1
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Song L, Song M, Rabkin CS, Chung Y, Williams S, Torres J, Corvalan AH, Gonzalez R, Bellolio E, Shome M, LaBaer J, Qiu J, Camargo MC. Identification of anti-Helicobacter pylori antibody signatures in gastric intestinal metaplasia. J Gastroenterol 2023; 58:112-124. [PMID: 36301365 PMCID: PMC9610335 DOI: 10.1007/s00535-022-01933-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and non-atrophic gastritis (NAG) controls. METHODS We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with ≥ 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). RESULTS Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in > 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p < 0.001], anti-HP0547/CagA [4.6, p < 0.001], anti-HP0596/Tipα [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/Tipα [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001). CONCLUSIONS Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Alejandro H Corvalan
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Robinson Gonzalez
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Bellolio
- Hospital Dr. Hernán Henríquez Aravena, Temuco, Chile
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Mahasish Shome
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
5
|
Guo K, Duan J, Lu J, Xiao L, Han L, Zeng S, Tang X, Li W, Huang L, Zhang Y. TNF-α-inducing protein of Helicobacter pylori promotes EMT and cancer stem-like cells properties via activation of Wnt/β-catenin signaling pathway in gastric cancer cells. Pathog Dis 2022; 80:6626024. [PMID: 35776950 DOI: 10.1093/femspd/ftac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-α-inducing protein (Tipα) is a newly identified toxin, which promotes the inflammation and carcinogenesis caused by Helicobacter pylori (H. pylori). However, its mechanism of pathogenesis is still unclear. To investigate the carcinogenic mechanisms of Tipα, SGC7901 cells and SGC7901-derived cancer stem-like cells (CSCs) were stimulated by recombinant Tipα protein with or without Wnt/β-catenin signaling inhibitor XAV939. qRT-PCR and Western blotting were employed to detect expression of epithelial-mesenchymal transition (EMT), CSCs markers, and downstream target genes of this signaling pathway. The cell migration ability was measured by wound healing assay and transwell assay. Our results indicated that Tipα promoted CSC properties of SGC7901 spheroids, including increased expression of CSC specific surface markers CD44, Oct4, Nanog, and an increased capacity for self-renewal. Tipα activated Wnt/β-catenin signaling in both SGC7901 cells or CSCs. Furthermore, Tipα induced the EMT and increased the expressions of downstream target genes of this signaling, including c-myc, cyclin D1, and CD44. However, XAV939 pretreatment inhibited Tipα-induced EMT and CSC properties in SGC7901 cells or CSCs. These results suggest that Tipα promotes EMT and CSC-like properties in gastric cancer cells through activation of Wnt/β-catenin signaling pathway, thereby accelerating the progression of gastric cancer.
Collapse
Affiliation(s)
- Kaiyun Guo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Jie Duan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Jingwen Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Lingqiao Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Liang Han
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Shasha Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Xin Tang
- School of Nursing, University of South China, Hengyang 421001, Hunan, China
| | - Wenjing Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Lijun Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| |
Collapse
|
6
|
Morningstar-Wright L, Czinn SJ, Piazuelo MB, Banerjee A, Godlewska R, Blanchard TG. The TNF-Alpha Inducing Protein is Associated With Gastric Inflammation and Hyperplasia in a Murine Model of Helicobacter pylori Infection. Front Pharmacol 2022; 13:817237. [PMID: 35237167 PMCID: PMC8883333 DOI: 10.3389/fphar.2022.817237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the human stomach leading to the development of chronic gastritis, peptic ulcers and gastric adenocarcinoma. A combination of host, environment and bacterial virulence factors contribute to disease development. The H. pylori TNFα inducing protein (Tipɑ) is a virulence factor shown to induce multiple pro-inflammatory cytokines in addition to TNFα in vitro. The goal of the present study was to elucidate the role of Tipα in promoting inflammation in vivo and to identify the molecular pathways associated with Tipα associated virulence. Mice were infected with wild-type Sydney strain (SS1) or a tipα mutant (Δtipα) for 1 month and 4 months. We also completed a second 4 months infection including a 1:1 SS1 to Δtipα co-infected group in addition to SS1 and Δtipα infected groups. The expression of TNFα, and KC were significantly higher in the SS1 infected group compared to both uninfected control (naïve) and Δtipα groups. Mice infected with Tipα expressing SS1 induced more severe histological gastritis and developed hyperplasia compared to Δtipα infected mice. Microarray analysis of gastric epithelial cells co-cultured with recombinant Tipα (rTipα) demonstrates up-regulation of the NFκB pathway. This data suggest Tipα plays an important role in H. pylori induced inflammation.
Collapse
Affiliation(s)
- Lindsay Morningstar-Wright
- GeneDx, Gaithersburg, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Renata Godlewska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Prevalence of tumor necrosis factor alpha inducing protein ( tipα) gene of Helicobacter pylori and its association with upper gastrointestinal diseases in India. 3 Biotech 2021; 11:246. [PMID: 33968589 DOI: 10.1007/s13205-021-02804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) is known to cause several gastroduodenal diseases including chronic Gastritis, Peptic Ulcer disease and Gastric Cancer. Virulent genes of H. pylori like cagA, vacA are known to be responsible for the disease pathogenesis. However, these virulence genes are not always found to be associated with disease outcome in all populations around the world. Tumor necrosis factor alpha inducing protein tipα is a newly discovered virulence gene of H. pylori and is an inducer of certain cytokines and chemokines that are responsible for causing stomach cancer. Therefore, we conducted a study, which aims to find the prevalence of tipα gene in the Indian patients with gastroduodenal symptoms, and its association with H. pylori related gastroduodenal diseases. 267 clinical H. pylori isolates are included in our study for finding the prevalence of tipα gene and its association with cagA and vacA gene using PCR assay. The current study shows that the prevalence rate of tipα gene is 59.9%. Our study has found a significant association (p < 0.05) of tipα gene with Non Ulcer Dyspepsia (NUD) and an association of cagA and vacAs1m1 with Gastritis and Duodenal Ulcer. Our study demonstrates for the first time the presence of tipα as virulence factor of H. pylori strain in Indian population isolated from patients suffering from gastroduodenal diseases. Further, tipα is significantly associated with NUD but not with other gastroduodenal diseases in India.
Collapse
|
8
|
Suganuma M, Watanabe T, Sueoka E, Lim IK, Fujiki H. Role of TNF-α-Inducing Protein Secreted by Helicobacter pylori as a Tumor Promoter in Gastric Cancer and Emerging Preventive Strategies. Toxins (Basel) 2021; 13:181. [PMID: 33804551 PMCID: PMC7999756 DOI: 10.3390/toxins13030181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor necrosis factor-α (TNF-α)-inducing protein (tipα) gene family, comprising Helicobacter pylori membrane protein 1 (hp-mp1) and tipα, has been identified as a tumor promoter, contributing to H. pylori carcinogenicity. Tipα is a unique H. pylori protein with no similarity to other pathogenicity factors, CagA, VacA, and urease. American H. pylori strains cause human gastric cancer, whereas African strains cause gastritis. The presence of Tipα in American and Euro-Asian strains suggests its involvement in human gastric cancer development. Tipα secreted from H. pylori stimulates gastric cancer development by inducing TNF-α, an endogenous tumor promoter, through its interaction with nucleolin, a Tipα receptor. This review covers the following topics: tumor-promoting activity of the Tipα family members HP-MP1 and Tipα, the mechanism underlying this activity of Tipα via binding to the cell-surface receptor, nucleolin, the crystal structure of rdel-Tipα and N-terminal truncated rTipα, inhibition of Tipα-associated gastric carcinogenesis by tumor suppressor B-cell translocation gene 2 (BTG2/TIS21), and new strategies to prevent and treat gastric cancer. Thus, Tipα contributes to the carcinogenicity of H. pylori by a mechanism that differs from those of CagA and VacA.
Collapse
Affiliation(s)
- Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan;
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan; (E.S.); (H.F.)
