1
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Ding Y, Jiang Y, Zeng H, Zhou M, Zhou X, Yu Z, Pan J, Geng X, Zhu Y, Zheng H, Huang S, Gong Y, Huang H, Xiong C, Huang D. Identification of a robust biomarker LAPTM4A for glioma based on comprehensive computational biology and experimental verification. Aging (Albany NY) 2024; 16:6954-6989. [PMID: 38613802 PMCID: PMC11087115 DOI: 10.18632/aging.205736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huabin Huang
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Ngai CH, Teo C, Foo JY, Lim S, Koh JQS, Chan HM, Loh NHW, Teo K. Application of a Standardized Treatment Paradigm as a Strategy to Achieve Optimal Onco-Functional Balance in Glioma Surgery. Brain Tumor Res Treat 2024; 12:100-108. [PMID: 38742258 PMCID: PMC11096634 DOI: 10.14791/btrt.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Gliomas, characterized by their invasive persistence and tendency to affect critical brain regions, pose a challenge in surgical resection due to the risk of neurological deficits. This study focuses on a personalized approach to achieving an optimal onco-functional balance in glioma resections, emphasizing maximal tumor removal while preserving the quality of life. METHODS A retrospective analysis of 57 awake surgical resections of gliomas at the National University Hospital, Singapore, was conducted. The inclusion criteria were based on diagnosis, functional boundaries determined by direct electrical stimulation, preoperative Karnofsky Performance Status score, and absence of multifocal disease on MRI. The treatment approach included comprehensive neuropsychological evaluation, determination of suitability for awake surgery, and standard asleep-awake-asleep anesthesia protocol. Tumor resection techniques and postoperative care were systematically followed. RESULTS The study included 53 patients (55.5% male, average age 39 years), predominantly right-handed. Over half reported seizures as their chief complaint. Tumors were mostly low-grade gliomas. Positive mapping of the primary motor cortex was conducted in all cases, with awake surgery completed in 77.2% of cases. New neurological deficits were observed in 26.3% of patients at 1 month after operation; most showed significant improvement at 6 months. CONCLUSION The standardized treatment paradigm effectively achieved an optimal onco-functional balance in glioma patients. While some patients experienced neurological deficits postoperatively, the majority recovered to their preoperative baseline within 3 months. The approach prioritizes patient empowerment and customized utilization of functional mapping techniques, considering the challenge of preserving diverse languages in a multilingual patient population.
Collapse
Affiliation(s)
- Chin Hong Ngai
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore.
| | - Colin Teo
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore
| | - Jen Yinn Foo
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Sheng Lim
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Jia Qian Sophie Koh
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore
| | - Hui-Minn Chan
- Department of Psychological Medicine, National University Health System, Singapore
| | - Ne-Hooi Will Loh
- Department of Anaesthesia, National University Health System, Singapore
| | - Kejia Teo
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore
| |
Collapse
|
4
|
Samartha MVS, Arora S, Palei S, Gupta V, Saxena S. Multiomics studies for neuro-oncology. RADIOMICS AND RADIOGENOMICS IN NEURO-ONCOLOGY 2024:133-160. [DOI: 10.1016/b978-0-443-18508-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Cheng G, Wang M, Zhang X, Zhang Y. Expression of IL-13Rα2 and FUS in glioma: clinicopathological and prognostic correlation. BMC Neurol 2023; 23:185. [PMID: 37158824 PMCID: PMC10165843 DOI: 10.1186/s12883-023-03237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND IL-13Rα2 is one of the most widely studied tumor-associated antigens in glioma research. Fused in sarcoma (FUS) is a DNA/RNA binding protein that is dysfunctional in various malignant tumors. However, the expression of IL-13Rα2 and FUS, their relationship with clinicopathological parameters and their prognostic value in glioma remain unclear. METHODS In the present study, the expression of IL-13Rα2 and FUS was measured in a glioma tissue array by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman's correlation test was used to determine the association between these two proteins expression. The Kaplan-Meier analysis was used to investigate the effect of these proteins on prognosis. RESULTS The expressions of IL-13Rα2 were significantly higher in high-grade gliomas (HGG) than that in low-grade gliomas (LGG) and was associated with IDH mutation status, whereas FUS location demonstrated no significant correlation with clinicopathological parameters. Moreover, a positive relationship was found between nuclear and cytoplasmic co-localization FUS and IL-13Rα2 expression. Kaplan-Meier analysis revealed that patients with IDH wide type or IL-13Rα2 had worst overall survival (OS) compared to other biomarkers. In HGG, IL-13Rα2 combined with nuclear and cytoplasmic co-localization of FUS was associated with worse OS. Multivariate analysis showed that tumor grade, Ki-67, P53 and IL-13Rα2 could be the independent prognostic factors for OS. CONCLUSION IL-13Rα2 expression was significantly associated with cytoplasmic distribution of FUS in human glioma samples and could be the independent prognostic factors for OS, while the prognostic value of its co-expression with cytoplasmic FUS in glioma need to be addressed in the future studies.
Collapse
Affiliation(s)
- Guang Cheng
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an, China
| | - Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Pathogenic Biology, Medicine School, Yan'an University, Yan'an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China.
| |
Collapse
|
6
|
Jena B, Saxena S, Nayak GK, Balestrieri A, Gupta N, Khanna NN, Laird JR, Kalra MK, Fouda MM, Saba L, Suri JS. Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework. Cancers (Basel) 2022; 14:4052. [PMID: 36011048 PMCID: PMC9406706 DOI: 10.3390/cancers14164052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of "radiomics and genomics" has been considered under the umbrella of "radiogenomics". Furthermore, AI in a radiogenomics' environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor's characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.
Collapse
Affiliation(s)
- Biswajit Jena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | - Gopal Krishna Nayak
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | | | - Neha Gupta
- Department of IT, Bharati Vidyapeeth’s College of Engineering, New Delhi 110056, India
| | - Narinder N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, AOU, University of Cagliari, 09124 Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
7
|
Cheng X, Ren Z, Liu Z, Sun X, Qian R, Cao C, Liu B, Wang J, Wang H, Guo Y, Gao Y. Cysteine cathepsin C: a novel potential biomarker for the diagnosis and prognosis of glioma. Cancer Cell Int 2022; 22:53. [PMID: 35109832 PMCID: PMC8812029 DOI: 10.1186/s12935-021-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cysteine cathepsin C encoded by the CTSC gene is an important member of the cysteine cathepsin family that plays a key role regulation of many types of tumors. However, whether CTSC is involved in the pathological process of glioma has not yet been reported. We comprehensively analyzed data from multiple databases and for the first time revealed a role and specific mechanism of action of CTSC in glioma, identifying it as a novel and efficient biomarker for the diagnosis and treatment of this brain tumor. Methods The expression of CTSC in glioma and its relationship with clinical characteristics and prognosis of patients with glioma were analyzed at different levels by using clinical sample information from several databases. CTSC expression levels in glioma and normal brain tissues, as well as in glioma cells and normal brain cells, was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Gene set enrichment analysis (GSEA) was used to reveal the signaling pathways that CTSC may participate in. The connectivity map was used to reveal small molecules that may inhibit CTSC expression in glioma, and the putative effect of these compounds was verified by RT-qPCR. Results Our analyses showed that the expression of CTSC in glioma was higher than that in non-cancerous cells. GSEA showed that CTSC expression may regulate the malignant development of glioma through Toll-like receptor signaling pathways, pathways in cancer, and extracellular matrix receptor interaction signaling pathways. And we proved piperlongumine and scopoletin could inhibit CTSC expression in glioma cells. Conclusions CTSC may serve as an efficient molecular target for the diagnosis and therapy of glioma, thereby improving the poor prognosis of patients with glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02417-6.
