1
|
Zou HM, Yu J, Ruan YY, Xie Y, An XM, Chen PL, Luo YQ, Shi MJ, Liu M, Xu LF, Liu J, Guo B, Zhang F. HNF-1β alleviates podocyte injury in lupus nephritis by maintaining endoplasmic reticulum homeostasis. Lupus Sci Med 2024; 11:e001349. [PMID: 39608815 PMCID: PMC11603702 DOI: 10.1136/lupus-2024-001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE The current study aims to elucidate the critical function of hepatocyte nuclear factor 1-beta (HNF1-β) in lupus nephritis (LN) by investigating its modulation of the Derlin-1/valosin-containing protein (VCP)/VCP-interacting membrane selenoprotein (VIMP) complex, endoplasmic reticulum (ER) stress and podocyte apoptosis. METHODS In vitro and in vivo models of LN were established using glomerular podocytes treated with LN serum and MRL/lpr mice, respectively. The expression levels of HNF1-β were analysed in kidney tissues from patients with LN and MRL/lpr mice. To assess the effects of HNF1-β inhibition, an adeno-associated virus vector carrying HNF1-β short hairpin was administered to MRL/lpr mice. In vitro, glomerular podocytes were transfected with HNF1-β small interfering RNA (siRNA) or HNF1-β overexpression plasmids to explore their regulatory effects on the Derlin-1/VCP/VIMP complex and podocyte apoptosis. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were performed to investigate the transcriptional activation of Derlin-1 and VCP promoters by HNF1-β. RESULTS A significant decrease in HNF1-β levels was observed in kidney tissues from patients with LN while MRL/lpr mice exhibited an initial compensatory increase followed by a subsequent decrease in renal HNF1-β expression. Overexpression of HNF1-β transcriptionally upregulated Derlin-1 and VCP mitigating LN serum-induced ER stress and podocyte apoptosis. In contrast, HNF1-β inhibition exacerbated renal dysfunction and structural damage in MRL/lpr mice. Interestingly, HNF1-β inhibition transcriptionally repressed ERP44, leading to calcium ions (Ca²+) release-mediated disruption and inactivation of the Derlin-1/VCP/VIMP complex. This finding suggests that HNF1-β not only regulates the expression of key proteins in the Derlin-1/VCP/VIMP complex but also influences their assembly through Ca²+ release regulation. CONCLUSION This study provides novel insights into the regulatory mechanisms of HNF1-β in LN emphasising its impact on the Derlin-1/VCP/VIMP complex, ER stress and podocyte apoptosis. These findings have the potential to inform the development of new diagnostic tools and therapeutic strategies for LN.
Collapse
Affiliation(s)
- Hui-mei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yuan-yuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xiao-min An
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Pei-lei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying-qin Luo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ming-jun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Urinary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li-fen Xu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Liu
- Department of Rheumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Kovalik ME, Dacanay MA, Crowley SD, Hall G. Swollen Feet: Considering the Paradoxical Roles of Interleukins in Nephrotic Syndrome. Biomedicines 2024; 12:738. [PMID: 38672094 PMCID: PMC11048099 DOI: 10.3390/biomedicines12040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukins are a family of 40 bioactive peptides that act through cell surface receptors to induce a variety of intracellular responses. While interleukins are most commonly associated with destructive, pro-inflammatory signaling in cells, some also play a role in promoting cellular resilience and survival. This review will highlight recent evidence of the cytoprotective actions of the interleukin 1 receptor (IL-1R)- and common gamma chain receptor (IL-Rγc)-signaling cytokines in nephrotic syndrome (NS). NS results from the injury or loss of glomerular visceral epithelial cells (i.e., podocytes). Although the causes of podocyte dysfunction vary, it is clear that pro-inflammatory cytokines play a significant role in regulating the propagation, duration and severity of disease. Pro-inflammatory cytokines signaling through IL-1R and IL-Rγc have been shown to exert anti-apoptotic effects in podocytes through the phosphoinositol-3-kinase (PI-3K)/AKT pathway, highlighting the potential utility of IL-1R- and IL-Rγc-signaling interleukins for the treatment of podocytopathy in NS. The paradoxical role of interleukins as drivers and mitigators of podocyte injury is complex and ill-defined. Emerging evidence of the cytoprotective role of some interleukins in NS highlights the urgent need for a nuanced understanding of their pro-survival benefits and reveals their potential as podocyte-sparing therapeutics for NS.
Collapse
Affiliation(s)
- Maria E. Kovalik
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Monique A. Dacanay
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Steven D. Crowley
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
| | - Gentzon Hall
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Shao KM, Shao WH. Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. Int J Mol Sci 2024; 25:1084. [PMID: 38256157 PMCID: PMC10816397 DOI: 10.3390/ijms25021084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease, characterized by breakdown of immunotolerance to self-antigens. Renal involvement, known as lupus nephritis (LN), is one of the leading causes of morbidity and a significant contributor to mortality in SLE. Despite current pathophysiological advances, further studies are needed to fully understand complex mechanisms underlying the development and progression of LN. Transcription factors (TFs) are proteins that regulate the expression of genes and play a crucial role in the development and progression of LN. The mechanisms of TF promoting or inhibiting gene expression are complex, and studies have just begun to reveal the pathological roles of TFs in LN. Understanding TFs in the pathogenesis of LN can provide valuable insights into this disease's mechanisms and potentially lead to the development of targeted therapies for its management. This review will focus on recent findings on TFs in the pathogenesis of LN and newly developed TF-targeted therapy in renal inflammation.
Collapse
Affiliation(s)
- Kasey M. Shao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Zhang J, Tabush N, Wei C, Luo L. Regulatory effect of IL-38 on NF-κB pathway in systemic lupus erythematosus. Immunobiology 2023; 228:152322. [PMID: 36621308 DOI: 10.1016/j.imbio.2022.152322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND IL-38 is a newly identified cytokine that exhibits immunosuppression effects. However, there are few studies focusing on the effects and mechanisms of IL-38 in the systemic lupus erythematosus (SLE). AIM We investigated the effects and mechanisms of IL-38 on NF-κB signaling pathway in SLE. METHODS Levels of IL-38, IL-36R, IL-1RAcP, IKKα/β, NF-κB, TNF-α and anti-dsDNA antibody levels in peripheral blood of SLE patients, and in peripheral blood and kidney tissues of MRL/lpr mice, were examined with real-time PCR, ELISA, Western blot and immunohistochemistry. Pathological changes of kidney were detected with PAS staining. Recombinant human IL-38 protein and IL-38 siRNA were used to intervene the PBMCs of SLE patients and MRL/lpr mice. RESULTS The mRNA and protein levels of IL-38 in peripheral blood of SLE patients decreased and were positively correlated. The mRNA and protein levels of IKKα/β, NF-κB, and TNF-α increased, especially in patients with active SLE. There was a negative correlation between IL-38 and the levels of IKKα/β, NF-κB and TNF-α in SLE patients. In vitro experiments showed that the levels of IKKα/β, NF-κB and TNF-α, and anti-dsDNA antibodies decreased in PBMCs of SLE patients after treatment with human recombinant IL-38 protein. These effects were reversed after IL-38 siRNA intervention. Consistent results were obtained on IL-38, IKKα/β, NF-κB, and TNF-α in MRL/lpr lupus mice after treatment with IL-38 protein or IL-38 shRNA. Additionally, kidney function (reflected by creatinine and blood urea nitrogen), anti-dsDNA antibody, complement C3, and urinary protein levels decreased after treatment with IL-38 protein but increased after IL-38 shRNA treatment. PAS staining showed IL-38 protein treatment induced mild hyperplasia of glomerular mesangial cells and a small amount of lymphocyte infiltration. However, these were aggravated after IL-38 shRNA treatment. CONCLUSION IL-38 may be involved in the occurrence and development of SLE by regulating the NF-κB signaling pathway. This study only discussed the relationship between IL-38 and NF-κB, and more biological functions of IL-38 need to be further studied.
Collapse
Affiliation(s)
- Jiyun Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830058, Xinjiang, China; Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang, China
| | - Nurshati Tabush
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang, China
| | - Chune Wei
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang, China
| | - Li Luo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830058, Xinjiang, China.
| |
Collapse
|
5
|
Fu Z, Zhang S, Gu X, Guan T, Wang C, Zhang J, Wang Y, Guo H, Wang L, Zhang T. LDP alleviates TKI-induced proteinuria through reversing the expression of RelA in renal tissues. Front Med (Lausanne) 2023; 10:1095344. [PMID: 36744132 PMCID: PMC9892181 DOI: 10.3389/fmed.2023.1095344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs), as an important tumor therapy, can induce severe proteinuria that significantly affects anti-tumor therapy. Existing therapies against proteinuria induced by other etiologies are currently ineffective for TKI-induced proteinuria. It has been shown that various types of proteinuria are related to podocyte damage caused by changes in the RelA signaling pathway. Our experiments confirmed that TKIs activate the renal RelA signaling pathway, and induce death of podocytes and destruction of the glomerular filtration barrier. Here we found that Liuwei Dihuang Pill (LDP) attenuated the inflammatory injury of podocytes through inhibiting activation of RelA, and subsequently relieved TKI-related proteinuria and prevented the progression of TMA and FSGS. Our finding indicated that LDP may be effective for the treatment of TKI-induced proteinuria, which is clinically significant.
