. Tumor models in various Drosophila tissues. WIREs Mech Dis 2021; 13:e1525. [PMID: 34730289 PMCID: PMC8566734 DOI: 10.1002/wsbm.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
The development of cancer is a complex multistage process. Over the past few decades, the model organism Drosophila melanogaster has been crucial in identifying cancer-related genes and pathways and elucidating mechanisms underlying growth regulation in development. Investigations using Drosophila has yielded new insights into the molecular mechanisms involved in tumor initiation and progression. In this review, we describe various tumor models that have been developed in recent years using different Drosophila tissues, such as the imaginal tissue, the neural tissue, the gut, the ovary, and hematopoietic cells. We discuss underlying genetic alterations, cancer-like characteristics, as well as similarities and key differences among these models. We also discuss how disruptions in stem cell division and differentiation result in tumor formation in diverse tissues, and highlight new concepts developed using the fly model to understand context-dependent tumorigenesis. We further discuss the progress made in Drosophila to explore tumor-host interactions that involve the innate immune response to tumor growth and the cachexia wasting phenotype. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yichi Zhang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
14
|
Effects of Starvation on the Levels of Triglycerides, Diacylglycerol, and Activity of Lipase in Male and Female Drosophila Melanogaster. J Lipids 2021; 2021:5583114. [PMID: 33833879 PMCID: PMC8018841 DOI: 10.1155/2021/5583114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/13/2023] Open
Abstract
We studied the effects of starvation on changes in neutral lipids in male and female Drosophila melanogaster (fruit fly) at different ages. When flies were subjected to starvation, the mortality rate was observed to be age- and gender-dependent: male flies died earlier as compared to female flies, and older flies died earlier than younger flies. There was an increase in the number of dead flies and the levels of diacylglycerol (DG) with starvation time. This increase in DG was observed much earlier in male flies as compared to female flies, which correlated with earlier death in male flies during starvation in comparison to female flies. We also analyzed the levels of triglycerides (TG) and lipase activity during starvation of flies. The levels of TG decreased depending upon the duration of starvation in both male and female flies. Interestingly, we observed that like DG, there was also an increase in lipase activity due to starvation, which also correlated with earlier death in male flies as compared to female flies. Our results suggest that increase in DG levels and lipase activity due to starvation may be the main cause of death in the flies.
Collapse
|
15
|
Chow KHK, Budde MW, Granados AA, Cabrera M, Yoon S, Cho S, Huang TH, Koulena N, Frieda KL, Cai L, Lois C, Elowitz MB. Imaging cell lineage with a synthetic digital recording system. Science 2021; 372:eabb3099. [PMID: 33833095 DOI: 10.1126/science.abb3099] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.
Collapse
Affiliation(s)
- Ke-Huan K Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark W Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Maria Cabrera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shinae Yoon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Soomin Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noushin Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Kato K, Orihara-Ono M, Awasaki T. Multiple lineages enable robust development of the neuropil-glia architecture in adult Drosophila. Development 2020; 147:dev184085. [PMID: 32051172 DOI: 10.1242/dev.184085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Neural remodeling is essential for the development of a functional nervous system and has been extensively studied in the metamorphosis of Drosophila Despite the crucial roles of glial cells in brain functions, including learning and behavior, little is known of how adult glial cells develop in the context of neural remodeling. Here, we show that the architecture of neuropil-glia in the adult Drosophila brain, which is composed of astrocyte-like glia (ALG) and ensheathing glia (EG), robustly develops from two different populations in the larva: the larval EG and glial cell missing-positive (gcm+ ) cells. Whereas gcm+ cells proliferate and generate adult ALG and EG, larval EG dedifferentiate, proliferate and redifferentiate into the same glial subtypes. Each glial lineage occupies a certain brain area complementary to the other, and together they form the adult neuropil-glia architecture. Both lineages require the FGF receptor Heartless to proliferate, and the homeoprotein Prospero to differentiate into ALG. Lineage-specific inhibition of gliogenesis revealed that each lineage compensates for deficiency in the proliferation of the other. Together, the lineages ensure the robust development of adult neuropil-glia, thereby ensuring a functional brain.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Minako Orihara-Ono
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Takeshi Awasaki
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| |
Collapse
|
18
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Blanco-Redondo B, Nuwal N, Kneitz S, Nuwal T, Halder P, Liu Y, Ehmann N, Scholz N, Mayer A, Kleber J, Kähne T, Schmitt D, Sadanandappa MK, Funk N, Albertova V, Helfrich-Förster C, Ramaswami M, Hasan G, Kittel RJ, Langenhan T, Gerber B, Buchner E. Implications of the Sap47 null mutation for synapsin phosphorylation, longevity, climbing proficiency and behavioural plasticity in adult Drosophila. ACTA ACUST UNITED AC 2019; 222:jeb.203505. [PMID: 31488622 DOI: 10.1242/jeb.203505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.
