1
|
WIN SY, HORIO F, SATO J, MOTAI Y, SEO H, FUJISAWA S, SATO T, OISHI E, HTUN LL, BAWM S, OKAGAWA T, MAEKAWA N, KONNAI S, OHASHI K, MURATA S. Potential of histamine release factor for the utilization as a universal vaccine antigen against poultry red mites, tropical fowl mites, and northern fowl mites. J Vet Med Sci 2025; 87:1-12. [PMID: 39567007 PMCID: PMC11735211 DOI: 10.1292/jvms.24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae), tropical fowl mites (TFMs, Ornithonyssus bursa), and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous mites that are distributed worldwide which pose a serious challenge to the poultry industry and negatively impact poultry production and welfare. Vaccines represent a promising approach for controlling avian mites, and the identification of antigens with broad efficacy against multiple avian mite species is advantageous for vaccine control. This study aimed to identify histamine release factor (HRF), which was previously reported as a candidate vaccine antigen against PRMs, from TFMs and NFMs and to analyze its cross-reactivity and acaricidal effects on different avian mite species. The deduced amino acid sequences of the HRFs identified in the TFMs and NFMs were highly homologous to those of the PRMs. We generated recombinant HRF (rHRF) of TFMs, NFMs, and PRMs, and immune plasma against each rHRF was produced by immunization with each antigen. The immune plasma contained antibodies specific to each antigen and showed cross-reactivity with rHRFs from different avian mites. Moreover, PRM nymphs (protonymphs) artificially fed each immune plasma showed higher mortality rates than those fed the control plasma. These results suggest that HRFs can be used as candidate antigens for a universal vaccine with broad efficacy across avian mites.
Collapse
Affiliation(s)
- Shwe Yee WIN
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumiya HORIO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei SATO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinosuke MOTAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hikari SEO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Sotaro FUJISAWA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | - Lat Lat HTUN
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw BAWM
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro OKAGAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoya MAEKAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoru KONNAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development (GU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Kazuhiko OHASHI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shiro MURATA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Sun M, Wu F, Xu Z, Wang Y, Cao J, Zhou Y, Zhou J, Zhang H, Xu Q. The TCTP is essential for ovarian development and oviposition of Rhipicephalus haemaphysaloides. Vet Parasitol 2024; 329:110212. [PMID: 38781831 DOI: 10.1016/j.vetpar.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.
Collapse
Affiliation(s)
- Meng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
4
|
D’Amico S, Krasnowska EK, Manni I, Toietta G, Baldari S, Piaggio G, Ranalli M, Gambacurta A, Vernieri C, Di Giacinto F, Bernassola F, de Braud F, Lucibello M. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020; 9:1260. [PMID: 32438775 PMCID: PMC7290969 DOI: 10.3390/cells9051260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Silvia D’Amico
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Ewa Krystyna Krasnowska
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Marco Ranalli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flavio Di Giacinto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- Oncology and Hemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Maria Lucibello
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| |
Collapse
|
5
|
Radiosensitivity of Cancer Cells Is Regulated by Translationally Controlled Tumor Protein. Cancers (Basel) 2019; 11:cancers11030386. [PMID: 30893896 PMCID: PMC6468585 DOI: 10.3390/cancers11030386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 01/08/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) is a ubiquitous multifunctional protein that is essential for cell survival. This study reveals that the regulation of radiosensitivity of cancer cells is yet another function of TCTP. The relationship between endogenous TCTP levels and sensitivity to radiation was examined in breast cancer cell lines (T47D, MDA-MB-231, and MCF7) and lung cancer cells lines (A549, H1299, and H460). Cancer cells with high expression levels of TCTP were more resistant to radiation. TCTP overexpression inhibited radiation-induced cell death, while silencing TCTP led to an increase in radiosensitivity. DNA damage in the irradiated TCTP-silenced A549 cells was greater than in irradiated control shRNA-transfected A549 cells. p53, a well-known reciprocal regulator of TCTP, was increased in irradiated TCTP down-regulated A549 cells. Moreover, introduction of p53 siRNA in TCTP knocked-down A549 cells abrogated the increased radiosensitivity induced by TCTP knockdown. An in vivo xenograft study also confirmed enhanced radiosensitivity in TCTP down-regulated A549 cells. These findings suggest that TCTP has the potential to serve as a therapeutic target to overcome radiation resistance in cancer, a major problem for the effective treatment of cancers.
Collapse
|
6
|
Neuhäuser K, Küper L, Christiansen H, Bogdanova N. Assessment of the role of translationally controlled tumor protein 1 (TPT1/TCTP) in breast cancer susceptibility and ATM signaling. Clin Transl Radiat Oncol 2019; 15:99-107. [PMID: 30815593 PMCID: PMC6378894 DOI: 10.1016/j.ctro.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
TPT1 sequencing identified one novel, potentially damaging mutation in 200 breast cancer patients. TPT1 is not required for the recognition of radiation-induced DNA damage. Phosphorylation of KAP1 and CHEK2 by ATM is not affected by silencing of TPT1. Nuclear localization and foci formation of TPT1 potentially depends on cell type. TPT1 knockdown might exert a marginally significant effect on residual γH2A.X foci.
Background and purpose The translationally controlled tumor protein 1 (TPT1/TCTP) has been implicated in the intracellular DNA damage response. We tested the role of TPT1 in breast cancer (BC) predisposition and re-evaluated its function in Ataxia-Telangiectasia mutated (ATM)-mediated damage recognition and DNA repair. Material and methods The TPT1 coding sequence was scanned for mutations in genomic DNA from 200 breast cancer patients. TPT1 was down-regulated through siRNA in breast epithelial and fibroblast cell cultures. ATM activation after irradiation (IR) was analyzed by western blotting, and γH2A.X foci were monitored by immunocytochemistry. Results The sequencing study identified a novel, potentially damaging missense mutation in a single patient. Silencing of TPT1 did not significantly affect ATM kinase activity and did not impair the initial formation of γH2A.X foci, while we observed a marginally significant effect on residual γH2A.X foci at 6–48 h after IR. Conclusions TPT1 does not harbor common mutations as BC susceptibility gene. Consistently, TPT1 protein is not required for the recognition of radiation-induced DNA damage via the ATM-dependent pathway and has only slight impact on timely repair. These results may be important when considering TPT1 as a DNA damage marker.