Collapse
Affiliation(s)
- Zhou Fu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Key Laboratory of Cancer Prevention and Therapy, Department of Gynecologic Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoying Gu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tao Guan
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chengmeng Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaqi Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Jinzhong, China
| | - Yun Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Hua Guo,
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Lu Wang,
| | - Ti Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ti Zhang,
| |
Collapse
|
6
|
Martemucci G, Portincasa P, Centonze V, Mariano M, Khalil M, D'Alessandro AG. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med Chem 2023; 19:509-537. [PMID: 36453505 DOI: 10.2174/1573406419666221130162512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lipids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we critically discuss the main properties of free radicals, their implications in oxidative stress, and specific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenerative diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate beneficial effect of antioxidants versus reactive oxygen species in several diseases.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| |
Collapse
|
7
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
8
|
Tong X, Qiao Y, Yang Y, Liu H, Cao Z, Yang B, Wei L, Yang H. Applications and Mechanisms of Tripterygium Wilfordii Hook. F. and its Preparations in Kidney Diseases. Front Pharmacol 2022; 13:846746. [PMID: 35387327 PMCID: PMC8977547 DOI: 10.3389/fphar.2022.846746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TwHF) is a Chinese botanical drug containing a large number of metabolites. The discovered and recognized anti-inflammatory and immune-regulating effects have made it attract more and more attentions in trials and clinical researches. The extraction and processing of TwHF for pharmaceuticals is a manifestation of the role of traditional Chinese medicine. However, TwHF is toxic. Optimization of TwHF preparations has become a requirement for the development of TwHF pharmaceuticals. Our article introduces the main preparations of TwHF on the Chinese market and their characteristics. In particular, we summarize the clinical applications and influential mechanisms of TwHF and its preparations in kidney diseases. Considering that nephropathy is closely related to immune inflammation and TwHF is a botanical drug with a high number of metabolites, the application of TwHF in kidney diseases may be much more complicated. By revealing the role and mechanisms of TwHF in kidney diseases, this study aims to provide more insights to basic and clinical studies about nephropathy.
Collapse
Affiliation(s)
- Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Tianjin Jinnan Traditional Chinese Medicine Hospital, Tianjin, China
| | - Haizhao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyong Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Möller-Hackbarth K, Dabaghie D, Charrin E, Zambrano S, Genové G, Li X, Wernerson A, Lal M, Patrakka J. Retinoic acid receptor responder1 promotes development of glomerular diseases via the Nuclear Factor-κB signaling pathway. Kidney Int 2021; 100:809-823. [PMID: 34147551 DOI: 10.1016/j.kint.2021.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory pathways are activated in most glomerular diseases but molecular mechanisms driving them in kidney tissue are poorly known. We identified retinoic acid receptor responder 1 (Rarres1) as a highly podocyte-enriched protein in healthy kidneys. Studies in podocyte-specific knockout animals indicated that Rarres1 was not needed for the normal development or maintenance of the glomerulus filtration barrier and did not modulate the outcome of kidney disease in a model of glomerulonephritis. Interestingly, we detected an induction of Rarres1 expression in glomerular and peritubular capillary endothelial cells in IgA and diabetic kidney disease, as well as in ANCA-associated vasculitis. Analysis of publicly available RNA data sets showed that the induction of Rarres1 expression was a common molecular mechanism in chronic kidney diseases. A conditional knock-in mouse line, overexpressing Rarres1 specifically in endothelial cells, did not show any obvious kidney phenotype. However, the overexpression promoted the progression of kidney damage in a model of glomerulonephritis. In line with this, conditional knock-out mice, lacking Rarres1 in endothelial cells, were partially protected in the disease model. Mechanistically, Rarres1 promoted inflammation and fibrosis via transcription factor Nuclear Factor-κB signaling pathway by activating receptor tyrosine kinase Axl. Thus, induction of Rarres1 expression in endothelial cells is a prevalent molecular mechanism in human glomerulopathies and this seems to have a pathogenic role in driving inflammation and fibrosis via the Nuclear Factor-κB signaling pathway.
Collapse
Affiliation(s)
- Katja Möller-Hackbarth
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Dina Dabaghie
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Emmanuelle Charrin
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Sonia Zambrano
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Guillem Genové
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Medicine Huddinge, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Xidan Li
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Medicine Huddinge, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Sciences, Division of Renal Medicine, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Lal
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jaakko Patrakka
- KI/AZ Integrated Cardio Metabolic Centre, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
10
|
Emodin ameliorates renal injury in BXSB mice by modulating TNF-α/ICAM-1. Biosci Rep 2021; 40:226388. [PMID: 32910199 PMCID: PMC7502691 DOI: 10.1042/bsr20202551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study was to explore the effects of emodin on renal injury in a BXSB mouse model of lupus and its mechanisms. BXSB mice were fed different concentrations of emodin (0, 5, 10 and 20 mg/kg.d), and the levels of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α) and fibronectin (FN) levels in the glomeruli and serum levels of the anti-dsDNA antibody were determined. Mesangial cells (MCs) were cultured in vitro, and IgG-type anti-dsDNA antibody and/or emodin were added to the MC culture supernatant. In addition, TNF-α small interfering RNA (siRNA) was transfected into MCs to explore the mechanism of action of emodin. The results showed that the mice fed emodin presented decreases in the urinary protein content and glomerular TNF-α, ICAM-1 and FN levels (P<0.05). Moreover, the urine protein, TNF-α, ICAM-1 and FN levels were decreased in a dose-dependent manner (P<0.05). In vitro, the anti-dsDNA antibody group exhibited increased levels of ICAM-1 and TNF-α (P<0.05), and the anti-dsDNA antibody group showed myofibroblast-like structural changes. The aforementioned indexes were decreased in the emodin group (P<0.05), and the extent of transdifferentiation was significantly reduced. Moreover, the level of ICAM-1 decreased with the down-regulation of TNF-α (P<0.05). Emodin reduced the urine protein levels and serum levels of the anti-dsDNA antibody in a mouse model of lupus nephritis (LN). The underlying mechanism may be related to decreased levels of TNF-α, ICAM-1 and FN and the inhibition of dsDNA antibody-induced MC damage.
Collapse
|
11
|
Shen WC, Chou YH, Shi LS, Chen ZW, Tu HJ, Lin XY, Wang GJ. AST-120 Improves Cardiac Dysfunction in Acute Kidney Injury Mice via Suppression of Apoptosis and Proinflammatory NF-κB/ICAM-1 Signaling. J Inflamm Res 2021; 14:505-518. [PMID: 33658826 PMCID: PMC7917393 DOI: 10.2147/jir.s283378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Acute kidney injury (AKI) is a devastating disorder associated with considerably high morbidity and mortality. Reports have shown that AST-120, an oral charcoal adsorbent, can reduce oxidative stress by lowering serum indoxyl sulfate levels. The effects of AST-120 and indoxyl sulfate on kidney injury and cardiac dysfunction were investigated in vivo and in vitro. Patients and Methods Patients were tracked for enrollment upon receiving a diagnosis of AKI. Plasma was collected to determine the renal and inflammatory parameters. Renal ischemia/reperfusion (I/R) induced AKI or sham operation was performed in C57BL/6J mice. Animals were divided into sham, AKI+vehicle, and AKI+AST-120 groups. Plasma and tissues were assembled after 48 h to assess apoptotic and inflammatory responses. We also conducted human umbilical vein endothelial cell (HUVECs) and HL-1 cardiomyocyte culture studies to determine the underlying mechanisms of indoxyl sulfate’s effects. Echocardiography, histopathology, biochemical indexes, ELISA, terminal dUTP nick-end labeling (TUNEL) and Western blot analysis were performed. Results The cohort included 25 consecutive patients with AKI and 25 non-AKI. Plasma levels of creatinine, indoxyl sulfate, IL-1β and ICAM-1 were significantly higher in patients with AKI than in non-AKI controls. Plasma levels of blood urea nitrogen, creatinine, indoxyl sulfate, IL-1β and renal tubular injury were increased in mice after renal I/R and were decreased by AST-120 treatment. In addition, AST-120 therapy not only improved the parameters assessed by echocardiography but also substantially attenuated the elevation of plasma BNP. Oral administration of AST-120 significantly downregulated NF-κB/ICAM-1 expression and reduced cell apoptosis in both kidney and heart after renal I/R injury. Conclusion Our investigations demonstrated that AST-120 administration improves cardiac dysfunction in AKI mice via the suppression of apoptosis and proinflammatory NF-κB/ICAM-1 signaling.