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea;
| | - Hirota Fujiki
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan; (E.S.); (H.F.)
| |
Collapse
|
9
|
Asgharzadeh M, Fadaee M, Leylabadlo HE, Mahdavi Poor B, Rashedi J, Asgharzadeh V, Vegari A, Shokouhi B, Ghalelou NN, Kafil HS. TNF-α gene polymorphism in Iranian Azeri population. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Baj J, Korona-Głowniak I, Forma A, Maani A, Sitarz E, Rahnama-Hezavah M, Radzikowska E, Portincasa P. Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:1055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world's population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial-mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial-mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Elżbieta Radzikowska
- Department of Plastic Surgery, Central Clinical Hospital of the MSWiA in Warsaw, 01-211 Warsaw, Poland;
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, 70126 Bari, Italy;
| |
Collapse
|
11
|
Fujiki H, Sueoka E, Watanabe T, Suganuma M. The concept of the okadaic acid class of tumor promoters is revived in endogenous protein inhibitors of protein phosphatase 2A, SET and CIP2A, in human cancers. J Cancer Res Clin Oncol 2018; 144:2339-2349. [PMID: 30341686 PMCID: PMC6244643 DOI: 10.1007/s00432-018-2765-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE The okadaic acid class of tumor promoters, which are inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A), induced tumor promotion in mouse skin, rat glandular stomach, and rat liver. Endogenous protein inhibitors of PP2A, SET and CIP2A, were up-regulated in various human cancers, so it is vital to review the essential mechanisms of tumor promotion by the okadaic acid class compounds, together with cancer progression by SET and CIP2A in humans. RESULTS AND DISCUSSION The first part of this review introduces the okadaic acid class compounds and the mechanism of tumor promotion: (1) inhibition of PP1 and PP2A activities of the okadaic acid class compounds; (2) some topics of tumor promotion; (3) TNF-α gene expression as a central mediator in tumor promotion; (4) exposure to the okadaic acid class of tumor promoters in relation to human cancer. The second part emphasizes the overexpression of SET and CIP2A in cancer progression, and the anticancer activity of SET antagonists as follows: (5) isolation and characterization of SET; (6) isolation and characterization of CIP2A; (7) progression of leukemia with SET; (8) progression of breast cancer with SET and CIP2A; (9) progression of lung cancer with SET; (10) anti-carcinogenic effects of SET antagonists OP449 and FTY720; and also (11) TNF-α-inducing protein of Helicobacter pylori, which is a clinical example of the okadaic acid pathway. CONCLUSIONS The overexpression of endogenous protein inhibitors of PP2A, SET and CIP2A, is tightly linked to the progression of various human cancers, as well as Alzheimer's disease.
Collapse
Affiliation(s)
- Hirota Fujiki
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Eisaburo Sueoka
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Tatsuro Watanabe
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| |
Collapse
|
12
|
Induction of TNF, CXCL8 and IL-1β in macrophages by Helicobacter pylori secreted protein HP1173 occurs via MAP-kinases, NF-κB and AP-1 signaling pathways. Microb Pathog 2018; 125:295-305. [DOI: 10.1016/j.micpath.2018.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
13
|
Multiplex serology of Helicobacter pylori antigens in detection of current infection and atrophic gastritis - A simple and cost-efficient method. Microb Pathog 2018; 119:137-144. [PMID: 29665437 DOI: 10.1016/j.micpath.2018.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
|
14
|
Li L, Liu J, Liu C, Lu X. The correlation between TNF-α-308 gene polymorphism and susceptibility to cervical cancer. Oncol Lett 2018; 15:7163-7167. [PMID: 29725439 PMCID: PMC5920275 DOI: 10.3892/ol.2018.8246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/14/2018] [Indexed: 01/30/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is closely related to the occurrence of human cancers. Cervical cancer seriously affects female health. Therefore, our study aimed to investigate the correlation between the polymorphism of TNF-α-308 gene and susceptibility to cervical cancer. Whole blood was collected from 142 patients with cervical cancer and 150 healthy controls. PCR-RFLP was used to detect the polymorphism of TNF-α-308 and the correlation between polymorphism of TNF-α-308 and the susceptibility to cervical cancer was analyzed. The three genotypes of TNF-α-308 were GG, GA and AA, and the distributions of genotypes of TNF-α-308 were consistent with Hardy-Weinberg equilibrium in both cervical cancer group and control group. There were no significant differences in genotype and allele frequency between cervical cancer group and healthy control group (P>0.05). A/A genotype increased the risk of cervical cancer by 1.46 times with 95% confidence interval of 0.32-6.67. Different genotypes were not associated with tumor type (P>0.05). Different genotypes are correlated with cervical cancer TNM stages, tumor differentiation and lymph node metastasis. Proportion of GA+AA genotype in TNM stage III+IV group, low differentiation group and lymph node metastasis group were 28.1, 29.0 and 29.8%, respectively, which were significantly higher than those in stage I+II group, moderate/high differentiation group and non-lymph node metastasis group (P<0.05). The results suggested that TNF-α-308 gene polymorphism is associated with the degree of malignancy of cervical cancer. Female patients with A allele have higher malignant degree of cervical cancer.
Collapse
Affiliation(s)
- Liping Li
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jie Liu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chunjing Liu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xianghui Lu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
15
|
Devanand P, Oya Y, Sundaramoorthy S, Song KY, Watanabe T, Kobayashi Y, Shimizu Y, Hong SA, Suganuma M, Lim IK. Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2 /TIS21 via downregulating cytoplasmic nucleolin expression. Exp Mol Med 2018; 50:e449. [PMID: 29472702 PMCID: PMC5903828 DOI: 10.1038/emm.2017.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Preethi Devanand
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tatsuro Watanabe
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Soon Auck Hong
- Department of Pathology, Soonchunhyang Cheonan hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - In Kyoung Lim
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Ugrinova I, Petrova M, Chalabi-Dchar M, Bouvet P. Multifaceted Nucleolin Protein and Its Molecular Partners in Oncogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:133-164. [PMID: 29459030 DOI: 10.1016/bs.apcsb.2017.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in 1973, nucleolin is one of the most abundant phosphoproteins of the nucleolus. The ability of nucleolin to be involved in many cellular processes is probably related to its structural organization and its capability to form many different interactions with other proteins. Many functions of nucleolin affect cellular processes involved in oncogenesis-for instance: in ribosome biogenesis; in DNA repair, remodeling, and genome stability; in cell division and cell survival; in chemokine and growth factor signaling pathways; in angiogenesis and lymphangiogenesis; in epithelial-mesenchymal transition; and in stemness. In this review, we will describe the different functions of nucleolin in oncogenesis through its interaction with other proteins.
Collapse
Affiliation(s)
- Iva Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Maria Petrova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mounira Chalabi-Dchar
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
17
|
Alandiyjany MN, Croxall NJ, Grove JI, Delahay RM. A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA. PLoS One 2017; 12:e0182144. [PMID: 28759055 PMCID: PMC5536186 DOI: 10.1371/journal.pone.0182144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Two distinct type IV secretion systems (T4SSs) can be identified in certain Helicobacter pylori strains, encoded on mobile genetic elements termed tfs3 and tfs4. Although their function remains unknown, both have been implicated in clinical outcomes of H. pylori infection. Here we provide evidence that the Tfs3 T4SS is required for activity of the pro-inflammatory Ser/Thr kinase protein, CtkA, in a gastric epithelial cell infection model. Previously, purified recombinant CtkA protein has been shown to upregulate NF-kappaB signalling and induce TNF-alpha and IL-8 cytokine secretion from cultured macrophages suggesting that it may potentiate the H. pylori-mediated inflammatory response. In this study, we show that CtkA expressed from its native host, H. pylori has a similar capacity for stimulation of a pro-inflammatory response from gastric epithelial cells. CtkA interaction was found to be dependent upon a complement of tfs3 T4SS genes, but independent of the T4SSs encoded by either tfs4 or the cag pathogenicity island. Moreover, the availability of CtkA for host cell interaction was shown to be conditional upon the carboxyl-terminus of CtkA, encoding a putative conserved secretion signal common to other variably encoded Tfs3 proteins. Collectively, our observations indicate a role for the Tfs3 T4SS in CtkA-mediated pro-inflammatory signalling by H. pylori and identify CtkA as a likely Tfs3 T4SS secretion substrate.