Collapse
Affiliation(s)
- Katharina Neuhäuser
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Leonie Küper
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Hans Christiansen
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Natalia Bogdanova
- Radiation Oncology Research Unit, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Wu F, Huang W, Liu Q, Xu X, Zeng J, Cao L, Hu J, Xu X, Gao Y, Jia S. Responses of Antioxidant Defense and Immune Gene Expression in Early Life Stages of Large Yellow Croaker ( Pseudosciaena crocea) Under Methyl Mercury Exposure. Front Physiol 2018; 9:1436. [PMID: 30364149 PMCID: PMC6191496 DOI: 10.3389/fphys.2018.01436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Early life stages of marine organisms are the most sensitive stages to environment stressors including pollutants. In order to understand the toxicological effects induced by MeHg exposure on juveniles of large yellow croaker (Pseudosciaena crocea), a toxicity test was performed wherein fish were exposed to sub-lethal concentrations of MeHg under laboratory conditions (18 ± 1°C; 26 ± 1 in salinity). After 30 days of 0–4.0 μg L-1 MeHg exposure, SOD activity was significantly decreased in the 0.25, 1.0, and 4.0 μg L-1 treatments; while CAT activity was significantly increased in the 4.0 μg L-1 treatments; GSH level, GPx activity were significantly elevated in the 4.0 μg L-1 treatments, respectively. Meanwhile, malondialdehyde content was also significantly increased in the 1.0 and 4.0 μg L-1 treatments with respect to the control. Acetylcholinesterase activity was significantly decreased by 18.3, 25.2, and 21.7% in the 0.25, 1.0, and 4.0 μg L-1 treatments, respectively. The expression of TCTP, GST3, Hsp70, Hsp27 mRNA were all up-regulated in juveniles with a dose-dependent manner exposed to MeHg. These results suggest that large yellow croaker juveniles have the potential to regulate the levels of antioxidant enzymes and initiate immune response in order to protect fish to some extent from oxidative stress induced by MeHg.
Collapse
Affiliation(s)
- Fangzhu Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Qiang Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Xiaoqun Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,Ocean College, Zhejiang University, Hangzhou, China
| | - Liang Cao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ji Hu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Xudan Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Yuexin Gao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Shenghua Jia
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,Zhejiang Surveying Institute of Estuary and Coast, Hangzhou, China
| |
Collapse
|
8
|
Jojic B, Amodeo S, Ochsenreiter T. The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei. MICROBIAL CELL 2018; 5:460-468. [PMID: 30386790 PMCID: PMC6206406 DOI: 10.15698/mic2018.10.652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The translationally controlled tumor protein TCTP, is a universally conserved protein that seems to be of essential function in all systems tested so far. TCTP is involved in a multitude of cellular functions including cell cycle control, cell division, apoptosis and many more. The mechanism of how TCTP is involved in most of these functions remains elusive. Here we describe that TCTP is a cytoplasmic protein involved in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
9
|
Jojic B, Amodeo S, Bregy I, Ochsenreiter T. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J Cell Sci 2018; 131:jcs.206417. [PMID: 29661850 PMCID: PMC5992589 DOI: 10.1242/jcs.206417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/28/2018] [Indexed: 12/02/2022] Open
Abstract
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei. We identified two paralogs (TCTP1 and TCTP2) that are differentially expressed in the life cycle of the parasite. The genes have identical 5′ untranslated regions (UTRs) and almost identical open-reading frames. The 3′UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3′UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. Summary:T. brucei has two TCTP genes that are differentially expressed during the parasite life cycle owing to their different 3′UTRs. TCTP also has a role in regulating cell growth and morphology.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
10
|
Shears RK, Bancroft AJ, Sharpe C, Grencis RK, Thornton DJ. Vaccination Against Whipworm: Identification of Potential Immunogenic Proteins in Trichuris muris Excretory/Secretory Material. Sci Rep 2018. [PMID: 29540816 PMCID: PMC5851985 DOI: 10.1038/s41598-018-22783-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trichuris trichiura (whipworm) is one of the four major soil-transmitted helminth infections of man, affecting an estimated 465 million people worldwide. An effective vaccine that induces long-lasting protective immunity against T. trichiura would alleviate the morbidity associated with this intestinal-dwelling parasite, however the lack of known host protective antigens has hindered vaccine development. Here, we show that vaccination with ES products stimulates long-lasting protection against chronic infection in male C57BL/6 mice. We also provide a framework for the identification of immunogenic proteins within T. muris ES, and identify eleven candidates with direct homologues in T. trichiura that warrant further study. Given the extensive homology between T. muris and T. trichiura at both the genomic and transcriptomic levels, this work has the potential to advance vaccine design for T. trichiura.
Collapse
Affiliation(s)
- Rebecca K Shears
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Immunology Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, England
| | - Allison J Bancroft
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Immunology Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, England
| | - Catherine Sharpe
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Immunology Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, England
| | - Richard K Grencis
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Immunology Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, England
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Immunology Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, England.