Collapse
Affiliation(s)
- Wen-Ching Shen
- Department of Basic Medicine, Putian University, Putian City, Fujian Province, People's Republic of China
| | - Yu-Hsiang Chou
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yun-Lin, Taiwan
| | - Zhi-Wei Chen
- The Affiliated Hospital of Putian University, Putian City, Fujian Province, People's Republic of China
| | - Hai-Jian Tu
- The Affiliated Hospital of Putian University, Putian City, Fujian Province, People's Republic of China
| | - Xin-Yi Lin
- Department of Basic Medicine, Putian University, Putian City, Fujian Province, People's Republic of China
| | - Guei-Jane Wang
- School of Medicine, Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan.,School of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
12
|
Sharif K, Kurnick A, Coplan L, Alexander M, Watad A, Amital H, Shoenfeld Y. The Putative Adverse Effects of Bisphenol A on Autoimmune Diseases. Endocr Metab Immune Disord Drug Targets 2021; 22:665-676. [PMID: 33568039 DOI: 10.2174/1871530321666210210154309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) is a monomer that is widely used in the manufacture of polycarbonate plastics including storage plastics and baby bottles, and is considered one of the most widely used synthetic compounds in the manufacturing industry. Exposure to BPA mainly occurs after oral ingestion and results from leaks into food and water from plastic containers and according to epidemiological data exposure is widespread and estimated to occur in 90% of individuals. BPA exertspleiotropiceffects and demonstrates estrogen like effects, thus considered an endocrine disrupting chemical. Growing body of evidence highlight the role of BPA in modulating immune responses and signaling pathways resulting in a proinflammatory response by enhancing the differential polarization of immune cells and cytokine production profile to one that is consistent with proinflammation. Indeed, epidemiological studies have uncovered associations between several autoimmune diseases and BPA exposure. Data from animal models provided consistent evidence highlighting the role of BPA in the pathogenesis, exacerbation and perpetuation of various autoimmune phenomena including neuroinflammation in the context of multiple sclerosis, colitis in inflammatory bowel disease, nephritis in systemic lupus erythematosus, and insulitis in type 1 diabetes mellitus. Given the wide spread of BPA use and its effects in immune systemdysregulation, a call for careful assessment of patients' risks and for public health measures are needed to limit exposure and subsequent deleterious effects. The purpose of this paper is to explore the autoimmune triggering mechanisms and present the current literature supporting the role of BPA in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Adam Kurnick
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | | | - Abdulla Watad
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| |
Collapse
|
13
|
Myrcene Attenuates Renal Inflammation and Oxidative Stress in the Adrenalectomized Rat Model. Molecules 2020; 25:molecules25194492. [PMID: 33007969 PMCID: PMC7582976 DOI: 10.3390/molecules25194492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Physiological Glucocorticoids are important regulators of the immune system. Pharmacological GCs are in widespread use to treat inflammatory diseases. Adrenalectomy (ADX) has been shown to exacerbate renal injury through inflammation and oxidative stress that results in renal impairment due to depletion of GCs. In this study, the effect of myrcene to attenuate renal inflammation and oxidative stress was evaluated in the adrenalectomized rat model. Rats were adrenalectomized bilaterally or the adrenals were not removed after surgery (sham). Myrcene (50 mg/kg body weight, orally) was administered post ADX. Myrcene treatment resulted in significant downregulation of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) compared to untreated ADX rats. In addition, myrcene resulted in significant downregulation of immunomodulatory factors (IFNγ and NF-κB) and anti-inflammatory markers (IL-4 and IL-10) in treated ADX compared to untreated ADX. Myrcene significantly increased the antioxidant molecules (CAT, GSH, and SOD) and decreased MDA levels in treated ADX compared to untreated. Moreover, myrcene treatment reduced the expression of COX-2, iNOS, KIM-1, and kidney functional molecules (UREA, LDH, total protein, and creatinine) in ADX treated compared to ADX untreated. These results suggest that myrcene could be further developed as a therapeutic drug for treatment of kidney inflammation and injury.
Collapse
|
14
|
Zhai S, Li M, Sun B, Han Y. Amelioration of Lipopolysaccharide-Induced Nephrotic Proteinuria by NFAT5 Depletion Involves Suppressed NF-κB Activity. Inflammation 2020; 42:1326-1335. [PMID: 30826989 DOI: 10.1007/s10753-019-00993-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Idiopathic nephrotic syndrome (INS) is characterized by proteinuria, in which podocyte dysfunction associated with NF-κB-mediated inflammation plays an important role. The nuclear factor of activated T cells 5 (NFAT5) has been shown to enhance NF-κB activity. However, whether NFAT5 is associated with proteinuria remains uncharacterized. NFAT5 is upregulated in the glomeruli in lipopolysaccharide (LPS)-induced mouse nephrotic proteinuria, as well as in LPS-treated podocytes in vitro. In addition, NFAT5 depletion improves filtration barrier function of LPS-treated podocytes in vitro. Mechanistically, NFAT5 depletion suppresses NF-κB activation and downstream proinflammatory reaction in LPS-treated podocytes, and moreover, NF-κB inhibition improves filtration barrier function of LPS-treated podocytes, suggesting that the suppressed NF-κB activity at least partly accounts for NFAT5 depletion-improved filtration barrier function. Furthermore, in vivo, depletion of NFAT5 suppresses NF-κB activity and ameliorates nephrotic proteinuria in LPS-treated mice. These findings suggest a protective role of NFAT5 depletion against LPS-induced nephrotic proteinuria and relate it to the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Shubo Zhai
- Department of Pediatric Nephropathy, The First Hospital of Jilin University, Chang Chun, 130021, Jilin Province, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Chang Chun, 130021, Jilin Province, China
| | - Baichao Sun
- Department of Pediatric Nephropathy, The First Hospital of Jilin University, Chang Chun, 130021, Jilin Province, China
| | - Yanyan Han
- Department of Pediatric Cardiology, The First Hospital of Jilin University, No. 71 of Xin Min Street, Chang Chun, 130021, Jilin Province, China.
| |
Collapse
|
15
|
Liu J, Lu X, Lou Y, Cai Y, Cui W, Wang J, Nie P, Chen L, Li B, Luo P. Xenogeneic Transplantation of Human Placenta-Derived Mesenchymal Stem Cells Alleviates Renal Injury and Reduces Inflammation in a Mouse Model of Lupus Nephritis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9370919. [PMID: 30941373 PMCID: PMC6421051 DOI: 10.1155/2019/9370919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
Abstract
Human placenta-derived mesenchymal stem cells (pMSCs) are considered a good source for cell therapy. The purpose of this study was to observe whether the transplantation of human pMSCs would affect the treatment of lupus nephritis (LN)-prone MRL/lpr mice. Multiple injections (at the 16th, 18th, and 20th week of age) of 1 × 106 pMSCs were administered. Urine was collected to evaluate proteinuria and urine creatinine levels. Blood was collected for the measurement of serum antinuclear antibody (ANA) and anti-double-stranded DNA (dsDNA) antibody levels. Renal tissues were collected for histological staining and examination by light and electron microscopy quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western Blot. The results confirmed that pMSC treatment reduced the severity of 24-h proteinuria, decreased the production of anti-dsDNA antibodies, and ameliorated renal pathological changes in MRL/lpr mice. Furthermore, pMSCs reduced renal inflammation by inhibiting the expression of nuclear factor kappa B (NF-κB) and then downregulating the expression of tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1), and plasminogen activator inhibitor-1 (PAI-1). Therefore, our present study demonstrated a protective effect of pMSCs against renal injury and inflammation in MRL/lpr mice.
Collapse
Affiliation(s)
- Juan Liu
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Xuehong Lu
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Yan Lou
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Wenpeng Cui
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Jing Wang
- Department of Nephropathy, FAW General Hospital (The Fourth Hospital of Jilin University), Changchun, Jilin Province, 130011, China
| | - Ping Nie
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Liangmei Chen
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| |
Collapse
|
16
|
Chalmers SA, Garcia SJ, Reynolds JA, Herlitz L, Putterman C. NF-kB signaling in myeloid cells mediates the pathogenesis of immune-mediated nephritis. J Autoimmun 2019; 98:33-43. [PMID: 30612857 PMCID: PMC6426635 DOI: 10.1016/j.jaut.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Immune-mediated glomerulonephritis is a serious end organ pathology that commonly affects patients with systemic lupus erythematosus (SLE). A classic murine model used to study lupus nephritis (LN) is nephrotoxic serum nephritis (NTN), in which mice are passively transferred nephrotoxic antibodies. We have previously shown that macrophages are important in the pathogenesis of LN. To further investigate the mechanism by which macrophages contribute to the pathogenic process, and to determine if this contribution is mediated by NF-κB signaling, we created B6 mice which had RelA knocked out in myeloid cells, thus inhibiting classical NF-κB signaling in this cell lineage. We induced NTN in this strain to assess the importance of macrophage derived NF-κB signaling in contributing to disease progression. Myeloid cell RelA knock out (KO) mice injected with nephrotoxic serum had significantly attenuated proteinuria, lower BUN levels, and improved renal histopathology compared to control injected wildtype B6 mice (WT). Inhibiting myeloid NF-κB signaling also decreased inflammatory modulators within the kidneys. We found significant decreases of IL-1a, IFNg, and IL-6 in kidneys from KO mice, but higher IL-10 expression. Flow cytometry revealed decreased numbers of kidney infiltrating classically activated macrophages in KO mice as well. Our results indicate that macrophage NF-κB signaling is instrumental in the contribution of this cell type to the pathogenesis of NTN. While approaches which decrease macrophage numbers can be effective in immune mediated nephritis, more targeted treatments directed at modulating macrophage signaling and/or function could be beneficial, at least in the early stages of disease.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sayra J Garcia
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Joshua A Reynolds
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
17
|
Zhang Z, Liu D, Zhang X, Wang X. Erythropoietin Treatment Ameliorates Lupus Nephritis of MRL/lpr Mice. Inflammation 2019; 41:1888-1899. [PMID: 29951872 DOI: 10.1007/s10753-018-0832-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An increasing body of data has shown that erythropoietin (EPO) plays multiple roles in inflammation control and immunoregulation. However, less attention has been given to its effects on lupus nephritis (LN). In this study, we investigated the therapeutic effects of EPO on LN in MRL/lpr mice, a well-studied animal model for lupus. MRL/lpr mice were randomly divided into an EPO and control group. Mice in the EPO group were treated with EPO; saline was given to the control group. Both groups were treated for 10 weeks. We analyzed the differences of general disease condition, histopathologic changes, Th lymphocytes subsets, and the expression of inflammatory factors of mice between the groups. Compared to the control group, mice in the EPO group showed less spleen hyperplasia, less urinary protein, and lower serum anti-dsDNA antibody; they also had lower renal histopathologic scores and less deposition of IgG/C3 within glomeruli. Moreover, Th1 and Th17 levels were decreased, while Th2 and Treg levels were increased in the spleen, and the expression of inflammatory cytokines decreased in both the spleen and kidneys. EPO increased Th2 and Treg lymphocytes, decreased Th1, Th17 lymphocytes in the spleen, and inhibited the inflammatory reactions in both the spleen and kidneys, thus ameliorating LN of MRL/lpr mice.
