1
|
Khalifa MM, Mohamed HI, Ramadan RM, Youssef FS, El-Bahy MM, Abdel-Radi S. Smart application of silver nanoparticles in the treatment of chicken coccidiosis in combination with special supplement to alleviate its toxicity. Vet Parasitol 2025; 336:110440. [PMID: 40054330 DOI: 10.1016/j.vetpar.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 04/26/2025]
Abstract
This study investigated the efficacy of a locally formulated nano-silver particle (Ag-NPs) treatment for controlling Eimeria spp. in chickens. Various concentrations of Ag-NPs were evaluated for their ability to inhibit the sporulation of five Eimeria species oocysts in vitro, with LC50 and LC100 values determined. The most effective concentrations (20 μg/mL and 25 μg/mL) were administered to experimentally infected chickens for five consecutive days through their feed, either as a normal diet or supplemented with a Vitamin A, E, C, and selenium complex (VSeC). Results showed a significant reduction in the number of oocysts shed, lower lesion scores, and improved weight gain in chickens treated with Ag-NPs, with effects comparable to the reference drug Amprolium. Ag-NPs at 25 μg/mL exhibited the highest efficacy, though mild silver toxicity was observed. Supplementation with VSeC enhanced all parameters and mitigated the mild toxicity associated with the high-dose Ag-NP treatment. Further analysis of redox parameters (malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase) and liver (alanine aminotransferase, aspartate aminotransferase) and kidney function (serum urea, creatinine) revealed slight elevations in these markers, which were negligible in the VSeC-supplemented groups. In conclusion, Ag-NPs at doses of 20-25 μg/mL for five days were effective in controlling Eimeria infection in chickens. The inclusion of VSeC in the feed provided protective effects, alleviating potential toxicity and enhancing overall treatment outcomes.
Collapse
Affiliation(s)
- Marwa M Khalifa
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt
| | - Hend I Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-suef University, Beni-suef 62511, Egypt
| | - Reem M Ramadan
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt.
| | - Fady Sayed Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt
| | - Mohamed M El-Bahy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt
| | - Shimaa Abdel-Radi
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt
| |
Collapse
|
2
|
Alsulami MN, El-Wakil ES. Green Synthesis of Chitosan/Silver Nanoparticles Using Citrus paradisi Extract and Its Potential Anti-Cryptosporidiosis Effect. Pharmaceutics 2024; 16:968. [PMID: 39065665 PMCID: PMC11279850 DOI: 10.3390/pharmaceutics16070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cryptosporidium parvum (C. parvum) is one of the most prevalent species infecting humans and animals. Currently, the only FDA-licensed drug to treat cryptosporidiosis is nitazoxanide (NTZ), with no efficacy in immunocompromised hosts. Citrus paradisi (C. paradisi) has demonstrated anti-protozoal activities. This study aimed to investigate the anti-cryptosporidiosis effect of C. paradisi peel extract, either alone or in mediating the green synthesis of chitosan silver nanoparticles (Cs/Ag NPs), compared to NTZ. Mice were sorted into nine different groups. The effectiveness of the treatments was evaluated using parasitology, histopathology, immunohistochemistry, and immunology. C. paradisi outperformed nitazoxanide regarding oocyst shedding (79% vs. 61%). The effectiveness of NTZ Cs/Ag NPs and Citrus Cs/Ag NPs was enhanced to 78% and 91%, respectively. The highest oocyst inhibition was obtained by combining NTZ and Citrus Cs/Ag NPs (96%). NF-κB, TNF-α, and Il-10 levels increased in response to infection and decreased in response to various treatments, with the highest reduction in the group treated with combined NTZ citrus Cs/Ag NPs. Combining C. paradisi with NTZ could have a synergistic effect, making it a potentially effective anti-cryptosporidiosis agent. Utilizing C. paradisi in the green synthesis of Cs/Ag NPs improves the therapeutic response and can be used to produce novel therapeutic antiparasitic drugs.
Collapse
Affiliation(s)
- Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Eman S. El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| |
Collapse
|
3
|
Elossily NA, Abd-ELrahman SM, Khedr AA, Dyab AK, Mahmoud AE, Mohamed SM, Abd Elrahman AM, Alsharif FM, Alsaadawy RM, Sayed RKA, Khalifa MM. Light microscopical and parasitological analyses revealed the beneficial effects of silver nanoparticles and various myrrh extracts against Trichinella spiralis infection in mice. Microsc Res Tech 2024; 87:1566-1575. [PMID: 38430198 DOI: 10.1002/jemt.24542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Trichinella spiralis infection is a food-borne zoonotic disease caused by nematodes that dwell in the tissues, presenting a significant public health concern. This study aimed to evaluate the effectiveness of different treatments including silver nanoparticles (AgNPs), myrrh biosynthesized AgNPs "AgNPs synthesized using plant-based green technologies", myrrh extract, and myrrh essential oil, as alternative treatments against T. spiralis infection. Parasitological, histopathological, and cytotoxicity assessments were conducted to investigate the effects of various concentrations of these treatments in reducing the populations of adult worms and larvae during both the intestinal and muscular phases of T. spiralis-infected mice. The results showed that the highest antihelminthic efficacy against the intestinal phase of T. spiralis was achieved by myrrh extract (86.66%), followed closely by AgNPs (84.96%) and myrrh AgNPs (82.51%) at higher concentrations (800 mg/kg for myrrh extract, 40 μg/mL for AgNPs, and 40 μg/mL for myrrh AgNPs). While the group treated with myrrh essential oil showed the lowest percentage of adult reduction (78.14%). However, all treatments demonstrated comparable effects in reducing the larvae population in the muscle phase. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. Additionally, a comprehensive assessment of the cytotoxicity of AgNPs indicated low toxicity levels. This study supports that AgNPs synthesized using plant-based green technologies hold therapeutic potential for the treatment of T. spiralis infection. These findings present a promising avenue for the development of novel antiparasitic drugs that are both effective and safe. RESEARCH HIGHLIGHTS: Myrrh extract has the highest antihelminthic efficacy against the intestinal phase of T. spiralis. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. During intestinal phase of T. spiralis, varying levels of nanoparticle precipitation were detected in the liver, brain, lung, and intestine. During the muscular phase, the highest amount of AgNPs precipitation was detected in the liver, followed by the brain, and lung.
Collapse
Affiliation(s)
- Nahed A Elossily
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salwa M Abd-ELrahman
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abeer A Khedr
- Department of Parasitology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Ahmed K Dyab
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer E Mahmoud
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shaymaa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Fahd M Alsharif
- Department of Pharmaceutics and Ind. Pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Reem M Alsaadawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Mervat M Khalifa
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Taha NM, Youssef FS, Auda HM, El-Bahy MM, Ramadan RM. Efficacy of silver nanoparticles against Trichinella spiralis in mice and the role of multivitamin in alleviating its toxicity. Sci Rep 2024; 14:5843. [PMID: 38462650 PMCID: PMC10925591 DOI: 10.1038/s41598-024-56337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Trichinellosis is a worldwide zoonotic disease. The majority of currently available anti-trichinellosis medications exhibit inadequate efficacy. The efficacy of a natively prepared new formulation of silver nanoparticles (Ag-NPs) was evaluated in the treatment of Trichinella spiralis (T. spiralis) infection in mice alone and combined with multivitamin-mineral (MM). After investigating the product's biological and pharmacological characteristics, its therapeutic dose was estimated to be Ag-NPs at 21.5 mg/kg B.W. This dose was orally inoculated to experimentally infected mice at 3-5 days post-inoculation (dpi) against the mature worms, at 8-10 dpi against the newborn larvae, and at 33-35th dpi against the encapsulated larvae. Each treatment's efficacy was assessed by scarifying control and treated mice 3 days post-treatment. The drug alone or in supplement form has a high trichinocidal effect exceeding that of the reference drug. Early treatment (3-5 dpi) by Ag-NPs or Ag-NPs + MM and albendazole revealed high efficacy against the intestinal stage, reaching 93.3%, 94.7%, and 90.6% for the three treatments, respectively. The materials causing a significant (P-value < 0.001) decrease in the mean encapsulated larvae reached 86.61%, 89.07%, and 88.84%/gm of muscles using the three treatments, respectively. Moreover, all larvae extracted from Ag-NPs-treated groups failed to induce infection post-inoculation in new mice. Additionally, combining the material with MM proved to overcome the reversible adverse effects of silver material on the estimated redox parameters and liver and kidney biomarkers, denoting its ability to alleviate Ag-NP toxicity. In conclusion, the high trichinocidal effect of Ag-NPs against the adult and encapsulated larvae during a short inoculation period introduced Ag-NPs as an alternative to other nematicidal drugs.