| |
Collapse
|
11
|
Zheng J, Chen Y, Li Z, Cao S, Zhang Z, Jia H. Translationally controlled tumor protein is required for the fast growth of
Toxoplasma gondii
and maintenance of its intracellular development. FASEB J 2018; 32:906-919. [DOI: 10.1096/fj.201700994r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun Zheng
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Yaping Chen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoran Li
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Shinuo Cao
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Honglin Jia
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
12
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
13
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
14
|
Jia Z, Wang M, Yue F, Wang X, Wang L, Song L. The immunomodulation of a maternal translationally controlled tumor protein (TCTP) in Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2017; 60:141-149. [PMID: 27871901 DOI: 10.1016/j.fsi.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Translationally controlled tumor protein (TCTP) is initially described as a highly conserved protein implicated in cell growth, and it is subsequently confirmed to play important roles in mediating the innate immune response, especially the inflammatory. In the present study, the full-length cDNA sequence of a TCTP from Zhikong scallop Chlamys farreri (designed as CfTCTP) was cloned by rapid amplification of cDNA ends (RACE) technique based on the expression sequence tag (EST) analysis. It was of 1230 bp with an open reading frame (ORF) of 543 bp encoding a polypeptide of 180 amino acids. The deduced amino acid sequence contained a conserved TCTP signature sequence (from I47 to E58) and it shared 26.1%-48.9% similarities with previously identified TCTPs. CfTCTP was clustered with the TCTP from Argopectehs irradias in the phylogenetic tree and was designated into a single branch of mollusk with TCTP from Ruditapes philippinarum. The mRNA transcripts of CfTCTP were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression level of CfTCTP in oocytes and fertilized eggs kept at a higher level, and was down-regulated from 2-cell embryos to the lowest level in gastrula. Then it was up-regulated in trochophore and dropped down in the late veliger larvae to the similar level as that in oocytes. After pathogen-associated molecular patterns (PAMPs) stimulation, the expression of CfTCTP mRNA in haemocytes was increased at 3 or 6 h, and fall down to the normal level at 24 h. The recombinant protein of CfTCTP could induce the release of histamine from BT-549 cells. All these results indicated that CfTCTP was a pro-inflammatory factor and it could be maternally transferred from female gonad to oocytes and offspring, and play pivotal role in the embryonic development and immune protection of scallops.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Embryo, Nonmammalian/immunology
- Immunity, Innate
- Immunomodulation
- Pathogen-Associated Molecular Pattern Molecules/metabolism
- Pectinidae/classification
- Pectinidae/genetics
- Pectinidae/growth & development
- Pectinidae/immunology
- Phylogeny
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment/veterinary
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
15
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
16
|
Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Cui L, Li B, Gao Y, Chai Z. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 2016; 8:663-71. [DOI: 10.1039/c5mt00264h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The toxicity mechanisms of rice roots under inorganic mercury (IHg) or methylmercury (MeHg) stress were investigated using metalloproteomic approaches.
Collapse
Affiliation(s)
- Yunyun Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Jiating Zhao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yu-Feng Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Xiaohan Xu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bowen Zhang
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongjie Liu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Liwei Cui
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bai Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Zhifang Chai
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
17
|
Ren C, Chen T, Jiang X, Wang Y, Hu C. The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP). FISH & SHELLFISH IMMUNOLOGY 2014; 41:137-146. [PMID: 25193395 DOI: 10.1016/j.fsi.2014.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein that existed ubiquitously in different eukaryote species and distributed widely in various tissues and cell types. In this study, the gene structure and biological function of TCTP were first characterized in echinoderm. An echinoderm TCTP named StmTCTP was identified from sea cucumber (Stichopus monotuberculatus) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The StmTCTP cDNA is 1219 bp in length, containing a 5'-untranslated region (UTR) of 77 bp, a 3'-UTR of 623 bp and an open reading frame (ORF) of 519 bp that encoding a protein of 172 amino acids with a deduced molecular weight of 19.80 kDa and a predicted isolectric point of 4.66. Two deduced signal signatures termed TCTP1 and TCTP2, a microtubule binding domain, a Ca(2+) binding domain and the conserved residues forming Rab GTPase binding surface were found in the StmTCTP amino acid sequence. For the gene structure, StmTCTP contains four exons separated by three introns. The anti-oxidation and heat shock protein activities of recombinant TCTP protein were also demonstrated in this study. In addition, the expression of StmTCTP was found to be significantly upregulated by polyriboinosinic polyribocytidylic acid [poly (I:C)], lipopolysaccharides (LPS) or inactivated bacteria challenge in in vitro primary culture experiments of coelomocytes, suggested that the sea cucumber TCTP might play critical roles not only in the defense against oxidative and thermal stresses, but also in the innate immune defense against bacterial and viral infections.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| |
Collapse
|
18
|
Molecular cloning, characterisation and expression of the translationally controlled tumor protein gene in rock bream (Oplegnathus fasciatus). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Immune modulations and protection by translationally controlled tumor protein (TCTP) in Fenneropenaeus indicus harboring white spot syndrome virus infection. J Invertebr Pathol 2014; 120:33-9. [PMID: 24837973 DOI: 10.1016/j.jip.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022]
Abstract
Fenneropenaeus indicus translationally controlled tumor protein (Fi-TCTP) was cloned and expressed using pET 100a-D-TOPO in prokaryotic expression system and it exhibited putative antioxidant activity as assessed in vitro by enhanced growth of Escherichia coli (E. coli) in presence of hydrogen peroxide. The protective efficacy of recombinant Fi-TCTP (rFi-TCTP) was evaluated in F. indicus by intramuscular and oral administration. Intramuscular injection of rFi-TCTP to shrimps, on subsequent white spot syndrome virus (WSSV) infection exhibited 42% relative percent survival. To understand the mechanism of protection, immunological parameters such as reactive oxygen species (ROS), phenoloxidase and mitochondrial membrane potential (MMP) were assessed in early (24h) and late (60h) stages of infection. rFi-TCTP pretreatment significantly lowers the WSSV induced ROS generation and respiratory burst during early and late stages of infection. Further, WSSV induced apoptotic changes such as reduced haemocyte count, loss in MMP and DNA fragmentation were significantly reduced during early and late stage of infection upon rFi-TCTP administration. Hence, the immunomodulatory studies suggest that protective effect of rFi-TCTP in treated shrimps, might be due to the reduction in ROS and apoptosis, following decreased mitochondrial damage together with reduced phenoloxidase activity and respiratory burst.
Collapse
|
20
|
Wanachottrakul N, Chotigeat W, Kedjarune-Leggat U. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1077-1085. [PMID: 24398913 DOI: 10.1007/s10856-013-5137-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.
Collapse
Affiliation(s)
- Nattaporn Wanachottrakul
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | | | | |
Collapse
|
21
|
Zhang ZX, Geng DY, Han Q, Liang SD, Guo HR. The C-terminal cysteine of turbot Scophthalmus maximus translationally controlled tumour protein plays a key role in antioxidation and growth-promoting functions. JOURNAL OF FISH BIOLOGY 2013; 83:1287-1301. [PMID: 24124757 DOI: 10.1111/jfb.12231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The translationally controlled tumour protein (TCTP) of turbot Scophthalmus maximus (SmTCTP) contains only one cysteine (Cys¹⁷⁰) at the C-terminal end. The biological role of this C-terminal Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP was examined by site-directed mutation of C170A (Cys¹⁷⁰ →Ala¹⁷⁰). It was found that C170A mutation not only obviously decreased the antioxidation capacity of the mutant-smtctp-transformed bacteria exposed to 0·22 mM hydrogen peroxide, but also significantly interrupted the normal growth and survival of the mutant-smtctp-transformed bacteria and flounder Paralichthys olivaceus gill (FG) cells, indicating a key role played by Cys¹⁷⁰ in the antioxidation and growth-promoting functions of SmTCTP. This study also suggested that the self-dimerization or dimerization with other interacting proteins is critical to the growth-promoting function of SmTCTP.