Collapse
Affiliation(s)
- Zeming Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiaoli Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiaofei Wang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
18
|
Ding Y, Li H, He X, Liao W, Yi Z, Yi J, Chen Z, Moore DJ, Yi Y, Xiang W. Identification of a gene-expression predictor for diagnosis and personalized stratification of lupus patients. PLoS One 2018; 13:e0198325. [PMID: 29975701 PMCID: PMC6033382 DOI: 10.1371/journal.pone.0198325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a wide spectrum of clinical manifestations and degrees of severity. Few genomic biomarkers for SLE have been validated and employed to inform clinical classifications and decisions. To discover and assess the gene-expression based SLE predictors in published studies, we performed a meta-analysis using our established signature database and a data similarity-driven strategy. From 13 training data sets on SLE gene-expression studies, we identified a SLE meta-signature (SLEmetaSig100) containing 100 concordant genes that are involved in DNA sensors and the IFN signaling pathway. We rigorously examined SLEmetaSig100 with both retrospective and prospective validation in two independent data sets. Using unsupervised clustering, we retrospectively elucidated that SLEmetaSig100 could classify clinical samples into two groups that correlated with SLE disease status and disease activities. More importantly, SLEmetaSig100 enabled personalized stratification demonstrating its ability to prospectively predict SLE disease at the individual patient level. To evaluate the performance of SLEmetaSig100 in predicting SLE, we predicted 1,171 testing samples to be either non-SLE or SLE with positive predictive value (97–99%), specificity (85%-84%), and sensitivity (60–84%). Our study suggests that SLEmetaSig100 has enhanced predictive value to facilitate current SLE clinical classification and provides personalized disease activity monitoring.
Collapse
Affiliation(s)
- Yan Ding
- Department of Dermatology, Hainan Provincial Dermatology Disease Hospital, Haikou, China
| | - Hongai Li
- Pediatrics, The Hainan Affiliated Hospital of University of South China, Haikou, China
| | - Xiaojie He
- Department of Nephropathy, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Zhuwen Yi
- Department of Nephropathy, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Yi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, NC, United States of America
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Daniel J. Moore
- Departments of Pediatrics and Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America
| | - Yajun Yi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail: (WX); (YY)
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou, China
- * E-mail: (WX); (YY)
| |
Collapse
|
19
|
Rizk MM, Elsayed ET, ElKeraie AF, Ramzy I. Association of Tumor Necrosis Factor Alpha-Induced Protein 3 Interacting Protein 1 (TNIP1) Gene Polymorphism (rs7708392) with Lupus Nephritis in Egyptian Patients. Biochem Genet 2018; 56:478-488. [DOI: 10.1007/s10528-018-9855-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
20
|
Korte EA, Caster DJ, Barati MT, Tan M, Zheng S, Berthier CC, Brosius FC, Vieyra MB, Sheehan RM, Kosiewicz M, Wysoczynski M, Gaffney PM, Salant DJ, McLeish KR, Powell DW. ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2799-2810. [PMID: 28935578 PMCID: PMC5718094 DOI: 10.1016/j.ajpath.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/15/2017] [Accepted: 08/17/2017] [Indexed: 10/24/2022]
Abstract
Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.
Collapse
Affiliation(s)
- Erik A Korte
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Department of Medicine University of Louisville, Louisville, Kentucky; Robley Rex VA Medical Center, Louisville, Kentucky
| | - Michelle T Barati
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Min Tan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Shirong Zheng
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Celine C Berthier
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Mark B Vieyra
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Ryan M Sheehan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Michele Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program and Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kenneth R McLeish
- Department of Medicine University of Louisville, Louisville, Kentucky; Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - David W Powell
- Department of Medicine University of Louisville, Louisville, Kentucky.
| |
Collapse
|
21
|
Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Niño MD, Ortiz A. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med 2017; 49:e352. [PMID: 28684863 PMCID: PMC5565957 DOI: 10.1038/emm.2017.89] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.
Collapse
Affiliation(s)
- Jonay Poveda
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
22
|
The NF-κB1 is a key regulator of acute but not chronic renal injury. Cell Death Dis 2017; 8:e2883. [PMID: 28617440 PMCID: PMC5584573 DOI: 10.1038/cddis.2017.233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
The NF-κB family of transcription factors is important for many cellular functions, in particular initiation and propagation of inflammatory and immune responses. However, recent data has suggested that different subunits of the NF-κB family can suppress the inflammatory response. NF-κB1, from the locus nfκb1, can inhibit transcription, acting as a brake to the recognised pro-inflammatory activity of other NF-κB subunits. We tested the function of NF-κB1 in an acute (nephrotoxic serum (NTS) nephritis) and a chronic (unilateral ureteric obstruction (UUO)) model of renal injury using NF-κB1 (nfκb1−/−) knockout mice. Deficiency in NF-κB1 increased the severity of glomerular injury in NTS-induced nephritis and was associated with greater proteinuria and persistent pro-inflammatory gene expression. Induction of disease in bone marrow chimeric mice demonstrated that the absence of NF-κB1 in either bone marrow or glomerular cells increased the severity of injury. Early after UUO (day 3) there was more severe histological injury in the nfκb1−/− mice but by day 10, disease severity was equivalent in wild type and nfκb1−/− mice. In conclusion, NF-κB1 modifies acute inflammatory renal injury but does not influence chronic fibrotic injury.
Collapse
|
23
|
Wang L, Gao Z, Wang L, Gao Y. Upregulation of nuclear factor-κB activity mediates CYP24 expression and reactive oxygen species production in indoxyl sulfate-induced chronic kidney disease. Nephrology (Carlton) 2017; 21:774-81. [PMID: 26567049 DOI: 10.1111/nep.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
AIM Chronic kidney disease (CKD) is associated with an inflammation-mediated process, and the vitamin D (3) catabolizing enzyme, CYP24, is frequently overexpressed in CKD, where it may play a crucial role in kidney disease. METHODS Herein, in this study, we investigated CYP24, reactive oxygen species (ROS), and inflammatory responses in an indoxyl sulfate (IS)-induced CKD model to elucidate the role of CYP24 in CKD. RESULTS Our results showed that IS upregulates proinflammatory cytokine, CYP24 and nuclear factor-κB (NF-κB) expression in human renal proximal tubule epithelial cells. In addition, IS treatment increased ROS production and simultaneously upregulated CYP24 expression and NF-κB translocation. Moreover, the IS-induced upregulation of CYP24 expression was alleviated by an inhibitor of NF-κB, as well as a siRNA specific to NF-κB p65. Furthermore, the renal cortex of DN (Dahl salt-resistant normotensive) + IS, DH (Dahl salt-sensitive hypertensive), and DH + IS rats showed increased expression of NF-κB p65, CYP24, 8-hydroxydeoxyguanosine (8-OHdG), a marker of ROS and macrophage infiltration compared with DN rats. CONCLUSIONS These results provide evidence that administration of IS in human renal tubular epithelial cells upregulates NF-κB, which leads to increase CYP24 expression and ROS production. They also suggest that suppressing NF-κB signalling is promising for the development into a strategy for CKD treatment.
Collapse
Affiliation(s)
- Lihua Wang
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Zhiying Gao
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Lili Wang
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Yongning Gao
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| |
Collapse
|
24
|
Cui JH, Xie X. UCH-L1 Expressed by Podocytes: a Potentially Therapeutic Target for Lupus Nephritis? Inflammation 2017; 40:657-665. [DOI: 10.1007/s10753-017-0512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Regulation of Nephrin Phosphorylation in Diabetes and Chronic Kidney Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639250 DOI: 10.1007/5584_2017_62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes is the leading cause of microalbuminuria and end-stage renal failure in industrial countries. Disruption of the filtration barrier, seen in almost all nephrotic diseases and diabetes, is the result of the loss or effacement of the podocyte foot process, notably damage of proteins within the slit diaphragm such as nephrin. For many years, nephrin has been viewed as a structural component of the slit diaphragm. It is now well recognized that nephrin contains several tyrosine residues in its cytoplasmic domain, which influences the development of glomerular injury. In this review, we propose an overview of nephrin signaling pathways in kidney injury.