Collapse
Affiliation(s)
- Noha Madbouly Taha
- Department of Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hend M Auda
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed M El-Bahy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Reem M Ramadan
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Shady OMA, Shalash IA, Elshaghabee FMF, Negm MSI, Yousef GAB, Rizk EMA. Evaluating the Effect of Lactobacillus casei FEGY 9973 and Curcumin on Experimental Giardiasis. Acta Parasitol 2024; 69:302-308. [PMID: 38060086 PMCID: PMC11001656 DOI: 10.1007/s11686-023-00744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Giardia is a parasitic hard protozoan that causes a variety of parasitological and pathological changes in gastrointestinal epithelial cells and is resistant to a variety of disinfectants and treatments. This study used experimental animals infected with Giardia Lamblia to assess the potential therapeutic effect of Lactobacillus casei, Lactobacillus bulgaricus (Lactobacillus in yoghurt) and curcumin in comparison to one of the commonly used drugs (metronidazole). METHODS The study included 54 Syrian hamsters (Mesocricetus auratus) that ranged in weight from 80 to 100 g and were divided into six groups: The effect of the used preparations was assessed in terms of parasitological and histopathological aspects in Group I non-infected healthy control, Group II infected non-treated, Group III infected treated with metronidazole MTZ, Group IV infected treated with Lactobacillus casei, Group V infected treated with curcumin, and Group VI infected treated with, Lactobacillus bulgaricus (Lactobacillus in yoghurt). The number of G. lamblia cysts per gram of stool was counted during the parasitological examination. RESULTS The difference between the infected non-treated group and all the treated groups was statistically significant (P0.05). When compared to the infected untreated group, Lactobacillus casei and, Lactobacillus bulgaricus (Lactobacillus in yoghurt) produced a 100% reduction in G. lamblia cyst shedding, curcumin produced an 87.80% reduction in number of cysts, and metronidazole produced a 78.4% reduction in number of cysts. CONCLUSION Our results highlight the potentially effective therapeutic effect of different preparations of probiotics and curcumin against Giardiasis.
Collapse
Affiliation(s)
- Omima M Abou Shady
- Medical Parasitology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Mohamed S I Negm
- Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Gehad A B Yousef
- Medical Parasitology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Enas M A Rizk
- Medical Parasitology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
7
|
Wakid MH, Alsulami MN, Farid M, El Kholy WA. Potential Anti-Toxoplasmosis Efficiency of Phoenix dactylifera Extracts Loaded on Selenium Nanoparticles. Infect Drug Resist 2023; 16:7743-7758. [PMID: 38144223 PMCID: PMC10749168 DOI: 10.2147/idr.s443047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii that infects humans and many types of mammals and birds. Objective To investigate the effect of selenium nanoparticles (SeNPs) and Phoenix dactylifera (Pd) extracts loaded on SeNPs as a new agent to combat chronic T. gondii infections in murine model as an alternative method to standard Spiramycin drug therapy. Methods A total of 64 female mice were randomly divided into eight groups: GI: Normal control, GII: Positive control, GIII: infected and treated with Spiramycin, GIV: infected and treated with SeNPs, GV: infected and treated with aqueous extract of Pd, GVI: infected and treated with methanolic extract of Pd, GVII: infected and treated with aqueous extract of Pd loaded on SeNPs, GVIII: infected and treated with methanolic extract of Pd loaded on SeNPs. Date palm (P. dactylifera) fruits were identified and collected from the farms of Saudi Arabia. Preparation and characterization of SeNPs were done. The parasitological, histopathological examinations and biochemical changes were evaluated in all groups. Results Parasitological results showed significant differences in GVII in comparison to GII while GVIII showed significant differences in comparison to GII and GIII. The histopathological section of the cerebral cortex showed obvious alterations in the infected compared with untreated control groups. Aqueous and methanolic extracts of P. dactylifera loaded on SeNPs treatment showed improvement that indicated by few perivascular cuffing with few inflammatory cell infiltrations. Few granule cells with mild intracellular vacuolation and edema few deformed neurons with deep pyknotic nuclei. Microglia cells expression of Iba-1 and inflammatory cytokines (IL-4, IL-10 and INF-γ) in serum of all groups was higher in GII and lowest in GVIII followed by GVII. Conclusion SeNPs and P. dactylifera extracts loaded on SeNPs could be a potent agent to combat T. gondii infections.
Collapse
Affiliation(s)
- Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Farid
- Sciences Academy of Experimental Researches, Special Scientific Foundation, Mansoura, Egypt
| | - Walaa A El Kholy
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Hematizadeh A, Ebrahimzadeh MA, Sarvi S, Sadeghi M, Daryani A, Gholami S, Nayeri T, Hosseini SA. In Vitro and In Vivo Anti-parasitic Activity of Sambucus ebulus and Feijoa sellowiana Extracts Silver Nanoparticles on Toxoplasma gondii Tachyzoites. Acta Parasitol 2023; 68:557-565. [PMID: 37330943 DOI: 10.1007/s11686-023-00689-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Current chemical treatments for toxoplasmosis have side effects, researchers are looking for herbal remedies with minimal side effects and the best effectiveness. This study aimed to evaluate the anti-toxoplasmic effects of silver nanoparticles based on Sambucus ebulus (Ag-NPs-S. ebulus) and Feijoa sellowiana (Ag-NPs-F. sellowiana) fruit extracts, in vitro and in vivo. METHODS Vero cells were treated with different concentrations (0.5, 1, 2, 5, 10, 20, 40 μg/mL) of extracts and pyrimethamine as a positive control. Vero cells were infected with T. gondii and treated with extracts. The infection index and intracellular proliferation of T. gondii were evaluated. The survival rate of infected mice with tachyzoites of T. gondii was examined after intraperitoneal injection of the extracts at a dose of 40 mg/kg/day for 5 days after infection. RESULTS The Ag-NPs-S. ebulus and Ag-NPs-F. sellowiana, almost similar to pyrimethamine, reduced proliferation index when compared to untreated group. Also, high toxoplasmicidal activity was observed with Ag-NPs-S. ebulus extract. Mice in the treatment groups of Ag-NPs-S. ebulus and pyrimethamine achieved better results in terms of survival than the others. CONCLUSION The results indicated that Ag-NPs-F. sellowiana and S. ebulus have a significant growth effect on T. gondii in vitro and in vivo. Ag-NPs-S. ebulus extract has a more lethal effect on the parasite than Ag-NPs-F. sellowiana. It is suggested that in future investigate the induction of Toxoplasma-infected cell apoptosis using nanoparticles.
Collapse
Affiliation(s)
- Akram Hematizadeh
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center and Department of Medicinal Chemistry, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Sciences, 18 Km of Khazar Abad Road, Sari, Iran
| | - Mitra Sadeghi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Sciences, 18 Km of Khazar Abad Road, Sari, Iran
| | - Shirzad Gholami
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Sciences, 18 Km of Khazar Abad Road, Sari, Iran
| | - Tooran Nayeri
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Abdollah Hosseini
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Sciences, 18 Km of Khazar Abad Road, Sari, Iran.