Collapse
Affiliation(s)
- Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Xiang Sun
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Chen Cao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China
| | - Binfeng Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jialin Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongbo Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Zhengzhou, Henan, 450003, China. .,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, Henan, China.
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Henan, 450003, Zhengzhou, China.
| |
Collapse
|
8
|
Liu Z, Liu B, Bian L, Wang H, Jia Y, Wang Y, Zhang W, Wang Y, Han Z, Cheng X, Lian X, Ren Z, Gao Y. ITGB3BP is a potential biomarker associated with poor prognosis of glioma. J Cell Mol Med 2021; 26:813-827. [PMID: 34953037 PMCID: PMC8817129 DOI: 10.1111/jcmm.17127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Despite the growing recognition of ITGB3BP as an essential feature of various cancers, the relationship between ITGB3BP and glioma remains unclear. The main aim of this study was to determine the prognostic and diagnostic value of ITGB3BP in glioma. RNA-Seq and microarray data from 2222 glioma patients were included, and we found that the expression level of ITGB3BP in glioma tissues was significantly higher than that in normal brain tissues. Moreover, ITGB3BP can be considered an independent risk factor for poor prognosis and has great predictive value for the prognosis of glioma. Gene Set Enrichment Analysis results showed that ITGB3BP contributes to the poor prognosis of glioma by activating tumour-related signalling pathways. Some small-molecule drugs were identified, such as hexestrol, which may specifically inhibit ITGB3BP and be useful in the treatment of glioma. The TIMER database analysis results revealed a correlation between the expression of ITGB3BP and the infiltration of various immune cells in glioma. Our findings provide the first evidence that the up-regulation of ITGB3BP correlates with poor prognosis in human glioma. Thus, ITGB3BP is a potential new biomarker that can be used for the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| | - Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Lu Bian
- Department of Dermatology, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Hongbo Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| | - Yulong Jia
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, China
| | - Yubo Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Wang Zhang
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Yanbiao Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Zhibin Han
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Lian
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Zhishuai Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| |
Collapse
|
9
|
Guo W, Ma S, Zhang Y, Liu H, Li Y, Xu JT, Yang B, Guan F. Genome-wide methylomic analyses identify prognostic epigenetic signature in lower grade glioma. J Cell Mol Med 2021; 26:449-461. [PMID: 34894053 PMCID: PMC8743658 DOI: 10.1111/jcmm.17101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most malignant and aggressive type of brain tumour with high heterogeneity and mortality. Although some clinicopathological factors have been identified as prognostic biomarkers, the individual variants and risk stratification in patients with lower grade glioma (LGG) have not been fully elucidated. The primary aim of this study was to identify an efficient DNA methylation combination biomarker for risk stratification and prognosis in LGG. We conducted a retrospective cohort study by analysing whole genome DNA methylation data of 646 patients with LGG from the TCGA and GEO database. Cox proportional hazard analysis was carried out to screen and construct biomarker model that predicted overall survival (OS). The Kaplan‐Meier survival curves and time‐dependent ROC were constructed to prove the efficiency of the signature. Then, another independent cohort was used to further validate the finding. A two‐CpG site DNA methylation signature was identified by multivariate Cox proportional hazard analysis. Further analysis indicated that the signature was an independent survival predictor from other clinical factors and exhibited higher predictive accuracy compared with known biomarkers. This signature was significantly correlated with immune‐checkpoint blockade, immunotherapy‐related signatures and ferroptosis regulator genes. The expression pattern and functional analysis showed that these two genes corresponding with two methylation sites contained in the model were correlated with immune infiltration level, and involved in MAPK and Rap1 signalling pathway. The signature may contribute to improve the risk stratification of patients and provide a more accurate assessment for precision medicine in the clinic.
Collapse
Affiliation(s)
- Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Tian Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Lin C, Chen J, Su Z, Liu P, Liu Z, Zhu C, Xu D, Lin Z, Xu P, Liu G, Liu X. A Calcium-Related Immune Signature in Prognosis Prediction of Patients With Glioma. Front Cell Dev Biol 2021; 9:723103. [PMID: 34650975 PMCID: PMC8505737 DOI: 10.3389/fcell.2021.723103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Immune checkpoint inhibitors have been successfully used in a variety of tumors, however, the efficacy of immune checkpoint blockade therapy for patients with glioma is limited. In this study, we tried to clarify gene expression signatures related to the prognosis of gliomas and construct a signature to predict the survival of patients with gliomas. Methods: Calcium-related differential expressed genes (DEGs) between gliomas and normal brain tissues were comprehensively analyzed in two independent databases. Univariate, multivariate Cox regression analysis and proportional hazards model were used to identify the prognostic of calcium-related risk score signature. The CIBERSORT algorithm and association analysis were carried out to evaluate the relationship between calcium-related signature and characteristic clinical features, tumor-infiltrating immune cell signatures as well as immune checkpoint molecules in glioma. A nomogram model was developed for predicting the overall survival for patients with gliomas. Results: We found the intersection of 415 DEGs between gliomas and normal brain tissues, and identified that an eighteen calcium-related gene panel was significantly enriched in these DEGs. A calcium-related signature derived risk score was developed to divide patients into high- and low-risk groups. Low levels of calcium-related gene expression in high-risk score cases were accompanied with worse outcomes of patients. Calcium-related risk scores were significantly associated with characteristic clinical features, immune infiltrating signatures of tumor microenvironment, and exhausted T cell markers including programmed cell death 1 (PD-1), lymphocyte activating 3 (LAG3), and T cell membrane protein 3 (TIM-3), which contribute to an adverse therapeutic effect of immunotherapy. Calcium-related signature risk score was considered as an independent prognostic parameter to predict the of overall survival of patients with gliomas in nomogram model. Conclusion: Our study demonstrated that calcium signaling pathway is highly associated with immunosuppression of gliomas and overall survival of patients. Targeting the calcium signaling pathway might be a new strategy to reverse the immunosuppressive microenvironment of gliomas and improve the efficacy of glioma immunotherapy.
Collapse
Affiliation(s)
- Cha Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China.,Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhaoying Su
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zheyu Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chenchen Zhu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dan Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongda Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xinjian Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Liu B, Liu Z, Wang Y, Lian X, Han Z, Cheng X, Zhu Y, Liu R, Zhao Y, Gao Y. Overexpression of GINS4 is associated with poor prognosis and survival in glioma patients. Mol Med 2021; 27:117. [PMID: 34556022 PMCID: PMC8461916 DOI: 10.1186/s10020-021-00378-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background GINS4, an indispensable component of the GINS complex, is vital for a variety of cancer. However, no known empirical research has focused on exploring relationships between GINS4 and glioma. Thus, this study aims to understand and explain the role of GINS4 in glioma. Method First, we used the data in the CGGA, TCGA, GEO, GEPIA, and HPA databases to explore the expression level of GINS4 in glioma, the correlation between GINS4 expression and the clinical features of glioma, its impact on the survival of glioma patients, and verified the analysis results through RT-qPCR, IHC, and meta-analysis. Subsequently, GSEA enrichment analysis is used to find the potential molecular mechanism of GINS4 to promote the malignant process of glioma and the anti-glioma drugs that may target GINS4 screened by CMap analysis. Moreover, we further explored the influence of the GINS4 expression on the immune microenvironment of glioma patients through the TIMER database. Results Our results suggested that GINS4 was elevated in glioma, and the overexpression of GINS4 was connected with a vast number of clinical features. The next, GINS4 as an independent prognostic factor, which can result in an unfavorable prognosis of glioma. Once more, GINS4 may be participating in the oncogenesis of glioma through JAK-STAT signaling pathways, etc. 6-thioguanine, Doxazosin, and Emetine had potential value in the clinical application of drugs targeting GINS4. Finally, the expression exhibited a close relationship with some immune cells, especially Dendritic cells. Conclusion GINS4 is an independent prognostic factor that led to a poor prognosis of glioma. The present study revealed the probable underlying molecular mechanisms of GINS4 in glioma and provided a potential target for improving the prognosis of glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00378-0.