Collapse
|
26
|
Podocyte-specific NF-κB inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol 2016; 21:16-26. [PMID: 27089875 DOI: 10.1007/s10157-016-1268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Podocytes play a central role in the formation of the glomerular filtration barrier in the kidney, and their dysfunction has been shown to result in proteinuria. In the present study, we sought to determine the cell-autonomous role of NF-κB, a proinflammatory signaling, within podocytes in proteinuric kidney disease. METHODS Podocyte-specific IκBΔN transgenic (Pod-IκBΔN) mice, in which NF-κB was inhibited specifically in podocytes, were generated by the Cre-loxP technology, and their phenotype was compared with control mice in adriamycin-induced nephropathy. RESULTS Pod-IκBΔN mice were phenotypically normal and did not exhibit proteinuria at the physiological condition. By the intravenous administration of adriamycin, overt proteinuria appeared in Pod-IκBΔN mice, as well as in control mice. However, of interest, the amount of proteinuria was significantly lower in adriamycin-injected Pod-IκBΔN mice (373 ± 122 mg albumin/g creatinine), compared with adriamycin-injected control mice (992 ± 395 mg albumin/g creatinine). Expression of podocyte-selective slit diaphragm-associated proteins, such as nephrin and synaptopodin, was markedly decreased by adriamycin injection in control mice, whereas the reduction was attenuated in Pod-IκBΔN mice. Adriamycin-induced reduction in synaptopodin expression was also seen in cultured podocytes derived from control mice, but not in those from Pod-IκBΔN mice. CONCLUSIONS Because nephrin and synaptopodin are essential for the maintenance of the slit diaphragm in podocytes, these results suggest that proteinuria in adriamycin-induced nephropathy is caused by the reduction in expression of these proteins. The results also suggest that the NF-κB signalling in podocytes cell-autonomously contributes to proteinuria through the regulation of these proteins.
Collapse
|
27
|
The Therapeutic Effects of the Chinese Herbal Medicine, Lang Chuang Fang Granule, on Lupus-Prone MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8562528. [PMID: 27034698 PMCID: PMC4789466 DOI: 10.1155/2016/8562528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to severe multiorgan damage. Lang Chuang Fang (LCF) is a Chinese herbal medicine that is clinically prescribed for treating SLE. In this study, we examined the therapeutic effects of LCF granule on lupus-prone MRL/lpr mice. Female mice were randomly separated into six groups, and LCF treatment groups received LCF granule at the dosage of 0.97 g/kg/d, 1.95 g/kg/d, and 3.90 g/kg/d, respectively. Here, we found that, compared to the MRL/lpr mice, both the spleen coefficient and thymus coefficient were reduced in the LCF granule-treated mice. There was a marked downregulation in CRP and anti-dsDNA autoantibody and an evident upregulation of CH50 in LCF granule-treated mice. LCF granule treatment also obviously reduced the proteinuria, BUN, and SCr levels in MRL/lpr mice at the dosage of 0.97 g/kg/d, 1.95 g/kg/d, and 3.90 g/kg/d, indicating that LCF granule alleviated the renal injury of MRL/lpr mice. Furthermore, LCF granule decreased p65 NF-κB levels and increased Sirt1 and Nrf2 levels in the kidney tissues of MRL/lpr mice, which might elucidate the beneficial effects of LCF on lupus nephritis. In conclusion, this study demonstrates that LCF granule has therapeutic effects on lupus-prone MRL/lpr mice.
Collapse
|
28
|
Seleznik G, Seeger H, Bauer J, Fu K, Czerkowicz J, Papandile A, Poreci U, Rabah D, Ranger A, Cohen CD, Lindenmeyer M, Chen J, Edenhofer I, Anders HJ, Lech M, Wüthrich RP, Ruddle NH, Moeller MJ, Kozakowski N, Regele H, Browning JL, Heikenwalder M, Segerer S. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation. Kidney Int 2016; 89:113-26. [PMID: 26398497 DOI: 10.1038/ki.2015.280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023]
Abstract
Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Gitta Seleznik
- Division of Visceral & Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, Zurich, Switzerland; Division of Nephrology, University Hospital, Zurich, Switzerland
| | - Harald Seeger
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Judith Bauer
- Institute of Virology, Technische Universität München, Helmholz Zentrum, Munich, Germany
| | - Kai Fu
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Julie Czerkowicz
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Adrian Papandile
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Uriana Poreci
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Dania Rabah
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Ann Ranger
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Clemens D Cohen
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Maja Lindenmeyer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jin Chen
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ilka Edenhofer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Hans J Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, University of Munich-LMU, Munich, Germany
| | - Maciej Lech
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, University of Munich-LMU, Munich, Germany
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nancy H Ruddle
- Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | | | - Heinz Regele
- Clinical Institute of Pathology, University of Vienna, Vienna, Austria
| | - Jeffrey L Browning
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA; Department of Microbiology and Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholz Zentrum, Munich, Germany; Institute of Surgical Pathology, University Hospital, Zurich, Switzerland
| | - Stephan Segerer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Abstract
Nuclear factor κB (NF-κB) is a family of inducible transcription factors that plays a vital role in different aspects of immune responses. NF-κB is normally sequestered in the cytoplasm as inactive complexes via physical association with inhibitory proteins termed IκBs. In response to immune and stress stimuli, NF-κB members become activated via two major signaling pathways, the canonical and noncanonical pathways, and move to the nucleus to exert transcriptional functions. NF-κB is vital for normal immune responses against infections, but deregulated NF-κB activation is a major cause of inflammatory diseases. Accumulated studies suggest the involvement of NF-κB in the pathogenesis of renal inflammation caused by infection, injury, or autoimmune factors. In this review, we discuss the current understanding regarding the activation and function of NF-κB in different types of kidney diseases.
Collapse
Affiliation(s)
- Haisong Zhang
- />Department of Nephrology, Affiliated Hospital of Hebei University, No. 213 Yuhuadonglu, Baoding, 071000 China
| | - Shao-Cong Sun
- />Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030 USA
- />The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 USA
| |
Collapse
|
30
|
Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) Treatment Ameliorates Mice Lupus Nephritis Accompanied by Inhibiting Activation of NF-κB Pathway. PLoS One 2015. [PMID: 26208003 PMCID: PMC4514757 DOI: 10.1371/journal.pone.0133724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation plays a vital role in the pathogenesis in lupus nephritis (LN), which is largely attributable to the activation of nuclear factor kappa B (NF-κB) signal pathway. NF-κB up-regulates pro-inflammatory mediators, such as TNF-α, cyclo-oxygenase-2 (COX-2) and ICAM-1, and promotes macrophage infiltration into renal tissue, further inducing the progression of LN. Over the past 30 years, research has demonstrated that Tripterygium wilfordii Hook F (TWHF) possesses potent anti-inflammatory and immunosuppressive activities, and that demethylzeylasteral (T-96), an extract of TWHF, may be one of the responsible compounds. Here, we investigate the pharmacodynamic role and therapeutic mechanism by which T-96 suppresses inflammation and reduces renal pathology in the lupus-prone MRL/lpr mice. Methods Forty-eight MRL/lpr mice were equally randomly divided into 6 groups (1.2, 0.6 or 0.3 mg/10g T-96, 0.022 pills/10g kang lang chuang san (one of Traditional Chinese herb as positive control), 0.125 mg/10g prednisone and 0.1 ml/10g normal saline as the LN disease control group). Also, eight WT C57BL/6 mice were used as normal control. After treatment by gavage with 0.10 ml/10g/day volumes for 8 weeks, all mice were sacrificed and renal tissues were collected. The amount of 24 h proteinuria and the levels of anti-dsDNA antibody in serum were assessed respectively at weeks 0, 4 and 8. Inflammation, cytokines and NF-κB levels were assessed by histological examinations, immunohistochemical analyses and Western blot analyses. Results In comparison with untreated MRL/lpr mice, mice treated with 1.2 and 0.6 mg/10g of T-96 showed a significant improvement in 24 h proteinuria and the levels of anti-dsDNA antibody in serum. In addition, T-96 reduced the secretion of pro-inflammatory mediators such as TNF-α, COX-2 and ICAM-1, and the infiltration of macrophages in renal tissue. Moreover, T-96 significantly suppressed phosphorylations of cytoplasmic IKK and nuclear p65. Conclusion This study suggests that T-96 exhibits reno-protective effects in LN accompanied by inhibiting the activation of NF-κB, reducing the downstream pro-inflammatory mediators and thus restricting macrophage infiltration. Because of these potent properties, T-96 should be considered as a promising therapeutic drug for LN.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chunxin Yang
- Department of Pharmaceutical Chemistry, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wanzhang Qin
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
31
|