| |
Collapse
|
9
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Arafa FM, Said H, Osman D, Rezki N, Aouad MR, Hagar M, Osman M, Elwakil BH, Jaremko M, Tolba MM. Nanoformulation-Based 1,2,3-Triazole Sulfonamides for Anti- Toxoplasma In Vitro Study. Trop Med Infect Dis 2023; 8:401. [PMID: 37624339 PMCID: PMC10460005 DOI: 10.3390/tropicalmed8080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasma gondii is deemed a successful parasite worldwide with a wide range of hosts. Currently, a combination of pyrimethamine and sulfadiazine serves as the first-line treatment; however, these drugs have serious adverse effects. Therefore, it is imperative to focus on new therapies that produce the desired effect with the lowest possible dose. The designation and synthesis of sulfonamide-1,2,3-triazole hybrids (3a-c) were performed to create hybrid frameworks. The newly synthesized compounds were loaded on chitosan nanoparticles (CNPs) to form nanoformulations (3a.CNP, 3b.CNP, 3c.CNP) for further in vitro investigation as an anti-Toxoplasma treatment. The current study demonstrated that all examined compounds were active against T. gondii in vitro relative to the control drug, sulfadiazine. 3c.CNP showed the best impact against T. gondii with the lowest IC50 value of 3.64 µg/mL. Using light microscopy, it was found that Vero cells treated with the three nanoformulae showed remarkable morphological improvement, and tachyzoites were rarely seen in the treated cells. Moreover, scanning and transmission electron microscopic studies confirmed the efficacy of the prepared nanoformulae on the parasites. All of them caused parasite ultrastructural damage and altered morphology, suggesting a cytopathic effect and hence confirming their promising anti-Toxoplasma activity.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 21577, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Doaa Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21526, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
11
|
Thagfan F, Dkhil MA, Al-Shaebi EM, Abdel-Gaber R, Al-Quraishy S, Elshanat S. Biosynthesized Nanosilver from Ginger Extract Exhibits Antioxidant and Hepatic Responses during Eimeria papillata Infection. ACS OMEGA 2023; 8:23806-23811. [PMID: 37426206 PMCID: PMC10324095 DOI: 10.1021/acsomega.3c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Although several anticoccidial medications have long been used to prevent coccidiosis, their adverse effects necessitate the use of alternative control methods. In this study, Eimeria papillate was used to infect the mouse jejunum, and the response of the liver to induced coccidiosis on treatment with nanosilver synthesized from Zingiber officinale (NS) and the reference anticoccidial drug amprolium was compared. Mice were infected with 1000 sporulated oocysts to induce coccidiosis. NS was able to inhibit the sporulation of E. papillate by approximately 73%, and also, the NS treatment improved the liver function in mice, as proven by lower levels of the liver enzymes AST, ALT, and ALP. Furthermore, treatment with NS improved the parasite-induced liver histological injury. Also, glutathione and glutathione peroxidase levels increased following treatment. Moreover, the concentrations of metal ions, Fe, Mg, and Cu, were studied, where only the Fe concentration was affected after treatment of the E. papillate-infected mice with Bio-NS. The presence of phenolic and flavonoid compounds in NS is thought to be responsible for its positive effects. Overall, the current study found that NS outperformed amprolium in E. papillata-induced mice.
Collapse
Affiliation(s)
- Felwa
A. Thagfan
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed A. Dkhil
- Department
of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11732, Egypt
- Applied
Science Private University, Amman 11937, Jordan
| | - Esam M. Al-Shaebi
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Sherif Elshanat
- Department
of Parasitology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 11511, Egypt
| |
Collapse
|
12
|
Yousefi E, Amani S, Khademvatan S, Jafari B, Asadi N, Shafiei-Irannejad V, Howarth GS. Anti-leishmanial activity of sanguinarine and nano chitosan is modulated by increased ROS production and upregulated TNF-α and iNOS expression. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023; 50:102725. [DOI: 10.1016/j.bcab.2023.102725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
13
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
14
|
Teimouri A, Jafarpour Azami S, Hashemi Hafshejani S, Ghanimatdan M, Bahreini MS, Alimi R, Sadjjadi SM. Protoscolicidal effects of curcumin nanoemulsion against protoscoleces of Echinococcus granulosus. BMC Complement Med Ther 2023; 23:124. [PMID: 37072845 PMCID: PMC10111725 DOI: 10.1186/s12906-023-03927-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The aim of the present study was to assess in vitro protoscolicidal effects of curcumin nanoemulsion (CUR-NE) against protoscoleces of cystic echinococcosis (CE)/hydatid cysts. METHODS The CUR-NE was prepared via spontaneous emulsification of soybean as the oil phase, a mixture of Tween 80 and Tween 85 as the surfactant, ethanol as the co-surfactant and distilled water. Various concentrations of CUR-NE (156, 312, 625 and 1250 µg/ml) were exposed to collected protoscoleces of infected sheep liver hydatid cysts for 10, 20, 30, 60 and 120 min. Viability of the protoscoleces were assessed using eosin exclusion test. Morphological changes of the protoscoleces were observed using differential interference contrast (DIC) microscopy. RESULTS The mean particle size and zeta potential of CUR-NE included 60.4 ± 14.8 nm and - 16.1 ± 1.1 mV, respectively. Results showed that the viability of the protoscoleces decreased significantly with increases in CUR-NE concentrations (p < 0.001). The mortality rates of protoscoleces with exposure to concentrations of 1250 and 625 µg/ml of CUR-NE for 60 min were 94 and 73.33%, respectively. Mortality of the protoscoleces was 100% after 120 min of exposure to 1250 and 625 µg/ml concentrations of CUR-NE. Using NIC microscopy, extensively altered tegumental surface protoscoleces was observed after protoscoleces exposure to CUR-NE. CONCLUSION The findings of the present study revealed the in vitro protoscolicidal potential of CUR-NE. Therefore, CUR-NEs are addressed as novel protoscolicidal agents, which can be used as an alternative natural medicine to kill the protoscoleces, owing to their low toxicity and significant inhibition potency. However, further studies are necessary to investigate pharmacologic and pharmacokinetics of CUR-NEs.
Collapse
Affiliation(s)
- Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hashemi Hafshejani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Amini SM, Hadighi R, Najm M, Alipour M, Hasanpour H, Vosoogh M, Vosough A, Hajizadeh M, Badirzadeh A. The Therapeutic Effects of Curcumin-coated Gold Nanoparticle Against Leishmania Major Causative Agent of Zoonotic Cutaneous Leishmaniasis (ZCL): An In Vitro and In Vivo Study. Curr Microbiol 2023; 80:104. [PMID: 36781499 DOI: 10.1007/s00284-022-03172-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/15/2022] [Indexed: 02/15/2023]
Abstract
We synthesized and characterized curcumin-coated gold nanoparticles (Cur@AuNPs) and investigated their stability, cytotoxicity, leishmanicidal activity in in vitro and in in vivo experiments. Cur@AuNPs synthesized through a simple one-pot green chemistry technique. The in vitro leishmanicidal activity of curcumin-coated gold nanoparticles against extracellular promastigotes and intracellular amastigotes of protozoan parasite Leishmania major (L. major) was determined by applying the tetrazolium reduction colorimetric quantitative MTT technique. For in vivo assessment, the footpad lesion size and parasite burden in two infection site organs including lymph nodes and footpads of susceptible BALB/c mice infected with L. major were measured. Mice immune responses in all study groups were quantified by measuring the levels of gamma interferon (IFN-γ) and interleukin-4 (IL-4). Viability of Leishmania promastigotes significantly diminished with the inhibition in promastigotes growth (IC50) of 64.79 μg/mL and 29.89 μg/mL for 24 h and 48 h, respectively. In vitro nanoparticles treatment efficiently cleared the L. major amastigotes explanted in macrophages but had no harmful toxicity on the mice cells. In the in vivo condition, in the treated infected BALB/c mice the CL lesion size, Leishmania parasite burden, and IL-4 were decreased, while IFN-γ was significantly increased. The results suggest that Cur@AuNP was an effective compound against Leishmania parasite in vitro and in vivo, efficiently induced T-helper 1 (Th1) responses and augmented host cellular immune responses, and ending in a reduced Leishmania parasite burden. Therefore, it may be identified as a novel potential therapeutic approach for the local therapy of zoonotic CL treatment with high cure rates.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hadighi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Najm
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Lahijan Branch Islamic Azad University, Lahijan, Iran
| | - Maryam Alipour
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Hasanpour
- Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehran Vosoogh
- Center of Experimental and Comparative Studies, Iran University of Medical Sciences, Tehran, Iran
| | - Araz Vosough
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Maryam Hajizadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Hassan ZR, Salama DEA, Ibrahim HF. Apoptotic changes in the intestinal epithelium of Cryptosporidium-infected mice after silver nanoparticles treatment versus nitazoxanide. J Parasit Dis 2022; 46:1011-1020. [PMID: 36457780 PMCID: PMC9606195 DOI: 10.1007/s12639-022-01520-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 10/16/2022] Open
Abstract
Cryptosporidium has been identified as one of the prevalent opportunistic parasites that cause diarrhea, which may be persistent and fatal. Current chemotherapeutic agents, including nitazoxanide (NTZ), are frequently associated with therapeutic failure, and their roles in the induction of apoptosis in cryptosporidiosis remain to be a topic of debate. Thus, this study aimed to assess the apoptotic changes in cryptosporidiosis in immunocompetent (IC) and immunosuppressed (IS) mice after treatment with silver nanoparticles (AgNPs) and NTZ either alone or after loading. In total, 120 laboratory-bred Swiss albino mice were divided into two groups. Group A included IC mice, while Group B included IS mice. Both groups were divided into six subgroups: noninfected nontreated, infected nontreated, infected AgNP-treated, infected NTZ-treated, infected AgNP-loaded NTZ (full-dose)-treated, and infected AgNP-loaded NTZ (half-dose)-treated. The assessment was achieved through parasitological, histopathological, and apoptotic marker expression evaluation. AgNP-loaded NTZ (different doses) treatment showed the highest oocyst shedding reduction and remarkable improvement in histopathological changes, followed by individual treatment with NTZ and then AgNPs in IC and IS mice. Results of apoptotic marker expression revealed that AgNP-loaded NTZ treatment exhibited a promising role in regulating apoptotic changes in cryptosporidiosis through the expression of the lowest levels of cytochrome C and caspase-3 in IC and IS mice at the end of the experiment. Therefore, AgNP-loaded NTZ can be a potential therapeutic agent against cryptosporidiosis for IC and IS mice.
