1
|
Terrey M, Krivoshein G, Adamson SI, Arystarkhova E, Anderson L, Szwec J, McKee S, Jones H, Perkins S, Selvam V, Piec PA, Chhaya D, Dehn A, Zuberi A, Murray SA, Morsci NS, Sweadner KJ, Knowles DA, Tolner EA, van den Maagdenberg AMJM, Lutz CM. Alternating hemiplegia of childhood associated mutations in Atp1a3 reveal diverse neurological alterations in mice. Neurobiol Dis 2025:106954. [PMID: 40381892 DOI: 10.1016/j.nbd.2025.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Pathogenic variants in the neuronal Na+/K+ ATPase transmembrane ion transporter (ATP1A3) cause a spectrum of neurological disorders including alternating hemiplegia of childhood (AHC). The most common de novo pathogenic variants in AHC are p.D801N (~40 % of patients) and p.E815K (~25 % of patients), which lead to early mortality by spontaneous death in mice. Nevertheless, knowledge of the development of clinically relevant neurological phenotypes without the obstacle of premature death, is critical for the identification of pathophysiological mechanisms and ultimately, for the testing of therapeutic strategies in disease models. Here, we used hybrid vigor attempting to mitigate the fragility of AHC mice and then performed behavioral, electrophysiological, biochemical, and molecular testing to comparatively analyze mice that carry either of the two most common AHC patient observed variants in the Atp1a3 gene. Collectively, our data reveal the presence but also the differential impact of the p.D801N and p.E815K variants on disease relevant alterations such as spontaneous and stress-induced paroxysmal episodes, motor function, behavioral and neurophysiological activity, and neuroinflammation. Our alternate AHC mouse models with their phenotypic deficits open novel avenues for the investigation of disease biology and therapeutic testing for ATP1A3 research.
Collapse
Affiliation(s)
- Markus Terrey
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Georgii Krivoshein
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Laura Anderson
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - John Szwec
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shelby McKee
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Holly Jones
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Sara Perkins
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vijay Selvam
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Dweet Chhaya
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Ari Dehn
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Aamir Zuberi
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Stephen A Murray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA; Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA; JAX Center for Precision Genetics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Natalia S Morsci
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - David A Knowles
- New York Genome Center, New York, NY, USA; Department of Computer Science and Department of Systems Biology, Columbia, New York, NY, USA
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Cathleen M Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA; JAX Center for Precision Genetics, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
2
|
Lyu Y, Zhang Y. Ginkgo biloba Extract Improves Dendritic Spine Injury in Cerebellar Purkinje Cells Induced by MPTP in Mice by Regulating the PLK2-SPAR Pathway. Synapse 2025; 79:e70013. [PMID: 40066946 DOI: 10.1002/syn.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and, currently, there is no cure for patients with PD. Studies have shown that Ginkgo biloba extract (EGb) has good neuroprotective effects against PD. The cerebellum is widely involved in cognitive function and may be related to the regulation of static tremors in PD. However, research on the corresponding microstructures is limited. Purkinje cells (PCs) are the only efferent neurons present in the cerebellum, and dendritic spines in PCs are considered the key structures for transmitting neuronal excitatory signals. When neurons are activated, polo-like kinase 2 (PLK2) is expressed, leading to the degradation of spine-associated Rap guanosine triphosphatase activating protein (SPAR) and, ultimately, the loss of postsynaptic density protein 95 (PSD-95), causing changes in the morphology or quantity of dendritic spines. This raises the question of whether the neuroprotective effect of EGb involves the PLK2-SPAR pathway. In this study, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish a mouse model of dopamine neuronal injury. Golgi staining was performed to observe the dendritic spine changes. Immunohistochemistry was used to detect the expression of PLK2, SPAR, and PSD-95. The results showed that EGb improves MPTP-induced behavioral changes, dopamine neuronal injury, and dendritic spine damage in mice. In addition, EGb reversed the changes in PLK2, SPAR, and PSD-95 expressions caused by MPTP, revealing the potential mechanism by which EGb improves the condition of patients with PD.