Collapse
Affiliation(s)
- Maher N. Alandiyjany
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Nicola J. Croxall
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jane I. Grove
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Robin M. Delahay
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Zou M, Wang F, Jiang A, Xia A, Kong S, Gong C, Zhu M, Zhou X, Zhu J, Zhu W, Cheng W. MicroRNA-3178 ameliorates inflammation and gastric carcinogenesis promoted by Helicobacter pylori new toxin, Tip-α, by targeting TRAF3. Helicobacter 2017; 22. [PMID: 27493095 DOI: 10.1111/hel.12348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Helicobacter pylori infection is the main cause of chronic gastritis, peptic ulcer, and gastric cancer. Tip-α is a newly identified carcinogenic factor present in H. pylori. TRAF3 can activate NF-κB by both canonical and noncanonical signaling pathways. In this study, we found that the expression of TRAF3 and NF-κB was upregulated, while microRNA-3178 (miR-3178) was decreased in H. pylori-positive gastric tissues but not in H. pylori-negative tissues. MATERIALS AND METHODS GES-1 cells were incubated with 12.5 μg/mL recombinant Tip-α (rTip-α) in RPMI1640 for 2 hours. After another 24 hours, the supernatant medium was designed as inflammatory-conditioned medium (ICM) and that from the untreated control cells was designed as untreated control medium. The release of proinflammatory cytokines from GES-1 cells and proliferation of gastric cancer cells was determined by ELISA and CCK-8 kits. Cells were transfected with the mimic, inhibitor, negative control of miR-3178, or TRAF3 siRNA control siRNA. The medium was then replaced with RPMI1640, 12.5 μg/mL rTip-α, and collected, and the total cellular RNA and protein were extracted for the following detection. RESULTS MiR-3178 mimic prevented the increasement of TRAF3 and hence decreased activation of NF-κB signals, whereas miR-3178 inhibitor could not, in GES-1 cells with Tip-α treatment. The condition medium from miR-3178 mimic transfected GES-1 cells could inhibit proliferation and induce apoptosis of inflammation-related gastric cancer cells SGC7901 and MGC803 by decreasing the production of inflammatory cytokines TNF-α and IL-6, which were secreted by GES-1 cells. CONCLUSIONS Taken all together, Tip-α might activate NF-κB to promote inflammation and carcinogenesis by inhibiting miR-3178 expression, which directly targeting TRAF3, during H. pylori infection in gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiqin Jiang
- Medical School of Nanjing University, Nanjing, China
| | - Anliang Xia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Siya Kong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chun Gong
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingxia Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfang Cheng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
TNF-α-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition (EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway. Biochem Biophys Res Commun 2017; 484:311-317. [DOI: 10.1016/j.bbrc.2017.01.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/21/2017] [Indexed: 01/01/2023]
|
20
|
Tavares R, Pathak SK. Helicobacter pylori Secreted Protein HP1286 Triggers Apoptosis in Macrophages via TNF-Independent and ERK MAPK-Dependent Pathways. Front Cell Infect Microbiol 2017; 7:58. [PMID: 28293545 PMCID: PMC5329642 DOI: 10.3389/fcimb.2017.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Macrophages constitute a powerful line of defense against H. pylori. The final disease outcome is highly dependent on the bacterial ability to modulate the effector functions of activated macrophages. Here, we report that H. pylori secreted protein HP1286 is a novel regulator of macrophage responses. Differential expression and release of HP1286 homologues were observed among H. pylori strains. Recombinant purified HP1286 (rHP1286) had the ability to bind to primary human monocyte-derived macrophages (MDM) and macrophage cell lines. Exposure to rHP1286 induced apoptosis in macrophages in a dose- and time-dependent manner. Although interaction of rHP1286 was observed for several other cell types, such as human monocytes, differentiated neutrophil-like HL60 cells, and the T lymphocyte Jurkat cell line, rHP1286 failed to induce apoptosis under similar conditions, indicating a macrophage-specific effect of the protein. A mutant strain of H. pylori lacking HP1286 protein expression was significantly impaired in its ability to induce apoptosis in macrophages. Significantly higher caspase 3 activity was detected in rHP1286-challenged macrophages. Furthermore, rHP1286-induced macrophages apoptosis was not inhibited in the presence of neutralizing antibodies against TNF. These observations indicate that rHP1286 induced a caspase-dependent and TNF-independent macrophage apoptosis. Pre-treatment of macrophages with U0126, an inhibitor of the ERK MAPK signaling pathway significantly reduced rHP1286-induced apoptosis. Furthermore, nuclear translocation of ERK and phosphorylation of c-Fos was detected in rHP1286-treated macrophages. These results provide functional insight into the potential role of HP1286 during H. pylori infection. Considering the ability of HP1286 to induce macrophage apoptosis, the protein could possibly help in the bacterial escape from the activated macrophages and persistence in the stomach.
Collapse
Affiliation(s)
- Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
21
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
22
|
Loke MF, Ng CG, Vilashni Y, Lim J, Ho B. Understanding the dimorphic lifestyles of human gastric pathogen Helicobacter pylori using the SWATH-based proteomics approach. Sci Rep 2016; 6:26784. [PMID: 27222005 PMCID: PMC4879699 DOI: 10.1038/srep26784] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/09/2016] [Indexed: 01/12/2023] Open
Abstract
Helicobacter pylori may reside in the human stomach as two morphological forms: the culturable spiral form and the viable but non-culturable (VBNC) coccoid form. This bacterium transforms from spiral to coccoid under in vitro suboptimal conditions. However, both spiral and coccoid have demonstrated its infectivity in laboratory animals, suggesting that coccoid may potentially be involved in the transmission of H. pylori. To determine the relevance of the coccoid form in viability and infectivity, we compared the protein profiles of H. pylori coccoids obtained from prolonged (3-month-old) culture with that of 3-day-old spirals of two H. pylori standard strains using SWATH (Sequential Window Acquisition of all Theoretical mass spectra)-based approach. The protein profiles reveal that the coccoids retained basal level of metabolic proteins and also high level of proteins that participate in DNA replication, cell division and biosynthesis demonstrating that coccoids are viable. Most interestingly, these data also indicate that the H. pylori coccoids possess higher level of proteins that are involved in virulence and carcinogenesis than their spiral counterparts. Taken together, these findings have important implications in the understanding on the pathogenesis of H. pylori-induced gastroduodenal diseases, as well as the probable transmission mode of this bacterium.
Collapse
Affiliation(s)
- Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yeespana Vilashni
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Justin Lim
- AB SCIEX Ltd, 10 Biopolis Rd, Singapore 138670, Singapore
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Effect of Helicobacter pylori on NFKB1, p38α and TNF-α mRNA expression levels in human gastric mucosa. Exp Ther Med 2016; 11:2365-2372. [PMID: 27284322 DOI: 10.3892/etm.2016.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infects ~50% of the world population, causing chronic gastritis and other forms of cellular damage. The present study assessed the influence of H. pylori on the mRNA expression levels of nuclear factor-κB1 (NFKB1), p38α and tumor necrosis factor-α (TNF-α) in human gastric mucosa in a southern Brazilian population. Human gastric tissue was collected by upper endoscopy and H. pylori diagnosis was performed using a rapid urease test and histological analysis. Total RNA was extracted and purified for subsequent cDNA synthesis and analysis by quantitative polymerase chain reaction (qPCR). The gastric tissue samples were divided into four groups as follows: Normal, inactive chronic gastritis, active chronic gastritis and intestinal metaplasia. The SDHA gene was classified as the most stable when compared with ACTB, GAPDH, B2M and HPRT1 genes, and was therefore selected as the reference gene for qPCR data normalization. TNF-α mRNA expression was significantly higher in samples that were positive for H. pylori and with active chronic gastritis. However, no difference was detected in the mRNA expression levels of NFKB1 and p38α between the groups. The present study concluded that the presence of H. pylori is associated with TNF-α upregulation in human gastric mucosa, but had no effect on NFKB1 and p38α mRNA expression levels.
