1
|
Richards S, Pagnossin D, Buyugu PS, Manangwa O, Mramba F, Sindoya E, Paxton E, Torr SJ, Ritchie R, Rossi GE, Anyanwu LN, Barrett MP, Morrison LJ, Auty H. Longitudinal observational (single cohort) study on the causes of trypanocide failure in cases of African animal trypanosomosis in cattle near wildlife protected areas of Northern Tanzania. PLoS Negl Trop Dis 2025; 19:e0012541. [PMID: 39836697 PMCID: PMC11785308 DOI: 10.1371/journal.pntd.0012541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
African animal trypanosomosis (AAT) in cattle is primarily managed through trypanocide administration and insecticide application. Trypanocides can be used for both treatment and prophylaxis, but failure is often reported; this may occur due to resistance, substandard drugs, or inappropriate administration. This study in Tanzania aims to quantify reasons for trypanocide failure. An observational year-long longitudinal study was conducted in high-risk AAT areas in Serengeti District between June 2021-October 2022. Purposive sampling targeted herds with high utilization of the prophylactic trypanocide isometamidium chloride (ISM). When a farmer administered a trypanocide (ISM, diminazine aceturate, homidium), the project veterinarian assessed administration and treatment outcomes were determined based on PCR results from blood samples. A multivariable mixed model was utilized to evaluate risk factors for prophylaxis failure. Quality analysis was performed on trypanocide samples using High Performance Liquid Chromatography. A total of 630 cattle from 21 farms were monitored for a year-long period. A total of 295 trypanocide administrations were reported, predominantly being ISM (56%) used for prophylaxis (87%). One-third of trypanocide administrations were not given adequately, and many trypanocides were given to animals that tested negative for trypanosome infections by PCR. Failures occurred in 7% (95% CI 3.0-14%) of curative treatments, and 44% (95% CI 35-42%) of prophylactic administrations. The brand of ISM was significantly associated with odds of prophylaxis failure (p = 0.011). On quality analysis, two ISM samples had no detectable ISM isomers, but the remainder of ISM and DA samples (n = 46) fell within the range of acceptable levels. Drug counterfeiting, inadequate use of trypanocides, and resistance are all contributing to trypanocide failure, limiting effective AAT control and with implications for human disease risk. In order to curb trypanocide failure a multi-modal approach to managing the use of trypanocides is required to address all contributing factors.
Collapse
Affiliation(s)
- Shauna Richards
- International Livestock Research Institute, Nairobi, Kenya
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Davide Pagnossin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | - Furaha Mramba
- Private Researcher and Medical Entomologist, Tanga, Tanzania
| | | | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Steve J. Torr
- Liverpool School of Tropical Medicine, Liverpool, England, United Kingdom
| | - Ryan Ritchie
- School of Infection and Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Giovanni E. Rossi
- School of Chemistry, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lawrence Nnadozie Anyanwu
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael P. Barrett
- School of Infection and Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Harriet Auty
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
2
|
Mulenga GM, Chilongo K, Mubamba C, Gummow B. An evaluation of African animal trypanosomiasis control strategies in remote communities of Eastern Zambia. Parasitology 2024; 151:1269-1276. [PMID: 39474657 PMCID: PMC11894018 DOI: 10.1017/s0031182024001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 03/05/2025]
Abstract
Communities living in African animal trypanosomiasis (AAT) endemic areas of Zambia use several control strategies to protect their livestock from the devastating effects of trypanosomiasis. Several studies have reported the effectiveness of trypanosomiasis control strategies based on retrospective data. In this study, we assessed incidence rates of AAT in cattle (n = 227) using a prospective cohort study comprising 4 treatment groups, i.e., Diminazene aceturate, Isometamidium chloride, Cyfluthrin pour-on and Cypermethrin treated targets. The study was conducted in Mambwe district in Eastern Zambia between February 2019 and March 2020. The endemic prevalence of AAT for each group was determined using ITS-PCR prior to application of treatments. High endemic trypanosome pre-treatment rates were found in all Groups (Diminazene aceturate (61%), Isometamidium chloride (48%), Cyfluthrin pour-on (87%) and Cypermethrin targets (72%)). The overall apparent prevalence for the Mambwe district was 67% (152/227) and true prevalence at 95%CI was 63–71%. Once treatments were implemented, 12 monthly follow-ups were conducted. The average monthly incidence rates without standardization recorded: Diminazene aceturate (67%) Isometamidium chloride (35%), Cyfluthrin pour-on (55%) and Cypermethrin targets (61%). Incidence rates were standardized considering the endemic level of disease for each Group and the average standardized monthly incidence rate in the Diminazene aceturate Group was 7%; the Isometamidium chloride Group −13%; the Cyfluthrin Group −26%; and the Cypermethrin target Group, −17%. All Groups showed a decrease in incidence of AAT over the period of the study with the Cyfluthrin group showing to be the most effective in reducing AAT incidence in cattle.