Collapse
Affiliation(s)
- Z-X Zhang
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, P. R. China
| | | | | | | | | |
Collapse
|
22
|
You L, Ning X, Liu F, Zhao J, Wang Q, Wu H. The response profiles of HSPA12A and TCTP from Mytilus galloprovincialis to pathogen and cadmium challenge. FISH & SHELLFISH IMMUNOLOGY 2013; 35:343-350. [PMID: 23643947 DOI: 10.1016/j.fsi.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Heat shock 70 kDa protein 12A (HSPA12A) is an atypical member of HSP70 family, and the translationally controlled tumor protein (TCTP) is a novel HSP with chaperone-like activity. They are both involved in protecting organisms against various stressors. In the present study, the cDNAs of HSPA12A and TCTP (called MgHSPA12A and MgTCTP) were identified from Mytilus galloprovincialis by RACE approaches. The full-length cDNA of MgHSPA12A and MgTCTP encoded a peptide of 491 and 171 amino acids, respectively. Real-time PCR was employed to analyze the tissue distribution and temporal expression of these two genes after bacterial challenge and cadmium (Cd) exposure. It was found that the transcripts of MgHSPA12A and MgTCTP were dominantly expressed in gonad and muscle, respectively. The expression level of MgTCTP at 48 h post Vibrio anguillarum challenge was detected to be significantly up-regulated in hepatopancreas (P < 0.05). As concerned to Cd exposure, 2.0-fold increase of MgHSPA12A expression compared to that of the control was observed at 48 h in 5 μg/L Cd(2+)-treated group, while the expression levels of MgTCTP were significantly decreased after exposed to both 5 and 50 μg/L Cd(2+) for 24 h and 96 h. These results suggested the potential involvement of MgHSPA12A and MgTCTP in the mediation of the immune responses and environmental stress in mussels.
Collapse
Affiliation(s)
- Liping You
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Entamoeba histolytica: identification of thioredoxin-targeted proteins and analysis of serine acetyltransferase-1 as a prototype example. Biochem J 2013; 451:277-88. [PMID: 23398389 DOI: 10.1042/bj20121798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, possesses the dithiol-containing redox proteins Trx (thioredoxin) and TrxR (Trx reductase). Both proteins were found to be covalently modified and inactivated by metronidazole, a 5-nitroimidazole drug that is commonly used to treat infections with microaerophilic protozoan parasites in humans. Currently, very little is known about enzymes and other proteins participating in the Trx-dependent redox network of the parasite that could be indirectly affected by metronidazole treatment. On the basis of the disulfide/dithiol-exchange mechanism we constructed an active-site mutant of Trx, capable of binding interacting proteins as a stable mixed disulfide intermediate to screen the target proteome of Trx in E. histolytica. By applying Trx affinity chromatography, two-dimensional gel electrophoresis and MS, peroxiredoxin and 15 further potentially redox-regulated proteins were identified. Among them, EhSat1 (E. histolytica serine acetyltransferase-1), an enzyme involved in the L-cysteine biosynthetic pathway, was selected for detailed analysis. Binding of Trx to EhSat1 was verified by Far-Western blot analysis. Trx was able to restore the activity of the oxidatively damaged EhSat1 suggesting that the TrxR/Trx system protects sensitive proteins against oxidative stress in E. histolytica. Furthermore, the activity of peroxiredoxin, which is dependent on a functioning TrxR/Trx system, was strongly reduced in metronidazole-treated parasites.
Collapse
|
24
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
25
|
Li D, Deng Z, Liu X, Qin B. Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). JOURNAL OF PLANT PHYSIOLOGY 2013; 170:497-504. [PMID: 23273927 DOI: 10.1016/j.jplph.2012.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/08/2012] [Accepted: 11/10/2012] [Indexed: 05/04/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a multi-functioning protein that carries out vital roles in various life processes. In this study, a new TCTP gene, designated as HbTCTP1, was isolated in Hevea brasiliensis. The full-length complementary DNA (cDNA) of HbTCTP1 contained a maximum open reading frame (ORF) of 507base pair (bp) encoding 168 amino acids. The sequence comparison showed that the deduced HbTCTP1 indicated high identities to plant TCTP proteins, and clustered in the dicot cluster of plant TCTPs. Although HbTCTP1 and human TCTP proteins did not parallel in overall sequence similarity, they indicated highly similar 3D structures with a nearly identical spatial organization of α-helices, β-sheets, and coil regions. Real time reverse-transcription PCR (RT-PCR) analyses showed that HbTCTP1 was expressed throughout different tissues and developmental stages of leaves. Besides being related to tapping panel dryness (TPD), the HbTCTP1 transcripts were regulated by various treatments, including drought, low temperature, high salt, ethrel (ET), wounding, H2O2, and methyl jasmonate (Me-JA) treatments. The recombinant HbTCTP1 fusion protein was shown to protect supercoiled plasmid DNA from damages induced by metal-catalyzed generation of reactive oxygen species. The (45)Ca(2+)-overlay assay showed that HbTCTP1 was a calcium-binding protein. Our results are greatly helpful in understanding the molecular characterization and expression profiles of HbTCTP1, and lay the foundation for further analyzing the function of HbTCTP1 in rubber tree.