Collapse
|
24
|
Tavares R, Pathak SK. Helicobacter pylori protein JHP0290 exhibits proliferative and anti-apoptotic effects in gastric epithelial cells. PLoS One 2015; 10:e0124407. [PMID: 25879227 PMCID: PMC4400171 DOI: 10.1371/journal.pone.0124407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/13/2015] [Indexed: 01/06/2023] Open
Abstract
The influence of Helicobacter pylori infection on gastric epithelial cell proliferation, apoptosis and signaling pathways contributes to the development of infection-associated diseases. Here we report that JHP0290, which is a poorly functionally characterized protein from H. pylori, regulates multiple responses in human gastric epithelial cells. The differential expression and release of JHP0290 homologues was observed among H. pylori strains. JHP0290 existed in monomeric and dimeric forms in H. pylori cell extracts and culture broth. Recombinant purified JHP0290 (rJHP0290) also showed monomeric and dimeric forms, whereas the rJHP0290 C162A mutant exhibited only a monomeric form. The dimeric form of the protein was found to bind more efficiently to gastric epithelial cells than the monomeric form. The exposure of gastric epithelial cells to rJHP0290 induced proliferation in a dose-dependent manner. Faster progression into the cell cycle was observed in rJHP0290-challenged gastric epithelial cells. Furthermore, we detected an anti-apoptotic effect of rJHP0290 in gastric epithelial cells when the cells were treated with rJHP0290 in combination with Camptothecin (CPT), which is an inducer of apoptosis. CPT-induced caspase 3 activation was significantly reduced in the presence of rJHP0290. In addition, the activation of ERK MAPK and the transcription factor NFκB was observed in rJHP0290-challenged gastric epithelial cells lines. Our results suggest that JHP0290 may affect H. pylori-induced gastric diseases via the regulation of gastric epithelial cell proliferation and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail: (SKP)
| |
Collapse
|
25
|
Sasaki K, Umeda M, Sakai A, Yamazaki S, Tanaka N. Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:1-35. [PMID: 25803194 DOI: 10.1080/10590501.2014.967058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transformation assays using cultured cells have been applied to the study of carcinogenesis. Although various cell systems exist, few cell types such as BALB/c 3T3 subclones and Syrian hamster embryo cells have been used to study chemically induced two-stage carcinogenesis. Bhas 42 cells were established as a clone by the transfection with the v-Ha-ras gene into mouse BALB/c 3T3 A31-1-1 cells and their subsequent selection based on their sensitivity to 12-O-tetradecanoylphorbol-13-acetate. Using Bhas 42 cells, transformed foci were induced by the treatment with nongenotoxic carcinogens, most of which act as tumor promoters. Therefore, Bhas 42 cells were considered to be a model of initiated cells. Subsequently, not only nongenotoxic carcinogens but also genotoxic carcinogens, most of which act as tumor initiators, were found to induce transformed foci by the modification of the protocol. Furthermore, transformation of Bhas 42 cells was induced by the transfection with genes of oncogenic potential. We interpret this high sensitivity of Bhas 42 cells to various types of carcinogenic stimuli to be related to the multistage model of carcinogenesis, as the transfection of v-Ha-ras gene further advances the parental BALB/c 3T3 A31-1-1 cells toward higher transforming potential. Thus, we propose that Bhas 42 cells are a novel and sensitive cell line for the analysis of carcinogenesis and can be used for the detection of not only carcinogenic substances but also gene alterations related to oncogenesis. This review will address characteristics of Bhas 42 cells, the transformation assay protocol, validation studies, and the various chemicals tested in this assay.
Collapse
Affiliation(s)
- Kiyoshi Sasaki
- a Laboratory of Cell Carcinogenesis, Division of Alternative Toxicology Tests , Hatano Research Institute, Food and Drug Safety Center , Hadano , Kanagawa , Japan
| | | | | | | | | |
Collapse
|
26
|
Zhang Z, Yu D, Lu J, Zhai K, Cao L, Rao J, Liu Y, Zhang X, Guo Y. Functional genetic variants of TNFSF15 and their association with gastric adenocarcinoma: a case-control study. PLoS One 2014; 9:e108321. [PMID: 25251497 PMCID: PMC4176965 DOI: 10.1371/journal.pone.0108321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023] Open
Abstract
The purpose of this study was to identify functional genetic variants in the promoter of tumor necrosis factor superfamily member 15 (TNFSF15) and evaluate their effects on the risk of developing gastric adenocarcinoma. Forty DNA samples from healthy volunteers were sequenced to identify single nucleotide polymorphisms (SNPs) in the TNFSF15 promoter. Two TNFSF15 SNPs (−358T>C and −638A>G) were identified by direct sequencing. Next, genotypes and haplotypes of 470 gastric adenocarcinoma patients and 470 cancer-free controls were analyzed. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Serologic tests for Helicobacter pylori infection were measured by enzyme-linked immuno-sorbent assay (ELISA). Subjects carrying the TNFSF15 −358CC genotype were at an elevated risk for developing gastric adenocarcinoma, compared with those with the −358TT genotype (OR 1.42, 95% CI, 1.10 to 2.03). H. pylori infection was a risk factor for developing gastric adenocarcinoma (OR 2.31, 95% CI, 1.76 to 3.04). In the H. pylori infected group, subjects with TNFSF15 −358CC genotype were at higher risks for gastric adenocarcinoma compared with those carrying −358TT genotype (OR: 2.01, 95%CI: 1.65 to 4.25), indicating that H. pylori infection further influenced gastric adenocarcinoma susceptibility. The −358 T>C polymorphism eliminates a nuclear factor Y (NF-Y) binding site and the −358C containing haplotypes showed significantly decreased luciferase expression compared with −358T containing haplotypes. Collectively these findings indicate that functional genetic variants in TNFSF15 may play a role in increasing susceptibility to gastric adenocarcinoma.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Chemotherapy and Radiotherapy, Tangshan Gongren Hospital, Tangshan, China
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
| | - Dianke Yu
- Department of Etiology of Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Otolaryngology, Head and Neck Science, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Etiology of Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cao
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
| | - Juan Rao
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
| | - Yingwen Liu
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
- * E-mail: (YG); (XZ)
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Otolaryngology, Head and Neck Science, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- * E-mail: (YG); (XZ)
| |
Collapse
|
27
|
Watanabe T, Takahashi A, Suzuki K, Kurusu-Kanno M, Yamaguchi K, Fujiki H, Suganuma M. Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-α-inducing protein of Helicobacter pylori. Int J Cancer 2014; 134:2373-82. [PMID: 24249671 DOI: 10.1002/ijc.28582] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/22/2013] [Indexed: 01/13/2023]
Abstract
Helicobacter pylori strains produce tumor necrosis factor-α (TNF-α)-inducing protein, Tipα as a carcinogenic factor in the gastric epithelium. Tipα acts as a homodimer with 38-kDa protein, whereas del-Tipα is an inactive monomer. H. pylori isolated from gastric cancer patients secreted large amounts of Tipα, which are incorporated into gastric cancer cells by directly binding to nucleolin on the cell surface, which is a receptor of Tipα. The binding complex induces expression of TNF-α and chemokine genes, and activates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells). To understand the mechanisms of Tipα in tumor progression, we looked at numerous effects of Tipα on human gastric cancer cell lines. Induction of cell migration and elongation was found to be mediated through the binding to surface nucleolin, which was inhibited by the nucleolin-targeted siRNAs. Tipα induced formation of filopodia in MKN-1 cells, suggesting invasive morphological changes. Tipα enhanced the phosphorylation of 11 cancer-related proteins in serine, threonine and tyrosine, indicating activation of MEK-ERK signal cascade. Although the downregulation of E-cadherin was not shown in MKN-1 cells, Tipα induced the expression of vimentin, a significant marker of the epithelial-mesenchymal transition (EMT). It is of great importance to note that Tipα reduced the Young's modulus of MKN-1 cells determined by atomic force microscopy: This shows lower cell stiffness and increased cell motility. The morphological changes induced in human gastric cancer cells by Tipα are significant phenotypes of EMT. This is the first report that Tipα is a new inducer of EMT, probably associated with tumor progression in human gastric carcinogenesis.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Research Institute for Clinical Oncology, Saitama Cancer Center, Kitaadachi-gun, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Fujiki H, Watanabe T, Suganuma M. Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol 2014; 140:689-99. [PMID: 24469254 PMCID: PMC3983879 DOI: 10.1007/s00432-014-1587-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/16/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Cell-surface nucleolin in human gastric cancer cell lines is a receptor for TNF-α-inducing protein (Tipα) of Helicobacter pylori. The binding complex of nucleolin and Tipα is internalized into the cells and then induces tumor progression of human gastric cancer. Surface nucleolin is also a receptor of human immunodeficiency virus-1, and the anti-HIV pseudopeptide (HB-19) showed anti-carcinogenic activity in vivo. Surface nucleolin has dual functions depending on the ligands: In order to understand the mechanisms of surface nucleolin, it is necessary to review surface nucleolin and its relation to carcinogenic ligands and anti-carcinogenic ligands. Other ligands can be grouped among disease-related ligands, which is an important new topic for the prevention of various ailments. RESULTS AND DISCUSSION This paper mainly deals with two ligands of surface nucleolin, Tipα and pseudopeptide HB-19. The binding complex of nucleolin and Tipα induces expression of TNF-α and chemokine genes and activates NF-κB in gastric cancer cells of humans and mice. However, when human gastric cancer cell line MKN-1 was transfected with nucleolin-targeted siRNA, the result was inhibition of cell migration and elongation induced by Tipα. The amount of surface nucleolin was reduced in membrane fraction of the nucleolin knockdown MKN-1 cells, but the amount of nucleolin in the cytosol or nuclear fractions of the cells did not change. The results indicate that surface nucleolin acts as a carcinogenic mediator for Tipα of H. pylori. In contrast, both the viral external envelop glycoprotein gp120 of HIV and the anti-HIV pseudopeptide HB-19 bind to surface nucleolin. Through this binding, treatment with HB-19 inhibited tumor development in human breast cancer cell line MDA-MB-231 and rhabdoid tumor cell line derived from Wilms's tumor in xenograft nude mouse models. The results show that surface nucleolin acts as an anti-carcinogenic mediator for HB-19. CONCLUSION Based on these discrete functions of surface nucleolin, the binding complex of carcinogenic ligands and surface nucleolin seems to be competing with that of anti-carcinogenic ligands and surface nucleolin. Moreover, carcinogenic ligands derived from endogenous sources play a significant role in human cancer development, and the interaction of surface nucleolin with disease-related ligands will be a new research subject for the prevention and treatment of various ailments.