Collapse
Affiliation(s)
- Zeinab R. Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa E. A. Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Hanan F. Ibrahim
- Department of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Kasem SM, Mira NM, Mahfouz ME, Helal IB. In Vitro Study to Evaluate the Efficacy of Ultrasonicated Ethanolic Extract of Rosmarinus officinalis and its Chitosan-Based Nanoparticles Against Eimeria tenella Oocysts of Chickens. AAPS PharmSciTech 2022; 23:295. [PMID: 36329254 PMCID: PMC9633124 DOI: 10.1208/s12249-022-02445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, chitosan nanoparticles (CsNPs) were used as nanocarrier for ultrasonicated ethanolic extract of Rosmarinus officinalis (UEERO) as a new nanoformulation against Eimeria tenella. Herein, CsNPs have been synthesized by ionic gelation method at pH 3 (CsNPs3) and pH 5 (CsNPs5), followed by characterization of morphology, size, polydispersity index (PDI), surface charge, and loading efficiency of UEERO. An in vitro sporulation inhibition assay (10, 5, 2.5, 1.25, 0.62, 0.31, 0.15, 0.07, 0.04, 0.02, and 0.01 mg/ml normal saline solution) against E. tenella was conducted. Results showed that free CsNPs and UEERO-CsNPs3/5 were cubic- and spherical-shaped with positive charge and average size of ~ 150.8 nm (314.4 nm) and 151.7 nm (321.1 nm), respectively. The total loading efficiency using UV–vis spectrophotometer, was 80.05 at pH 5 and 64.39% at pH 3. The in vitro sporulation inhibition assay revealed that UEERO, CsNPs3/5, and UEERO-CsNPs3/5 showed a potential inhibitory effect on sporulation (%), distortion in wall (%), and sporocyst abnormality (%) in a dose-dependent manner. Accordingly, the concentration (10 mg/ml) showed the best efficacy after 24 h in UEERO, free CsNPs, and UEERO-CsNPs. Moreover, UEERO-CsNPs3 and UEERO-CsNPs5 had stopped the sporulation (%) after 72 h. Taken all together, UEERO-CsNPs3 and UEERO-CsNPs5 are best effective against E. tenella in a dose-dependent manner in terms of sporulation (%), distortion in wall (%), and sporocysts abnormality.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| |
Collapse
|
18
|
Badirzadeh A, Alipour M, Najm M, Vosoogh A, Vosoogh M, Samadian H, Hashemi AS, Farsangi ZJ, Amini SM. Potential therapeutic effects of curcumin coated silver nanoparticle in the treatment of cutaneous leishmaniasis due to Leishmania major in-vitro and in a murine model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
20
|
Padzik M, Chomicz L, Bluszcz J, Maleszewska K, Grobelny J, Conn DB, Hendiger EB. Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms 2022; 10:microorganisms10061076. [PMID: 35744595 PMCID: PMC9230222 DOI: 10.3390/microorganisms10061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Acanthamoeba spp. are amphizoic amoebae that are widely distributed in the environment and capable of entering the human body. They can cause pathogenic effects in different tissues and organs, including Acanthamoeba keratitis (AK), which may result in a loss of visual acuity and blindness. The diagnostics, treatment, and prevention of AK are still challenging. More than 90% of AK cases are related to the irresponsible wearing of contact lenses. However, even proper lens care does not sufficiently protect against this eye disease, as amoebae have been also found in contact lens solutions and contact lens storage containers. The adhesion of the amoebae to the contact lens surface is the first step in developing this eye infection. To limit the incidence of AK, it is important to enhance the anti-adhesive activity of the most popular contact lens solutions. Currently, silver nanoparticles (AgNPs) are used as modern antimicrobial agents. Their effectiveness against Acanthamoeba spp., especially with the addition of plant metabolites, such as tannic acid, has been confirmed. Here, we present the results of our further studies on the anti-adhesion potential of tannic acid-modified silver nanoparticles (AgTANPs) in combination with selected contact lens solutions against Acanthamoeba spp. on four groups of contact lenses. The obtained results showed an increased anti-adhesion activity of contact lens solutions in conjunction with AgTANPs with a limited cytotoxicity effect compared to contact lens solutions acting alone. This may provide a benefit in improving the prevention of amoebae eye infections. However, there is still a need for further studies on different pathogenic strains of Acanthamoeba in order to assess the adhesion of the cysts to the contact lens surface and to reveal a more comprehensive picture of the activity of AgTANPs and contact lens solutions.
Collapse
Affiliation(s)
- Marcin Padzik
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
- Correspondence:
| | - Lidia Chomicz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Julita Bluszcz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Karolina Maleszewska
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland;
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; or
- One Health Center, School of Mathematical and Natural Sciences, Berry College, Mount Berry, GA 30149, USA
| | - Edyta B. Hendiger
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| |
Collapse
|
21
|
Mohamed MG, Elmarhoumy SM, Saied EM, Zoghroban HS. Evaluation of the efficacy of gold nanoparticles on Giardia lamblia infection in experimental animals. Exp Parasitol 2022; 238:108277. [DOI: 10.1016/j.exppara.2022.108277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/03/2023]
|
22
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
23
|
Synthesis, Characterization and Nanoformulation of Novel Sulfonamide-1,2,3-triazole Molecular Conjugates as Potent Antiparasitic Agents. Int J Mol Sci 2022; 23:ijms23084241. [PMID: 35457059 PMCID: PMC9025934 DOI: 10.3390/ijms23084241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.
Collapse
|
24
|
Anbari H, Maghsoudi A, Hosseinpour M, Yazdian F. Acceleration of antibacterial activity of curcumin loaded biopolymers against methicillin-resistant Staphylococcus aureus: Synthesis, optimization, and evaluation. Eng Life Sci 2022; 22:58-69. [PMID: 35140554 PMCID: PMC8811727 DOI: 10.1002/elsc.202100050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Curcumin is a polyphenolic molecule with antibacterial, antioxidant, anti-inflammatory, and antimicrobial properties. This study aimed to prepare nanocurcumin by encapsulating in biopolymers to improve its stability, bioavailability, water-solubility, antibacterial efficiency against methicillin-resistant Staphylococcus aureus. Three effective variables of curcumin concentration, polymer concentration, and water volume on curcumin-loaded polymer nanoparticles, were optimized. The average size of polyacrylic acid (PAA), polyvinyl alcohol (PVA), and polyethyleneimine (PEI) nanoparticles were obtained 75.2, 77.1, 86.4 nm, respectively. The nanoparticles had a spherical shape, a smooth and uniform surface morphology. The MIC of PAA, PVA, and PEI nanoparticles was 0.480, 0.390, and 0.340 mg/mL, respectively and the MIC of PAA, PVA, and PEI combined with methicillin was 0.330, 0.260, and 0.200 mg/mL, respectively. According to the results, curcumin-loaded PEI nanoparticles had the highest inhibitory effect against methicillin-resistant S. aureus among the synthesized nanoparticles. The results showed that solvent volume, polymer concentration and curcumin concentration had a significant effect on particle size. The inhibitory properties of curcumin nanoparticles significantly increased due to the smaller particle size and increased penetration into the bacterium. Curcumin-loaded nanoparticles can be promising drug carriers for the treatment of infections, cancer, and other diseases.