Collapse
Affiliation(s)
- Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | | | | | | |
Collapse
|
26
|
Wei J, Guo M, Ji H, Yan Y, Ouyang Z, Huang X, Hang Y, Qin Q. Grouper translationally controlled tumor protein prevents cell death and inhibits the replication of Singapore grouper iridovirus (SGIV). FISH & SHELLFISH IMMUNOLOGY 2012; 33:916-925. [PMID: 22986590 DOI: 10.1016/j.fsi.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
Translationally controlled tumor protein (TCTP) is an important molecule involved in multiple biological processes, such as cell growth, cell cycle progression, malignant transformation, and enhancement of the anti-apoptotic activity. In this study, the TCTP from orange-spotted grouper Epinephelus coioides (Ec-TCTP) was cloned and characterized. The full-length cDNA of Ec-TCTP was comprised of 1057 bp with a 510 bp open reading frame that encodes a putative protein of 170 amino acids. Recombinant Ec-TCTP (rEc-TCTP) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Ec-TCTP serum preparation. The rEc-TCTP fusion protein was demonstrated to possess antioxidant activity, which conferred resistance to H(2)O(2) damage. Quantitative real-time PCR analysis revealed that Ec-TCTP mRNA is predominately expressed in the liver, and the expression was up-regulated in the liver of grouper after viral challenge with Singapore grouper iridovirus (SGIV). Intracellular localization revealed that Ec-TCTP expression was distributed predominantly in the cytoplasm. Although human TCTP has a role in apoptosis regulation, it is not known if grouper TCTP has any role in apoptosis regulation. Strikingly, grouper TCTP, when overexpressed in fathead minnow (FHM) cells, protected them from cell death induced by cycloheximide (CHX). In addition, overexpressed Ec-TCTP in grouper spleen (GS) cells inhibited the replication of SGIV. These results suggest that Ec-TCTP may play a critical role in their response to SGIV infection, through regulation of a cell death pathway that is common to fish and humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antioxidants/metabolism
- Antiviral Agents/pharmacology
- Apoptosis
- Bass/genetics
- Bass/immunology
- Bass/metabolism
- Bass/virology
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Line
- Cloning, Molecular
- DNA Virus Infections/immunology
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Fish Proteins/metabolism
- Gene Expression Profiling/veterinary
- Gene Expression Regulation
- Injections, Intraperitoneal/veterinary
- Mice
- Molecular Sequence Data
- Organ Specificity
- Phylogeny
- RNA, Messenger/analysis
- Ranavirus
- Real-Time Polymerase Chain Reaction/veterinary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sequence Alignment/veterinary
- Sequence Analysis, DNA/veterinary
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Jingguang Wei
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Biological effects of Mammalian translationally controlled tumor protein (TCTP) on cell death, proliferation, and tumorigenesis. Biochem Res Int 2012; 2012:204960. [PMID: 22675633 PMCID: PMC3364544 DOI: 10.1155/2012/204960] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein found in eukaryotes, across animal and plant kingdoms and even in yeast. Mammalian TCTP is ubiquitously expressed in various tissues and cell types. TCTP is a multifunctional protein which plays important roles in a number of cell physiological events, such as immune responses, cell proliferation, tumorigenicity, and cell death, including apoptosis. Recent identification of TCTP as an antiapoptotic protein has attracted interest of many researchers in the field. The mechanism of antiapoptotic activity, however, has not been solved completely, and TCTP might inhibit other types of cell death. Cell death (including apoptosis) is closely linked to proliferation and tumorigenesis. In this context, we review recent findings regarding the role of TCTP in cell death, proliferation, and tumorigenesis and discuss the mechanisms.
Collapse
|
28
|
Munirathinam G, Ramaswamy K. Sumoylation of human translationally controlled tumor protein is important for its nuclear transport. Biochem Res Int 2012; 2012:831940. [PMID: 22567286 PMCID: PMC3332165 DOI: 10.1155/2012/831940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.
Collapse
Affiliation(s)
- Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kalyanasundaram Ramaswamy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
29
|
Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci U S A 2012; 109:E926-33. [PMID: 22451927 DOI: 10.1073/pnas.1106300109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is essential for survival by mechanisms that as yet are incompletely defined. Here we describe an important role of TCTP in response to DNA damage. Upon exposure of normal human cells to low-dose γ rays, the TCTP protein level was greatly increased, with a significant enrichment in nuclei. TCTP up-regulation occurred in a manner dependent on ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase and was associated with protective effects against DNA damage. In chromatin of irradiated cells, coimmunoprecipitation experiments showed that TCTP forms a complex with ATM and γH2A.X, in agreement with its distinct localization with the foci of the DNA damage-marker proteins γH2A.X, 53BP1, and P-ATM. In cells lacking TCTP, repair of chromosomal damage induced by γ rays was compromised significantly. TCTP also was shown to interact with p53 and the DNA-binding subunits, Ku70 and Ku80, of DNA-dependent protein kinase. TCTP knockdown led to decreased levels of Ku70 and Ku80 in nuclei of irradiated cells and attenuated their DNA-binding activity. It also attenuated the radiation-induced G(1) delay but prolonged the G(2) delay. TCTP therefore may play a critical role in maintaining genomic integrity in response to DNA-damaging agents.
Collapse
|
30
|
Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G, Rubartelli A, Garaci E. TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 2011; 317:2479-2489. [PMID: 21801721 DOI: 10.1016/j.yexcr.2011.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) displays growth-promoting and antiapoptotic properties. To gain information on the role of TCTP in cancer disease, we studied the modulation of TCTP and cell survival under stress conditions on tumor cell lines of different origins. When cancer cells were exposed to a mild oxidative stress, such low doses of Arsenic trioxide (ATO) or hydrogen peroxide (H(2)O(2)), up-regulation of TCTP was observed in cells survived to the treatment. Differently, a strong oxidative hit provided by ATO combined with glutathione (GSH) depletion or condition of glucose deprivation caused a down-modulation of TCTP followed by cell death. Clones with a forced expression of TCTP or with silenced TCTP were obtained from the breast cancer cell line MDA-MB-231. The sensitivity to oxidative stress was strongly enhanced in down-modulated TCTP cells while decreasing in cells with high levels of TCTP. Together these results indicate that TCTP is a survival factor that protects cancer cells from oxidative stress-induced cell-death. We propose TCTP as a "stress hallmark" that may be exploited as a therapeutic target to decrease the resistance of cancer cells to anticancer therapy.
Collapse
Affiliation(s)
- Maria Lucibello
- Institute of Translational Pharmacology, National Research Council, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Qiang M, Fenfang W, Yan G, Wen S, Maoliang H, Yingsong W, Weiwen X, Ming L. Preparation and characterization of monoclonal antibody against translationally controlled tumor protein. Hybridoma (Larchmt) 2011; 30:81-5. [PMID: 21466289 DOI: 10.1089/hyb.2010.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
From our previous proteomic research, we found that translationally controlled tumor protein (TCTP) might play at least a partial role in colon adenocarcinoma progression. However, the precise impact of TCTP on colorectal cancer metastasis progression is currently still unknown. Therefore, immunology reagents are urgently needed to proceed with the next mechanism-related research. Moreover, the identification of TCTP expression level in tissue of colorectal cancer patients also requires substantial amounts of immunology reagents. In this report, monoclonal antibodies (MAbs) against to TCTP were made from hyperimmune Balb/c mice, by injecting 50 μg of purified antigen intraperitoneally. Hybridomas were screened by indirect enzyme-linked immunosorbent assay (ELISA) using purified protein. Finally six mouse hybridomas producing MAbs to TCTP were established. The MAbs obtained were fully characterized using Western blot analysis and immunohistochemistry. The results showed that these antibodies could be used for the preliminary application of the next mechanism-related research and TCTP expression level analysis.