Collapse
Affiliation(s)
- Hirota Fujiki
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan,
| | | | | |
Collapse
|
29
|
Sasaki K, Huk A, Yamani NE, Tanaka N, Dusinska M. Bhas 42 Cell Transformation Assay for Genotoxic and Non-Genotoxic Carcinogens. GENOTOXICITY AND DNA REPAIR 2014. [DOI: 10.1007/978-1-4939-1068-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Fujiki H, Sueoka E, Suganuma M. Tumor promoters: from chemicals to inflammatory proteins. J Cancer Res Clin Oncol 2013; 139:1603-14. [PMID: 23756937 DOI: 10.1007/s00432-013-1455-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE The classic two-stage chemical carcinogenesis in rodents is not directly linked to multistage carcinogenesis in humans. In light of our findings that tumor necrosis factor-α (TNF-α) is an endogenous tumor promoter and that TNF-α-inducing protein (Tipα) of Helicobacter pylori stimulates progression of cancer and epithelial-mesenchymal transition, we think it is necessary to re-examine the concept of tumor promoter, from chemicals to inflammatory proteins. TOPICS AND RESULTS This paper begins with "inflammation," discovered by Virchow, studies of Yamagiwa and Tsutsui, and briefly reviews numerous topics, such as (1) the classic concept of tumor promoter, (2) tumor promotion on mouse skin induced by protein kinase C activators and okadaic acid class compounds, (3) organ specificity of tumor promoters, presenting numerous tumor promoters in various organs, (4) unique tumor promotion induced by inhibitors of protein phosphatases 1 and 2A in mouse skin, rat glandular stomach, and rat liver, (5) the significant role of TNF-α in tumor-promoting inflammation, (6) progression induced by Tipα of H. pylori, and (7) enhancement of cancer treatment efficacy with the combination of anticancer drugs and green tea catechins, to inhibit tumor-promoting inflammation. CONCLUSION Human cancer development involves both durable genetic changes caused by carcinogens and proinflammatory cytokines, and simultaneous inflammation in progression induced by proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Hirota Fujiki
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan,
| | | | | |
Collapse
|
31
|
Tang CL, Hao B, Zhang GX, Shi RH, Cheng WF. Helicobacter pylori tumor necrosis factor-α inducing protein promotes cytokine expression via nuclear factor-κB. World J Gastroenterol 2013; 19:399-403. [PMID: 23372364 PMCID: PMC3554826 DOI: 10.3748/wjg.v19.i3.399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of Helicobacter pylori (H. pylori) tumor necrosis factor-α (TNF) inducing protein (Tip-α) on cytokine expression and its mechanism. METHODS We cloned Tip-α from the H. pylori strain 26695, transformed Escherichia coli with an expression plasmid, and then confirmed the expression product by Western blotting. Using different concentrations of Tip-α that affected SGC7901 and GES-1 cells at different times, we assessed cytokine levels using enzyme-linked immunosorbent assay. We blocked SGC7901 cells with pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of nuclear factor κB (NF-κB). We then detected interleukin (IL)-1β and TNF-α levels in SGC7901 cells. RESULTS Western blot analysis using an anti-Tip-α antibody revealed a 23-kDa protein, which indicated that recombinant Tip-α protein was recombined successfully. The levels of IL-1β, IL-8 and TNF-α were significantly higher following Tip-α interference, whether GES-1 cells or SGC-7901 cells were used (P < 0.05). However, the levels of cytokines (including IL-1β, IL-8 and TNF-α) secreted by SGC-7901 cells were greater than those secreted by GES-1 cells following treatment with Tip-α at the same concentration and for the same duration (P < 0.05). After blocking NF-κB with PDTC, the cells (GES-1 cells and SGC-7901 cells) underwent interference with Tip-α. We found that IL-1β and TNF-α levels were significantly decreased compared to cells that only underwent Tip-α interference (P < 0.05). CONCLUSION Tip-α plays an important role in cytokine expression through NF-κB.
Collapse
|
32
|
GAO MM, ZHANG Y, WANG DC. Crystallization and Preliminary Crystallographic Studies of Active TNF-α-Inducing Protein From Helicobacter Pylori*. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Chen MY, Yuan Y. Helicobacter pylori virulence factors that act at different stages of infection. Shijie Huaren Xiaohua Zazhi 2012; 20:2937-2943. [DOI: 10.11569/wcjd.v20.i30.2937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) plays an essential role in the development of various gastroduodenal diseases, such as chronic superficial gastritis, peptic ulcer, gastric mucosa associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. The diverse clinical outcomes after H. pylori infection are partly attributable to various H. pylori virulence factors. These virulence factors can act at different stages of infection, including (1) establishing successful colonization; (2) evading the host's immune system and (3) invading the gastric mucosa. In this paper, we review the recent advances in research of H. pylori virulence factors associated with the pathogenic process of H. pylori infection.
Collapse
|
34
|
Suganuma M, Watanabe T, Yamaguchi K, Takahashi A, Fujiki H. Human gastric cancer development with TNF-α-inducing protein secreted from Helicobacter pylori. Cancer Lett 2012; 322:133-8. [PMID: 22459353 DOI: 10.1016/j.canlet.2012.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/21/2012] [Indexed: 12/12/2022]
Abstract
TNF-α-inducing protein (Tipα) is a unique carcinogenic factor of Helicobacter pylori, which is secreted into culture broth. The biological activities of Tipα and deletion mutant were studied. Tipα protein specifically binds to cell-surface nucleolin and then enters the gastric cancer cells, where TNF-α and chemokine gene expressions are induced by NF-κB activation. Nucleolin localizes on the surface of gastric cancer cells, and interaction between Tipα and cell-surface nucleolin causes a cancer-oriented microenvironment that increases the risk of gastric cancer. This paper discusses a new mechanism of gastric cancer development with H. pylori and provides a new preventive strategy.