Collapse
Affiliation(s)
- Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003, Zhengzhou, China
| | - Yanbiao Wang
- Department of Orthopedics, First Affiliated Hospital of Xinxiang Medical College, Xinjiang, China
| | - Xiaoyu Lian
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Zhibin Han
- Department of Neurosurgery of the First Affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First Affiliate Hospital of Harbin Medical University, Harbin, China
| | - Yongjie Zhu
- Department of Surgery of Spine and Spinal Cord, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Runze Liu
- Department of Surgery of Spine and Spinal Cord, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Yaoye Zhao
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003, Zhengzhou, China.
| |
Collapse
|
12
|
Choi HJ, Choi SH, You SH, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH, Park CK, Park SH. MGMT Promoter Methylation Status in Initial and Recurrent Glioblastoma: Correlation Study with DWI and DSC PWI Features. AJNR Am J Neuroradiol 2021; 42:853-860. [PMID: 33632732 DOI: 10.3174/ajnr.a7004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in primary and recurrent glioblastoma may change during treatment. The purpose of this study was to correlate MGMT promoter methylation status changes with DWI and DSC PWI features in patients with recurrent glioblastoma after standard treatment. MATERIALS AND METHODS Between January 2008 and November 2016, forty patients with histologically confirmed recurrent glioblastoma were enrolled. Patients were divided into 3 groups according to the MGMT promoter methylation status for the initial and recurrent tumors: 2 groups whose MGMT promoter methylation status remained, group methylated (n = 13) or group unmethylated (n = 18), and 1 group whose MGMT promoter methylation status changed from methylated to unmethylated (n = 9). Normalized ADC and normalized relative CBV values were obtained from both the enhancing and nonenhancing regions, from which histogram parameters were calculated. The ANOVA and the Kruskal-Wallis test followed by post hoc tests were performed to compare histogram parameters among the 3 groups. The t test and Mann-Whitney U test were used to compare parameters between group methylated and group methylated to unmethylated. Receiver operating characteristic curve analysis was used to measure the predictive performance of the normalized relative CBV values between the 2 groups. RESULTS Group methylated to unmethylated showed significantly higher means and 90th and 95th percentiles of the cumulative normalized relative CBV values of the nonenhancing region of the initial tumor than group methylated and group unmethylated (all P < .05). The mean normalized relative CBV value of the nonenhancing region of the initial tumor was the best predictor of methylation status change (P < .001), with a sensitivity of 77.78% and specificity of 92.31% at a cutoff value of 2.594. CONCLUSIONS MGMT promoter methylation status might change in recurrent glioblastoma after standard treatment. The normalized relative CBV values of the nonenhancing region at the first preoperative MR imaging were higher in the MGMT promoter methylation change group from methylation to unmethylation in recurrent glioblastoma.
Collapse
Affiliation(s)
- H J Choi
- From the Department of Radiology (H.J.C.), Cha Bundang Medical Center, Cha University, Seongnam, Korea
| | - S H Choi
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - S-H You
- Department of Radiology (S.-H.Y.), Korea University Hospital, Seoul, Korea
| | - R-E Yoo
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - K M Kang
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - T J Yun
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - J-H Kim
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - C-H Sohn
- Department of Radiology (S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-h.K., C.-H.S.), Seoul National University Hospital, Seoul, Korea
| | - C-K Park
- Department of Neurosurgery (C.-K.P.), Seoul National University Hospital, Seoul, Korea
| | - S-H Park
- Department of Pathology (S.-H.P.), Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
Li X, Fan W, Yao A, Song H, Ge Y, Yan M, Shan Y, Zhang C, Li P, Jia L. Downregulation of reelin predicts poor prognosis for glioma. Biomark Med 2020; 14:651-663. [PMID: 32613843 DOI: 10.2217/bmm-2019-0609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, we studied the relationship between RELN and prognosis in glioma. Materials & methods: Expression profiles and methylation data of RELN were obtained from bioinformatic datasets. Correlations between RELN and clinicopathological features and overall survival were respectively assessed using chi-square test and Kaplan-Meier analysis. Results: RELN was downregulated in glioma, and its downregulation correlated well with glioma malignancy and overall survival. Meanwhile, hypermethylation of RELN was significantly correlated with low RELN expression. Additionally, gene set enrichment analysis demonstrated that low expression of RELN correlated with many key cancer pathways, possibly highlighting the importance of RELN in carcinogenesis of brain. Conclusion: RELN may serve as a potential prognostic marker and promising target molecule for new therapy of glioma.
Collapse
Affiliation(s)
- Xueli Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wange Fan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Anhui Yao
- Department of Neurosurgery, The General Hospital of PLA, Beijing, China.,Department of Neurosurgery, 988th Hospital of Chinese People's Liberation Army, Zhengzhou, Henan Province, PR China
| | - Huiling Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunxiao Ge
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengyao Yan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yubo Shan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chujie Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pu Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liyun Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Liu Z, Shen F, Wang H, Li A, Wang J, Du L, Liu B, Zhang B, Lian X, Pang B, Liu L, Gao Y. Abnormally high expression of HOXA2 as an independent factor for poor prognosis in glioma patients. Cell Cycle 2020; 19:1632-1640. [PMID: 32436804 DOI: 10.1080/15384101.2020.1762038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, studies have revealed HOXA2 as a new oncogene, but its function is unknown in gliomas. We aimed to reveal the relationship between HOXA2 and glioma based on the Chinese Glioma Genome Atlas(CGGA) and the cancer genome atlas (TCGA). HOXA2 expression data and clinically relevant information of glioma patients were obtained from the CGGA and TCGA containing 1447 glioma tissues and five non-tumor brain tissues. The Wilcox or Kruskal tests were used to detect the correlation between the HOXA2 expression level and clinical data of glioma patients. the Kaplan-Meier method were used to examine the relationship between HOXA2 and overall patient survival. Gene set enrichment analysis (GSEA) was conducted to indirectly reveal the signaling pathways involved in HOXA2, and RT-PCR was used to detect HOXA2 expression in gliomas and non-tumor brain tissues. High HOXA2 expression was found to be positively correlated with clinical grade, histological type, age, and tumor recurrence, but negatively correlated with 1p19 codeletion and isocitrate dehydrogenase mutation status.RT-PCR results showed that HOXA2 expression levels were significantly higher in tumor tissues than in non-tumor brain tissues. GSEA showed that HOXA2 promoted the activation of the activation of the JAK-STAT-signaling pathway, focal adhesion, cell-adhesion-molecules-CAMS pathway, cytosolic DNA sensing pathway, and natural killer cell-mediated cytotoxicity. This study revealed for the first time that the novel oncogene,HOXA2, leads to poor prognosis in gliomas, and can be used as a biomarker for the diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Fei Shen
- Department of Ophthalmology, Kaifeng Central Hospital , Kaifeng, Henan, China
| | - Hongbo Wang
- Henan Provincial People's Hospital, Henan University People's Hospital , Zhengzhou, Henan, China
| | - Ang Li
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Jialin Wang
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Lin Du
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Binfeng Liu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Bo Zhang
- Henan Provincial People's Hospital, Henan University People's Hospital , Zhengzhou, Henan, China
| | - Xiaoyu Lian
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital , Beijing, China
| | - Liyun Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| |
Collapse
|
15
|
Wang S, Chen C, Li J, Xu X, Chen W, Li F. The CXCL12/CXCR4 axis confers temozolomide resistance to human glioblastoma cells via up-regulation of FOXM1. J Neurol Sci 2020; 414:116837. [PMID: 32334273 DOI: 10.1016/j.jns.2020.116837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignancy in the adult central nervous, and is characterized by high aggressiveness and a high mortality rate. The high mortality rate is largely due to the development of drug resistance. Temozolomide (TMZ) resistance is considered to be one of the major reasons responsible for GBM therapy failure. CXCL12/CXCR4 has been demonstrated to be involved in cell proliferation, migration, invasion, angiogenesis, and radioresistance in GBM. However, its role in TMZ resistance in GBM is unknown. In this study, we aimed to evaluate the role of CXCL12/CXCR4 in mediating the TMZ resistance to GBM cells and explore the underlying mechanisms. We found that the CXCL12/CXCR4 axis enhanced TMZ resistance in GBM cells. Further study showed that CXCL12/CXCR4 conferred TMZ resistance and promoted the migration and invasion of GBM cells by up-regulating FOXM1. This resistance was partially reversed by suppressing CXCL12/CXCR4 and FOXM1 silencing. Our study revealed the vital role of CXCL12/CXCR4 in mediating the resistance of GBM cells to TMZ, and suggested that targeting CXCL12/CXCR4 axis may attenuate the resistance to TMZ in GBM.