Collapse
Affiliation(s)
- Ma Qiang
- The Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, North Guangzhou Road, Baiyun, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wanachottrakul N, Chotigeat W, Kedjarune-Leggat U. Translationally controlled tumor protein against apoptosis from 2-hydroxy-ethyl methacrylate in human dental pulp cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1479-1487. [PMID: 21562890 DOI: 10.1007/s10856-011-4328-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
2-Hydroxy-ethyl methacrylate (HEMA) is a major monomer released from resin-base dental restorative materials. HEMA is cytotoxic to pulp cells and leads to apoptosis. This study examined the effect of Translationally Controlled Tumor Protein (TCTP) against apoptosis from HEMA. TCTP from banana prawn (Penaeus merguiensis) was cloned and the protein was purified. It significantly increased the number of viable of HEMA-treated cells compared to HEMA-treated cells alone. Flow cytometry indicated the addition of TCTP at 10 μg/ml to 8 and 10 mM HEMA decreased the apoptotic cells from 20 to 10%. The proliferative property and anti-apoptotic activity against HEMA was concentration dependent. It was interesting that the added TCTP was not detected inside the cells and the native human TCTP was decreased after treated with HEMA and TCTP (20 μg/ml) + HEMA(10 mM) for 24 h. These results provided preliminary information, which may contribute to the development of less toxic dental materials.
Collapse
Affiliation(s)
- Nattaporn Wanachottrakul
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | | | | |
Collapse
|
33
|
Saelee N, Tonganunt-Srithaworn M, Wanna W, Phongdara A. Receptor for Activated C Kinase-1 protein from Penaeus monodon (Pm-RACK1) participates in the shrimp antioxidant response. Int J Biol Macromol 2011; 49:32-6. [PMID: 21439997 DOI: 10.1016/j.ijbiomac.2011.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 01/23/2023]
Abstract
Cellular oxidative stress responses are caused in many ways, but especially by disease and environmental stress. After the initial burst of reactive oxygen species (ROS), the effective elimination of ROS is crucial for the survival of organisms and is mediated by antioxidant defense mechanisms. In this paper, we investigate the possible antioxidant function of Penaeus monodon Receptor for Activated C Kinase-1 (Pm-RACK1). When Pm-RACK1 was over-expressed in Escherichia coli cells or Spodoptera frugiperda (Sf9) insect cells exposed to H(2)O(2), it significantly protected the cells from oxidative damage induced by H(2)O(2). When recombinant Pm-RACK1 protein was expressed as a histidine fusion protein in E. coli and purified with a Ni(2+)-column it possessed antioxidant functions that protected DNA from metal-catalyzed oxidation. Shrimp (Penaeus vannamei) held at an alkaline pH had a much higher hepatopancreatic expression of Pm-RACK1 than in those held at pH 7.4. The exposure of shrimp to alkaline pH is also known to increase ROS production. These results provide strong evidence that Pm-RACK1 can participate in the shrimp antioxidant response induced by the formation of ROS.
Collapse
Affiliation(s)
- Netnapa Saelee
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | | | | | | |
Collapse
|
34
|
Jung J, Kim HY, Kim M, Sohn K, Kim M, Lee K. Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 2011; 30:2264-74. [PMID: 21278788 DOI: 10.1038/onc.2010.604] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Translationally controlled tumor protein (TCTP) is implicated in cell growth and malignant transformation. TCTP has been found to interact directly with the third cytoplasmic domain of the α subunit of Na,K-ATPase, but whether this interaction has a role in tumorigenesis is unclear. In this study, we examined TCTP-induced tumor progression signaling networks in human breast epithelial cells, using adenoviral infection. We found that TCTP (a) induces Src release from Na,K-ATPase α subunit and Src activation; (b) phosphorylates tyrosine residues 845, 992, 1086, 1148 and 1173 on anti-epidermal growth factor receptor (EGFR); (c) activates PI3K (phosphatidylinositol 3-kinase )-AKT, Ras-Raf-MEK-ERK1/2, Rac-PAK1/2, MKK3/6-p38 and phospholipase C (PLC)-γ pathways; (d) enhances NADPH oxidase-dependent reactive oxygen species (ROS) generation; (e) stimulates cytoskeletal remodeling and cell motility and (f) upregulates matrix metalloproteinase (MMP) 3 and 13. These findings suggest that TCTP induces tumorigenesis through distinct multicellular signaling pathways involving Src-dependent EGFR transactivation, ROS generation and MMP expression.
Collapse
Affiliation(s)
- J Jung
- College of Pharmacy, Center for Cell Signalling & Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Li D, Deng Z, Chen C, Xia Z, Wu M, He P, Chen S. Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC PLANT BIOLOGY 2010; 10:140. [PMID: 20618931 PMCID: PMC3095288 DOI: 10.1186/1471-2229-10-140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 07/09/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Tapping panel dryness (TPD) is one of the most serious threats to natural rubber production. Although a great deal of effort has been made to study TPD in rubber tree, the molecular mechanisms underlying TPD remain poorly understood. Identification and systematical analyses of the genes associated with TPD are the prerequisites for elucidating the molecular mechanisms involved in TPD. The present study is undertaken to generate information about the genes related to TPD in rubber tree. RESULTS To identify the genes related to TPD in rubber tree, forward and reverse cDNA libraries from the latex of healthy and TPD trees were constructed using suppression subtractive hybridization (SSH) method. Among the 1106 clones obtained from the two cDNA libraries, 822 clones showed differential expression in two libraries by reverse Northern blot analyses. Sequence analyses indicated that the 822 clones represented 237 unique genes; and most of them have not been reported to be associated with TPD in rubber tree. The expression patterns of 20 differentially expressed genes were further investigated to validate the SSH data by reverse transcription PCR (RT-PCR) and real-time PCR analysis. According to the Gene Ontology convention, 237 unique genes were classified into 10 functional groups, such as stress/defense response, protein metabolism, transcription and post-transcription, rubber biosynthesis, etc. Among the genes with known function, the genes preferentially expressed were associated with stress/defense response in the reverse library, whereas metabolism and energy in the forward one. CONCLUSIONS The genes associated with TPD were identified by SSH method in this research. Systematic analyses of the genes related to TPD suggest that the production and scavenging of reactive oxygen species (ROS), ubiquitin proteasome pathway, programmed cell death and rubber biosynthesis might play important roles in TPD. Therefore, our results not only enrich information about the genes related to TPD, but also provide new insights into understanding the TPD process in rubber tree.