Collapse
Affiliation(s)
- Yilin Lyu
- College of Basic Medical Science, Shenyang Medical College, Shenyang, Liaoning, China
- Faku County Central Hospital, Shenyang, Liaoning, China
| | - Yumei Zhang
- College of Basic Medical Science, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Ishihara A. Hydroxylated polychlorinated biphenyls may affect the thyroid hormone-induced brain development during metamorphosis of Xenopus laevis by disturbing the expression of matrix metalloproteinases. Mol Biol Rep 2024; 51:624. [PMID: 38710963 DOI: 10.1007/s11033-024-09555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
4
|
Fidler Y, Gomes JR. Effects of a Single Dose of X-Ray Irradiation on MMP-9 Expression and Morphology of the Cerebellum Cortex of Adult Rats. CEREBELLUM (LONDON, ENGLAND) 2023; 22:240-248. [PMID: 35262839 DOI: 10.1007/s12311-022-01386-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Although radiation is a strategy widely used to inhibit cancer progression, which includes those of the neck and head, there are still few experimental reports on radiation effects in the cerebellum, particularly on the morphology of its cortex layers and on the Matrix metalloproteinases' (MMPs') expression, which, recently, seems to be involved in the progression of some mental disorders. Therefore, in the present study, we evaluated the morphology of the cerebellum close to the expression of MMP-9 from 4 up to 60 days after a 15-Gy X-ray single dose of X-ray irradiation had been applied to the heads of healthy adult male rats. The cerebellum of the control and irradiated groups was submitted for an analysis of cell Purkinje count, nuclear perimeter, and chromatin density using morphometric estimatives obtained from the Feulgen histochemistry reaction. In addition, immunolocalization and estimative for MMP-9 expression were determined in the cerebellar cortex on days 4, 9, 14, 25, and 60 after the irradiation procedure. Results demonstrated that irradiation produced a significant reduction in the total number of Purkinje cells and a reduction in their nuclear perimeter, along with an increase in chromatin condensation and visible nuclear fragmentation, which was also detected in the granular layer. MMP-9 expression was significantly increased on 4, 9, and 14 days, being detected around the Purkinje cells and in parallel fibres at the molecular layer. We conclude that the effects of a single dose of 15-Gy X-ray irradiation in the cerebellum were an increase in MMP-9 expression in the first 2 weeks after irradiation, especially surrounding the Purkinje cells and in the molecular layers, with morphological changes in the Purkinje cell and granular cell layers, suggesting a continuous cell loss throughout the days evaluated after irradiation.
Collapse
Affiliation(s)
- Yasmin Fidler
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil
| | - Jose Rosa Gomes
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil.
| |
Collapse
|
5
|
Zhu JW, Jia WQ, Zhou H, Li YF, Zou MM, Wang ZT, Wu BS, Xu RX. Deficiency of TRIM32 Impairs Motor Function and Purkinje Cells in Mid-Aged Mice. Front Aging Neurosci 2021; 13:697494. [PMID: 34421574 PMCID: PMC8377415 DOI: 10.3389/fnagi.2021.697494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Proper functioning of the cerebellum is crucial to motor balance and coordination in adult mammals. Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, play essential roles in cerebellar motor function. Tripartite motif-containing protein 32 (TRIM32) is an E3 ubiquitin ligase that is involved in balance activities of neurogenesis in the subventricular zone of the mammalian brain and in the development of many nervous system diseases, such as Alzheimer's disease, autism spectrum disorder, attention deficit hyperactivity disorder. However, the role of TRIM32 in cerebellar motor function has never been examined. In this study we found that motor balance and coordination of mid-aged TRIM32 deficient mice were poorer than those of wild-type littermates. Immunohistochemical staining was performed to assess cerebella morphology and TRIM32 expression in PCs. Golgi staining showed that the extent of dendritic arborization and dendritic spine density of PCs were decreased in the absence of TRIM32. The loss of TRIM32 was also associated with a decrease in the number of synapses between parallel fibers and PCs, and in synapses between climbing fibers and PCs. In addition, deficiency of TRIM32 decreased Type I inositol 1,4,5-trisphosphate 5-phosphatase (INPP5A) levels in cerebellum. Overall, this study is the first to elucidate a role of TRIM32 in cerebellar motor function and a possible mechanism, thereby highlighting the importance of TRIM32 in the cerebellum.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhou
- Department of Pediatrics, Chengdu Children Special Hospital, Chengdu, China
| | - Yi-Fei Li
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Ming Zou
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Tao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Shan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Gileadi TE, Swamy AK, Hore Z, Horswell S, Ellegood J, Mohan C, Mizuno K, Lundebye AK, Giese KP, Stockinger B, Hogstrand C, Lerch JP, Fernandes C, Basson MA. Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57002. [PMID: 33956508 PMCID: PMC8101924 DOI: 10.1289/ehp7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.