Collapse
Affiliation(s)
- Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
16
|
Zhang Y, Sui R, Chen Y, Liang H, Shi J, Piao H. Long noncoding RNA MT1JP inhibits proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway. J Cell Physiol 2019; 234:19553-19564. [PMID: 31066040 DOI: 10.1002/jcp.28553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
This study is carried out to elucidate the role of long noncoding RNAs (lncRNAs) MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells through the regulation of PTEN/Akt signaling pathway. The expression of MT1JP in 80 normal brain tissues and 138 glioma tissues, as well as glioma cell lines, was detected by quantitative reverse-transcription polymerase chain reaction. Besides, glioma cells with overexpression and low expression of MT1JP were constructed to confirm the role of MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells and the growth of glioma cells in vivo through the regulation of PTEN/Akt signaling pathway. MT1JP expression was downregulated in glioma tissues and cells. The low expression of MT1JP was considered as an independent risk factor for predicting overall survival in gliomas. After transfection of MT1JP overexpression plasmid, glioma cells showed decreased proliferation, migration and invasion ability, increased apoptosis rate, and decreased the tumorigenic ability of nude mice. The trends were opposite in glioma cells transfected with MT1JP poor expression plasmid. Collectively, our study suggests that lncRNA MT1JP is responsible for inhibiting proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Sui
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Chen
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hanyang Liang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ji Shi
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
17
|
Deng L, Zheng W, Dong X, Liu J, Zhu C, Lu D, Zhang J, Song L, Wang Y, Deng D. Chemokine receptor CXCR7 is an independent prognostic biomarker in glioblastoma. Cancer Biomark 2018; 20:1-6. [PMID: 28759950 DOI: 10.3233/cbm-151430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and most fatal primary brain cancer in adults. Due to the complex nature of GBM, its pathogenesis still remain unclear. Accumulating evidence suggest that chemokine receptor CXCR7 contribute to the development of various types of tumors. OBJECTIVE We aim to examine the prognostic significance of CXCR7 in GBM. METHODS CXCR7 were first detected by Immunohistochemistry. The association between CXCR7 and overall survival (OS) were examined. Moreover, multivariate analyses were conducted to evaluate the prognostic factors in GBM. RESULTS Of all 146 GBM patients recruited, 77 were in the high-expression subgroup, the rest 69 were in low-expression subgroup. There are no differences between these two subgroups in terms of age, gender, family history of cancer, extent of surgery, chemotherapy, radiotherapy, KPS, MGMT methylation status and tumor size. However, high CXCR7 expression was robustly correlated with poor OS in GBM. Multivariate analysis confirmed age, KPS scores, chemotherapy, IDH1 mutation, MGMT methylation and CXCR7 were independent factors in survival prognosis. CONCLUSIONS CXCR7 may involve in the clinical GBM progression, and CXCR7 could be a valuable prognostic marker in the treatment of GBM.
Collapse
Affiliation(s)
- Lina Deng
- Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China.,Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Wenxin Zheng
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China.,Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Xueshuang Dong
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jianghua Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Chunyu Zhu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Dan Lu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jin Zhang
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Laijun Song
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yuchao Wang
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Dan Deng
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
18
|
Li Y, Shan X, Wu Z, Wang Y, Ling M, Fan X. IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma: A systematic review and meta-analysis. Seizure 2018; 55:76-82. [PMID: 29414139 DOI: 10.1016/j.seizure.2018.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Gliomas, particularly low-grade gliomas (LGGs), are highly epileptogenic. Seizure is the most common presenting sign of LGG patients and significantly decreases their quality of life. Accordingly, there is a need for a better understanding of the mechanisms and risk factors of glioma-related epilepsy. The current study aimed to perform a comprehensive meta-analysis to investigate the correlation of isocitrate-dehydrogenase 1 (IDH1), an important molecular biomarker for glioma classification and prognosis, to preoperative seizure incidence in LGG. METHODS PUBMED, EMBASE, and Web of Science databases were searched for relevant studies. The odds ratio (OR) and corresponding 95% confidence interval (CI) were used as the primary measures to assess the correlation between IDH1 mutation and preoperative seizure incidence. RESULTS A total of 722 LGG patients, including 555 patients with IDH1 mutation and 167 patients with wild-type IDH1 were enrolled in the current meta-analysis. The pooled OR was 2.47 (95% CI 1.70-3.57, Z = 4.78, p < 0.01). No significant heterogeneity was observed among all included studies and no publication bias was identified. CONCLUSION The current meta-analysis identified that IDH1 mutation was correlated to a higher preoperative seizure incidence in LGG. This result would generate impetus for research on the mechanisms behind this correlation, and provide a new idea for the individualized treatment of glioma-related epilepsy.
Collapse
Affiliation(s)
- Yucai Li
- People's Hospital of Rizhao, Rizhao, 276800, China
| | - Xia Shan
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhifeng Wu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Yinyan Wang
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Miao Ling
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
19
|
Alekseeva EA, Kuznetsova EB, Tanas AS, Prozorenko EV, Zaytsev AM, Kurzhupov MI, Kirsanova ON, Rudenko VV, Strelnikov VV, Zaletaev DV. Loss of heterozygosity and uniparental disomy of chromosome region 10q23.3-26.3 in glioblastoma. Genes Chromosomes Cancer 2017; 57:42-47. [PMID: 28960585 DOI: 10.1002/gcc.22506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma is the most frequent and aggressive brain tumor in the adult population. Loss of heterozygosity (LOH) at markers of the long arm of chromosome 10 is the most common genetic alteration in glioblastoma, being detectable in up to 80% of cases. We have tested 124 glioblastoma samples for LOH by microsatellite analysis of the 10q23.3-26.3 region which contains the cancer related genes PTEN, FGFR2, MKI67, and MGMT. Then, a real-time quantitative microsatellite analysis (QuMA) was used to qualitatively estimate the change in copy number of this region in the samples with LOH. LOH was detected in 62.1% of the glioblastoma samples. A total of 64 samples with LOH in this region were examined by QuMA. LOH was attributed to a deletion in 37.5% of cases, and uniparental disomy (UPD) in 25% of cases. In 37.5% of cases, deletion and UPD segments alternated within the region: deletions being more frequent than UPD in its proximal part (encompassing PTEN and FGFR2) and both deletions and UPD occurring at the same frequency in its distal part (MGMT). Thus, we have investigated mechanisms of structural alterations of the chromosome region 10q23.3-26.3 in glioblastoma. In addition to a structural deletion of this region, UPD was identified as a frequent cause of LOH. We resume that more detailed studies of glioblastoma at the molecular genetic level are essential in search for potential markers suitable for predicting the disease outcome and the response to treatment.