Collapse
Affiliation(s)
- Masami Suganuma
- Research Institute for Clinical Oncology, Saitama Cancer Center, Japan.
| | | | | | | | | |
Collapse
|
35
|
Gao M, Li D, Hu Y, Zhang Y, Zou Q, Wang DC. Crystal structure of TNF-α-inducing protein from Helicobacter pylori in active form reveals the intrinsic molecular flexibility for unique DNA-binding. PLoS One 2012; 7:e41871. [PMID: 22860022 PMCID: PMC3409205 DOI: 10.1371/journal.pone.0041871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/29/2012] [Indexed: 01/26/2023] Open
Abstract
Tipα (TNF-α-inducing protein) from Helicobacter pylori is a carcinogenic effector. Studies on this protein revealed that a homodimer linked by a pair of intermolecular disulfide bridges (Cys25-Cys25 and Cys27-Cys27) was absolutely necessary for its biological functions. The activities of Tipα would be abolished when both disulfide bridges were disrupted. The crystal structures of Tipα reported to date, however, were based on inactive, monomeric mutants with their N-terminal, including residues Cys25 and Cys27, truncated. Here we report the crystal structure of H. pylori Tipα protein, TipαN25, at 2.2Å resolution, in which Cys25 and Cys27 form a pair of inter-chain disulfide bridges linking an active dimer. The disulfide bridges exhibit structural flexibility in the present structure. A series of structure-based mutagenesis, biochemical assays and molecular dynamic simulations on DNA-Tipα interactions reveal that Tipα utilizes the dimeric interface as the DNA-binding site and that residues His60, Arg77 and Arg81 located at the interface are crucial for DNA binding. Tipα could bind to one ssDNA, two ssDNA or one dsDNA in experiments, respectively, in the native or mutant states. The unique DNA-binding activities of Tipα indicate that the intrinsic flexible nature of disulfide bridges could endow certain elasticity to the Tipα dimer for its unique bioactivities. The results shed light on the possible structural mechanism for the functional performances of Tipα.
Collapse
Affiliation(s)
- Mingming Gao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Quanming Zou
- Department of Clinical Microbiology and Immunology, Third Military Medical University, Chongqing, People’s Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Ferrand J, Lehours P, Schmid-Alliana A, Mégraud F, Varon C. Helicobacter pylori infection of gastrointestinal epithelial cells in vitro induces mesenchymal stem cell migration through an NF-κB-dependent pathway. PLoS One 2011; 6:e29007. [PMID: 22216156 PMCID: PMC3247220 DOI: 10.1371/journal.pone.0029007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/19/2011] [Indexed: 01/02/2023] Open
Abstract
The role of bone marrow-derived mesenchymal stem cells (MSC) in the physiology of the gastrointestinal tract epithelium is currently not well established. These cells can be recruited in response to inflammation due to epithelial damage, home, and participate in tissue repair. In addition, in the case of tissue repair failure, these cells could transform and be at the origin of carcinomas. However, the chemoattractant molecules responsible for MSC recruitment and migration in response to epithelial damage, and particularly to Helicobacter pylori infection, remain unknown although the role of some chemokines has been suggested. This work aimed to get insight into the mechanisms of mouse MSC migration during in vitro infection of mouse gastrointestinal epithelial cells by H. pylori. Using a cell culture insert system, we showed that infection of gastrointestinal epithelial cells by different H. pylori strains is able to stimulate the migration of MSC. This mechanism involves the secretion by infected epithelial cells of multiple cytokines, with a major role of TNFα, mainly via a Nuclear Factor-kappa B-dependent pathway. This study provides the first evidence of the role of H. pylori infection in MSC migration and paves the way to a better understanding of the role of bone marrow-derived stem cells in gastric pathophysiology and carcinogenesis.
Collapse
Affiliation(s)
- Jonathan Ferrand
- Department of Bacteriology, Université de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U853, Bordeaux, France
| | - Philippe Lehours
- Department of Bacteriology, Université de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U853, Bordeaux, France
| | - Annie Schmid-Alliana
- Department of Immune & Inflammatory regulations, Université Nice Sophia Antipolis, Nice, France
- Institut National de la Santé et de la Recherche Médicale, U576, Nice, France
| | - Francis Mégraud
- Department of Bacteriology, Université de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U853, Bordeaux, France
- * E-mail:
| | - Christine Varon
- Department of Bacteriology, Université de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U853, Bordeaux, France
| |
Collapse
|
37
|
Senthilkumar C, Niranjali S, Jayanthi V, Ramesh T, Devaraj H. Molecular and histological evaluation of tumor necrosis factor-alpha expression in Helicobacter pylori-mediated gastric carcinogenesis. J Cancer Res Clin Oncol 2011; 137:577-83. [PMID: 20512382 DOI: 10.1007/s00432-010-0921-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
PURPOSE Helicobacter pylori (H. pylori) is considered to be a major factor contributing to gastric mucosal damage by stimulating mucosal macrophage production of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), but the inflammatory responses within the gastric mucosa in vivo are not well known. Therefore, this study was designed to investigate the expression of TNF-α induced by H. pylori infection which is involved in the tumor initiation and promotion of gastric carcinogenesis. METHODS This study was carried out in 200 patients, consisting of normal gastric mucosa (n = 20), mucosa with chronic gastritis (n = 63), intestinal metaplasia (n = 20), dysplasia (n = 11), and gastric adenocarcinoma (n = 86), in which the H. pylori status has been analyzed. The expression of TNF-α was studied at mRNA as well as protein level using RT-PCR and western blotting, respectively. The localization of TNF-α was also studied semiquantitatively by immunohistochemistry. RESULTS The RT-PCR and western blotting results of TNF-α mRNA and protein expressions were significantly increased in chronic gastritis, intestinal metaplasia, dysplasia and gastric adenocarcinoma patients, respectively. Immunohistochemical study also showed the increased expression of TNF-α in the similar way. CONCLUSION Over expression of TNF-α showed a significant severity-dose-response as risk markers from preneoplastic lesions to gastric cancer.
Collapse
Affiliation(s)
- Cinghu Senthilkumar
- Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, 600 025 Tamil Nadu, India
| | | | | | | | | |
Collapse
|
38
|
Watanabe T, Tsuge H, Imagawa T, Kise D, Hirano K, Beppu M, Takahashi A, Yamaguchi K, Fujiki H, Suganuma M. Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol 2010; 136:911-21. [PMID: 20049476 DOI: 10.1007/s00432-009-0733-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
PURPOSE Tumor necrosis factor-alpha inducing protein (Tipalpha) is a unique carcinogenic factor released from Helicobacter pylori (H. pylori). Tipalpha specifically binds to cells and is incorporated into cytosol and nucleus, where it strongly induces expression of TNF-alpha and chemokine genes mediated through NF-kappaB activation, resulting in tumor development. To elucidate mechanism of action of Tipalpha, we studied a binding protein of Tipalpha in gastric epithelial cells. METHODS Tipalpha binding protein was found in cell lysates of mouse gastric cancer cell line MGT-40 by FLAG-pull down assay and identified to be cell surface nucleolin by flow cytometry using anti-nucleolin antibody. Incorporation of Tipalpha into the cells was determined by Western blotting and expression of TNF-alpha gene was quantified by RT-PCR. RESULTS Nucleolin was co-precipitated with Tipalpha-FLAG, but not with del-Tipalpha-FLAG (an inactive mutant). After treatment with Tipalpha-FLAG, incorporated Tipalpha was co-immunoprecipitated with endogenous nucleolin using anti-nucleolin antibody. The direct binding of Tipalpha to recombinant His-tagged nucleolin fragment (284-710) was also confirmed. Although nucleolin is an abundant non-ribosomal protein of the nucleolus, we found that nucleolin is present on the cell surface of MGT-40 cells. Pretreatment with anti-nucleolin antibody enhanced Tipalpha-incorporation into the cells through nucleolin internalization. In addition, pretreatment with tunicamycin, an inhibitor of N-glycosylation, decreased the amounts of cell surface nucleolin and inhibited both internalization of Tipalpha and expression of TNF-alpha gene. CONCLUSIONS All the results indicate that nucleolin acts as a receptor for Tipalpha and shuttles Tipalpha from cell surface to cytosol and nuclei. These findings provide a new mechanistic insight into gastric cancer development with Tipalpha.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Saitama Cancer Center, Research Institute for Clinical Oncology, Kitaadachi-gun, Saitama 362-0806, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Watanabe T, Hirano K, Takahashi A, Yamaguchi K, Beppu M, Fujiki H, Suganuma M. Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 2010; 33:796-803. [PMID: 20460757 DOI: 10.1248/bpb.33.796] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleolin is an abundant non-ribosomal protein found in nucleolus and a major component of silver-stained nucleolar organizer region (AgNOR), a histopathological marker of cancer which is highly elevated in cancer cells. We recently reported that nucleolin on the cell surface of mouse gastric cancer cells acts as a receptor for tumor necrosis factor-alpha-inducing protein (Tipalpha), a new carcinogenic factor of Helicobacter pylori. In this study, we first examined the localization of nucleolin on cell surface of five gastric cancer cell lines by cell fractionation and flow cytometry: We found that large amounts of nucleolin were present on surface of MKN-45, KATOIII, MKN-74, and AGS cells, with smaller amounts on surface of MKN-1 cells. The membrane fraction of normal epithelial cells of mouse glandular stomach did not contain much nucleolin, suggesting that translocation of nucleolin to the cell surface occurs during carcinogenesis, making for easier binding with Tipalpha. AS1411, a nucleolin targeted DNA aptamer, inhibited growth of gastric cancer cell lines in this order of potency: MKN-45>KATOIII>AGS>MKN-74=MKN-1, associated with induction of S-phase cell cycle arrest. Fluorescein isothiocyanate (FITC)-AS1411 was more rapidly incorporated into MKN-45 and AGS than into MKN-1 cells, based on varying amounts of cell surface nucleolin. We think that AS1411 first binds to nucleolin on the cell surface and that the binding complex is then incorporated into the cells. All results indicate that nucleolin on the cell surface is a new and promising therapeutic target for treatment of gastric cancer.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Research Institute for Clinical Oncology, Saitama Cancer Center, Kitaadachigun, Saitama 362-0806, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Inoue K, Shiota S, Yamada K, Gotoh K, Suganuma M, Fujioka T, Ahmed K, Iha H, Nishizono A. Evaluation of a new tumor necrosis factor-alpha-inducing membrane protein of Helicobacter pylori as a prophylactic vaccine antigen. Helicobacter 2009; 14:135-43. [PMID: 19751439 DOI: 10.1111/j.1523-5378.2009.00713.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tumor necrosis factor (TNF)-alpha-inducing protein (Tip alpha) is a newly identified carcinogenic factor present in Helicobacter pylori. Tip alpha has the unique function of inducing TNF-alpha production by gastric cells in vitro and is assumed to be related with the development of gastritis and gastric cancer. We investigated the effects of vaccination with Tip alpha against H. pylori infection and analyzed the immune responses. METHODS C57BL/6 mice were immunized via the intranasal route with CpG, recombinant Tip alpha + CpG, and recombinant del-Tip alpha (a mutant of Tip alpha) + CpG. Eight weeks after the mice were infected with H. pylori (5 x 10(7) CFU), the number of colonizing bacteria in the stomach was calculated, and the histological severity of gastritis was evaluated. Levels of Tip alpha-specific IgG and IgA antibodies in mouse serum were measured by an enzyme-linked immunosorbent assay (ELISA). Local production of cytokines including Interleukin (IL)-10, TNF-alpha and Interferon (IFN)-gamma in gastric mucosa was also measured by real time-PCR. RESULTS Levels of Tip alpha-specific antibodies were significantly higher in Tip alpha-immunized and del-Tip alpha-immunized mice than in the infection control group. The numbers of colonizing bacteria were significantly reduced in Tip alpha-immunized mice (4.29 x 10(5) CFU/g) and del-Tip alpha immunized mice (2.5 x 10(5 )CFU/g) compared with infection control mice (5.7 x 10(6) CFU/g). The levels of IFN-gamma and IL-10 were significantly higher in del-Tip alpha-immunized mice than the infection control group. CONCLUSION Vaccinations with Tip alpha and del-Tip alpha were effective against H. pylori infection. The inhibition of H. pylori colonization is associated mainly with Th1 cell-mediated immunity.
Collapse
Affiliation(s)
- Kunimitsu Inoue
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Structural basis for the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. Biochem Biophys Res Commun 2009; 388:193-8. [PMID: 19643085 DOI: 10.1016/j.bbrc.2009.07.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 12/16/2022]
Abstract
Stomach cancer is strongly associated with infection by Helicobacter pylori. In 2005, we identified a new H. pylori gene encoding a TNF-alpha inducing protein (Tipalpha) that acts as a carcinogenic factor. Tipalpha is secreted from H. pylori as a homodimer whose subunits are linked by disulfide bonds. We also characterized a Tipalpha deletion mutant (del-Tipalpha) that lacks the N-terminal six amino acid residues (LQACTC), including two cysteines (C5 and C7) that form disulfide bonds, but nonetheless shows a weak ability to induce TNF-alpha expression. Here we report that del-Tipalpha has a novel elongated structure containing a 40-A-long alpha helix, and forms a heart-shaped homodimer via non-covalent bonds. Moreover, their circular dichroism spectra strongly suggest that the structures of the del-Tipalpha and Tipalpha homodimers are very similar. del-Tipalpha's unique mode of dimer formation provides important insight into protein-protein interactions and into the mechanism underlying the carcinogenicity of H. pylori infection.
Collapse
|
42
|
Jang JY, Yoon HJ, Yoon JY, Kim HS, Lee SJ, Kim KH, Kim DJ, Jang S, Han BG, Lee BI, Suh SW. Crystal structure of the TNF-alpha-Inducing protein (Tipalpha) from Helicobacter pylori: Insights into Its DNA-binding activity. J Mol Biol 2009; 392:191-7. [PMID: 19596016 DOI: 10.1016/j.jmb.2009.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori infection is one of the highest risk factors for gastroduodenal diseases including gastric cancer. Tumor necrosis factor-alpha (TNF-alpha) is one of the essential cytokines for tumor promotion, and thus, an H. pylori protein that induces TNF-alpha is believed to play a significant role in gastric cancer development in humans. The HP0596 gene product of H. pylori strain 26695 was identified as the TNF-alpha-inducing protein (Tipalpha). Tipalpha is secreted from H. pylori as dimers and enters the gastric cells. It was shown to have a DNA-binding activity. Here, we have determined the crystal structure of Tipalpha from H. pylori. Its monomer consists of two structural domains ("mixed domain" and "helical domain"). Tipalpha exists as a dimer in the crystal, and the dimeric structure represents a novel scaffold for DNA binding. A positively charged surface patch formed across the two monomers of the Tipalpha dimer by the loop between helices alpha1 and alpha2 may be important in DNA binding.
Collapse
Affiliation(s)
- Jun Young Jang
- Department of Chemistry, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tosi T, Cioci G, Jouravleva K, Dian C, Terradot L. Structures of the tumor necrosis factor alpha inducing protein Tipalpha: a novel virulence factor from Helicobacter pylori. FEBS Lett 2009; 583:1581-5. [PMID: 19401200 DOI: 10.1016/j.febslet.2009.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori secretes a unique virulence factor, Tipalpha, that enters gastric cells and both stimulates the production of the TNF-alpha and activates the NF-kappaB pathway. The structures of a truncated version of Tipalpha (TipalphaN34) in two crystal forms are presented here. Tipalpha adopts a novel beta(1)alpha(1)alpha(2)beta(2)beta(3)alpha(3)alpha(4) topology that can be described as a combination of three domains. A first region consists in a short flexible extension, a second displays a dodecin-like fold and a third is a helical bundle domain similar to the sterile alpha motif (SAM). Analysis of the oligomerisation states of TipalphaN34 in the crystals and in solution suggests that the disulfide bridges could hold together Tipalpha monomers during their secretion in the gastric environment.
Collapse
Affiliation(s)
- Tommaso Tosi
- European Synchrotron Radiation Facility, MX Group, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
44
|
Abstract
Gastric cancer (GC) is still one of the leading causes of cancer death. The mechanism of tumor genesis and progression is very complicated, which may include several immune and molecular factors. Genesis of GC is still unclear, while H. pylori associated inflammation is regarded as one of the causes, in which multiple molecule such as CagA and VacA may play important roles. While GC is progressing, tumor cells always induce cell apoptosis or dysfunction in immune system to obtain immune privilege or immune evasion. During this process, CD4+ T cells, CD8+ T cells and dendritic cells are involved. Besides, many kinds of growth factors, cytokines and adhesion molecules may induce and enhance this process. Immunotherapy as a adjuvant treatment for GC has already been studied intensively and promising results have been achieved.