Collapse
Affiliation(s)
- Talia E. Gileadi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Abhyuday K. Swamy
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Zoe Hore
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | | | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
7
|
Xu W, Sun D, Wang Y, Zheng X, Li Y, Xia Y, Teng Y. Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway. Bosn J Basic Med Sci 2020; 20:347-356. [PMID: 31621555 PMCID: PMC7416174 DOI: 10.17305/bjbms.2019.4216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality around the world. This malignancy has a 5-year survival rate of 21%, because most of the patients are diagnosed in the middle or late stage of the disease when local metastasis and tumor invasion have already progressed. Therefore, the investigation of the pathogenesis of lung cancer is an issue of crucial importance. MicroRNAs (miRNAs) seem to be involved in the evolution and development of lung cancer. MicroRNA-608 is likely to be downregulated in lung cancer tissues. Regarding this, the current study involved the determination of the fundamental mechanism of microRNA-608 in the development of lung cancer. Based on the results of quantitative reverse transcription polymerase chain reaction (RT-qPCR), the expression level of microRNA-608 was downregulated in 40 lung cancer tissues, compared to that in the adjacent normal tissues. The results of dual-luciferase reporter assay revealed that bromodomain-containing protein 4 (BRD4) was the direct target of microRNA-608. Accordingly, the lung cancer tissues had an elevated expression level of BRD4, in contrast to the adjacent normal tissues. The results of Cell Counting Kit 8 assay demonstrated that the high expression of microRNA-608 notably restrained lung cancer cell proliferation. The scratch wound and transwell assays showed that the upregulation of microRNA-608 suppressed the migration and invasion of lung cancer cells. Finally, the western blot assay showed that in the microRNA-608 mimics group, the expression levels of BRD4, p-JAK2, p-STATA3, CD44, and MMP9 were significantly decreased, compared with those in the negative control miRNA mimics group. Our results indicate that high expression of microRNA-608 inhibits the proliferation, migration, and invasion of lung cancer cells by targeting BRD4 via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Weigang Xu
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Dapeng Sun
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Yanqin Wang
- Department of Health Examination, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Xinlin Zheng
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Yan Li
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Yu Xia
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| | - Ya'nan Teng
- Department of Respiratory Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Shandong, China
| |
Collapse
|
8
|
Lefevere E, Salinas‐Navarro M, Andries L, Noterdaeme L, Etienne I, Van Wonterghem E, Vinckier S, Davis BM, Van Bergen T, Van Hove I, Movahedi K, Vandenbroucke RE, Moons L, De Groef L. Tightening the retinal glia limitans attenuates neuroinflammation after optic nerve injury. Glia 2020; 68:2643-2660. [DOI: 10.1002/glia.23875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Leuven Brain Institute (LBI) KU Leuven Leuven Belgium
| | - Manuel Salinas‐Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Leuven Brain Institute (LBI) KU Leuven Leuven Belgium
| | - Lien Andries
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Leuven Brain Institute (LBI) KU Leuven Leuven Belgium
| | - Lut Noterdaeme
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
| | | | - Elien Van Wonterghem
- Barriers in Inflammation Lab VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, and Department of Oncology and Leuven Cancer Institute (LKI) VIB and KU Leuven Leuven Belgium
| | - Benjamin M. Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience UCL Institute of Ophthalmology London UK
| | | | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Oxurion NV Leuven Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab VIB Center for Inflammation Research Brussels Belgium
- Lab of Cellular and Molecular Immunology Vrije Universiteit Brussel Brussels Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation Lab VIB Center for Inflammation Research Ghent Belgium
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Leuven Brain Institute (LBI) KU Leuven Leuven Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology KU Leuven Leuven Belgium
- Leuven Brain Institute (LBI) KU Leuven Leuven Belgium
| |
Collapse
|
9
|