Collapse
Affiliation(s)
- Ekaterina A Alekseeva
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia.,Medical Genetics Laboratory, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia.,Human Molecular Genetics Laboratory, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander S Tanas
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia.,Molecular and Cell Genetics Chair, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Prozorenko
- Oncology Chair, Faculty of Therapy, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anton M Zaytsev
- Department of Neurosurgery, Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail I Kurzhupov
- Department of Neurosurgery, Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga N Kirsanova
- Department of Neurosurgery, Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Viktoria V Rudenko
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Vladimir V Strelnikov
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia.,Molecular and Cell Genetics Chair, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V Zaletaev
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia.,Human Molecular Genetics Laboratory, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
20
|
Jing D, Zhang Q, Yu H, Zhao Y, Shen L. Identification of WISP1 as a novel oncogene in glioblastoma. Int J Oncol 2017; 51:1261-1270. [PMID: 28902353 DOI: 10.3892/ijo.2017.4119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor and has a high mortality in humans. However, mechanisms and factors involved in the progression of glioblastoma remain elusive. WISP1 (WNT1 inducible signaling pathway protein 1), has been suggested to be a critical regulator of cancer development. The aim of this study was to investigate the role of WISP1 in regulating the progression of glioblastoma. Clinicopathological characteristics of glioblastoma were assessed, and higher levels of WISP1 were positively associated with advanced clinical stage and a poor prognosis. Consistently, WISP1 expression was significantly upregulated in glioblastoma tissue and cell lines compared with normal tissue and cells. Additionally, inhibition of WISP1 greatly suppressed cell proliferation, migration, and invasion and promoted apoptosis and cell cycle arrest of glioblastoma cells. Further study indicated that downregulation of WISP1 suppressed cell proliferation associated with the gene expression of c‑myc and cyclin D1 and cellular signaling such as through the ERK pathway, while inhibiting epithelial-mesenchymal transition and MMP9. Finally, knockdown of WISP1 markedly suppressed in vivo tumor growth and sensitized glioblastoma cells to temozolomide. This study identified WISP1 as an oncogene in glioblastoma and suggests that WISP1 may serve as a potential molecular marker and treatment target for glioblastoma.
Collapse
Affiliation(s)
- Di Jing
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Zhang
- Teaching and Research Section of Surgery, Xiangnan University Affiliated Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Haiming Yu
- Department of Critical Care Medicine, Hunan Provincial Peopel's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangfang Shen
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
21
|
Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017; 81:397-415. [PMID: 28486641 PMCID: PMC5581219 DOI: 10.1093/neuros/nyx103] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging plays an ever evolving role in the diagnosis, treatment planning, and post-therapy assessment of brain tumors. This review provides an overview of current magnetic resonance imaging (MRI) methods routinely employed in the care of the brain tumor patient. Specifically, we focus on advanced techniques including diffusion, perfusion, spectroscopy, tractography, and functional MRI as they pertain to noninvasive characterization of brain tumors and pretreatment evaluation. The utility of both structural and physiological MRI in the post-therapeutic brain evaluation is also reviewed with special attention to the challenges presented by pseudoprogression and pseudoresponse.
Collapse
Affiliation(s)
- Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| | - Marc C. Mabray
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| |
Collapse
|
22
|
Wu D, Zhao B, Cao X, Wan J. Long non-coding RNA LINK-A promotes glioma cell growth and invasion via lactate dehydrogenase A. Oncol Rep 2017; 38:1525-1532. [DOI: 10.3892/or.2017.5806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
23
|
赖 爱, 谢 斌. BCAT1促进肿瘤发生发展的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1536-1542. [DOI: 10.11569/wcjd.v25.i17.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
支链氨基酸转移酶1(branched-chain amino acid transaminase 1, BCAT1)是催化支链氨基酸代谢的关键酶. 国内外研究已证实BCAT1在多种恶性肿瘤中呈现高表达, 并提示与肿瘤细胞增殖、转移及侵袭密切相关. 本文拟就BCAT1的理化性质、生物学功能及其与肿瘤发生、发展的相关研究进行简要综述, 为进一步研究BCAT1与恶性肿瘤的关系提供线索.
Collapse
|
24
|
Okuma C, Fernández R. EVALUACIÓN DE GLIOMAS POR TÉCNICAS AVANZADAS DE RESONANCIA MAGNÉTICA. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Semukunzi H, Roy D, Li H, Khan GJ, Lyu X, Yuan S, Lin S. IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomed Pharmacother 2017; 89:805-811. [PMID: 28273642 DOI: 10.1016/j.biopha.2017.02.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Particular mutations in the isocitrate dehydrogenase gene (IDH) were discovered in several gliomas citing astrocytoma, oligodendroglioma, and glioblastoma multiform, but also in leukemia; these mutations were discovered in nearly all cases of secondary glioblastomas, they evolve from lower-grade gliomas, but are limited in primary high-grade glioblastoma multiform. These mutations distinctively produce (D)-2-hydroxyglutarate (D-2-HG) from alpha-ketoglutarate (α-KG). (D)-2-hydroxyglutarate is accumulated to very high concentrations which inhibit the function of enzymes that are dependent on alpha-ketoglutarate. This modification leads to a hyper-methylated state of DNA and histones, resulting in different gene expression that can activate oncogenes and inactivate tumor-suppressor genes. In our work we review the impact of the mutations that occur in IDH genes, we focus on their impact on distribution in cancer. As IDH mutations appear in many different conditions we expose the extent of IDH mutations and derivate their impact on cancer prognosis, diagnosis, and even their oncogenicity, we will also link their impact to HIF-1α and derivate some target and finally, we present some of the therapeutics under research and out on market.
Collapse
Affiliation(s)
- Herve Semukunzi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Debmalya Roy
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyang Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ghulam Jilany Khan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol 2017; 134:505-512. [PMID: 28233083 DOI: 10.1007/s11060-017-2379-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/29/2017] [Indexed: 02/08/2023]
Abstract
Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.