Collapse
Affiliation(s)
- Hamoun Anbari
- Department of Food Science and TechnologyScience and Research Branch, Islamic Azad UniversityTehranIran
| | | | - Mohammadreza Hosseinpour
- Department of Food Science and TechnologyScience and Research Branch, Islamic Azad UniversityTehranIran
| | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| |
Collapse
|
25
|
Chitosan Schiff bases/AgNPs: synthesis, characterization, antibiofilm and preliminary anti-schistosomal activity studies. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03993-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Assessment of the Therapeutic Efficacy of Silver Nanoparticles against Secondary Cystic Echinococcosis in BALB/c Mice. SURFACES 2022. [DOI: 10.3390/surfaces5010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Cystic echinococcosis (CE) is a highly prevalent parasitic disease resulting from the hydatid cyst of Echinococcus granulosus. It is also described as a zoonotic disease and considered a neglected tropical infection. Aim: This study assessed the antiparasitic activity of silver nanoparticles (AgNPs), against E. granulosus infection in BALB/c mice. Methods: The green synthesis of AgNPs was accomplished using Zizyphus spina-christi leaves. AgNPs were orally administered to BALB/c mice for acute short-term toxicity evaluation, in doses of 50 mg, 100 mg, 200 mg, and 300 mg/kg, and observations for toxic signs were carried out at 24, 48 h, and 14 days, continuously. Moreover, a total of 20 mice divided into two groups were intraperitoneally administered with 1500 viable protoscoleces for secondary hydatidosis infection. Results: The results showed that AgNPs did not induce any adverse effects or signs and no death, in either group of mice. The histopathological findings in the liver, kidneys, and intestine of the mice administered with AgNPs revealed mild histological effects compared with the control ones. The treated-infected mice showed a change in the appearance of the liver hydatid cysts from hyaline to milky cloudy compared with the untreated infected mice. Conclusion: Biosynthesized AgNPs showed anti-hydatic effects and are suggested as anti-echinococcal cyst treatment.
Collapse
|
27
|
Shevchenko LV, Dovbnia YY, Zheltonozhskaya TB, Permyakova NМ, Shulyak SV. Influence of preparation of silver nanoparticles in carriers based on polymer/inorganic hybrids on the mineral composition of chicken eggs. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The solution to the problem of reducing the use of antibiotics in the production of edible eggs is possible through the development and use of alternative bactericidal preparations, including those based on nanosilver. Obtaining biocompatible and biodegradable polymer/inorganic carriers of nanosilver provides for the study of its cumulative qualities which determine the safety of edible chicken eggs. The study investigated the mineral composition of edible eggs when feeding Hy-Line W36 laying hens solutions of the nanosilver preparation in carriers based on polymer/inorganic hybrids (AgNPs/SPH) given in the concentrations of 0, 1.0, and 2.0 mg/L of water (0, 0.2 and 0.4 mg/hen per day) three times at 10 day intervals. Oral administration to laying hens of an aqueous solution of silver nanoparticles in carriers based on polymer/inorganic hybrids at doses of 0.2 and 0.4 mg per hen per day in a dose-dependent manner increased the silver content and did not significantly affect the content of copper, zinc, iron, and lead in the eggshell. The preparation of silver nanoparticles did not affect the content of silver, copper, zinc, iron and lead in the albumen and yolk of chicken eggs after the first and second application, and after the third treatment of laying hens contributed to an increase in the silver content in the egg albumen and yolk but did not affect the content in them of copper, zinc, iron and lead. A single feeding of a solution of a preparation of nanosilver in carriers based on polymer/inorganic hybrids to hens at doses of 0.2 and 0.4 mg per hen per day after 10 days, contributed to a significant increase in the yolks of chicken eggs due to a decrease in the albumen and eggshell. The second and third application of nanosilver to poultry in the indicated doses contributed to a decrease in its proportion in the albumen and in the yolk due to a significant increase in its proportion in the shell. Selective accumulation of in-shell silver can be a promising means of improving the safety and security of chicken eggs when they are microbially contaminated. The results of using nanosilver based on polymer/inorganic hybrids in laying hens can be the basis for the development of methods for increasing the bactericidal properties of the shell and the safety of edible eggs.
Collapse
|
28
|
Abd El-Ghany WA, Shaalan M, Salem HM. Nanoparticles applications in poultry production: an updated review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
29
|
Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models. J Parasit Dis 2021; 45:606-619. [PMID: 34475640 DOI: 10.1007/s12639-020-01337-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022] Open
Abstract
Cryptosporidiosis is one of the major causes of diarrhea in immunocompetent and immunocompromised patients. It is self-limited in immunocompetent individuals. However, in the immunocompromised it can cause life-threatening diarrhea and results in chronic malabsorption of fluids, vitamins and electrolytes resulting in wasting. Our study is concerned with assessing and comparing the efficacy of nitazoxanide (NTZ) alone and NTZ loaded chitosan nanoparticles (NTZ loaded CS NPs) in the treatment of experimental cryptosporidiosis using parasitological and histopathological parameters. One hundred mice were divided into 5 groups (20 mice each). Each group was divided into 2 subgroups according to the immune status [a-immunocompetent, b-immunosuppressed]. group 1: control (healthy), group 2: control infected by Cryptosporidium oocysts, group 3: infected treated by NTZ, group 4: infected then treated by NTZ loaded CS NPs and group 5: infected then treated by chitosan nanoparticles (CS NPs) alone. Treatment of Cryptosporidium infected mice with NTZ loaded on CS NPs resulted in the highest significant reduction in oocysts shedding in both immunocompetent and immunosuppressed groups followed by treatment with NTZ form then by treatment with CS NPs alone. The treatment with NTZ loaded CS NPs displayed a remarkable improvement of the histopathological changes of the intestine, liver and lung while NTZ treated group showed some improvement. Treatment with NTZ loaded CS NPs in murine cryptosporidiosis gave the best results as it caused marked reduction in fecal oocysts counts and improvement of histopathological changes in immunocompetent and immunosuppressed groups.
Collapse
|
30
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
31
|
Oyeyemi OT. Application of nanotized formulation in the control of snail intermediate hosts of schistosomes. Acta Trop 2021; 220:105945. [PMID: 33945825 DOI: 10.1016/j.actatropica.2021.105945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023]
Abstract
Schistosomiasis continues to pose significant public health problems in many developing countries. Mass drug administration (MDA) is the most adopted control option but there is increasing evidence for the development of praziquantel-resistant Schistosoma strains. This shortcoming has necessitated the search for other effective methods for the control of schistosomiasis. The breaking of Schistosoma transmission cycles through the application of molluscicides into snail infested freshwater bodies has yielded positive outcomes when integrated with MDA in some countries. However, few of such effective molluscicides are currently available, and where available, their application is restricted due to toxicity concerns. Some nanotized particles with molluscicidal activities against the different stages of snail intermediate hosts of schistosomes have been reported. Importantly, the curcumin-nisin nanoparticle synthesized by our group was very effective and it showed no significant toxicity in a mouse model and brine shrimps. This, therefore, offers the possibility of developing a molluscicide that is not only safe for man but also is environmentally friendly. This paper reviews nanoparticles with molluscicidal potential. The methods of their formulation, activities, probable mechanisms of actions, and their toxicity profiles are discussed. More research should be made in this field as it offers great potential for the development of new molluscicides.