Collapse
Affiliation(s)
- Dejun Li
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Zhi Deng
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Chunliu Chen
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Zhihui Xia
- Institute of Biological Science and Technology, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Min Wu
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Peng He
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Shoucai Chen
- Key Laboratory of Rubber Biology, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| |
Collapse
|
36
|
Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández JA. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. PLANT, CELL & ENVIRONMENT 2010; 33:981-94. [PMID: 20102539 DOI: 10.1111/j.1365-3040.2010.02120.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) increased the germination percentage of pea seeds, as well as the growth of seedlings in a concentration-dependent manner. The effect of H(2)O(2) on seedling growth was removed by incubation with 10 microm ABA. The H(2)O(2)-pretreatment produced an increase in ascorbate peroxidase (APX), peroxidase (POX) and ascorbate oxidase (AAO). The increases in these ascorbate-oxidizing enzymes correlated with the increase in the growth of the pea seedlings as well as with the decrease in the redox state of ascorbate. Moreover, the increase in APX activity was due to increases in the transcript levels of cytosolic and stromal APX (cytAPX, stAPX). The proteomic analysis showed that H(2)O(2) induced proteins related to plant signalling and development, cell elongation and division, and cell cycle control. A strong correlation between the effect of H(2)O(2) on plant growth and the decreases in ABA and zeatin riboside (ZR) was observed. The results suggest an interaction among the redox state and plant hormones, orchestrated by H(2)O(2), in the induction of proteins related to plant signalling and development during the early growth of pea seedlings.
Collapse
Affiliation(s)
- G Barba-Espin
- Centro de Edafología y Biología Aplicada del Segura, CSIC, Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, E-30100 Murcia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bommer UA, Heng C, Perrin A, Dash P, Lobov S, Elia A, Clemens MJ. Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 2009; 29:763-73. [PMID: 19901967 DOI: 10.1038/onc.2009.380] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca(++) stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2alpha. Since TCTP has been characterized as an antiapoptotic and Ca(++)-binding protein, we asked whether it is involved in protecting cells from Ca(++)-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2alpha phosphorylation.
Collapse
Affiliation(s)
- U-A Bommer
- Division of Basic Medical Sciences, St George's, University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Gnanasekar M, Dakshinamoorthy G, Ramaswamy K. Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 2009; 386:333-7. [PMID: 19523440 DOI: 10.1016/j.bbrc.2009.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 01/27/2023]
Abstract
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein.
Collapse
Affiliation(s)
- Munirathinam Gnanasekar
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | | | | |
Collapse
|
39
|
Nagano-Ito M, Banba A, Ichikawa S. Functional cloning of genes that suppress oxidative stress-induced cell death: TCTP prevents hydrogen peroxide-induced cell death. FEBS Lett 2009; 583:1363-7. [PMID: 19328788 DOI: 10.1016/j.febslet.2009.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/18/2009] [Accepted: 03/20/2009] [Indexed: 10/21/2022]
Abstract
We used retroviral-mediated expression cloning to identify cDNAs that inhibit cell death induced by oxidative stress. To isolate the genes, we introduced a murine embryonic retroviral cDNA library into NIH/3T3 cells, and selected for cells resistant to hydrogen peroxide. The surviving cells were cloned, and the integrated cDNAs were rescued by polymerase chain reaction. Several of the isolated cDNAs are known to be involved in modulating the redox state of cells. Other cDNAs encode proteins known to suppress apoptosis caused by reasons other than oxidative stress. These included polyadenylate-binding protein, cytosolic 1 (Pabpc1) and translationally controlled tumor protein (TCTP).
Collapse
Affiliation(s)
- Michiyo Nagano-Ito
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Laboratory for Animal Cell Engineering, 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata 956-8603, Japan
| | | | | |
Collapse
|
40
|
Meyvis Y, Houthoofd W, Visser A, Borgonie G, Gevaert K, Vercruysse J, Claerebout E, Geldhof P. Analysis of the translationally controlled tumour protein in the nematodes Ostertagia ostertagi and Caenorhabditis elegans suggests a pivotal role in egg production. Int J Parasitol 2009; 39:1205-13. [PMID: 19285501 DOI: 10.1016/j.ijpara.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/16/2022]
Abstract
The translationally controlled tumour protein (TCTP) is a conserved protein which has been described for a wide range of eukaryotic organisms including protozoa, yeasts, plants, nematodes and mammals. Several parasitic organisms have been shown to actively secrete TCTP during host infection as part of their immuno-evasive strategy. In this study, we have studied TCTP in Ostertagia ostertagi, a parasitic nematode of cattle, and in the free-living nematode Caenorhabditis elegans. An analysis of the transcription and expression patterns showed that TCTP was present in the eggs of both species. This localisation is consistent for some other Strongylida such as Teladorsagia circumcincta, Cooperia oncophora and Haemonchus contortus. TCTP was also detected at low levels in excretory-secretory material from adult O. ostertagi worms. The role of TCTP in nematode biology was also investigated by RNA interference in C. elegans. Knock-down of C. elegans tctp (tct-1) transcription reduced the numbers of eggs laid by the hermaphrodite in the F(0) and F(1) generations by 90% and 72%, respectively, indicating a pivotal role of TCTP in reproduction.
Collapse
Affiliation(s)
- Yves Meyvis
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Transcriptome analysis of Schistosoma mansoni larval development using serial analysis of gene expression (SAGE). Parasitology 2009; 136:469-85. [PMID: 19265565 DOI: 10.1017/s0031182009005733] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Infection of the snail, Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke, Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of the S. mansoni miracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia and in vitro cultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of the B. glabrata embryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to the S. mansoni gene predictions (v4.0e) either by estimating theoretical 3' UTR lengths or using existing 3' EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.