Collapse
Affiliation(s)
- Gloria M. Mulenga
- Department of Veterinary Services, Kakumbi Tsetse and Trypanosomiasis Research Station, Airport Road, Mfuwe, Zambia
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Kalinga Chilongo
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Chrisborn Mubamba
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Bruce Gummow
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Morrison LJ, Barrett MP, Steketee PC, Cecchi G, Kijanga O, Mramba F, Auty HK. What is needed to achieve effective and sustainable control of African animal trypanosomosis? Trends Parasitol 2024; 40:679-686. [PMID: 39048503 DOI: 10.1016/j.pt.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A welcome resurgence in African animal trypanosomosis (AAT) research has resulted in advances in capabilities, foundational datasets, and understanding. Additionally, there is the prospect of the first new trypanocide in >60 years. However, it is vital to ensure that advances translate to improved and sustainable control in the field. A recent meeting, the Symposium on African Livestock Trypanosomes - Tanzania, convened stakeholders from across the spectrum of AAT research and control to ask how this can be achieved. Current constraints on progress were defined, as were critical gaps and opportunities that need addressing. There is a requirement and opportunity for the AAT research community to communicate, collaborate, and coordinate to maintain momentum and achieve the ultimate goal of sustainable AAT control.
Collapse
Affiliation(s)
| | | | | | - Giuliano Cecchi
- Animal Production and Health Division (NSA), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Oliver Kijanga
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | | | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Taviani E, Cappuccinelli P, Colombo M, Cirillo T, Neves L, Saide J, Attorre F. Environment, biodiversity and health in university scientific cooperation in Mozambique. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMozambique and Italy share a history of academic cooperation spanning almost half a century. The topical collection “Environment, biodiversity and health in university scientific cooperation in Mozambique” stems from the desire to collect the scientific progress achieved through this alliance. Research papers in the collection cover themes including biodiversity conservation for the sustainable use of natural resources, diagnostics and molecular epidemiology of genetic and infectious diseases, and the anthropogenic impact on the environment under the one health principle. The sustainable growth of a country depends, to a large extent, on the establishment of solid research capacity, ensuring the ownership and full involvement of local institutions. The availability of adequate scientific research frameworks is critical to guarantee the integrated conservation of the ecological, socio-economic and cultural value of biodiversity. The works published within this collection emphasize the importance of international cooperation in scientific research.