Zhang H, Zhao C, Wang S, Huang Y, Wang H, Zhao J, Yang N. Anti-dsDNA antibodies induce inflammation via endoplasmic reticulum stress in human mesangial cells. J Transl Med 2015; 13:178. [PMID: 26040555 PMCID: PMC4467615 DOI: 10.1186/s12967-015-0536-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/14/2015] [Indexed: 11/25/2022] Open
Abstract
Background Anti-dsDNA antibodies play an important role in the pathogenesis of lupus nephritis (LN). Endoplasmic reticulum (ER) stress is a physical reaction under stressful condition and can cause inflammation when stimulation is sustained. This study investigated the roles of ER stress in anti-dsDNA antibody-induced inflammation response in human mesangial cells (HMCs). Method Anti-dsDNA antibodies isolated from LN patients were used to stimulate HMCs. The expression of GRP78, PERK, p-PERK, p-eIF2α, ATF4, p-IRE1α, ATF6 and CHOP in HMCs was measured by western blot. NF-κB activation was detected by examining nuclear translocation of NF-κB p65. The expression and production of IL-1β, TNF-α and MCP-1 were examined by qPCR and ELISA. Results Flow cytometry and cellular ELISA showed that anti-dsDNA antibodies can bind to HMCs. The binding was not inhibited by blockage of Fc receptor. Anti-dsDNA antibody stimulation significantly enhanced the expression of GRP78, p-PERK, p-eIF2α and ATF4 in HMCs. However, no significant increase in the expression of p-IRE1α and ATF6 was found. In addition, anti-dsDNA antibodies also significantly increased the activation of NF-κB and upregulated the expression of IL-1β, TNF-α and MCP-1, which were suppressed by pretreatment of HMCs with chemical ER stress inhibitor 4-PBA. Transfection of specific ATF4 siRNA also significantly reduced the activation of NF-κB and expression of proinflammatory cytokines. Conclusion Anti-dsDNA antibodies induce NF-κB activation and inflammation in HMCs via PERK-eIF2α-ATF4 ER stress pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Chunmei Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China. .,Department of Rheumatology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
| | - Shuang Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Yuefang Huang
- Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Hongyue Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Jijun Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Niansheng Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Abkhezr M, Kim EY, Roshanravan H, Nikolos F, Thomas C, Hagmann H, Benzing T, Dryer SE. Pleiotropic signaling evoked by tumor necrosis factor in podocytes. Am J Physiol Renal Physiol 2015; 309:F98-108. [PMID: 26017975 DOI: 10.1152/ajprenal.00146.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
TNF has been implicated in glomerular diseases, but its actions on podocytes are not well understood. Endogenous TNF expression is markedly increased in mouse podocytes exposed to sera from patients with recurrent focal segmental glomerulosclerosis, and TNF is able to increase its own expression in these cells. Exposure of podocytes to TNF increased phosphorylation of NF-κB p65-RelA followed by increased tyrosine phosphorylation of STAT3. STAT3 activation was blocked by the NF-κB inhibitor JSH-23 and by the STAT3 inhibitor stattic, whereas TNF-evoked NF-κB activation was not affected by stattic. TNF treatment increased nuclear accumulation of nuclear factor of activated T cells (NFAT)c1 in podocytes, a process that occurred downstream of STAT3 activation. TNF also increased expression of cyclin D1 but had no effect on cyclin-dependent kinase 4, p27(kip), or podocin. Despite its effects on cyclin D1, TNF treatment for up to 72 h did not cause podocytes to reenter the cell cycle. TNF increased total expression of transient receptor potential (TRP)C6 channels through a pathway dependent on NFATc1 and increased the steady-state expression of TRPC6 subunits on the podocyte cell surface. TNF effects on TRPC6 trafficking required ROS. Consistent with this, La(3+)-sensitive cationic currents activated by a diacylglycerol analog were increased in TNF-treated cells. The effects of TNF on NFATc1 and TRPC6 expression were blocked by cyclosporine A but were not blocked by the pan-TRP inhibitor SKF-96365. TNF therefore influences multiple pathways previously implicated in podocyte pathophysiology and is likely to sensitize these cells to other insults.
Collapse
Affiliation(s)
- Mousa Abkhezr
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Fotis Nikolos
- Department of Biology and Biochemistry, University of Houston, Houston, Texas; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas; and
| | - Christoforos Thomas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas; and
| | - Henning Hagmann
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas; Division of Nephrology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
ZHANG HONGXIA, MAO XING, SUN YU, HU RUIMIN, LUO WEILI, ZHAO ZHONGHUA, CHEN QI, ZHANG ZHIGANG. NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Mol Med Rep 2015; 12:2893-901. [DOI: 10.3892/mmr.2015.3780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
34
|
Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease. J Immunol Res 2015; 2015:428508. [PMID: 25977931 PMCID: PMC4419235 DOI: 10.1155/2015/428508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
The chronic inflammatory response is emerging as an important therapeutic target in progressive chronic kidney disease. A key transcription factor in the induction of chronic inflammation is NF-κB. Recent studies have demonstrated that sustained activation of the unfolded protein response (UPR) can initiate this NF-κB signaling phenomenon and thereby induce chronic kidney disease progression. A key factor influencing chronic kidney disease progression is proteinuria and this condition has now been demonstrated to induce sustained UPR activation. This review details the crosstalk between the UPR and NF-κB pathways as pertinent to chronic kidney disease. We present potential tools to study this phenomenon as well as potential therapeutics that are emerging to regulate the UPR. These therapeutics may prevent inflammation specifically induced in the kidney due to proteinuria-induced sustained UPR activation.
Collapse
|
35
|
Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin Pharmacol Toxicol 2015; 117:164-72. [PMID: 25625183 DOI: 10.1111/bcpt.12383] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/09/2015] [Indexed: 01/22/2023]
Abstract
Oxidative stress and inflammation contribute importantly to the pathogenesis of chronic kidney disease (CKD). Epigallocatechin-3-gallate (EGCG), which is the most abundant and most active catechin polyphenol extracted from green tea, has been proved to have many bioactivities. In this study, the renoprotective effect of EGCG was evaluated in a widely used kidney disease model, the unilateral ureteral obstruction (UUO) mice model. After 14 days of EGCG administration, mean arterial blood pressure, body-weight and obstructed kidney weight were measured. Levels of blood urea nitrogen (BUN) and creatinine (CR) and activities of glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in serum were estimated as indicators of renal function. Periodic acid-Schiff (PAS) staining was performed to observe the pathological changes of the obstructed kidney. Antioxidant enzymes and pro-inflammatory cytokine production were estimated to reflect the oxidative stress and inflammatory state in the obstructed kidney. Finally, the main proteins in the NF-κB and Nrf2 signalling pathway and DNA binding activity of NF-κB and Nrf2 were measured to investigate the effect of EGCG on these two pathways. The results demonstrated that EGCG could restore UUO-induced kidney weight loss and renal dysfunction. In addition, UUO-induced oxidative stress and inflammatory responses in the obstructed kidney were also prevented by EGCG. Furthermore, EGCG could induce both NF-κB and Nrf2 nuclear translocation in the UUO kidney and promote heme oxygenase-1 (HO-1) production. These results indicated that the renoprotective effect of EGCG might be through its NF-κB and Nrf2 signalling pathway regulations.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Du
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, Ordos, Inner Mongolia, China
| |
Collapse
|
36
|
Nakatani K, Yoshimoto S, Asai O, Sakan H, Terada M, Saito Y, Nose M, Iwano M, Konishi N. Enhanced expression of the soluble form of E-selectin attenuates progression of lupus nephritis and vasculitis in MRL/lpr mice. IMMUNITY INFLAMMATION AND DISEASE 2013; 1:37-46. [PMID: 25400916 PMCID: PMC4217541 DOI: 10.1002/iid3.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that causes inflammatory tissue damage, including lupus nephritis and vasculitis. Local generation of adhesion molecules and expression of their ligands on inflammatory cells appears to contribute to the progression of SLE. We found significantly increased E-selectin expression in the glomeruli and renal interstitial microvasculature of MRL/MpJ-lpr/lpr (MRL/lpr) lupus model mice. This was accompanied with infiltration of inflammatory cells, especially macrophages and CD8(+) T cells. Similarly, in 21 patients with proliferative lupus nephritis, there was a significant correlation between renal E-selectin levels and macrophage and CD8(+) T cell infiltration in the affected kidneys. By contrast, in transgenic MRL/lpr mice exhibiting elevated levels of circulating soluble E-selectin (sE-selectin) protein, which competitively inhibits E- and P-selectin-mediated extravasation of inflammatory cells, the progression of lupus nephritis and vasculitis was significantly suppressed and survival was significantly prolonged. This improvement was accompanied by significant reductions in renal infiltration by macrophages and CD8(+) T cells. These results suggest that E-selectin plays a crucial role in lupus nephritis and vasculitis by mediating renal infiltration of inflammatory cells, and that because it inhibits this process, sE-selectin could potentially serve as an effective treatment for lupus nephritis and vasculitis.