Collapse
Affiliation(s)
- Beatriz Blanco-Redondo
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nidhi Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tulip Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Partho Halder
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Yiting Liu
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Annika Mayer
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Jörg Kleber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Madhumala K Sadanandappa
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Natalja Funk
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Viera Albertova
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Mani Ramaswami
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Bertram Gerber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany.,Institute of Biology, University of Magdeburg, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
20
|
The Drosophila Chromodomain Protein Kismet Activates Steroid Hormone Receptor Transcription to Govern Axon Pruning and Memory In Vivo. iScience 2019; 16:79-93. [PMID: 31153043 PMCID: PMC6543131 DOI: 10.1016/j.isci.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/08/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Axon pruning is critical for sculpting precise neural circuits. Although axon pruning has been described in the literature for decades, relatively little is known about the molecular and cellular mechanisms that govern axon pruning in vivo. Here, we show that the epigenetic reader Kismet (Kis) is required for developmental axon pruning in Drosophila mushroom bodies. Kis binds to cis-regulatory elements of the steroid hormone receptor ecdysone receptor (ecr) gene and is necessary for activating expression of EcR-B1. Kis promotes the active H3K36 di- and tri-methylation and H4K16 acetylation histone marks at the ecr locus. We show that transgenic EcR-B1 can rescue axon pruning and memory defects associated with loss of Kis and that the histone deacetylase inhibitor SAHA also rescues these phenotypes. EcR protein abundance is the cell-autonomous, rate-limiting step required to initiate axon pruning in Drosophila, and our data suggest this step is under the epigenetic control of Kis.
Collapse
|
21
|
Omoto JJ, Nguyen BCM, Kandimalla P, Lovick JK, Donlea JM, Hartenstein V. Neuronal Constituents and Putative Interactions Within the Drosophila Ellipsoid Body Neuropil. Front Neural Circuits 2018; 12:103. [PMID: 30546298 PMCID: PMC6278638 DOI: 10.3389/fncir.2018.00103] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
The central complex (CX) is a midline-situated collection of neuropil compartments in the arthropod central brain, implicated in higher-order processes such as goal-directed navigation. Here, we provide a systematic genetic-neuroanatomical analysis of the ellipsoid body (EB), a compartment which represents a major afferent portal of the Drosophila CX. The neuropil volume of the EB, along with its prominent input compartment, called the bulb, is subdivided into precisely tessellated domains, distinguishable based on intensity of the global marker DN-cadherin. EB tangential elements (so-called ring neurons), most of which are derived from the DALv2 neuroblast lineage, predominantly interconnect the bulb and EB domains in a topographically organized fashion. Using the DN-cadherin domains as a framework, we first characterized this connectivity by Gal4 driver lines expressed in different DALv2 ring neuron (R-neuron) subclasses. We identified 11 subclasses, 6 of which correspond to previously described projection patterns, and 5 novel patterns. These subclasses both spatially (based on EB innervation pattern) and numerically (cell counts) summate to the total EB volume and R-neuron cell number, suggesting that our compilation of R-neuron subclasses approaches completion. EB columnar elements, as well as non-DALv2 derived extrinsic ring neurons (ExR-neurons), were also incorporated into this anatomical framework. Finally, we addressed the connectivity between R-neurons and their targets, using the anterograde trans-synaptic labeling method, trans-Tango. This study demonstrates putative interactions of R-neuron subclasses and reveals general principles of information flow within the EB network. Our work will facilitate the generation and testing of hypotheses regarding circuit interactions within the EB and the rest of the CX.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bao-Chau Minh Nguyen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pratyush Kandimalla
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jennifer Kelly Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey Michael Donlea