Collapse
Affiliation(s)
- Kirsten Ludwig
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Harley I Kornblum
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Jiao W, Xun X, Liu J, Yang J, Wang Q, Wang L, Chen C, Wang H, Dai P. Diagnostic significance of suppressor of cytokine signalling 3 (SOCS3) methylation and its correlation with IDH1 mutation in Chinese glioma patients. Biomarkers 2016; 21:686-691. [DOI: 10.3109/1354750x.2016.1139001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Weili Jiao
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Xiaojie Xun
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Jinhui Liu
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Jianhui Yang
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Qi Wang
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Lin Wang
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Chao Chen
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| | - Penggao Dai
- The National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, PR China
| |
Collapse
|
28
|
Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 2016; 477:743-748. [PMID: 27363339 DOI: 10.1016/j.bbrc.2016.06.129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Long non-coding RNA taurine upregulated gene 1 (TUG1) acts as an important regulator in cancer pathogenesis; however, its functional mechanism in glioma development remains unclear. This study aims to explore the potential function of TUG1 in glioma by sponging miR-26a. METHODS The expression of TUG1, miR-26a, and phosphatase and tensin homolog (PTEN) in 20 paired glioma tissues was detected by quantitative real-time PCR and subjected to correlation analysis. Bioinformatics analysis was performed by using DIANA Tools. Abnormal TUG1 expression was conducted in two glioma cells to analyze its regulation on miR-26a and PTEN using real-time PCR, western blot, and luciferase reporter assay. RESULTS TUG1 expression was confirmed to be upregulated in glioma tissues, and showed an inverse correlation with downregulated miR-26a. TUG1 could negatively regulate the expression of miR-26a in glioma cells. The bioinformatics prediction revealed putative miR-26a binding sites within TUG1 transcripts. Further experiments demonstrated the positive regulation of TUG1 on the miR-26a target, PTEN, wherein TUG1 could inhibit the negative regulation of miR-26a on PTEN by binding its 3'UTR. Additionally, the expression of PTEN was also upregulated in glioma tissues, showing a positive or negative correlation with TUG1 or miR-26a, respectively. CONCLUSION TUG1 could serve as a miR-26a sponge in human glioma cells, contributing to the upregulation of PTEN. This study revealed a new TUG1/miR-26a/PTEN regulatory mechanism and provided a further understanding of the tumor-suppressive role of TUG1 in glioma development.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Gang An
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Meng Zhang
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Qingfang Ma
- Department of Neurosurgery, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
29
|
Li J, Zhang M, An G, Ma Q. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood) 2016; 241:644-9. [PMID: 26748401 DOI: 10.1177/1535370215622708] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
Previous studies have revealed multiple functional roles of long non-coding RNA taurine upregulated gene 1 in different types of malignant tumors, except for human glioma. Here, it was designed to study the potential function of taurine upregulated gene 1 in glioma pathogenesis focusing on its regulation on cell apoptosis. The expression of taurine upregulated gene 1 in glioma tissues was detected by quantitative RT-PCR and compared with that in adjacent normal tissues. Further correlation analysis was conducted to show the relationship between taurine upregulated gene 1 expression and different clinicopathologic parameters. Functional studies were performed to investigate the influence of taurine upregulated gene 1 on apoptosis and cell proliferation by using Annexin V/PI staining and cell counting kit-8 assays, respectively. And, caspase activation and Bcl-2 expression were analyzed to explore taurine upregulated gene 1-induced mechanism. taurine upregulated gene 1 expression was significantly inhibited in glioma and showed significant correlation with WHO Grade, tumor size and overall survival. Further experiments revealed that the dysregulation of taurine upregulated gene 1 affected the apoptosis and cell proliferation of glioma cells. Moreover, taurine upregulated gene 1 could induce the activation of caspase-3 and-9, with inhibited expression of Bcl-2, implying the mechanism in taurine upregulated gene 1-induced apoptosis. taurine upregulated gene 1 promoted cell apoptosis of glioma cells by activating caspase-3 and -9-mediated intrinsic pathways and inhibiting Bcl-2-mediated anti-apoptotic pathways, acting as a tumor suppressor in human glioma. This study provided new insights for the function of taurine upregulated gene 1 in cancer biology, and suggested a potent application of taurine upregulated gene 1 overexpression for glioma therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou 221009, Jiangsu, China
| | - Meng Zhang
- Department of Neurosurgery, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou 221009, Jiangsu, China
| | - Gang An
- Department of Neurosurgery, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou 221009, Jiangsu, China
| | - Qingfang Ma
- Department of Neurosurgery, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou 221009, Jiangsu, China
| |
Collapse
|
30
|
Han L, Liu D, Li Z, Tian N, Han Z, Wang G, Fu Y, Guo Z, Zhu Z, Du C, Tian Y. HOXB1 Is a Tumor Suppressor Gene Regulated by miR-3175 in Glioma. PLoS One 2015; 10:e0142387. [PMID: 26565624 PMCID: PMC4643923 DOI: 10.1371/journal.pone.0142387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022] Open
Abstract
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dehua Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Tian
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziwu Han
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guang Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Fu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zifeng Zhu
- Department of Interventional Therapy, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| |
Collapse
|
31
|
Antico Arciuch VG, Tedesco L, Fuertes M, Arzt E. Role of RSUME in inflammation and cancer. FEBS Lett 2015; 589:3330-5. [PMID: 26297826 DOI: 10.1016/j.febslet.2015.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
RSUME (for RWD-domain-containing sumoylation enhancer), RWDD3 gene, was identified from a pituitary tumor cell with increased tumorigenic and angiogenic potential, and has higher expression in cerebellum, pituitary, heart, kidney, liver, pancreas, adrenal gland and prostate. RSUME is induced by cellular stress like hypoxia and heat shock, and is increased in pituitary tumors, in gliomas and in VHL tumors. Seven splicing forms have been described. Two of them correspond to non-coding RNAs and the other five possess an RWD domain in the N-terminus and differ in their C-terminal end. RSUME enhances SUMO conjugation by interacting with the SUMO conjugase Ubc9, increases Ubc9 thioester formation and therefore favors sumoylation of specific targets. RSUME increases IκB levels and stabilizes HIF-1α during hypoxia, leading to inhibition of NF-κB and increased HIF-1 transcriptional activity. RSUME inhibits pVHL function, thus suppressing HIF-1 and 2α ubiquitination and degradation. Disruption of the RWD domain structure of RSUME indicated that this domain is critical for RSUME action. The findings point to an important role of RSUME in the regulation and stability of specific targets, which are key regulatory mediators in cancer and inflammation.
Collapse
Affiliation(s)
- Valeria G Antico Arciuch
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:95. [PMID: 26015937 DOI: 10.3978/j.issn.2305-5839.2015.03.57] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Traditional classification of diffuse infiltrating gliomas (DIGs) as World Health Organization (WHO) grades II-IV is based on histological features of a heterogeneous population of tumors with varying prognoses and treatments. Over the last decade, research efforts have resulted in a better understanding of the molecular basis of glioma formation as well as the genetic alterations commonly identified in diffuse gliomas. METHODS A systematic review of the current literature related to advances in molecular phenotypes, mutations, and genomic analysis of gliomas was carried out using a PubMed search for these key terms. Data was studied and synthesized to generate a comprehensive review of glioma subclassification. RESULTS This new data helps supplement the existing WHO grading scale by subtyping gliomas into specific molecular groups. The emerging molecular profile of diffuse gliomas includes the studies of gene expression and DNA methylation in different glioma subtypes. The discovery of novel mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) provides new biomarkers as points of stratification of gliomas based on prognosis and treatment response. Gliomas that harbor CpG island hypermethylator phenotypes constitute a subtype of glioma with improved survival. The difficulty of classifying oligodendroglial lineage of tumors can be aided with identification of 1p/19q codeletion. Glioblastomas (GBMs) previously described as primary or secondary can now be divided based on gene expression into proneural, mesenchymal, and classical subtypes and the identification of mutations in the promoter region of the telomerase reverse transcriptase (TERTp) have been correlated with poor prognosis in GBMs. CONCLUSIONS Incorporation of new molecular and genomic changes into the existing WHO grading of DIGs may provide better patient prognostication as well as advance the development of patient-specific treatments and clinical trials.
Collapse
Affiliation(s)
- Krishanthan Vigneswaran
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Stewart Neill
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Costas G Hadjipanayis
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Mabray MC, Barajas RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat 2015; 3:8-23. [PMID: 25977902 PMCID: PMC4426283 DOI: 10.14791/btrt.2015.3.1.8] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients.