Collapse
Affiliation(s)
- Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
32
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Pandian SRK, Panneerselvam T, Pavadai P, Govindaraj S, Ravishankar V, Palanisamy P, Sampath M, Sankaranarayanan M, Kunjiappan S. Nano Based Approach for the Treatment of Neglected Tropical Diseases. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.665274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neglected tropical diseases (NTDs) afflict more than one billion peoples in the world’s poorest countries. The World Health Organization (WHO) has recorded seventeen NTDs in its portfolio, mainly caused by bacterial, protozoal, parasitic, and viral infections. Each of the NTDs has its unique challenges on human health such as interventions for control, prevention, diagnosis, and treatment. Research for the development of new drug molecules against NTDs has not been undertaken by pharmaceutical industries due to high investment and low-returns, which results in limited chemotherapeutics in the market. In addition, conventional chemotherapies for the treatment of NTDs are unsatisfactory due to its low efficacy, increased drug resistance, short half-life, potential or harmful fatal toxic side effects, and drug incompetence to reach the site of parasite infection. In this context, active chemotherapies are considered to be re-formulated by overcoming these toxic side effects via a tissue-specific targeted drug delivery system. This review mainly emphasizes the recent developments of nanomaterial-based drug delivery systems for the effective treatment of NTDs especially sleeping sickness, leishmaniasis, chagas disease, soil-transmitted helminthiasis, african trypanosomiasis and dengue. Nanomaterials based drug delivery systems offer enhanced and effective alternative therapy through the re-formulation approach of conventional drugs into site-specific targeted delivery of drugs.
Collapse
|
34
|
Silver Nanoparticles Conjugated with Contact Lens Solutions May Reduce the Risk of Acanthamoeba Keratitis. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050583. [PMID: 34064555 PMCID: PMC8151187 DOI: 10.3390/pathogens10050583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Acanthamoeba keratitis (AK), a severe sight-threatening corneal infection, has become a significant medical problem, especially among contact lens wearers. The disease manifests as eye pain, congestion, blurred vision, lachrymation, and ring-shaped infiltrates of the cornea, and can lead to permanent blindness. Inappropriate habits of contact lens users may result in an increased risk of AK infection. The anti-amoebic efficiency of popular multipurpose contact lens solutions is insufficient to reduce this risk. An effective and non-toxic therapy against AK has not yet been developed. The prevention of AK is crucial to reduce the number of AK infections. Nanoparticles are known to be active agents against bacteria, viruses, and fungi and were also recently tested against protozoa, including Acanthamoeba spp. In our previous studies, we proved the anti-amoebic and anti-adhesive activity of silver nanoparticles against Acanthamoeba castellanii. The aim of this study is to evaluate the activity, cytotoxicity, and anti-adhesive properties of silver nanoparticles conjugated with five commonly used multipurpose contact lens solutions against the Acanthamoeba castellanii NEFF strain. The obtained results show a significant increase in anti-amoebic activity, without increasing the overall cytotoxicity, of Solo Care Aqua and Opti Free conjugated with nanoparticles. The adhesion of Acanthamoeba trophozoites to the contact lens surface is also significantly reduced. We conclude that low concentrations of silver nanoparticles can be used as an ingredient in contact lens solutions to decrease the risk of Acanthamoeba keratitis infection.
Collapse
|
35
|
Salehi B, Rodrigues CF, Peron G, Dall'Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM, Singab AN, Pezzani R, Redaelli M, Patra JK, Kulandaisamy Venil C, Das G, Singh D, Kriplani P, Venditti A, Fokou PVT, Iriti M, Amarowicz R, Martorell M, Cruz-Martins N. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res 2021; 35:2487-2499. [PMID: 33587320 DOI: 10.1002/ptr.6976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Lubna Azmi
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Ila Shukla
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Abdel Nasser Singab
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Liettoli di Campolongo Maggiore (VE), Italy
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | | | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | - Deeksha Singh
- E.S.I. Hospital, Kota, Medical, Health and Family Welfare Department, Government of Rajasthan, Rajasthan, India
| | | | | | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
El-Gendy AML, Mohammed MAA, Ghallab MMI, Abdel Aziz MO, Ibrahim SM. Therapeutic Effect of Chitosan Nanoparticles and Metronidazole in Treatment of Experimentally Giardiasis Infected Hamsters. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:32-42. [PMID: 33786045 PMCID: PMC7988670 DOI: 10.18502/ijpa.v16i1.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: The present study aimed to assess the therapeutic effect of chitosan nanoparticles and metronidazole against Giardia lamblia as well as evaluate the efficacy of loading metronidazole on chitosan nanoparticles. Methods: This study was carried out at medical Parasitology Department, Faculty of Medicine, Zagazig University and Theodor Bilharz Research institute (TBRI) from February 2019 to February 2020 on 45 hamsters. They were divided into 5 groups 9 hamsters each: Group A non-infected hamsters, Group B infected control group, Group C, D and E infected with G. lamblia and treated with Chitosan nanoparticles (CsNPs), metronidazole (MTZ) and metronidazole-loaded chitosan nanoparticles (MTZ-CsNPs) respectively. Results: The highest percentage of reduction in the Giardia cyst and trophozoite counts were in group that received MTZ-CsNPs (94.69%, 94.29%). Lower percentages of reduction were recorded for MTZ treated group (90.15%, 89.52%) and CsNPs treated group (63.64%, 75.24%). Histopathological examination showed marked healing of intestinal mucosa after treatment with MTZ-CsNPs. Conclusion: CsNPs showed a therapeutic effect against Giardia infection in hamsters. Loading of metronidazole on chitosan nanoparticles enhanced therapeutic effect of both CsNPs as well as metronidazole.
Collapse
Affiliation(s)
| | | | | | - Marwa Omar Abdel Aziz
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
37
|
Mahmud S, Uddin MAR, Paul GK, Shimu MSS, Islam S, Rahman E, Islam A, Islam MS, Promi MM, Emran TB, Saleh MA. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief Bioinform 2021; 22:bbaa428. [PMID: 33517367 PMCID: PMC7929365 DOI: 10.1093/bib/bbaa428] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The new coronavirus (SARS-CoV-2) halts the world economy and caused unbearable medical emergency due to high transmission rate and also no effective vaccine and drugs has been developed which brought the world pandemic situations. The main protease (Mpro) of SARS-CoV-2 may act as an effective target for drug development due to the conservation level. Herein, we have employed a rigorous literature review pipeline to enlist 3063 compounds from more than 200 plants from the Asian region. Therefore, the virtual screening procedure helps us to shortlist the total compounds into 19 based on their better binding energy. Moreover, the Prime MM-GBSA procedure screened the compound dataset further where curcumin, gartanin and robinetin had a score of (−59.439, −52.421 and − 47.544) kcal/mol, respectively. The top three ligands based on binding energy and MM-GBSA scores have most of the binding in the catalytic groove Cys145, His41, Met165, required for the target protein inhibition. The molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, solvent accessible surface area, radius of gyration and hydrogen bond analysis from simulation trajectories. The post-molecular dynamics analysis also confirms the interactions of the curcumin, gartanin and robinetin in the similar binding pockets. Our computational drug designing approach may contribute to the development of drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Shafi Mahmud
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Mohammad Abu Raihan Uddin
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | | | - Saiful Islam
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Ekhtiar Rahman
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Md Samiul Islam
- Department of Molecular Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Maria Meha Promi
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy at the BGC Trust University, Bangladesh
- University of Chittagong, PhD from Graduate School of Medicines, Kanazawa University, Japan
| | - Md Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Administration Building 1, Rajshahi 6205, Bangladesh
| |
Collapse
|
38
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
39
|
Hendiger EB, Padzik M, Żochowska A, Baltaza W, Olędzka G, Zyskowska D, Bluszcz J, Jarzynka S, Chomicz L, Grodzik M, Hendiger J, Piñero JE, Grobelny J, Ranoszek-Soliwoda K, Lorenzo-Morales J. Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasit Vectors 2020; 13:624. [PMID: 33353560 PMCID: PMC7754594 DOI: 10.1186/s13071-020-04453-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Free-living amoebae of the genus Acanthamoeba are cosmopolitan, widely distributed protozoans that cause a severe, vision-threatening corneal infection known as Acanthamoeba keratitis (AK). The majority of the increasing number of AK cases are associated with contact lens use. Appropriate eye hygiene and effective contact lens disinfection are crucial in the prevention of AK because of the lack of effective therapies against it. Currently available multipurpose contact lens disinfection systems are not fully effective against Acanthamoeba trophozoites and cysts. There is an urgent need to increase the disinfecting activity of these systems to prevent AK infections. Synthesized nanoparticles (NPs) have been recently studied and proposed as a new generation of anti-microbial agents. It is also known that some plant metabolites, including tannins, have anti-parasitic activity. The aim of this study was to evaluate the anti-amoebic activity and cytotoxicity of tannic acid-modified silver NPs (AgTANPs) conjugated with selected multipurpose contact lens solutions. METHODS The anti-amoebic activities of pure contact lens care solutions, and NPs conjugated with contact lens care solutions, were examined in vitro by a colorimetric assay based on the oxido-reduction of alamarBlue. The cytotoxicity assays were performed using a fibroblast HS-5 (ATCC CRL-11882) cell line. The results were statistically analysed by ANOVA and Student-Newman-Keuls test using P < 0.05 as the level of statistical significance. RESULTS We show that the NPs enhance the anti-Acanthamoeba activities of the tested contact lens solutions without increasing their cytotoxicity profiles. The activities are enhanced within the minimal disinfection time recommended by the manufacturers. CONCLUSIONS The conjugation of the selected contact lens solutions with AgTANPs might be a novel and promising approach for the prevention of AK infections among contact lens users.