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Wang H, Dewell RB, Ehrengruber MU, Segev E, Reimer J, Roukes ML, Gabbiani F. Optogenetic manipulation of medullary neurons in the locust optic lobe. J Neurophysiol 2018; 120:2049-2058. [PMID: 30110231 PMCID: PMC6230808 DOI: 10.1152/jn.00356.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts ( Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects. NEW & NOTEWORTHY Using Semliki Forest virus, we efficiently delivered channelrhodopsin into neurons of the locust optic lobe. We demonstrate that laser illumination increases the firing of the medullary neurons expressing channelrhodopsin and elicits excitatory postsynaptic potentials and spiking in an identified postsynaptic target neuron, the lobula giant movement detector neuron. This technique allows the manipulation of neuronal activity in locust neural circuits using optogenetics.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | | | - Eran Segev
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Michael L Roukes
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
- Electrical and Computer Engineering Department, Rice University , Houston, Texas
| |
Collapse
|
23
|
Opachaloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annu Rev Genet 2018; 52:489-510. [PMID: 30208294 DOI: 10.1146/annurev-genet-120116-024456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eusocial insects live in societies in which distinct family members serve specific roles in maintaining the colony and advancing the reproductive ability of a few select individuals. Given the genetic similarity of all colony members, the diversity of morphologies and behaviors is surprising. Social communication relies on pheromones and olfaction, as shown by mutants of orco, the universal odorant receptor coreceptor, and through electrophysiological analysis of neuronal responses to pheromones. Additionally, neurohormonal factors and epigenetic regulators play a key role in caste-specific behavior, such as foraging and caste switching. These studies start to allow an understanding of the molecular mechanisms underlying social behavior and provide a technological foundation for future studies of eusocial insects. In this review, we highlight recent findings in eusocial insects that advance our understanding of genetic and epigenetic regulations of social behavior and provide perspectives on future studies using cutting-edge technologies.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Department of Biology, University of Florida, Gainesville, Florida 32611, USA; .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; ,
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
24
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Minocha S, Boll W, Noll M. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain. PLoS One 2017; 12:e0176002. [PMID: 28441464 PMCID: PMC5404782 DOI: 10.1371/journal.pone.0176002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
The paired box gene Pox neuro (Poxn) is expressed in two bilaterally symmetric neuronal clusters of the developing adult Drosophila brain, a protocerebral dorsal cluster (DC) and a deutocerebral ventral cluster (VC). We show that all cells that express Poxn in the developing brain are postmitotic neurons. During embryogenesis, the DC and VC consist of only 20 and 12 neurons that express Poxn, designated embryonic Poxn-neurons. The number of Poxn-neurons increases only during the third larval instar, when the DC and VC increase dramatically to about 242 and 109 Poxn-neurons, respectively, virtually all of which survive to the adult stage, while no new Poxn-neurons are added during metamorphosis. Although the vast majority of Poxn-neurons express Poxn only during third instar, about half of them are born by the end of embryogenesis, as demonstrated by the absence of BrdU incorporation during larval stages. At late third instar, embryonic Poxn-neurons, which begin to express Poxn during embryogenesis, can be easily distinguished from embryonic-born and larval-born Poxn-neurons, which begin to express Poxn only during third instar, (i) by the absence of Pros, (ii) their overt differentiation of axons and neurites, and (iii) the strikingly larger diameter of their cell bodies still apparent in the adult brain. The embryonic Poxn-neurons are primary neurons that lay out the pioneering tracts for the secondary Poxn-neurons, which differentiate projections and axons that follow those of the primary neurons during metamorphosis. The DC and the VC participate only in two neuropils of the adult brain. The DC forms most, if not all, of the neurons that connect the bulb (lateral triangle) with the ellipsoid body, a prominent neuropil of the central complex, while the VC forms most of the ventral projection neurons of the antennal lobe, which connect it ipsilaterally to the lateral horn, bypassing the mushroom bodies. In addition, Poxn-neurons of the VC are ventral local interneurons of the antennal lobe. In the absence of Poxn protein in the developing brain, embryonic Poxn-neurons stall their projections and cannot find their proper target neuropils, the bulb and ellipsoid body in the case of the DC, or the antennal lobe and lateral horn in the case of the VC, whereby the absence of the ellipsoid body neuropil is particularly striking. Poxn is thus crucial for pathfinding both in the DC and VC. Additional implications of our results are discussed.