Collapse
Affiliation(s)
- Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ramon F Barajas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Bian EB, Li J, Xie YS, Zong G, Li J, Zhao B. LncRNAs: New Players in Gliomas, With Special Emphasis on the Interaction of lncRNAs With EZH2. J Cell Physiol 2014; 230:496-503. [PMID: 24403021 DOI: 10.1002/jcp.24549] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Jia Li
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Yong-Sheng Xie
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Gang Zong
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| | - Jun Li
- School of Pharmacy; Anhui Medical University; Hefei China
| | - Bing Zhao
- Department of Neurosurgery; The Second Affiliated Hospital of Anhui Medical University; Hefei China
- Cerebral Vascular Disease Research Center; Anhui Medical University; Hefei China
| |
Collapse
|
35
|
Li S, Lv Q, Sun H, Xue Y, Wang P, Liu L, Li Z, Li Z, Tian X, Liu YH. Expression of TRAP1 predicts poor survival of malignant glioma patients. J Mol Neurosci 2014; 55:62-68. [PMID: 25189320 DOI: 10.1007/s12031-014-0413-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/21/2014] [Indexed: 01/31/2023]
Abstract
TRAP1/Hsp75 (tumor necrosis factor receptor-associated protein 1), a paralogue of the Hsp90 family, has been recently described as a molecular marker and novel therapeutic target in local and metastatic prostate cancer. It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of TRAP1 in 236 cases of glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of TRAP1 with clinicopathological characteristics and prognosis of patients. It was proved that TRAP1 protein expression was increased in glioma compared with that in normal brain tissue. Moreover, TRAP1 immunohistochemical staining was correlated with World Health Organization (WHO) grade and Karnofsky performance score (KPS). Strong positive TRAP1 staining is more frequently detected in glioma of advanced grade or low KPS. It is also demonstrated that TRAP1 could be an independent negative prognostic factor in glioma, for patients with glioma of strong TRAP1 staining tend to have high risk of death. These results proved that TRAP1 is associated with prognosis of glioma, which may also suggest the potential role of TRAP1 in glioma management.
Collapse
Affiliation(s)
- Shuai Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Hanxue Sun
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xin Tian
- Department of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
36
|
Bian EB, Li J, He XJ, Zong G, Jiang T, Li J, Zhao B. Epigenetic modification in gliomas: role of the histone methyltransferase EZH2. Expert Opin Ther Targets 2014; 18:1197-206. [PMID: 25046371 DOI: 10.1517/14728222.2014.941807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Gliomas are characterized by increased anaplasia, malignization, proliferation and invasion. They exhibit high resistance to standard treatment with combinations of radiotherapy and chemotherapy. They are currently the most common primary malignancy tumors in the brain that is related to a high mortality rate. Recently, increasing evidence suggests that EZH2 is involved in a number of glioma cell processes, including proliferation, apoptosis, invasion and angiogenesis. AREAS COVERED In this review, we emphasize the role of EZH2 in gliomas. We also address that EZH2 interacting with DNA methylation mediates transcriptional repression of specific genes in gliomas, and the regulation of EZH2 by microRNAs in gliomas. EXPERT OPINION Although the exact role of EZH2 in gliomas has not been fully elucidated, to understand the role of EZH2 proteins in epigenetic modification will provide valuable insights into the causes of gliomas, and pave the way to the potential future applications of EZH2 in the treatment of gliomas.
Collapse
Affiliation(s)
- Er-Bao Bian
- The Second Affiliated Hospital of Anhui Medical University, Department of Neurosurgery , Hefei 230601 , China
| | | | | | | | | | | | | |
Collapse
|
37
|
Living longer with adult high-grade glioma:setting a research agenda for patients and their caregivers. J Neurooncol 2014; 120:1-10. [DOI: 10.1007/s11060-014-1516-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
38
|
Dong Q, Cai N, Tao T, Zhang R, Yan W, Li R, Zhang J, Luo H, Shi Y, Luan W, Zhang Y, You Y, Wang Y, Liu N. An axis involving SNAI1, microRNA-128 and SP1 modulates glioma progression. PLoS One 2014; 9:e98651. [PMID: 24959930 PMCID: PMC4068992 DOI: 10.1371/journal.pone.0098651] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/05/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glioblastoma is an extraordinarily aggressive disease that requires more effective therapeutic options. Snail family zinc finger 1, dysregulated in many neoplasms, has been reported to be involved in gliomas. However, the biological mechanisms underlying SNAI1 function in gliomas need further investigation. METHODS Quantitative real-time PCR was used to measure microRNA-128 (miR-128) expression level and western blot was performed to detect protein expression in U87 and U251 cells and human brain tissues. Cell cycle, CCK-8, transwell and wound-healing assays were performed. Dual-luciferase reporter assay was used for identifying the mechanism of SNAI1 and miR-128b regulation. The mechanism of miR-128 targeting SP1 was also tested by luciferase reporter assay. Immunohistochemistry and in situ hybridisation staining were used for quantifying SNAI1, SP1 and miR-128 expression levels in human glioma samples. RESULTS The Chinese Glioma Genome Atlas (CGGA) data revealed that SNAI1 was up-regulated in glioma and we confirmed the findings in normal and glioma tissues. SNAI1 depletion by shRNA retarded the cell cycle and suppressed proliferation and invasion in glioma cell lines. The CGGA data showed that the Pearson correlation index between SNAI1 and miR-128 was negatively correlated. SNAI1 suppressed miR-128b expression by binding to the miR-128b specific promoter motif, and miR-128 targeted SP1 via binding to the 3'-untranslated region of SP1. Moreover, introduction of miR-128 anti-sense oligonucleotide alleviated the cell cycle retardation, proliferation and invasion inhibition induced by SNAI1 shRNA. Immunohistochemistry and in situ hybridisation analysis of SNAI1, SP1 and miR-128 unraveled their expression levels and correlations in glioma samples. CONCLUSIONS We propose that the SNAI1/miR-128/SP1 axis, which plays a vital role in glioma progression, may come to be a clinically relevant therapeutic target.
Collapse
Affiliation(s)
- Qingsheng Dong
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Luo
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenkang Luan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaxuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Zhang JQ, Yao QH, Kuang YQ, Ma Y, Yang LB, Huang HD, Cheng JM, Yang T, Liu EY, Liang L, Fan KX, Zhao K, Xia X, Gu JW. Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma. Hum Pathol 2014; 45:2154-61. [PMID: 25033730 DOI: 10.1016/j.humpath.2014.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/07/2023]
Abstract
Our aim was to investigate the expression of micro-RNA-200b (miR-200b) and cAMP-responsive element-binding protein 1 (CREB-1) in astrocytoma and its efficacy for predicting outcome. Both miR-200b and CREB-1 messenger RNA expression was measured in 122 astrocytomas and 30 nonneoplastic brain specimens by quantitative real-time polymerase chain reaction. Expression of miR-200b was significantly lower in astrocytoma than in nonneoplastic brain (P < .001), whereas CREB-1 messenger RNA expression was significantly elevated in the tumors (P < .001). Both miR-200b down-regulation and CREB-1 up-regulation were significantly associated with advanced pathologic grade (P = .002 and P = .006, respectively). Low miR-200b expression correlated negatively with Karnofsky performance score (P = .03), and high CREB-1 expression correlated positively with mean tumor diameter (P = .03). By Kaplan-Meier analysis, low miR-200b, high CREB-1, and coexistence of abnormal miR-200b and CREB-1 expression (low miR-200b/high CREB-1) were predictive of shorter progression-free survival and overall survival in both grade III and grade IV astrocytoma. By multivariate analysis, only low miR-200b/high CREB-1 expression was an independent prognostic factor for poor prognosis in astrocytoma of advanced grade. Both miR-200b and CREB-1 may play important cooperative roles in the progression of human astrocytoma. The efficacy of miR-200b and CREB-1 together as a predictor of prognosis in astrocytoma patients is shown for the first time.
Collapse
Affiliation(s)
- Jun-qing Zhang
- Department of Oncology, the 264th Hospital of PLA, Taiyuan, 030001, China
| | - Qing-he Yao
- Department of Neurosurgery, Baoji Central Hospital, Baoji, 721008, China
| | - Yong-qin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Yuan Ma
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Li-bin Yang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Hai-dong Huang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Jing-ming Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - En-yu Liu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Liang Liang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Ke-xia Fan
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Kai Zhao
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Xun Xia
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China
| | - Jian-wen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, Sichuan Province, 610083, China.
| |
Collapse
|
40
|
Ahmed R, Oborski MJ, Hwang M, Lieberman FS, Mountz JM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014; 6:149-70. [PMID: 24711712 PMCID: PMC3969256 DOI: 10.2147/cmar.s54726] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas.