Collapse
|
6
|
Kasozi KI, MacLeod ET, Welburn SC. African animal trypanocide resistance: A systematic review and meta-analysis. Front Vet Sci 2023; 9:950248. [PMID: 36686196 PMCID: PMC9846564 DOI: 10.3389/fvets.2022.950248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background African animal trypanocide resistance (AATr) continues to undermine global efforts to eliminate the transmission of African trypanosomiasis in endemic communities. The continued lack of new trypanocides has precipitated drug misuse and overuse, thus contributing to the development of the AATr phenotype. In this study, we investigated the threat associated with AATr by using the major globally available chemotherapeutical agents. Methods A total of seven electronic databases were screened for an article on trypanocide resistance in AATr by using keywords on preclinical and clinical trials with the number of animals with treatment relapse, days taken to relapse, and resistant gene markers using the PRISMA checklist. Data were cleaned using the SR deduplicator and covidence and analyzed using Cochrane RevMan®. Dichotomous outputs were presented using risk ratio (RR), while continuous data were presented using the standardized mean difference (SMD) at a 95% confidence interval. Results A total of eight publications in which diminazene aceturate (DA), isometamidium chloride (ISM), and homidium chloride/bromide (HB) were identified as the major trypanocides were used. In all preclinical studies, the development of resistance was in the order of HB > ISM > DA. DA vs. ISM (SMD = 0.15, 95% CI: -0.54, 0.83; I 2 = 46%, P = 0.05), DA vs. HB (SMD = 0.96, 95% CI: 0.47, 1.45; I 2 = 0%, P = 0.86), and HB vs. ISM (SMD = -0.41, 95% CI: -0.96, 0.14; I 2 = 5%, P = 0.38) showed multiple cross-resistance. Clinical studies also showed evidence of multi-drug resistance on DA and ISM (RR = 1.01, 95% CI: 0.71-1.43; I 2 = 46%, P = 0.16). To address resistance, most preclinical studies increased the dosage and the treatment time, and this failed to improve the patient's prognosis. Major markers of resistance explored include TbAT1, P1/P2 transporters, folate transporters, such as F-I, F-II, F-III, and polyamine biosynthesis inhibitors. In addition, immunosuppressed hosts favor the development of AATr. Conclusion AATr is a threat that requires a shift in the current disease control strategies in most developing nations due to inter-species transmission. Multi-drug cross-resistance against the only accessible trypanocides is a major public health risk, justifying the need to revise the policy in developing countries to promote control of African trypanosomiasis.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom,School of Medicine, Kabale University, Kabale, Uganda,*Correspondence: Keneth Iceland Kasozi ✉ ; ✉
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China,Susan Christina Welburn ✉
| |
Collapse
|
7
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
8
|
Drug-resistant trypanosome isolates populations in dogs in Enugu North Senatorial Zone, Southeastern Nigeria. Parasitol Res 2021; 121:423-431. [PMID: 34746978 DOI: 10.1007/s00436-021-07362-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
African animal trypanosomosis is an important wasting and endemic protozoan disease causing morbidities and mortalities in animals in the sub-Saharan Africa. Currently, chemotherapy is the widely used method of African animal trypanosomosis control, especially in dogs in the sub-Saharan Africa. However, their efficacy is threatened by the emergence of drug-resistant trypanosomes owing to their extensive use and misuse over several decades amongst other factors. Thus, this study focused on the trypanocidal sensitivity and characterization of Trypanosoma species isolated from dogs in Enugu North Senatorial Zone (ENSZ), Southeastern Nigeria. Trypanosoma brucei (n = 44) and T. congolense (n = 4) isolated from naturally infected dogs in ENSZ, Southeastern Nigeria, between January and August 2016 were subjected to single dose test to assess their sensitivity to diminazene aceturate (DA) and isometamidium chloride (ISM). Subsequently, DA and multidrug-resistant isolates were further subjected to DA multi-dose test and CD50 was determined and was used to characterize the drug-resistant trypanosomes. Clones were derived from a randomly selected multidrug-resistant isolate and their sensitivity also assessed. 100% and 83.3% of T. congolense and T. brucei respectively were resistant to the trypanocides. Amongst the drug-resistant isolates, 50%, 16.7%, and 33.3% were resistant to DA, ISM, and both trypanocides respectively with CD50 ranging between 11 and 32.34 mg/kg. Drug-resistant trypanosomes were characterized into highly resistant (CD50 = 11-24.99 mg/kg) and very highly resistant (CD50 = > 25 mg/kg) trypanosome isolates. Clones also expressed high levels of resistance to both DA and ISM with CD50 values between 35.58 and 38.85 mg/kg. Trypanocidal resistance was, thus, confirmed and appears to be widespread in dogs in ENSZ, Southeastern Nigeria. The adoption of an integrated trypanosomosis control strategy in ENSZ is most desirous.