Collapse
Affiliation(s)
- Shilpi Minocha
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
27
|
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U. The glia of the adult Drosophila nervous system. Glia 2017; 65:606-638. [PMID: 28133822 PMCID: PMC5324652 DOI: 10.1002/glia.23115] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Abstract
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638
Collapse
Affiliation(s)
- Malte C Kremer
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany.,Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Sara Batelli
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Ulrike Gaul
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
28
|
Abramczuk MK, Burkard TR, Rolland V, Steinmann V, Duchek P, Jiang Y, Wissel S, Reichert H, Knoblich JA. The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in Drosophila neural stem cells. Development 2017; 144:3932-3945. [DOI: 10.1242/dev.152199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as one important mechanism regulating cell fate decisions. Here we address the role of the evolutionary conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleic proteins (snRNP), and its depletion causes alternative splicing in form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2snRNP, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.
Collapse
Affiliation(s)
- Monika K. Abramczuk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Thomas R. Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Vivien Rolland
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Current address: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra, ACT 2601, Australia
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
- Current address: D-BSSE ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wissel
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| |
Collapse
|
29
|
Hartenstein V, Cruz L, Lovick JK, Guo M. Developmental analysis of the dopamine-containing neurons of the Drosophila brain. J Comp Neurol 2016; 525:363-379. [PMID: 27350102 DOI: 10.1002/cne.24069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
The Drosophila dopaminergic (DAergic) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. We analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain that provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages, whereas others do not become DA positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms that these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage that can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. J. Comp. Neurol. 525:363-379, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Louie Cruz
- Department of Neurology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Ming Guo
- Department of Neurology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
30
|
Koniszewski NDB, Kollmann M, Bigham M, Farnworth M, He B, Büscher M, Hütteroth W, Binzer M, Schachtner J, Bucher G. The insect central complex as model for heterochronic brain development-background, concepts, and tools. Dev Genes Evol 2016; 226:209-19. [PMID: 27056385 PMCID: PMC4896989 DOI: 10.1007/s00427-016-0542-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
Abstract
The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.
Collapse
Affiliation(s)
- Nikolaus Dieter Bernhard Koniszewski
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Kollmann
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Mahdiyeh Bigham
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Max Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Bicheng He
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Marita Büscher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany
| | - Wolf Hütteroth
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.,Department of Biology, Neurobiology, University of Konstanz, Constance, Germany
| | - Marlene Binzer
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, CNMPB, Georg-August-University Göttingen, Göttingen Campus, Göttingen, Germany.
| |
Collapse
|
31
|
Rao PR, Lin L, Huang H, Guha A, Roy S, Kornberg TB. Developmental compartments in the larval trachea of Drosophila. eLife 2015; 4. [PMID: 26491942 PMCID: PMC4718809 DOI: 10.7554/elife.08666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
The Drosophila tracheal system is a branched tubular network that forms in the embryo by a post-mitotic program of morphogenesis. In third instar larvae (L3), cells constituting the second tracheal metamere (Tr2) reenter the cell cycle. Clonal analysis of L3 Tr2 revealed that dividing cells in the dorsal trunk, dorsal branch and transverse connective branches respect lineage restriction boundaries near branch junctions. These boundaries corresponded to domains of gene expression, for example where cells expressing Spalt, Delta and Serrate in the dorsal trunk meet vein–expressing cells in the dorsal branch or transverse connective. Notch signaling was activated to one side of these borders and was required for the identity, specializations and segregation of border cells. These findings suggest that Tr2 is comprised of developmental compartments and that developmental compartments are an organizational feature relevant to branched tubular networks. DOI:http://dx.doi.org/10.7554/eLife.08666.001 As a fruit fly develops, its cells may sort themselves into groups according to the type of cell that they will eventually become. Some groups form ‘developmental compartments’ that are separated by boundaries that cells cannot move across. All the descendants of a cell in a compartment will activate the same specific gene (called a ‘selector’ gene) that determines their identity and fate. Similar compartments also form in the developing hindbrains