Collapse
|
45
|
Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, Ricciardiello L. The role of viral and bacterial pathogens in gastrointestinal cancer. J Cell Physiol 2008; 216:378-88. [PMID: 18338378 DOI: 10.1002/jcp.21427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of Helicobacter pylori (H. pylori) with gastric cancer is thus far the best understood model to comprehend the causal relationship between a microbial pathogen and cancer in the human gastrointestinal tract. Besides H. pylori, a variety of other pathogens are now being recognized as potential carcinogens in different settings of human cancer. In this context, viral causes of human cancers are central to the issue since these account for 10-20% of cancers worldwide. In the case of H. pylori and gastric cancer, as well as the human papillomavirus and anal cancer, the causal relationship between the infectious agent and the related cancer in the gastrointestinal tract has been clearly confirmed by epidemiological and experimental studies. Similarly, Epstein-Barr virus and the oncogenic JC virus are being suggested as possible causative agents for cancers in the upper and lower gastrointestinal tract. This review discusses various viral and microbial pathogens and their oncogenic properties in the evolution of gastrointestinal carcinogenesis and summarizes the available experimental data make a convincing agreement favoring the associations between infectious agents and specific human cancers.
Collapse
Affiliation(s)
- Michael Selgrad
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas 75246, USA
| | | | | | | | | | | |
Collapse
|
46
|
Suganuma M, Yamaguchi K, Ono Y, Matsumoto H, Hayashi T, Ogawa T, Imai K, Kuzuhara T, Nishizono A, Fujiki H. TNF-alpha-inducing protein, a carcinogenic factor secreted from H. pylori, enters gastric cancer cells. Int J Cancer 2008; 123:117-22. [PMID: 18412243 DOI: 10.1002/ijc.23484] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TNF-alpha inducing protein (Tip alpha) is secreted from Helicobacter pylori (H. pylori): it is a potent inducer of TNF-alpha and chemokine genes, mediated through NF-kappaB activation, and it also induces tumor-promoting activity in Bhas 42 cells. To investigate the carcinogenic mechanisms of H. pylori with Tip alpha, we first examined how Tip alpha acts on gastric epithelial cells. We found that fluorescent-Tip alpha specifically bound to, and then entered, the cells in a dose- and temperature-dependent manner, whereas deletion mutant of Tip alpha (del-Tip alpha), an inactive form, neither bound to nor entered the cells, suggesting the presence of a specific binding molecule. Mutagenesis analysis of Tip alpha revealed that a dimer formation of Tip alpha with a disulfide bond is required for both specific binding and induction of TNF-alpha gene expression. A confocal laser scanning microscope revealed some Tip alpha in the nuclei, but del-Tip alpha was not present, which indicated that an active form of Tip alpha can penetrate the nucleus and may be involved in the induction of TNF-alpha gene expression. Examination of Tip alpha production and secretion in 28 clinical isolates revealed that H. pylori obtained from gastric cancer patients secreted Tip alpha in significantly higher amounts than did H. pylori from patients with chronic gastritis, suggesting that Tip alpha is an essential factor in H. pylori inflammation and cancer microenvironment in the human stomach. Tip alpha is thus a new carcinogenic factor of H. pylori that can enter the nucleus through a specific binding molecule, and its mechanism of action is completely different from that of CagA.
Collapse
Affiliation(s)
- Masami Suganuma
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Godlewska R, Pawlowski M, Dzwonek A, Mikula M, Ostrowski J, Drela N, Jagusztyn-Krynicka EK. Tip-alpha (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa. Curr Microbiol 2008; 56:279-86. [PMID: 18172719 DOI: 10.1007/s00284-007-9083-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 11/06/2007] [Indexed: 02/06/2023]
Abstract
A product of the Helicobacter pylori hp0596 gene (Tip-alpha) is a highly immunogenic homodimeric protein, unique for this bacterium. Cell fractionation experiments indicate that Tip-alpha is anchored to the inner membrane. In contrast, the three-dimensional model of the protein suggests that Tip-alpha is soluble or, at least, largely exposed to the solvent. hp0596 gene knockout resulted in a significant decrease in the level of H. pylori colonization as measured by real-time PCR assay. In addition, the Tip-alpha recombinant protein was determined to stimulate macrophage to produce IL-1alpha and TNF-alpha. Both results imply that Tip-alpha is rather loosely connected to the inner membrane and potentially released during infection.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kuzuhara T, Suganuma M, Oka K, Fujiki H. DNA-binding activity of TNF-alpha inducing protein from Helicobacter pylori. Biochem Biophys Res Commun 2007; 362:805-10. [PMID: 17765875 DOI: 10.1016/j.bbrc.2007.08.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) inducing protein (Tipalpha) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-alpha and chemokine genes and activation of nuclear factor-kappaB. Since Tipalpha enters gastric cancer cells, the Tipalpha binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipalpha was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipalpha and DNA, revealed that the affinity of Tipalpha for (dGdC)10 is 2400 times stronger than that of del-Tipalpha, an inactive Tipalpha. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipalpha. And the DNA-binding activity of Tipalpha was first demonstrated with a molecule secreted from H. pylori.
Collapse
Affiliation(s)
- T Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | |
Collapse
|
49
|
Doger FK, Meteoglu I, Ozkara E, Erkul ZK, Okyay P, Yükselen V. Expression of NF-kappaB in Helicobacter pylori infection. Dig Dis Sci 2006; 51:2306-9. [PMID: 17103034 DOI: 10.1007/s10620-006-9352-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 03/25/2006] [Indexed: 01/12/2023]
Abstract
Helicobacter pylori colonizes the gastric mucosa in humans and causes chronic gastritis. NF-kappaB has a key role as a mediator in mucosal inflammation. In this study, we examined the expression of NF-kappaB in the antral epithelial cells of H. pylori-infected and H. pylori-uninfected biopsies and examined these processes in relationship with grade and activity of gastritis, density of H. pylori, presence of the intestinal metaplasia, and atrophy. Fifty biopsies (35 H. pylori-positive patients and 15 H. pylori-negative controls) were studied. NF-kappaB immunohistochemical stain was performed. NF-kappaB activity in H. pylori-infected biopsies were markedly enhanced compared with uninflamed biopsies (P = 0.001). We also found positive correlation NF-kappaB expression with severity of gastritis (according to Sydney score) (P = 0.001), activity of gastritis (P = 0.046) and H. pylori load (P < 0.001), and atrophy (P = 0.004). We did not find a significant relationship between NF-kappaB and the presence of intestinal metaplasia (P = 0.355). These findings suggested that expression of NF-kappaB has an important role in H. pylori gastritis.
Collapse
Affiliation(s)
- Furuzan Kacar Doger
- Department of Pathology, Adnan Menderes Universty School of Medicine, Aydin, Turkey.
| | | | | | | | | | | |
Collapse
|
50
|
Kuzuhara T, Suganuma M, Kurusu M, Fujiki H. Helicobacter pylori-secreting protein Tipalpha is a potent inducer of chemokine gene expressions in stomach cancer cells. J Cancer Res Clin Oncol 2006; 133:287-96. [PMID: 17393199 DOI: 10.1007/s00432-006-0169-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 10/27/2006] [Indexed: 02/06/2023]
Abstract
PURPOSE Stomach cancer has a high mortality rate in East Asia, and is strongly associated with Helicobacter pylori (H. pylori) infection. H. pylori is known to express chemokine genes in the gastric mucosa, chemokines that are important host immune factors facilitating inflammation and tumor growth. To investigate the mechanism of carcinogenesis in the stomach, it is essential to determine which molecule of H. pylori is involved in induction of chemokines, but this has remained unclear. We previously reported that a tumor necrosis factor-alpha (TNF-alpha) inducing protein (Tipalpha) secreted from H. pylori acts as a tumor promoter in stomach cancer development, and thus started to investigate whether Tipalpha is involved in induction of chemokine genes. METHODS Comprehensive gene expression analysis was conducted using DNA microarray and KeyMolnet analyses. The gene expression was quantitatively analyzed by real-time RT-PCR. RESULTS Comprehensive and quantitative gene expression analyses revealed that Tipalpha induces gene expression of the chemokines Ccl2, Ccl7, Ccl20, Cxcl1, Cxcl2, Cxcl5 and Cxcl10 extensively and simultaneously in mouse stomach cancer cells, MGT-40. Tipalpha induced high levels of chemokine gene expression, whereas inactive deleted Tipalpha, del-Tipalpha, showed only marginal expression, suggesting a correlation between tumor promotion and chemokine gene expression by Tipalpha. MG-132, a proteasome inhibitor which represses NF-kappaB-activation, inhibited chemokine gene expressions. CONCLUSION We report here that Tipalpha of H. pylori gene product is a strong inducer of chemokine gene expressions, providing a new model for stomach cancer development.
Collapse
Affiliation(s)
- Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | | | | | | |
Collapse
|