Collapse
Affiliation(s)
- Kimihiko Nakatani
- Department of Pathology, Nara Medical University Kashihara, Nara, Japan ; First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan
| | - Shuhei Yoshimoto
- First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan
| | - Osamu Asai
- First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan
| | - Hirokazu Sakan
- First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan
| | - Miho Terada
- Division of Pathogenomics, Department of Pathology, Ehime University Graduate School of Medicine To-on, Ehime, Japan
| | - Yoshihiko Saito
- First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan
| | - Masato Nose
- Division of Pathogenomics, Department of Pathology, Ehime University Graduate School of Medicine To-on, Ehime, Japan
| | - Masayuki Iwano
- First Department of Internal Medicine, Nara Medical University Kashihara, Nara, Japan ; Division of Nephrology, Department of General Medicine, Faculty of Medical Sciences, University of Fukui Yoshida-gun, Fukui, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University Kashihara, Nara, Japan
| |
Collapse
|
37
|
Caster DJ, Korte EA, Nanda SK, McLeish KR, Oliver RK, G'sell RT, Sheehan RM, Freeman DW, Coventry SC, Kelly JA, Guthridge JM, James JA, Sivils KL, Alarcon-Riquelme ME, Scofield RH, Adrianto I, Gaffney PM, Stevens AM, Freedman BI, Langefeld CD, Tsao BP, Pons-Estel BA, Jacob CO, Kamen DL, Gilkeson GS, Brown EE, Alarcon GS, Edberg JC, Kimberly RP, Martin J, Merrill JT, Harley JB, Kaufman KM, Reveille JD, Anaya JM, Criswell LA, Vila LM, Petri M, Ramsey-Goldman R, Bae SC, Boackle SA, Vyse TJ, Niewold TB, Cohen P, Powell DW. ABIN1 dysfunction as a genetic basis for lupus nephritis. J Am Soc Nephrol 2013; 24:1743-54. [PMID: 23970121 DOI: 10.1681/asn.2013020148] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genetic factors underlying the pathogenesis of lupus nephritis associated with systemic lupus erythematosus are largely unknown, although animal studies indicate that nuclear factor (NF)-κB is involved. We reported previously that a knockin mouse expressing an inactive form of ABIN1 (ABIN1[D485N]) develops lupus-like autoimmune disease and demonstrates enhanced activation of NF-κB and mitogen-activated protein kinases in immune cells after toll-like receptor stimulation. In the current study, we show that ABIN1[D485N] mice develop progressive GN similar to class III and IV lupus nephritis in humans. To investigate the clinical relevance of ABIN1 dysfunction, we genotyped five single-nucleotide polymorphisms in the gene encoding ABIN1, TNIP1, in samples from European-American, African American, Asian, Gullah, and Hispanic participants in the Large Lupus Association Study 2. Comparing cases of systemic lupus erythematosus with nephritis and cases of systemic lupus erythematosus without nephritis revealed strong associations with lupus nephritis at rs7708392 in European Americans and rs4958881 in African Americans. Comparing cases of systemic lupus erythematosus with nephritis and healthy controls revealed a stronger association at rs7708392 in European Americans but not at rs4958881 in African Americans. Our data suggest that variants in the TNIP1 gene are associated with the risk for lupus nephritis and could be mechanistically involved in disease development via aberrant regulation of NF-κB and mitogen-activated protein kinase activity.
Collapse
|
38
|
Lee SW, Park KH, Park S, Kim JH, Hong SY, Lee SK, Choi D, Park YB. Soluble Receptor for Advanced Glycation End Products Alleviates Nephritis in (NZB/NZW)F1 Mice. ACTA ACUST UNITED AC 2013; 65:1902-12. [DOI: 10.1002/art.37955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 03/21/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Sang-Won Lee
- Yonsei University College of Medicine; Seoul; Republic of Korea
| | - Kyu-Hyung Park
- Yonsei University College of Medicine; Seoul; Republic of Korea
| | - Sungha Park
- Yonsei University College of Medicine and Severance Cardiovascular Hospital; Seoul; Republic of Korea
| | - Ji-Hye Kim
- Yonsei University College of Medicine; Seoul; Republic of Korea
| | - Sung-Yu Hong
- Yonsei University College of Medicine and Severance Cardiovascular Hospital; Seoul; Republic of Korea
| | - Soo-Kon Lee
- Yonsei University College of Medicine; Seoul; Republic of Korea
| | - Donghoon Choi
- Yonsei University College of Medicine and Severance Cardiovascular Hospital; Seoul; Republic of Korea
| | - Yong-Beom Park
- Yonsei University College of Medicine; Seoul; Republic of Korea
| |
Collapse
|
39
|
Zhang H, Sun Y, Hu R, Luo W, Mao X, Zhao Z, Chen Q, Zhang Z. The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal 2013; 25:1574-85. [PMID: 23567262 DOI: 10.1016/j.cellsig.2013.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
Abstract
In kidney, the ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is involved in podocyte injury and proteinuria but details of the mechanism underlying its regulation are not known. Activation of NF-κB is thought to be the predominant risk factor for kidney disease; therefore, it is postulated that UCH-L1 may be one of the NF-κB target genes. In this study, we investigated the involvement of NF-κB activation in the regulation of UCH-L1 expression and the function of murine podocytes. Stimulation of podocytes with the cytokines TNF-α and IL-1β up-regulated UCH-L1 expression rapidly at the mRNA and protein levels and the NF-κB-specific inhibitor pyrrolidine dithiocarbamate resulted in down-regulation. NF-κB up-regulates UCH-L1 via binding the --300 bp and --109 bp sites of its promoter, which was confirmed by the electrophoretic mobility shift assay of DNA-nuclear protein binding. In the renal biopsy from lupus nephritis patients, the expressions of NF-κB and UCH-L1 increased in immunohistochestry staining and were positively correlated. Activation of NF-κB up-regulates UCH-L1 expression following changing of other podocytes molecules, such as nephrin and snail. These results suggest that activation of the NF-κB signaling pathway could be the major pathogenesis to up-regulate UCH-L1 in podocyte injury, followed by the turnover of other molecules, which might result in morphological changes and dysfunction of podocytes. This work help us to understand the effect of NF-κB on specific target molecules of podocytes, and suggest that targeting the NF-κB-UCH-L1 interaction could be a novel therapeutic strategy for the treatment of podocyte lesions and proteinuria.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pathology and Key Laboratory of Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have anti-inflammatory or immunosuppressive effects in the treatment of renal disease.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
41
|
Lee SW, Park YB, Yang J, Park KH, Lee SK, Choi KH, Kim BS. Attenuation of nephritis in lupus-prone mice by thalidomide. Rheumatology (Oxford) 2012; 51:2131-40. [DOI: 10.1093/rheumatology/kes227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Liu ZC, Zhou QL. Tumor necrosis factor-like weak inducer of apoptosis and its potential roles in lupus nephritis. Inflamm Res 2012; 61:277-84. [PMID: 22297307 DOI: 10.1007/s00011-011-0420-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/26/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a recently identified proinflammatory cytokine of the TNF superfamily that functions through binding to Fn14 receptor in target cells. TWEAK has multiple biological activities. Studies show that TWEAK plays an important role in immune inflammatory diseases. Recent work has revealed that TWEAK may play an important role in the pathogenesis of kidney damage, including in systemic lupus erythematosus (SLE), where its concentration in urine was correlated with the level of activity of lupus nephritis (LN). OBJECTIVE The major focus of this review is to discuss the recent studies on TWEAK and its possible role in the pathogenesis of LN, and the therapeutic potential of modulating this pathway in LN. RESULTS AND CONCLUSION TWEAK plays a key role in the pathogenesis of LN through activation of multiple down-signaling pathway, inducing proinflammatory cytokines and chemokines, affecting cell proliferation/apoptosis and inducing renal IgG deposition. TWEAK blockade may be a novel therapeutic approach to reducing renal damage in SLE.
Collapse
Affiliation(s)
- Zhi-Chun Liu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, People’s Republic of China
| | | |
Collapse
|
43
|
Autoantigen TRIM21/Ro52 as a Possible Target for Treatment of Systemic Lupus Erythematosus. Int J Rheumatol 2012; 2012:718237. [PMID: 22701487 PMCID: PMC3373075 DOI: 10.1155/2012/718237] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic, and autoimmune disease, whose etiology is still unknown. Although there has been progress in the treatment of SLE through the use of glucocorticoid and immunosuppressive drugs, these drugs have limited efficacy and pose significant risks of toxicity. Moreover, prognosis of patients with SLE has remained difficult to assess. TRIM21/Ro52/SS-A1, a 52-kDa protein, is an autoantigen recognized by antibodies in sera of patients with SLE and Sjögren's syndrome (SS), another systemic autoimmune disease, and anti-TRIM21 antibodies have been used as a diagnostic marker for decades. TRIM21 belongs to the tripartite motif-containing (TRIM) super family, which has been found to play important roles in innate and acquired immunity. Recently, TRIM21 has been shown to be involved in both physiological immune responses and pathological autoimmune processes. For example, TRIM21 ubiquitylates proteins of the interferon-regulatory factor (IRF) family and regulates type I interferon and proinflammatory cytokines. In this paper, we summarize molecular features of TRIM21 revealed so far and discuss its potential as an attractive therapeutic target for SLE.