Collapse
|
42
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Bartley K, Nisbet AJ, Offer JE, Sparks NHC, Wright HW, Huntley JF. Histamine release factor from Dermanyssus gallinae (De Geer): characterization and in vitro assessment as a protective antigen. Int J Parasitol 2008; 39:447-56. [PMID: 18938170 DOI: 10.1016/j.ijpara.2008.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
A cDNA encoding a 174-amino-acid orthologue of a tick histamine release factor (HRF) was identified from the haematophagous poultry red mite Dermanyssus gallinae. The predicted D. gallinae HRF protein (Dg-HRF-1) sequence is highly conserved with the tick HRFs (identity 52-54%) and to a lesser degree with translationally controlled tumour proteins (TCTP) from mammals and other invertebrates (range 38-47%). Phylogenetically, Dg-HRF-1 partitions with the tick HRF clade suggesting a shared linage and potentially similar function(s). A recombinant Dg-HRF-1 protein (rDg-HRF-1) was produced and shown to induce degranulation of rat peritoneal mast cells in vitro, confirming conservation of the histamine-releasing function in D. gallinae. Polyclonal antibodies were generated in rabbits and hens to rDg-HRF-1. Western blotting demonstrated that native Dg-HRF is a soluble protein and immunohistochemical staining of mite sections revealed that the distribution of Dg-HRF, although ubiquitous, is more common in mite reproductive, digestive and synganglion tissues. A survey of hens housed continuously in a mite-infested commercial poultry unit failed to identify IgY specific for recombinant or native Dg-HRF, indicating that Dg-HRF is not exposed to the host during infestation/feeding and may therefore have potential as a vaccine using the concealed antigen approach. To test the protective capability of rDg-HRF-1, fresh heparinised chicken blood was enriched with yolk-derived anti-Dg-HRF IgY antibodies and fed to semi-starved mites using an in vitro feeding system. A statistically significant increase in mortality was shown (P=0.004) in mites fed with anti-Dg-HRF IgY after just one blood meal. The work presented here demonstrates, to our knowledge for the first time, the feasibility of vaccinating hens with recombinant D. gallinae antigens to control mite infestation and the potential of rDg-HRF-1 as a vaccine antigen.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 2008; 105:12944-9. [PMID: 18753634 DOI: 10.1073/pnas.0802432105] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antifreeze glycoprotein-fortified Antarctic notothenioid fishes comprise the predominant fish suborder in the isolated frigid Southern Ocean. Their ecological success undoubtedly entailed evolutionary acquisition of a full suite of cold-stable functions besides antifreeze protection. Prior studies of adaptive changes in these teleost fishes generally examined a single genotype or phenotype. We report here the genome-wide investigations of transcriptional and genomic changes associated with Antarctic notothenioid cold adaptation. We sequenced and characterized 33,560 ESTs from four tissues of the Antarctic notothenioid Dissostichus mawsoni and derived 3,114 nonredundant protein gene families and their expression profiles. Through comparative analyses of same-tissue transcriptome profiles of D. mawsoni and temperate/tropical teleost fishes, we identified 177 notothenioid protein families that were expressed many fold over the latter, indicating cold-related up-regulation. These up-regulated gene families operate in protein biosynthesis, protein folding and degradation, lipid metabolism, antioxidation, antiapoptosis, innate immunity, choriongenesis, and others, all of recognizable functional importance in mitigating stresses in freezing temperatures during notothenioid life histories. We further examined the genomic and evolutionary bases for this expressional up-regulation by comparative genomic hybridization of DNA from four pairs of Antarctic and basal non-Antarctic notothenioids to 10,700 D. mawsoni cDNA probes and discovered significant to astounding (3- to >300-fold, P < 0.05) Antarctic-specific duplications of 118 protein-coding genes, many of which correspond to the up-regulated gene families. Results of our integrative tripartite study strongly suggest that evolution under constant cold has resulted in dramatic genomic expansions of specific protein gene families, augmenting gene expression and gene functions contributing to physiological fitness of Antarctic notothenioids in freezing polar conditions.
Collapse
|
45
|
Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, Wilson A, Maizels RM. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol 2008; 160:8-21. [PMID: 18439691 DOI: 10.1016/j.molbiopara.2008.02.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/25/2022]
Abstract
The secretome of a parasite in its definitive host can be considered to be its genome in trans, to the extent that secreted products encoded by the parasite fulfill their function in the host milieu. The 'extended phenotype' of the filarial parasite, Brugia malayi, is of particular interest because of the evidence that infection results in potent down-modulation of the host immune response. We collected B. malayi 'excretory-secretory' (BES) proteins from adult parasites and using a combination of shotgun LC-MS/MS and 2D gel electrophoresis, identified 80 B. malayi and two host proteins in BES, of which 31 (38%) were detectable in whole worm extract (BmA). Products which were enriched in BES relative to BmA included phosphatidylethanolamine-binding protein (PEB), leucyl aminopeptidase (LAP, homologue of ES-62 from the related filaria Acanthocheilonema viteae), N-acetylglucosaminyltransferase (GlcNAcT) and galectin-1, in addition to the previously described major surface glycoprotein, glutathione peroxidase (gp29, GPX-1) and the cytokine homologue macrophage migration inhibitory factor (MIF-1). One of the most abundant released proteins was triose phosphate isomerase (TPI), yet many other glycolytic enzymes (such as aldolase and GAPDH) were found only in the somatic extract. Among the more prominent novel products identified in BES were a set of 11 small transthyretin-like proteins, and three glutamine-rich-repeat mucin-like proteins. Notably, no evidence was found of any secreted protein corresponding to the genome of the Wolbachia endosymbiont present in B. malayi. Western blotting with anti-phosphorylcholine (PC) monoclonal antibody identified that GlcNAcT, and not the ES-62 homologue, is the major PC-bearing protein in BES, while probing with human filariasis sera showed preferential reactivity to galectin-1 and to processed forms of myotactin. Overall, this analysis demonstrates selective release of a suite of newly identified proteins not previously suspected to be involved at the host-parasite interface, and provides important new perspectives on the biology of the filarial parasite.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh,UK
| | | | | | | | | | | | | | | |
Collapse
|