Collapse
|
9
|
Richards S, Morrison LJ, Torr SJ, Barrett MP, Manangwa O, Mramba F, Auty H. Pharma to farmer: field challenges of optimizing trypanocide use in African animal trypanosomiasis. Trends Parasitol 2021; 37:831-843. [PMID: 33962879 DOI: 10.1016/j.pt.2021.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Trypanocides are a key control component of African animal trypanosomiasis (AAT) in tsetse-infested areas of sub-Saharan Africa. While farmers are dependent upon trypanocides, recent research highlights their inappropriate and ineffective use, problems with drug quality, and treatment failure. There are currently gaps in knowledge and investment in inexpensive AAT diagnostics, understanding of drug resistance, and the effective use of trypanocides in the field. Without this important knowledge it is difficult to develop best practice and policy for existing drugs or to inform development and use of new drugs. There needs to be better understanding of the drivers and behavioural practices around trypanocide use so that they can be incorporated into sustainable solutions needed for the development of effective control of AAT.
Collapse
Affiliation(s)
- Shauna Richards
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Steve J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Furaha Mramba
- Tanzania Veterinary Laboratory Agency, Dar Es Salaam, Tanzania
| | - Harriet Auty
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Abro Z, Kassie M, Muriithi B, Okal M, Masiga D, Wanda G, Gisèle O, Samuel A, Nguertoum E, Nina RA, Mansinsa P, Adam Y, Camara M, Olet P, Boucader D, Jamal S, Garba ARI, Ajakaiye JJ, Kinani JF, Hassan MA, Nonga H, Daffa J, Gidudu A, Chilongo K. The potential economic benefits of controlling trypanosomiasis using waterbuck repellent blend in sub-Saharan Africa. PLoS One 2021; 16:e0254558. [PMID: 34283848 PMCID: PMC8291668 DOI: 10.1371/journal.pone.0254558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Trypanosomiasis is a significant productivity-limiting livestock disease in sub-Saharan Africa, contributing to poverty and food insecurity. In this paper, we estimate the potential economic gains from adopting Waterbuck Repellent Blend (WRB). The WRB is a new technology that pushes trypanosomiasis-transmitting tsetse fly away from animals, improving animals’ health and increasing meat and milk productivity. We estimate the benefits of WRB on the production of meat and milk using the economic surplus approach. We obtained data from an expert elicitation survey, secondary and experimental sources. Our findings show that the adoption of WRB in 5 to 50% of the animal population would generate an economic surplus of US$ 78–869 million per annum for African 18 countries. The estimated benefit-cost ratio (9:1) further justifies an investment in WRB. The technology’s potential benefits are likely to be underestimated since our estimates did not include the indirect benefits of the technology adoption, such as the increase in the quantity and quality of animals’ draught power services and human and environmental health effects. These benefits suggest that investing in WRB can contribute to nutrition security and sustainable development goals.