Collapse
|
44
|
Watson L, Tullus K, Marks SD, Holt RCL, Pilkington C, Beresford MW. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. J Clin Immunol 2012; 32:1019-25. [PMID: 22648459 DOI: 10.1007/s10875-012-9710-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Sphingosine-1-phosphate (S1P) is an active sphingolipid with chemotactic abilities and has been linked to inflammatory mediators and autoimmune disease. The aim of this study was to assess whether children with juvenile-onset systemic lupus erythematosus (JSLE) express increased systemic and/or urinary concentrations of S1P. METHODS A subgroup of patients participating in the UK JSLE Cohort Study, were invited to participate. Cross sectional serum and urine samples were prospectively collected along with demographic and standard clinical data. Results were compared to a cohort of disease controls (Henoch Schonlein Purpura; HSP) and healthy controls (HC). RESULTS The median age of JSLE patients (n = 15) was 13.6 years (7.2-16.9 years). The serum concentrations of S1P in JSLE patients (7.4 uM, IQR 6.3-12.3 uM) were statistically significantly increased when compared to patients with HSP (n = 10; 5.2 uM, IQR 4.0-7.9 uM; p = 0.016) and HCs (n = 10; 3.8 uM, IQR 2.1-5.8 uM; p = 0.003). There was a trend towards increased serum S1P concentrations between patients with active lupus nephritis (n = 8; 8.7 uM, IQR 6.2-15.3 uM) compared to lupus non-nephritis (n = 7; 6.6 uM, IQR 6.3-10.6 uM; p = 0.355). No relationship was found between disease activity markers and S1P. Urine S1P concentrations were no different between JSLE patients (56.0 nM, IQR 40.3-96.6 nM) and HCs (58.7 nM, IQR 0-241.9 nM; p = 0.889). CONCLUSIONS We have demonstrated, for the first time, an increased serum concentration of S1P in a cohort of JSLE patients. These findings highlight a role of S1P in the pathophysiology of JSLE that warrants further investigation.
Collapse
Affiliation(s)
- L Watson
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool, L12 2AP, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Ory V, Fan Q, Hamdaoui N, Zhang SY, Desvaux D, Audard V, Candelier M, Noel LH, Lang P, Guellaën G, Pawlak A, Sahali D. c-mip down-regulates NF-κB activity and promotes apoptosis in podocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2284-92. [PMID: 22507836 DOI: 10.1016/j.ajpath.2012.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 01/28/2012] [Accepted: 02/07/2012] [Indexed: 11/26/2022]
Abstract
The mechanisms of podocyte disorders in cases of idiopathic nephrotic syndrome (INS) are complex and remain incompletely elucidated. The abnormal regulation of NF-κB may play a key role in the pathophysiology of these podocyte diseases, but at present, NF-κB has not been thoroughly investigated. In this study, we report that induction of c-mip in podocytes of patients with INS is associated with a down-regulation of RelA, a potent antiapoptotic factor that belongs to the NF-κB family. Overexpression of c-mip in differentiated podocytes promotes apoptosis by inducing caspase-3 activity and up-regulating the proapoptotic protein Bax, whereas the overall levels of the antiapoptotic protein Bcl-2 was concomitantly decreased. The associated overexpression of RelA prevented the proapoptotic effects of c-mip. In addition, the targeted induction of c-mip in podocytes in vivo inhibited the expression of the RelA protein and increased the Bax/Bcl-2 ratio. The expression of both c-mip and active caspase-3 increased in focal and segmental glomerulosclerosis biopsies, and both proteins displayed a close spatial relationship. These results suggest that alterations in NF-κB activity might result from the up-regulation of c-mip and are likely to contribute to podocyte disorders in cases of INS.
Collapse
|
46
|
Korrapati MC, Shaner BE, Schnellmann RG. Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther 2012; 341:126-36. [PMID: 22228809 PMCID: PMC3310704 DOI: 10.1124/jpet.111.190249] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/06/2012] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a common and potentially life-threatening complication after ischemia/reperfusion and exposure to nephrotoxic agents. In this study, we examined the efficacy and mechanism(s) of suramin in promoting recovery from glycerol-induced AKI, a model of rhabdomyolysis-induced AKI. After intramuscular glycerol injection (10 ml of 50% glycerol per kilogram) into male Sprague-Dawley rats, serum creatinine maximally increased at 24 to 72 h and then decreased at 120 h. Creatinine clearance (CrCl) decreased 75% at 24 to 72 h and increased at 120 h. Suramin (1 mg/kg i.v.) administered 24 h after glycerol accelerated recovery of renal function as demonstrated by increased CrCl, decreased renal kidney injury molecule-1, and improved histopathology 72 h after glycerol injection. Suramin treatment decreased interleukin-1β (IL-1β) mRNA, transforming growth factor-β(1) (TGF-β(1)), phospho-p65 of nuclear factor-κB (NF-κB), and cleaved caspase-3 at 48 h compared with glycerol alone. Suramin treatment also decreased glycerol-induced activation of intracellular adhesion molecule-1 (ICAM-1) and leukocyte infiltration at 72 h. Urinary/renal neutrophil gelatinase-associated lipocalin 2 (NGAL) levels, hemeoxygenase-1 expression, and renal cell proliferation were increased by suramin compared with glycerol alone at 72 h. Mechanistically, suramin decreases early glycerol-induced proinflammatory (IL-1β and NF-κB) and growth inhibitory (TGF-β(1)) mediators, resulting in the prevention of late downstream inflammatory effects (ICAM-1 and leukocyte infiltration) and increasing compensatory nephrogenic repair. These results support the hypothesis that delayed administration of suramin is effective in abrogating apoptosis, attenuating inflammation, and enhancing nephrogenic repair after glycerol-induced AKI.
Collapse
Affiliation(s)
- Midhun C Korrapati
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St., Charleston, SC 29425, USA
| | | | | |
Collapse
|
47
|
Ma FY, Ikezumi Y, Nikolic-Paterson DJ. Macrophage signaling pathways: a novel target in renal disease. Semin Nephrol 2010; 30:334-44. [PMID: 20620676 DOI: 10.1016/j.semnephrol.2010.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monocytes/macrophages are a heterogeneous cell population that play a critical role in host defense and tissue homeostasis. However, macrophage activation during acute and chronic inflammation can result in macrophage-mediated renal injury in a variety of settings, including proliferative glomerulonephritis. Macrophages can be activated via a number of intracellular signaling pathways (eg, c-Jun amino terminal kinase, p38 mitogen-activated protein kinase, FcR/Syk, Janus kinase/signal transducer and activator of transcription) that induce production of mediators of renal injury. Thus, targeting selected macrophage signaling pathways is a potential therapeutic strategy to suppress macrophage-mediated renal injury while leaving intact the desirable macrophage functions of host defense and tissue repair.
Collapse
Affiliation(s)
- Frank Y Ma
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | |
Collapse
|
48
|
Wu X, Zhang W, Shi X, An P, Sun W, Wang Z. Therapeutic effect of artemisinin on lupus nephritis mice and its mechanisms. Acta Biochim Biophys Sin (Shanghai) 2010; 42:916-23. [PMID: 21106771 DOI: 10.1093/abbs/gmq101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the therapeutic effect of artemisinin (Art) on lupus nephritis mice and its mechanisms by comparing the differences between lupus nephritis (LN) mice given Art and control mice in molecular biology, immunohistochemistry, and histopathology. The results showed that Art could remarkably relieve the symptoms, decrease the level of urine protein/24 h, and alleviate pathological renal lesions. The differences among the four groups in the expression of the NF-κBp65 protein, nuclear factor-κB (NF-κB) activity, and the expression of transforming growth factor-β1 (TGF-β1) mRNA in renal tissue suggested that Art can lower the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and inhibit the expression of the NF-κBp65 protein and NF-κB and TGF-β1 mRNA in the renal tissues of LN mice. These results proved that it is reliable and effective to use Art to treat LN mice, and its therapeutic mechanisms should closely be related to the fact that Art can obviously decrease the serum levels of TNF-α and IL-6 and down-regulate the expression of the NF-κBp65 protein and NF-κB and TGF-β1 mRNA in renal tissues.
Collapse
Affiliation(s)
- Xili Wu
- Department of Integrated Chinese Traditional and Western Medicine, Shaanxi Province Key TCM Department of Nephrology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, China.
| | | | | | | | | | | |
Collapse
|
49
|
Abd-Elkareem MI, Al Tamimy HM, Khamis OA, Abdellatif SS, Hussein MRA. Increased urinary levels of the leukocyte adhesion molecules ICAM-1 and VCAM-1 in human lupus nephritis with advanced renal histological changes: preliminary findings. Clin Exp Nephrol 2010; 14:548-57. [DOI: 10.1007/s10157-010-0322-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
50
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010; 21:1254-62. [PMID: 20651166 DOI: 10.1681/asn.2010020218] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NF-kappaB family of transcription factors regulates the induction and resolution of inflammation. Two main pathways, classical and alternative, control the nuclear translocation of NF-kappaB. Classical NF-kappaB activation is usually a rapid and transient response to a wide range of stimuli whose main effector is RelA/p50. The alternative NF-kappaB pathway is a more delayed response to a smaller range of stimuli resulting in DNA binding of RelB/p52 complexes. Additional complexity in this system involves the posttranslational modification of NF-kappaB proteins and an ever-increasing range of co-activators, co-repressors, and NF-kappaB complex proteins. Collectively, NF-kappaB regulates the expression of numerous genes that play a key role in the inflammatory response during human and experimental kidney injury. Multiple stimuli activate NF-kappaB through the classical pathway in somatic renal cells, and noncanonical pathway activation by TWEAK occurs in acute kidney injury. Under most test conditions, specific NF-kappaB inhibitors tend to reduce inflammation in experimental kidney injury but not always. Although many drugs in current use clinically influence NF-kappaB activation, there are no data regarding specific NF-kappaB inhibition in human kidney disease.
Collapse
Affiliation(s)
- Ana Belen Sanz
- Servicio de Nefrologia, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|