Collapse
Affiliation(s)
- Edyta B. Hendiger
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Marcin Padzik
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Agnieszka Żochowska
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Wanda Baltaza
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Diana Zyskowska
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Julita Bluszcz
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Sylwia Jarzynka
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Lidia Chomicz
- Laboratory of Parasitology, Department of Medical Biology, Medical University of Warsaw, 14/16 Litewska Street, 00-575 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw, University of Life Sciences, 8 Ciszewskiego Street, 02-787 Warsaw, Poland
| | - Jacek Hendiger
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| |
Collapse
|
40
|
Al-Ardi MH. The uses of gold nanoparticles and Citrullus colocynthis L. nanoparticles against Giardia lamblia in vivo. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
PLGA nanoparticles loaded with Gallic acid- a constituent of Leea indica against Acanthamoeba triangularis. Sci Rep 2020; 10:8954. [PMID: 32488154 PMCID: PMC7265533 DOI: 10.1038/s41598-020-65728-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/23/2020] [Indexed: 02/02/2023] Open
Abstract
Acanthamoeba, a genus that contains at least 24 species of free-living protozoa, is ubiquitous in nature. Successful treatment of Acanthamoeba infections is always very difficult and not always effective. More effective drugs must be developed, and medicinal plants may have a pivotal part in the future of drug discovery. Our research focused on investigating the in vitro anti- acanthamoebic potential of Leea indica and its constituent gallic acid in different concentrations. Water and butanol fractions exhibited significant amoebicidal activity against trophozoites and cysts. Gallic acid (100 µg/mL) revealed 83% inhibition of trophozoites and 69% inhibition of cysts. The butanol fraction induced apoptosis in trophozoites, which was observed using tunnel assay. The cytotoxicity of the fractions and gallic acid was investigated against MRC-5 and no adverse effects were observed. Gallic acid was successfully loaded within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with 82.86% encapsulation efficiency, while gallic acid showed 98.24% in vitro release at 48 hours. Moreover, the gallic acid encapsulated in the PLGA nanoparticles exhibited 90% inhibition against trophozoites. In addition, gallic acid encapsulated nanoparticles showed reduced cytotoxicity towards MRC-5 compared to gallic acid, which evidenced that natural product nanoencapsulation in polymeric nanoparticles could play an important role in the delivery of natural products.
Collapse
|
42
|
Hendiger EB, Padzik M, Sifaoui I, Reyes-Batlle M, López-Arencibia A, Rizo-Liendo A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Chiboub O, Rodríguez-Expósito RL, Grodzik M, Pietruczuk-Padzik A, Stępień K, Olędzka G, Chomicz L, Piñero JE, Lorenzo-Morales J. Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis. Pathogens 2020; 9:pathogens9050350. [PMID: 32380785 PMCID: PMC7281428 DOI: 10.3390/pathogens9050350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide has been increasing every year. Moreover, 90% of Acanthamoeba keratitis cases are related to contact lens use. Wearing and storage contact lenses not in accordance with the physicians and manufacturers recommendations are the primary key risk factors of this disease. Amoebae can easily adhere to the contact lens surface and transmit to the corneal epithelium. Preventing amoebae adhesion to the contact lens surface could significantly decrease the number of AK infections. Until now, the effective therapy against AK is still under development. Currently proposed therapies are mainly limited to the chlorhexidine digluconate combined with propamidine isethionate or hexamidine applications, which are insufficient and very toxic to the eye. Due to lack of effective treatment, looking for new potential preventive agents is crucial to decrease the number of Acanthamoeba keratitis infections, especially among contact lens users. Nanoparticles have been already included in several novel therapies against bacteria, viruses, fungi, and protist. However, their anti-amoebic potential has not been fully tested yet. The aim of this study was to assess silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) anti-amoebic activity and influence on the amoebae adhesion to the surface of four different groups of contact lenses-classified according to the Food and Drugs Administration (FDA) guidelines. The obtained results show that both tested nanoparticles were effective against Acanthamoeba trophozoites and decreased the amoebae adhesion to the contact lens surface. AgNPs showed better anti-amoebic activity to cytotoxicity dependence and reduced amoebae adhesion in a wider spectrum of the tested contact lenses. Our studies also confirmed that ionization next to hydration of the contact lens material is a crucial parameter influencing the Acanthamoeba adhesion to the contact lens surface. In conclusion, silver nanoparticles might be considered as a novel preventive agent against Acanthamoeba keratitis infection.
Collapse
Affiliation(s)
- Edyta B. Hendiger
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - Marcin Padzik
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
- Correspondence: ; Tel.: +48-503-151-318
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
- Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, 2070 Carthage, Tunisia
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Pietruczuk-Padzik
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (A.P.-P.); (K.S.)
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (A.P.-P.); (K.S.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - Lidia Chomicz
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| |
Collapse
|
43
|
Hasan M, Elkhoury K, Belhaj N, Kahn C, Tamayol A, Barberi-Heyob M, Arab-Tehrany E, Linder M. Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells. Mar Drugs 2020; 18:E217. [PMID: 32316578 PMCID: PMC7230998 DOI: 10.3390/md18040217] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Current anticancer drugs exhibit limited efficacy and initiate severe side effects. As such, identifying bioactive anticancer agents that can surpass these limitations is a necessity. One such agent, curcumin, is a polyphenolic compound derived from turmeric, and has been widely investigated for its potential anti-inflammatory and anticancer effects over the last 40 years. However, the poor bioavailability of curcumin, caused by its low absorption, limits its clinical use. In order to solve this issue, in this study, curcumin was encapsulated in chitosan-coated nanoliposomes derived from three natural lecithin sources. Liposomal formulations were all in the nanometric scale (around 120 nm) and negatively charged (around -40 mV). Among the three lecithins, salmon lecithin presented the highest growth-inhibitory effect on MCF-7 cells (two times lower growth than the control group for 12 µM of curcumin and four times lower for 20 µM of curcumin). The soya and rapeseed lecithins showed a similar growth-inhibitory effect on the tumor cells. Moreover, coating nanoliposomes with chitosan enabled a higher loading efficiency of curcumin (88% for coated liposomes compared to 65% for the non-coated liposomes) and a stronger growth-inhibitory effect on MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Hasan
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Kamil Elkhoury
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Nabila Belhaj
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | - Elmira Arab-Tehrany
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France; (M.H.); (K.E.); (N.B.); (C.K.)