Collapse
Affiliation(s)
- Zewdu Abro
- International Centre of Insect Physiology and Ecology (icipe), Addis Ababa, Ethiopia
- * E-mail:
| | - Menale Kassie
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Beatrice Muriithi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Michael Okal
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Gift Wanda
- African Union, Coordinator of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC), Addis Ababa, Ethiopia
| | - Ouedraogo Gisèle
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Abah Samuel
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Etienne Nguertoum
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Rock Aimé Nina
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Philémon Mansinsa
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Yahaya Adam
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Mamadou Camara
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Pamela Olet
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Diarra Boucader
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Susana Jamal
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Abdoul Razak Issa Garba
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Joseph Joachim Ajakaiye
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Jean Felix Kinani
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Mohamed Adam Hassan
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Hezron Nonga
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Joyce Daffa
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Ambrose Gidudu
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| | - Kalinga Chilongo
- Country Coordinators of the Pan African Tsetse and Trypanosomiasis (T&T) Eradication Campaign (PATTEC) for Burkina Faso, Cameroon, Central Africa Republic, Congo, Democratic Republic of the Congo, Ghana, Guinea, Kenya, Mali, Mozambique, Niger, Nigeria, Rwanda, Sudan, Tanzania, Tanzania, Uganda, and Zambia, respectively
| |
Collapse
|
11
|
Comparison of therapeutic efficacy of different drugs against Trypanosoma vivax on experimentally infected cattle. Prev Vet Med 2020; 181:105040. [DOI: 10.1016/j.prevetmed.2020.105040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 11/22/2022]
|
12
|
Mulandane FC, Snyman LP, Brito DRA, Bouyer J, Fafetine J, Van Den Abbeele J, Oosthuizen M, Delespaux V, Neves L. Evaluation of the relative roles of the Tabanidae and Glossinidae in the transmission of trypanosomosis in drug resistance hotspots in Mozambique. Parasit Vectors 2020; 13:219. [PMID: 32349788 PMCID: PMC7189697 DOI: 10.1186/s13071-020-04087-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) and tabanids (Diptera: Tabanidae) are haematophagous insects of medical and veterinary importance due to their respective role in the biological and mechanical transmission of trypanosomes. Few studies on the distribution and relative abundance of both families have been conducted in Mozambique since the country's independence. Despite Nicoadala, Mozambique, being a multiple trypanocidal drug resistance hotspot no information regarding the distribution, seasonality or infection rates of fly-vectors are available. This is, however, crucial to understanding the epidemiology of trypanosomosis and to refine vector management. METHODS For 365 days, 55 traps (20 NGU traps, 20 horizontal traps and 15 Epsilon traps) were deployed in three grazing areas of Nicoadala District: Namitangurine (25 traps); Zalala (15 traps); and Botao (15 traps). Flies were collected weekly and preserved in 70% ethanol. Identification using morphological keys was followed by molecular confirmation using cytochrome c oxidase subunit 1 gene. Trap efficiency, species distribution and seasonal abundance were also assessed. To determine trypanosome infection rates, DNA was extracted from the captured flies, and submitted to 18S PCR-RFLP screening for the detection of Trypanosoma. RESULTS In total, 4379 tabanids (of 10 species) and 24 tsetse flies (of 3 species), were caught. NGU traps were more effective in capturing both the Tabanidae and Glossinidae. Higher abundance and species diversity were observed in Namitangurine followed by Zalala and Botao. Tabanid abundance was approximately double during the rainy season compared to the dry season. Trypanosoma congolense and T. theileri were detected in the flies with overall infection rates of 75% for tsetse flies and 13% for tabanids. Atylotus agrestis had the highest infection rate of the tabanid species. The only pathogenic trypanosome detected was T. congolense. CONCLUSIONS Despite the low numbers of tsetse flies captured, it can be assumed that they are still the cyclical vectors of trypanosomosis in the area. However, the high numbers of tabanids captured, associated to their demonstrated capacity of transmitting trypanosomes mechanically, suggest an important role in the epidemiology of trypanosomosis in the Nicoadala district. These results on the composition of tsetse and tabanid populations as well as the observed infection rates, should be considered when defining strategies to control the disease.
