1
|
Li Z, Huang Z, Gu P. Response of Escherichia coli to Acid Stress: Mechanisms and Applications-A Narrative Review. Microorganisms 2024; 12:1774. [PMID: 39338449 PMCID: PMC11434309 DOI: 10.3390/microorganisms12091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Change in pH in growth conditions is the primary stress for most neutralophilic bacteria, including model microorganism Escherichia coli. However, different survival capacities under acid stress in different bacteria are ubiquitous. Research on different acid-tolerance mechanisms in microorganisms is important for the field of combating harmful gut bacteria and promoting fermentation performance of industrial strains. Therefore, this study aimed to carry out a narrative review of acid-stress response mechanism of E. coli discovered so far, including six AR systems, cell membrane protection, and macromolecular repair. In addition, the application of acid-tolerant E. coli in industry was illustrated, such as production of industrial organic acid and developing bioprocessing for industrial wastes. Identifying these aspects will open the opportunity for discussing development aspects for subsequent research of acid-tolerant mechanisms and application in E. coli.
Collapse
Affiliation(s)
| | | | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Z.L.); (Z.H.)
| |
Collapse
|
2
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Zhang H, Shao C, Wang J, Chu Y, Xiao J, Kang Y, Zhang Z. Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process. Curr Microbiol 2024; 81:122. [PMID: 38530471 DOI: 10.1007/s00284-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.
Collapse
Affiliation(s)
- Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| |
Collapse
|
4
|
Leung PB, Matanza XM, Roche B, Ha KP, Cheung HC, Appleyard S, Collins T, Flanagan O, Marteyn BS, Clements A. Shigella sonnei utilises colicins during inter-bacterial competition. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001434. [PMID: 38376387 PMCID: PMC10924462 DOI: 10.1099/mic.0.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.
Collapse
Affiliation(s)
- P. B. Leung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - X. M. Matanza
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. Roche
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
| | - K. P. Ha
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - H. C. Cheung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - S. Appleyard
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - T. Collins
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - O. Flanagan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. S. Marteyn
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), F-67000 Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm U1225, Unité de Pathogenèse des Infections Vasculaires, F-75015 Paris, France
| | - A. Clements
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| |
Collapse
|
5
|
Bouillet S, Hamdallah I, Majdalani N, Tripathi A, Gottesman S. A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli.. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566509. [PMID: 38077006 PMCID: PMC10705548 DOI: 10.1101/2023.11.09.566509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Issam Hamdallah
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Sazykin IS, Sazykina MA. The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene X 2023; 857:147170. [PMID: 36623672 DOI: 10.1016/j.gene.2023.147170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The review is devoted to bacterial genome destabilization by oxidative stress. The article discusses the main groups of substances causing such stress. Stress regulons involved in destabilization of genetic material and mechanisms enhancing mutagenesis, bacterial genome rearrangements, and horizontal gene transfer, induced by oxidative damage to cell components are also considered. Based on the analysis of publications, it can be claimed that rapid development of new food substrates and ecological niches by microorganisms occurs due to acceleration of genetic changes induced by oxidative stress, mediated by several stress regulons (SOS, RpoS and RpoE) and under selective pressure. The authors conclude that non-lethal oxidative stress is probably-one of the fundamental processes that guide evolution of prokaryotes and a powerful universal trigger for adaptive destabilization of bacterial genome under changing environmental conditions.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| |
Collapse
|
7
|
Mulyanti D, Soewandhi SN, Riani C. Insertion of prpoD_rpoS fragment enhances expression of recombinant protein by dps auto-inducible promoter in Escherichia coli. Mol Biol Rep 2021; 48:5833-5845. [PMID: 34342815 DOI: 10.1007/s11033-021-06562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nowadays, recombinant therapeutic proteins have been widely produced and consumed. For the safety and effectiveness of the protein production, an auto-inducible expression vector is required to replace inducer interference, which is uneconomic and could be harmful. In this research, an auto-inducible expression plasmid, pCAD2_sod (a pBR322 derivate plasmid), which was under dps (RpoS-dependent gene) promoter control, was modified to provide RpoS at earlier phase. Hence, accumulates more target protein and resulting a new plasmid, pCAD2+_sod. pCAD2_sod had been constructed to automatically induces the expression of recombinant superoxide dismutase (SOD) from Staphylococcus equorum (rMnSODSeq) in the stationary growth phase of Escherichia coli. This work aimed to obtain pCAD2+_sod and determine the expression level of rMnSODSeq on mRNA and protein level. METHOD AND RESULTS A synthetic rpoS coding region under rpoD promoter control (prpoD_rpoS) was inserted to pCAD2_sod and generated pCAD2+_sod. The rMnSODSeq (24.3 kDa) produced from pCAD2+_sod was ~ 1.5 fold higher at 37 °C and more intense at 43 °C compared to that from pCAD2_sod, likewise shifted to earlier phase (after 1 h of incubation), as shown in the SDS-PAGE. The dismutase activity was also retained after zymography assay. The mRNA level from pCAD2+_sod was determined by qPCR and gave quantification cycle (Cq) values of cDNA lowest among others. It made the relative quantification (RQ) of the mRNA expression towards rho reference gene were high. CONCLUSIONS The prpoD_rpoS insertion shifts and increases the rMnSODSeq production from stationary to exponential phase. The pCAD2+_sod plasmid is potential for further recombinant protein productions.
Collapse
Affiliation(s)
- Dina Mulyanti
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.,Department of Pharmacy, Bandung Islamic University, Ranggagading 8, Bandung, 40116, Indonesia
| | | | - Catur Riani
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
8
|
TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. J Bacteriol 2021; 203:JB.00659-20. [PMID: 33526615 DOI: 10.1128/jb.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm5s2U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm5s2U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm5s2U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.