| |
Collapse
|
44
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
45
|
Nassef NE, Saad AGE, Harba NM, Beshay EVN, Gouda MA, Shendi SS, Mohamed ASED. Evaluation of the therapeutic efficacy of albendazole-loaded silver nanoparticles against Echinococcus granulosus infection in experimental mice. J Parasit Dis 2019; 43:658-671. [PMID: 31749538 PMCID: PMC6841915 DOI: 10.1007/s12639-019-01145-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/08/2023] Open
Abstract
The drug of choice for treatment of hydatid disease, albendazole (ABZ) is a poorly water-soluble drug; thus, enhancing its solubility is required. Among metal nanoparticles (NPs), silver (Ag) NPs showed antimicrobial efficacies. Therefore, this study was conducted to evaluate nanosilver particles (Ag NPs) free or combined with albendazole against Echinococcus granulosus infection in vivo. In this study, besides the normal control group (GI) (n = 5), 80 mice were infected with 2000 viable protoscoleces intraperitoneally then divided equally (n = 20) into the infected control (GII), ABZ-treated (GIII), nanosilver-treated (GIV) and ABZ-loaded-Ag NPs-treated (GV) groups. On the 90th post-infection day, treatment was started and continued for 8 weeks then the experiment was terminated. Each mouse was subjected to measurement of hydatid cysts' sizes and weights, serum IFN-γ, liver enzymes; histopathological and transmission electron microscopy studies. In all treated groups, there were significant reductions of hydatid cysts' sizes and weights; however, the highest efficacy rate (63.9%) was detected in group V associated with obvious ultrastructure alterations of the cysts. The liver tissues of group II showed intense granulomatous reactions, congestion, fibrosis, necrosis and steatosis associated with significant increases in serum IFN-γ and liver enzymes. Interestingly, the best antiparasitic effect and the most significant reduction of IFN-γ towards the normal values were found in GV. Moreover, Ag NPs had reduced the toxic effects of ABZ such as necrosis, steatosis and the elevated serum liver enzymes. Therefore, loading ABZ on Ag NPs could be a potential method to improve ABZ efficacy against hydatid disease.
Collapse
Affiliation(s)
- Nashaat E. Nassef
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Abdel-Gawad E. Saad
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy M. Harba
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Engy V. N. Beshay
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Marwa A. Gouda
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sawsan S. Shendi
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | |
Collapse
|
46
|
Gaafar MR, El-Zawawy LA, El-Temsahy MM, Shalaby TI, Hassan AY. Silver nanoparticles as a therapeutic agent in experimental cyclosporiasis. Exp Parasitol 2019; 207:107772. [PMID: 31610183 DOI: 10.1016/j.exppara.2019.107772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/24/2022]
Abstract
Cyclosporiasis is an emerging worldwide infection caused by an obligate intracellular protozoan parasite, Cyclospora cayetanensis. In immunocompetent patients, it is mainly manifested by self-limited diarrhea, which is persistent and may be fatal in immunocompromised patients. The standard treatment for cyclosporiasis is a combination of two antibiotics, trimethoprim and sulfamethoxazole. Gastrointestinal, haematologic and renal side effects were reported with this combination. Moreover, sulfa allergy, foetal anomalies and recurrence were recorded with no alternative drug treatment option. In this study, silver nanoparticles were chemically synthesized to be evaluated for the first time for their anti-cyclospora effects in both immunocompetent and immunosuppressed experimental mice in comparison to the standard treatment. The effect of silver nanoparticles was assessed through studying stool oocyst load, oocyst viability, ultrastructural changes in oocysts, and estimation of serum gamma interferon. Toxic effect of the therapeutic agents was evaluated by measuring liver enzymes, urea and creatinine in mouse sera. Results showed that silver nanoparticles had promising anti-cyclospora potentials. The animals that received these nanoparticles showed a statistically significant decrease in the oocyst burden and number of viable oocysts in stool and a statistically significant increase in serum gamma interferon in comparison to the corresponding group receiving the standard treatment and to the infected non-treated control group. Scanning electron microscopic examination revealed mutilated oocysts with irregularities, poring and perforations. Biochemical results showed no evidence of toxicity of silver nanoparticles, as the sera of the mice showed a statistically non-significant decrease in liver enzymes in immunocompetent subgroups, and a statistically significant decrease in immunosuppressed subgroups. Furthermore, a statistically non-significant decrease in urea and creatinine was recorded in all subgroups. Thus, silver nanoparticles proved their effectiveness against Cyclospora infection, and this will draw the attention to its use as an alternative to the standard therapy.
Collapse
Affiliation(s)
- M R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - L A El-Zawawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - M M El-Temsahy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - Th I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Egypt
| | - A Y Hassan
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
47
|
Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp Parasitol 2019; 204:107717. [DOI: 10.1016/j.exppara.2019.107717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
48
|
Hassan D, Farghali M, Eldeek H, Gaber M, Elossily N, Ismail T. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. J Microbiol Methods 2019; 165:105698. [PMID: 31446036 DOI: 10.1016/j.mimet.2019.105698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Cryptosporidium is a protozoan of extremely medical and veterinary impact; whose oocysts donate a considerable resistant to the water treatment processes. Therefore, this study aimed to explore the impacts of silver nanoparticles (AgNPs) on count and viability of the Cryptosporidium parvum (CP) isolated from different tap water samples. The oocysts were exposed to AgNPs at different dosages of 0.05, 0.1 and 1 ppm for several contact times (30 min to 4 h). The results showed a significant decrease in oocyst count and viability in a dose-dependent manner. Additionally, AgNPs at a conc. of 1 ppm for 30 min and 0.1 ppm for 1 h reduced the oocysts by 97.2 and 94.4%, respectively. Comparatively, there was a noticeable increase in the oocyst's viability at 2 and 4 h, which emphasized that the time of contact between AgNPs and CP was not a major influencing factor for successful application of AgNPs in the nano-water treatment.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Mohamed Farghali
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt.
| | - Hanan Eldeek
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Mona Gaber
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Nahed Elossily
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Taghreed Ismail
- Public Health and Community Medicine Department, Assiut University, 71526, Egypt
| |
Collapse
|
49
|
Ahmed SA, El-Mahallawy HS, Karanis P. Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts. Parasitol Res 2019; 118:2053-2063. [PMID: 31187224 DOI: 10.1007/s00436-019-06364-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Cryptosporidium is a ubiquitous harsh protozoan parasite that resists many disinfectants. It remains viable and infective for a long time in water and food causing global outbreaks. Chitosan (the deacetylated chitin molecule) was used in its nanosuspension form to evaluate its effect against Cryptosporidium parvum. The experiments were performed in vitro in serial concentrations and confirmed in mice in vivo infectivity assay. Chitosan nanoparticles (Cs NPs) were toxic to Cryptosporidium oocysts. The effect appeared to decrease the number of Cryptosporidium oocysts and altered their content. The destruction rate of oocysts was dependent on the dose of chitosan and the time of exposure (P < 0.05). Higher doses of Cs NPs over a prolonged period exhibited a significantly higher destruction rate. Using staining and light microscopy, remarkable destructive changes were observed in the oocysts' morphology. The minimal lethal dose for > 90% of oocysts was 3000 μg/ml, no mice infections in vivo were observed. The results in this study elucidate Cs NPs as an effective anti-cryptosporidial agent.
Collapse
Affiliation(s)
- Shahira A Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50937, Cologne, Germany
| |
Collapse
|
50
|
Scolicidal Effects of Chitosan-Curcumin Nanoparticles on the Hydatid Cyst Protoscolices. Acta Parasitol 2019; 64:367-375. [PMID: 31087261 DOI: 10.2478/s11686-019-00054-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE In the current era, cystic echinococcosis (CE), as larval stage of Echinococcus granulosus, is considered as a threat to human health. Scolicidal agents used in the surgery of cysts have different side effects. Therefore, the present study aimed to assess the effects of chitosan nanoparticles containing curcumin (Ch-Cu NPs) on the protoscolices of the hydatid cyst in vitro. METHODS Ch-Cu NPs were synthesized using a simple co-precipitation method and their structural and morphological properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Then, the effects of different concentrations of Ch-Cu NPs (0.25, 0.05, 1, 2, and 4 mg/mL) on the fatality rate, and the length and width of protoscolices in different times (5, 10, 20, 30, and 60 min) were investigated. In addition, the SEM technique was used to evaluate the structure of the protoscolices after treatment. RESULTS Based on the results, the presence of curcumin on the chitosan nanoparticles was confirmed by FT-IR analysis. Further, XRD analysis approved the crystal structure of chitosan NPs. Furthermore, the highest fatality rate was 68% in 4 mg/mL concentration of Ch-Cu NPs. The length and width of protoscolices decreased based on the high concentrations of Ch-Cu NPs, compared to the control group. CONCLUSION Finally, Ch-Cu NPs expressed good scolicidal activities, which made them suitable to be considered as an anti-protoscolex agent.
Collapse
|