Venlafaxine Stimulates an MMP-9-Dependent Increase in Excitatory/Inhibitory Balance in a Stress Model of Depression. J Neurosci 2020; 40:4418-4431. [PMID: 32269106 DOI: 10.1523/jneurosci.2387-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that there is a reduction in overall cortical excitatory to inhibitory balance in major depressive disorder (MDD), which afflicts ∼14%-20% of individuals. Reduced pyramidal cell arborization occurs with stress and MDD, and may diminish excitatory neurotransmission. Enhanced deposition of perineuronal net (PNN) components also occurs with stress. Since parvalbumin-expressing interneurons are the predominant cell population that is enveloped by PNNs, which enhance their ability to release GABA, excess PNN deposition likely increases pyramidal cell inhibition. In the present study, we investigate the potential for matrix metalloprotease-9 (MMP-9), an endopeptidase secreted in response to neuronal activity, to contribute to the antidepressant efficacy of the serotonin/norepinephrine reuptake inhibitor venlafaxine in male mice. Chronic venlafaxine increases MMP-9 levels in murine cortex, and increases both pyramidal cell arborization and PSD-95 expression in the cortex of WT but not MMP-9-null mice. We have previously shown that venlafaxine reduces PNN deposition and increases the power of ex vivo γ oscillations in conventionally housed mice. γ power is increased with pyramidal cell disinhibition and with remission from MDD. Herein we observe that PNN expression is increased in a corticosterone-induced stress model of disease and reduced by venlafaxine. Compared with mice that receive concurrent venlafaxine, corticosterone-treated mice also display reduced ex vivo γ power and impaired working memory. Autopsy-derived PFC samples show elevated MMP-9 levels in antidepressant-treated MDD patients compared with controls. These preclinical and postmortem findings highlight a link between extracellular matrix regulation and MDD.SIGNIFICANCE STATEMENT Reduced excitatory neurotransmission occurs with major depressive disorder, and may be normalized by antidepressant treatment. Underlying molecular mechanisms are, however, not well understood. Herein we investigate a potential role for an extracellular protease, released from neurons and known to play a role in learning and memory, in antidepressant-associated increases in excitatory transmission. Our data suggest that this protease, matrix metalloprotease-9, increases branching of excitatory neurons and concomitantly attenuates the perineuronal net to potentially reduce inhibitory input to these neurons. Matrix metalloprotease-9 may thus enhance overall excitatory/inhibitory balance and neuronal population dynamics, which are important to mood and memory.
Collapse
|
10
|
Miterko LN, Sillitoe RV. Climbing Fiber Development Is Impaired in Postnatal Car8 wdl Mice. THE CEREBELLUM 2019; 17:56-61. [PMID: 28940157 DOI: 10.1007/s12311-017-0886-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cerebellum is critical for an array of motor functions. During postnatal development, the Purkinje cells (PCs) guide afferent topography to establish the final circuit. Perturbing PC morphogenesis or activity during development can result in climbing fiber (CF) multi-innervation or mis-patterning. Structural defects during circuit formation typically have long-term effects on behavior as they contribute to the phenotype of movement disorders such as cerebellar ataxia. The Car8 wdl mouse is one model in which early circuit destruction influences movement. However, although the loss of Car8 leads to the mis-wiring of afferent maps and abnormal PC firing, adult PC morphology is largely intact and there is no neurodegeneration. Here, we sought to uncover how defects in afferent connectivity arise in Car8 wdl mutants to resolve how functional deficits persist in motor diseases with subtle neuropathology. To address this problem, we analyzed CF development during the first 3 weeks of life. By immunolabeling CF terminals with VGLUT2, we found evidence of premature CF synapse elimination and delayed translocation from PC somata at postnatal day (P) 10 in Car8 wdl mice. Surprisingly, by P15, the wiring normalized, suggesting that CAR8 regulates the early but not the late stages of CF development. The data support the hypothesis of a defined sequence of events for cerebellar circuits to establish function.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019; 12:117. [PMID: 31133801 PMCID: PMC6517485 DOI: 10.3389/fnmol.2019.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer’s disease, and we also highlight areas for further study.