of mammals, but it is not clear how general this mechanism of tissue patterning is. Fruit fly larvae undergo a physical transformation called metamorphosis to become adult fruit flies. Here, Rao et al. discover that the cells in the developing airways (or trachea) of the larvae at the start of metamorphosis are organised into compartments. At this stage the cells in the trachea start to divide and grow to make the adult tracheal system. The experiments show that these cells do not spread from one main branch of the tracheal system into another. Instead, the cells cluster in locations where the different branches meet on either side of a straight boundary. The cells on each side of these boundaries activate different genes that regulate their identity and development. For example, cells in one branch of the system switch on a selector gene that makes a protein called Spalt. A pathway known as Notch signaling is activated by cells on the other side of a nearby boundary in a different branch of the tracheal system. This separation of Spalt production and Notch activation establishes a cell communication system that keeps the cells of the different compartments apart. Rao et al.’s findings reveal a role for the Notch protein in regulating the organization of cells into compartments to form branches in fruit fly airways. A future challenge is to find out if Notch plays a similar role in other branched tissues, such as blood vessels. DOI:http://dx.doi.org/10.7554/eLife.08666.002
Collapse
Affiliation(s)
- Prashanth R Rao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Li Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Arjun Guha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Sougata Roy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
32
|
Hartenstein V, Younossi-Hartenstein A, Lovick JK, Kong A, Omoto JJ, Ngo KT, Viktorin G. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain. Dev Biol 2015; 406:14-39. [PMID: 26141956 DOI: 10.1016/j.ydbio.2015.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 11/15/2022]
Abstract
Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA.
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | | |
Collapse
|
33
|
Brenneis G, Scholtz G. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS One 2014; 9:e95435. [PMID: 24736377 PMCID: PMC3988247 DOI: 10.1371/journal.pone.0095435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented 'opisthosoma' during pycnogonid evolution.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| |
Collapse
|
34
|
Shim J, Gururaja-Rao S, Banerjee U. Nutritional regulation of stem and progenitor cells in Drosophila. Development 2014; 140:4647-56. [PMID: 24255094 DOI: 10.1242/dev.079087] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals.
Collapse
Affiliation(s)
- Jiwon Shim
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
35
|
Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev Biol 2013; 384:258-89. [PMID: 23872236 PMCID: PMC3928077 DOI: 10.1016/j.ydbio.2013.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.
Collapse
Affiliation(s)
- Darren C. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K. Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wichanee Borisuthirattana
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Thran J, Poeck B, Strauss R. Serum Response Factor-Mediated Gene Regulation in a Drosophila Visual Working Memory. Curr Biol 2013; 23:1756-63. [DOI: 10.1016/j.cub.2013.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
|
37
|
Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Dev Biol 2013; 384:228-57. [PMID: 23880429 DOI: 10.1016/j.ydbio.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Bldg, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
38
|
Riebli N, Viktorin G, Reichert H. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Dev 2013; 8:6. [PMID: 23618231 PMCID: PMC3685605 DOI: 10.1186/1749-8104-8-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/18/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The central complex is a multimodal information-processing center in the insect brain composed of thousands of neurons representing more than 50 neural types arranged in a stereotyped modular neuroarchitecture. In Drosophila, the development of the central complex begins in the larval stages when immature structures termed primordia are formed. However, the identity and origin of the neurons that form these primordia and, hence, the fate of these neurons during subsequent metamorphosis and in the adult brain, are unknown. RESULTS Here, we used two pointed-Gal4 lines to identify the neural cells that form the primordium of the fan-shaped body, a major component of the Drosophila central complex. We found that these early-born primordium neurons are generated by four identified type II neuroblasts that amplify neurogenesis through intermediate progenitors, and we demonstrate that these neurons generate the fan-shaped body primordium during larval development in a highly specific manner. Moreover, we characterize the extensive growth and differentiation that these early-born primordium neurons undergo during metamorphosis in pupal stages and show that these neurons persist in the adult central complex, where they manifest layer-specific innervation of the mature fan-shaped body. CONCLUSIONS Taken together, these findings indicate that early-born neurons from type II neuroblast lineages have dual roles in the development of a complex brain neuropile. During larval stages they contribute to the formation of a specific central complex primordium; during subsequent pupal development they undergo extensive growth and differentiation and integrate into the modular circuitry of the adult brain central complex.