Collapse
Affiliation(s)
| | - Louwtjie P. Snyman
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Durban Museum of Natural History, Durban, South Africa
| | - Denise R. A. Brito
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
| | - Jeremy Bouyer
- CIRAD, UMR ASTRE CIRAD-INRA (Animal, Health, Territories, Risks and Ecosystems), Campus International de Baillarguet, 34398 Montpellier Cedex 05, France
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria
| | - José Fafetine
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Marinda Oosthuizen
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Vincent Delespaux
- Bio-engineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luis Neves
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Ebhodaghe F, Ohiolei J, Isaac C. A systematic review and meta-analysis of small ruminant and porcine trypanosomiasis prevalence in sub-Saharan Africa (1986 to 2018). Acta Trop 2018; 188:118-131. [PMID: 30179607 DOI: 10.1016/j.actatropica.2018.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
The appraisal of the disease burden of African animal trypanosomiasis (AAT) in some livestock at country level could invite a re-evaluation of trypanosomiasis-control strategy. This study thus estimates small ruminant and porcine trypanosomiasis prevalence in sub-Saharan African countries. It also describes Trypanosoma species prevalence in small ruminants and pigs and attempts identification of factors explaining between-study variations in prevalence. Articles reporting animal trypanosomiasis prevalence in sheep, goats, and pigs in countries within sub-Saharan Africa were retrieved from different databases (PubMed, Science Direct, Google Scholar, and African Journal Online) and reference lists of relevant literatures. A total of 85 articles from 13 countries published between 1986 and 2018 were included in the analysis. Overall random-effects meta-analytic mean prevalence estimates were: 7.67% (95% CI: 5.22-10.49), 5.84% (95% CI: 3.81-8.23), and 19.46% (95% CI: 14.61-24.80) respectively, for sheep, goats, and pigs with substantial heterogeneity (I2 = >95.00%. p < 0.0001) noted between studies. Ovine, caprine, and porcine prevalence were highest in Tanzania (91.67%. 95% CI: 76.50-99.84), Equatorial Guinea (27%. 95% CI: 0-81.09), and Cameroon (47%. 95% CI: 29.67-66.06), respectively. Trypanosoma brucei s. l., T. vivax, and T. congolense were the most prevalent in the livestock. Trypanosoma brucei subspecies (T. b. gambiense and T. b. rhodesiense) occurred in all three livestock being mostly prevalent in pigs. Country of study was a significant predictor of trypanosomiasis prevalence in each livestock in addition to time and sample size for caprine hosts, diagnostic technique for both caprine and ovine hosts, and sample size for porcine hosts. The pattern of animal trypanosomiasis prevalence in the studied livestock reflects their susceptibility to trypanosomal infections and tsetse fly host feeding preferences. In conclusion, sheep, goats, and especially pigs are reservoirs of human infective trypanosomes in sub-Saharan Africa; consequently, their inclusion in sleeping sickness control programmes could enhance the goal of the disease elimination.
Collapse
|
14
|
Ebhodaghe F, Isaac C, Ohiolei JA. A meta-analysis of the prevalence of bovine trypanosomiasis in some African countries from 2000 to 2018. Prev Vet Med 2018; 160:35-46. [PMID: 30388996 DOI: 10.1016/j.prevetmed.2018.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
Bovine trypanosomiasis is a disease of cattle. In sub-Saharan Africa, the disease mean prevalence estimates are unknown in most endemic countries. We therefore performed a meta-analysis with the aim of estimating national mean prevalence of bovine trypanosomiasis in endemic countries across sub-Saharan Africa. Relevant articles reporting bovine trypanosomiasis prevalence were retrieved through systematic literature search and scanning of articles reference-lists. Eligibility criteria included that articles reported sample size, prevalence, and diagnostic technique adopted. Overall, data from 180 eligible articles from 19 countries satisfied the inclusion criteria. Meta-analysis of prevalence data based on the random-effects model resulted in an overall mean prevalence of 15.10% (95% CI: 13.22-17.08). National prevalence estimates were generally high except those of Benin and Senegal where estimates ranked below 10.00%. Significant heterogeneity (I2 = 98.75%. p = <0.0001) was noted between studies, and univariate meta-regression analysis identified choice of diagnostic method being major contributor to observed heterogeneity (R2 = 36.37%); while country of study (R2 = 9.57%) and sample size (R2 = 3.47%) had marginal effect on heterogeneity. In spite of past and ongoing control activities, bovine trypanosomiasis remains highly prevalent in most endemic sub-Saharan African countries. Nevertheless, dearth of epidemiological data in some countries and the use of less sensitive diagnostic tools limit reliable estimation of the disease prevalence. Therefore, there is the need to intensify efforts in aspects of surveillance and increased application of molecular diagnostic tool(s) across endemic locations as this would raise the chances of achieving a near-accurate estimate of the disease prevalence which is the first step to attempting eradication.
Collapse
Affiliation(s)
- F Ebhodaghe
- African Regional Postgraduate Programme in Insect Science, West African Sub-Regional Centre, University of Ghana Legon, Accra, Ghana; Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - C Isaac
- Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - J A Ohiolei
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|