Collapse
Affiliation(s)
- Seham Alaiyed
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
12
|
Miterko LN, White JJ, Lin T, Brown AM, O'Donovan KJ, Sillitoe RV. Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Dev 2019; 14:6. [PMID: 30867000 PMCID: PMC6417138 DOI: 10.1186/s13064-019-0130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Purkinje cells play a central role in establishing the cerebellar circuit. Accordingly, disrupting Purkinje cell development impairs cerebellar morphogenesis and motor function. In the Car8wdl mouse model of hereditary ataxia, severe motor deficits arise despite the cerebellum overcoming initial defects in size and morphology. Methods To resolve how this compensation occurs, we asked how the loss of carbonic anhydrase 8 (CAR8), a regulator of IP3R1 Ca2+ signaling in Purkinje cells, alters cerebellar development in Car8wdl mice. Using a combination of histological, physiological, and behavioral analyses, we determined the extent to which the loss of CAR8 affects cerebellar anatomy, neuronal firing, and motor coordination during development. Results Our results reveal that granule cell proliferation is reduced in early postnatal mutants, although by the third postnatal week there is enhanced and prolonged proliferation, plus an upregulation of Sox2 expression in the inner EGL. Modified circuit patterning of Purkinje cells and Bergmann glia accompany these granule cell adjustments. We also find that although anatomy eventually normalizes, the abnormal activity of neurons and muscles persists. Conclusions Our data show that losing CAR8 only transiently restricts cerebellar growth, but permanently damages its function. These data support two current hypotheses about cerebellar development and disease: (1) Sox2 expression may be upregulated at sites of injury and contribute to the rescue of cerebellar structure and (2) transient delays to developmental processes may precede permanent motor dysfunction. Furthermore, we characterize waddles mutant mouse morphology and behavior during development and propose a Sox2-positive, cell-mediated role for rescue in a mouse model of human motor diseases. Electronic supplementary material The online version of this article (10.1186/s13064-019-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, 10996, USA.,Burke Neurological Institute, Weill Cornell Medicine, White Plains, 10605, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Huang L, Li Y, Wang C, Li N, Hou Y, Chang R, Sun M, Wang R, Zhu L, Qiao C. Overexpression of Collapsin Response Mediator Protein 1 Inhibits Human Trophoblast Cells Proliferation, Migration, and Invasion. Reprod Sci 2018; 26:954-960. [PMID: 30466368 DOI: 10.1177/1933719118799214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Collapsin response mediator protein 1 (CRMP-1) is widely expressed in the nervous system and has tumor suppressive effects. Our previous studies have demonstrated that CRMP-1 was expressed in the trophoblasts of the whole stage of pregnancy with significantly increasing expression in the placenta of early-onset preeclampsia. Preeclampsia, especially early onset, is strongly associated with the dysfunction of trophoblast including proliferation, apoptosis, migration, and invasion. In this study, we found an inhibitory effect of CRMP-1 on proliferation, migration, invasion, and an enhanced effect on apoptosis in human trophoblast cell lines HTR-8/SVneo and JEG-3 by MTT assay, colony formation assay, cell viability assay, caspase 3/7 activity assay, scratch wound assay, and Matrigel Transwell assay. Overexpression of CRMP-1 in trophoblast cells led to downregulate expression of matrix metalloproteinase 2 and 9. The expression of CRMP-1 was detected by real-time quantitative polymerase chain reaction and Western blot analysis. Thus, we suggested that CRMP-1 might have implications for the pathogenesis of preeclampsia by regulating the biological behavior of trophoblast cells.
Collapse
Affiliation(s)
- Ling Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China.,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Yuanyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China.,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Region, Shenyang, Liaoning Province, China
| | - Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China.,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China.,Department of Obstetrics and Gynecology, Shenyang Forth People's Hospital, Shenyang, Liaoning Province, China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China.,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Ruijing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Man Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China.,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Ruochen Wang
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI, USA
| | - Lei Zhu
- Shenyang Academy of Environmental Sciences, Shenyang, Liaoning Province, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No.36, Sanhao street, Shenyang, Liaoning Province, 110004, China. .,Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China. .,Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
14
|
Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 2016; 17:ijms17111825. [PMID: 27809288 PMCID: PMC5133826 DOI: 10.3390/ijms17111825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.
Collapse
Affiliation(s)
- Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Roosmarijn Vandenbroucke
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci Rep 2016; 6:35497. [PMID: 27762280 PMCID: PMC5071868 DOI: 10.1038/srep35497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism.
Collapse
|
16
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
18
|
Pani G, Verslegers M, Quintens R, Samari N, de Saint-Georges L, van Oostveldt P, Baatout S, Benotmane MA. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival. PLoS One 2016; 11:e0155260. [PMID: 27203085 PMCID: PMC4874625 DOI: 10.1371/journal.pone.0155260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight.
Collapse
Affiliation(s)
- Giuseppe Pani
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Membrane Biochemistry and Applied Nutrition, Department of Pharmacology and Bio-molecular Sciences (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Mieke Verslegers
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Nada Samari
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Louis de Saint-Georges
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Patrick van Oostveldt
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- * E-mail:
| |
Collapse
|
19
|
Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse. PLoS One 2015; 10:e0143386. [PMID: 26588471 PMCID: PMC4654502 DOI: 10.1371/journal.pone.0143386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.
Collapse
|
20
|
Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats. Brain Struct Funct 2014; 221:407-19. [PMID: 25348266 DOI: 10.1007/s00429-014-0914-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37-40) and adult (P55-60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi-Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development effects of cannabinoids on behavior.
Collapse
|