Collapse
Affiliation(s)
- Nadia Riebli
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
39
|
Albertson R, Tan V, Leads RR, Reyes M, Sullivan W, Casper-Lindley C. Mapping Wolbachia distributions in the adult Drosophila brain. Cell Microbiol 2013; 15:1527-44. [PMID: 23490256 DOI: 10.1111/cmi.12136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/22/2013] [Accepted: 03/02/2013] [Indexed: 01/03/2023]
Abstract
The maternally inherited bacterium Wolbachia infects the germline of most arthropod species. Using Drosophila simulans and D. melanogaster, we demonstrate that localization of Wolbachia to the fat bodies and adult brain is likely also a conserved feature of Wolbachia infection. Examination of three Wolbachia strains (WMel , WRiv , WPop ) revealed that the bacteria preferentially concentrate in the central brain with low titres in the optic lobes. Distribution within regions of the central brain is largely determined by the Wolbachia strain, while the titre is influenced by both, the host species and the bacteria strain. In neurons of the central brain and ventral nerve cord, Wolbachia preferentially localizes to the neuronal cell bodies but not to axons. All examined Wolbachia strains are present intracellularly or in extracellular clusters, with the pathogenic WPop strain exhibiting the largest and most abundant clusters. We also discovered that 16 of 40 lines from the Drosophila Genetic Reference Panel are Wolbachia infected. Direct comparison of Wolbachia infected and cured lines from this panel reveals that differences in physiological traits (chill coma recovery, starvation, longevity) are partially due to host line influences. In addition, a tetracycline-induced increase in Drosophila longevity was detected many generations after treatment.
Collapse
|
40
|
Das A, Gupta T, Davla S, Godino LLP, Diegelmann S, Reddy OV, VijayRaghavan K, Reichert H, Lovick J, Hartenstein V. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Dev Biol 2013; 373:322-37. [PMID: 23149077 PMCID: PMC4045504 DOI: 10.1016/j.ydbio.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
Abstract
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the "classical" olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.
Collapse
Affiliation(s)
- Abhijit Das
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Tripti Gupta
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Sejal Davla
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | | | - Sören Diegelmann
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Jennifer Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Kuert PA, Bello BC, Reichert H. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain. Biol Open 2012; 1:1006-15. [PMID: 23213378 PMCID: PMC3507175 DOI: 10.1242/bio.20121966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/20/2012] [Indexed: 01/03/2023] Open
Abstract
The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However, nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is expressed initially in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wildtype brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development.
Collapse
Affiliation(s)
- Philipp A Kuert
- Biozentrum, University of Basel , CH 4056 Basel , Switzerland
| | | | | |
Collapse
|
42
|
Jiang Y, Reichert H. Analysis of neural stem cell self-renewal and differentiation by transgenic RNAi in Drosophila. Arch Biochem Biophys 2012; 534:38-43. [PMID: 22906721 DOI: 10.1016/j.abb.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 12/21/2022]
Abstract
The fruit fly, Drosophila melanogaster, has proved to be a useful model organism for studying the biology of neural stem cells. Notably, significant progress has been made in identifying the molecular mechanisms that regulate the asymmetric cell divisions of the neural stem cell-like neuroblasts during brain development. Recently, the emerging technology of genome-wide transgenic RNA interference (RNAi), which makes it possible to analyze complicated developmental processes in a targeted, tissue-specific way, has been used for the analysis of gene function in Drosophila neuroblasts. Here, we review the key molecular mechanisms that regulate the asymmetric cell divisions of neuroblasts during brain development in Drosophila. We then summarize recent genome-wide transgenic RNAi screens in Drosophila and report on the identification of new regulators and gene networks that are required in balancing neuroblast self-renewal and differentiation.