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J Oborski
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misun Hwang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank S Lieberman
- Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Zhao J, Ma W, Zhao H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro Oncol 2013; 16:103-12. [PMID: 24311641 DOI: 10.1093/neuonc/not145] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioma is rarely curable, and factors that influence the prognosis of glioma patients are not fully understood. Loss of heterozygosity (LOH) of 1p/19q has long been known to be a typical molecular signature of oligodendroglial neoplasms. However, whether LOH of 1p/19q is associated with survival in gliomas remains controversial. Here our goal was to evaluate the association between LOH of 1p/19q and progression-free survival (PFS) and overall survival (OS) by conducting a meta-analysis among glioma cases. METHODS The PubMed and Embase databases were searched from the earliest records to May 2013 to identify studies that met prestated inclusion criteria. Reference lists of retrieved articles were also reviewed. Three authors independently extracted information needed for further analysis. Either a fixed- or a random-effects model was used to calculate the overall combined hazard ratio (HR) estimates. RESULTS Twenty-eight eligible studies involving 3 408 cases were included in the meta-analysis. Compared with the chromosomal intact group, codeletion of 1p and 19q was associated with a better PFS (HR = 0.63; 95% CI, 0.52-0.76) and OS (HR = 0.43; 95% CI, 0.35-0.53). Subgroup analyses showed this association to be independent of detection methods and the grades and subtypes of gliomas. Furthermore, isodeletion of chromosome 1p predicted a similar favorable disease outcome (PFS: HR = 0.68; 95% CI, 0.47-0.97) (OS: HR = 0.51; 95% CI, 0.35-0.75), especially in low-grade gliomas, whereas isodeletion of 19q only indicated longer PFS (HR = 0.70; 95% CI, 0.56-0.87). CONCLUSION Codeletion of 1p and 19q is associated with better survival rates in glioma. Isodeletion of 1p predicts similar outcomes but to a lesser extent, whereas the effects of isodeletion of 19q remained only marginal.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Corresponding author: Jiaxin Zhao, MD, Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, Heilongjiang, China 150001.
| | | | | |
Collapse
|
42
|
Mao P, Hever-Jardine MP, Rahme GJ, Yang E, Tam J, Kodali A, Biswal B, Fadul CE, Gaur A, Israel MA, Spinella MJ. Serine/threonine kinase 17A is a novel candidate for therapeutic targeting in glioblastoma. PLoS One 2013; 8:e81803. [PMID: 24312360 PMCID: PMC3842963 DOI: 10.1371/journal.pone.0081803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023] Open
Abstract
STK17A is a relatively uncharacterized member of the death-associated protein family of serine/threonine kinases which have previously been associated with cell death and apoptosis. Our prior work established that STK17A is a novel p53 target gene that is induced by a variety of DNA damaging agents in a p53-dependent manner. In this study we have uncovered an additional, unanticipated role for STK17A as a candidate promoter of cell proliferation and survival in glioblastoma (GBM). Unexpectedly, it was found that STK17A is highly overexpressed in a grade-dependent manner in gliomas compared to normal brain and other cancer cell types with the highest level of expression in GBM. Knockdown of STK17A in GBM cells results in a dramatic alteration in cell shape that is associated with decreased proliferation, clonogenicity, migration, invasion and anchorage independent colony formation. STK17A knockdown also sensitizes GBM cells to genotoxic stress. STK17A overexpression is associated with a significant survival disadvantage among patients with glioma which is independent of age, molecular phenotype, IDH1 mutation, PTEN loss, and alterations in the p53 pathway and partially independent of grade. In summary, we demonstrate that STK17A provides a proliferative and survival advantage to GBM cells and is a potential target to be exploited therapeutically in patients with glioma.
Collapse
Affiliation(s)
- Pingping Mao
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Mary P. Hever-Jardine
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gilbert J. Rahme
- Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Eric Yang
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Janice Tam
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Anita Kodali
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bijesh Biswal
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Camilo E. Fadul
- Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Arti Gaur
- Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Mark A. Israel
- Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
43
|
Cerebral radiation injury and changes in the brain tissues of rat models with glioma. Tumour Biol 2013; 35:2379-82. [DOI: 10.1007/s13277-013-1314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/13/2013] [Indexed: 12/25/2022] Open
|
44
|
Yang M, Yuan Y, Zhang H, Yan M, Wang S, Feng F, Ji P, Li Y, Li B, Gao G, Zhao J, Wang L. Prognostic significance of CD147 in patients with glioblastoma. J Neurooncol 2013; 115:19-26. [PMID: 23925827 DOI: 10.1007/s11060-013-1207-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
CD147, also known as extracellular matrix metalloproteinase inducer, is a widely distributed cell surface glycoprotein that belongs to the immunoglobulin superfamily. CD147 has been proved to be enriched on the surface of many tumor cells, promoting tumor growth, invasion and metastasis by its stimulation effect on adjacent fibroblasts to produce matrix metalloproteinases. In this study, we aimed to explore the expression pattern of CD147 in glioblastoma (GBM) and investigate whether it could be used to assess subsequent prognosis of patients. For that, we recruited a total of 206 patients with pathologically confirmed GBM and 36 normal control brain tissue specimens. The expression of CD147 in GBM and normal tissues was investigated by immunohistochemistry assay. Genetic factors including MGMT and IDH1 mutation were also investigated to justify the prognostic significance of CD147. Results showed that CD147 expression was increased in GBM compared with that in normal tissues. Kaplan-Meier analysis showed that increased CD147 expression was associated with poor overall survival of patients with GBM. Moreover, Cox's proportional hazards model revealed that CD147 expression was an independent and significant prognostic marker of overall survival in GBM patients. These results proved that CD147 expression was relatively abundant in GBM and can be potentially used to predict prognosis and treatment response in GBM patients.
Collapse
Affiliation(s)
- Min Yang
- Institute of Orthopaedics and Traumatology of PLA of China, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Feng X, Miao G, Han Y, Xu Y. CARMA3 is overexpressed in human glioma and promotes cell invasion through MMP9 regulation in A172 cell line. Tumour Biol 2013; 35:149-54. [PMID: 23893382 DOI: 10.1007/s13277-013-1018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022] Open
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein 10 or CARMA3 (CARD10) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aims to investigate the expression pattern and biological roles of CARMA3 protein in human glioma. CARMA3 expression was analyzed in 97 glioma specimens using immunohistochemistry. We observed negative staining in normal astrocytes and positive staining of CARMA3 in 25 out of 97 (25.8%) glioma samples. Overexpression of CARMA3 correlated with tumor grade (p < 0.001). Small interfering RNA knockdown was performed in A172 cell line with relatively high CARMA3 expression. Using colony formation assay and Matrigel invasion assay, we showed that CARMA3 depletion in A172 cell line inhibited cell proliferation and cell invasion. In addition, mRNA and protein levels of matrix metallopeptidase 9 (MMP9) were downregulated, indicating CARMA3 might regulate invasion through MMP9. In conclusion, CARMA3 serves as an oncoprotein in human glioma by regulating cell invasion, possibly through MMP9 regulation.
Collapse
Affiliation(s)
- Xingjun Feng
- Department of Neurosurgery, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China,
| | | | | | | |
Collapse
|
46
|
Tian L, Zhang Y, Chen Y, Cai M, Dong H, Xiong L. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma. PLoS One 2013; 8:e58069. [PMID: 23516431 PMCID: PMC3596336 DOI: 10.1371/journal.pone.0058069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/29/2013] [Indexed: 11/30/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.
Collapse
Affiliation(s)
- Li Tian
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Chen
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Min Cai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (HD); (LX)
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (HD); (LX)
| |
Collapse
|