Collapse
Affiliation(s)
- Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
43
|
Jiang Y, Reichert H. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev 2012; 7:3. [PMID: 22257485 PMCID: PMC3287146 DOI: 10.1186/1749-8104-7-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The number of neurons generated by neural stem cells is dependent upon the regulation of cell proliferation and by programmed cell death. Recently, novel neural stem cells that amplify neural proliferation through intermediate neural progenitors, called type II neuroblasts, have been discovered, which are active during brain development in Drosophila. We investigated programmed cell death in the dorsomedial (DM) amplifying type II lineages that contribute neurons to the development of the central complex in Drosophila, using clonal mosaic analysis with a repressible cell marker (MARCM) and lineage-tracing techniques. Results A significant number of the adult-specific neurons generated in these DM lineages were eliminated by programmed cell death. Programmed cell death occurred during both larval and pupal stages. During larval development, approximately one-quarter of the neuronal (but not glial) cells in the lineages were eliminated by apoptosis before the formation of synaptic connectivity during pupal stages. Lineage-tracing experiments documented the extensive contribution of intermediate neural progenitor-containing DM lineages to all of the major modular substructures of the adult central complex. Moreover, blockage of apoptotic cell death specifically in these lineages led to prominent innervation defects of DM-derived neural progeny in the major neuropile substructures of the adult central complex. Conclusions Our findings indicate that significant neural overproliferation occurs normally in type II DM lineage development, and that elimination of excess neurons in these lineages through programmed cell death is required for the formation of correct neuropile innervation in the developing central complex. Thus, amplification of neuronal proliferation through intermediate progenitors and reduction of neuronal number through programmed cell death operate in concert in type II neural stem-cell lineages during brain development.
Collapse
Affiliation(s)
- Yanrui Jiang
- Biozentrum, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
44
|
Abstract
In Drosophila, the central nervous system is populated by a set of asymmetrically dividing neural stem cells called neuroblasts. Neuroblasts are derived from epithelial or neuroepithelial precursors, and divide along their apico-basal axes to produce a large apical neuroblast and a smaller basal ganglion mother cell. The ganglion mother cell will divide once again to produce two post-mitotic neurons or glia. In this chapter we outline a method for labeling different types of neural precursors in the Drosophila central nervous system, followed by their extraction and processing for transcriptome analysis. This technique has allowed us to capture and compare the expression profiles of neuroblasts and neuroepithelial cells, resulting in the identification of key genes required for the regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Katrina S Gold
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
45
|
Ramaekers A, Quan XJ, Hassan BA. Genetically Encoded Markers for Drosophila Neuroanatomy. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-830-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
46
|
Mysore K, Flister S, Müller P, Rodrigues V, Reichert H. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster. Dev Genes Evol 2011; 221:281-96. [PMID: 21956584 DOI: 10.1007/s00427-011-0376-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022]
Abstract
Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector.
Collapse
Affiliation(s)
- Keshava Mysore
- Biozentrum, University of Basel, Klinglebergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Abstract
Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from the embryo to adult.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
48
|
Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia 2011; 59:1237-52. [PMID: 21438012 DOI: 10.1002/glia.21162] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from the embryo to adult.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
49
|
Kuzin A, Kundu M, Brody T, Odenwald WF. Functional analysis of conserved sequences within a temporally restricted neural precursor cell enhancer. Mech Dev 2011; 128:165-77. [PMID: 21315151 DOI: 10.1016/j.mod.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
Many of the key regulators of Drosophila CNS neural identity are expressed in defined temporal orders during neuroblast (NB) lineage development. To begin to understand the structural and functional complexity of enhancers that regulate ordered NB gene expression programs, we have undertaken the mutational analysis of the temporally restricted nerfin-1 NB enhancer. Our previous studies have localized the enhancer to a region just proximal to the nerfin-1 transcription start site. Analysis of this enhancer, using the phylogenetic footprint program EvoPrinter, reveals the presence of multiple sequence blocks that are conserved among drosophilids. cis-Decoder alignments of these conserved sequence blocks (CSBs) has identified shorter elements that are conserved in other Drosophila NB enhancers. Mutagenesis of the enhancer reveals that although each CSB is required for wild-type expression, neither position nor orientation of the CSBs within the enhancer is crucial for enhancer function; removal of less-conserved or non-conserved sequences flanking CSB clusters also does not significantly alter enhancer activity. While all three conserved E-box transcription factor (TF) binding sites (CAGCTG) are required for full function, adding an additional site at different locations within non-conserved sequences interferes with enhancer activity. Of particular note, none of the mutations resulted in ectopic reporter expression outside of the early NB expression window, suggesting that the temporally restricted pattern is defined by transcriptional activators and not by direct DNA binding repressors. Our work also points to an unexpectedly large number of TFs required for optimal enhancer function - mutant TF analysis has identified at least four that are required for full enhancer regulation.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, MD, USA.
| | | | | | | |
Collapse
|