Collapse
|
9
|
Feng L, Bi W, Chen S, Zhu J, Liu X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol 2021; 97:103755. [PMID: 33653528 DOI: 10.1016/j.fm.2021.103755] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Shewanella baltica is a typical specific spoilage organism causing the deterioration of seafood, but the exact regulation of its adaptive and competitive dominance in diverse environments remains undefined. In this study, the regulatory function of two sigma factors, RpoS and RpoN, in environmental adaptation and spoilage potential were evaluated in S. baltica SB02. Two in-frame deletion mutants, ΔrpoS and ΔrpoN, were constructed to explore the roles in their motility, biofilm formation, stress response and spoilage potential, as well as antibiotics by comparing the phenotypes and transcription with those of wild type (WT) strain. Compared with WT strain, the ΔrpoN showed the slower growth and weaker motility due to loss of flagella, while swimming of the ΔrpoS was increased. Deletion of rpoN significantly decreased biofilm biomass, and production of exopolysaccharide and pellicle, resulting in a thinner biofilm structure, while ΔrpoS formed the looser aggregation in biofilm. Resistance of S. baltica to NaCl, heat, ethanol and three oxidizing disinfectants apparently declined in the two mutants compared to WT strain. The ΔrpoN mutant decreased sensory score, accumulation of trimethylamine, putrescine and TVB-N and protease activity, while a weaker effect was observed in ΔrpoS. The two mutants had significantly higher susceptibility to antibiotics than WT strain, especially ΔrpoN. Deficiency of rpoN and rpoS significantly repressed the activities of two diketopiperazines related to quorum sensing (QS). Furthermore, transcriptome analyses revealed that RpoN was involved in the regulation of the expression of 143 genes, mostly including flagellar assembly, nitrogen and amino acid metabolism, ABC transporters. Transcript changes of seven differentially expressed coding sequences were in agreement with the phenotypes observed in the two mutants. Our findings reveal that RpoN, as a central regulator, controls the fitness and bacterial spoilage in S. baltica, while RpoS is a key regulatory factor of stress response. Characterization of these two sigma regulons in Shewanella has expanded current understanding of a possible co-regulatory mechanism with QS for adaptation and spoilage potential.
Collapse
Affiliation(s)
- Lifang Feng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Weiwei Bi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Shuai Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Xiaoxiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310053, China
| |
Collapse
|
10
|
Masoura M, Passaretti P, Overton TW, Lund PA, Gkatzionis K. Use of a model to understand the synergies underlying the antibacterial mechanism of H 2O 2-producing honeys. Sci Rep 2020; 10:17692. [PMID: 33077785 PMCID: PMC7573686 DOI: 10.1038/s41598-020-74937-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Honey has been valued as a powerful antimicrobial since ancient times. However, the understanding of the underlying antibacterial mechanism is incomplete. The complexity and variability of honey composition represent a challenge to this scope. In this study, a simple model system was used to investigate the antibacterial effect of, and possible synergies between, the three main stressors present in honey: sugars, gluconic acid, and hydrogen peroxide (H2O2), which result from the enzymatic conversion of glucose on honey dilution. Our results demonstrated that the synergy of H2O2 and gluconic acid is essential for the antibacterial activity of honey. This synergy caused membrane depolarization, destruction of the cell wall, and eventually growth inhibition of E. coli K-12. The presence of H2O2 stimulated the generation of other long-lived ROS in a dose-dependent manner. Sugars caused osmosis-related morphological changes, however, decreased the toxicity of the H2O2/gluconic acid. The susceptibility of catalase and general stress response sigma factor mutants confirmed the synergy of the three stressors, which is enhanced at higher H2O2 concentrations. By monitoring cellular phenotypic changes caused by model honey, we explained how this can be bactericidal even though the antimicrobial compounds which it contains are at non-inhibitory concentrations.
Collapse
Affiliation(s)
- Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK.,Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, B15 2SA, UK
| | - Paolo Passaretti
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK
| | - Pete A Lund
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, B15 2SA, UK
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2SA, UK. .,Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Lemnos, Greece.
| |
Collapse
|
11
|
Prahlad J, Yuan Y, Lin J, Chang CW, Iwata-Reuyl D, Liu Y, de Crécy-Lagard V, Wilson MA. The DUF328 family member YaaA is a DNA-binding protein with a novel fold. J Biol Chem 2020; 295:14236-14247. [PMID: 32796037 PMCID: PMC7549036 DOI: 10.1074/jbc.ra120.015055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
DUF328 family proteins are present in many prokaryotes; however, their molecular activities are unknown. The Escherichia coli DUF328 protein YaaA is a member of the OxyR regulon and is protective against oxidative stress. Because uncharacterized proteins involved in prokaryotic oxidative stress response are rare, we sought to learn more about the DUF328 family. Using comparative genomics, we found a robust association between the DUF328 family and genes involved in DNA recombination and the oxidative stress response. In some proteins, DUF328 domains are fused to other domains involved in DNA binding, recombination, and repair. Cofitness analysis indicates that DUF328 family genes associate with recombination-mediated DNA repair pathways, particularly the RecFOR pathway. Purified recombinant YaaA binds to dsDNA, duplex DNA containing bubbles of unpaired nucleotides, and Holliday junction constructs in vitro with dissociation equilibrium constants of 200-300 nm YaaA binds DNA with positive cooperativity, forming multiple shifted species in electrophoretic mobility shift assays. The 1.65-Å resolution X-ray crystal structure of YaaA reveals that the protein possesses a new fold that we name the cantaloupe fold. YaaA has a positively charged cleft and a helix-hairpin-helix DNA-binding motif found in other DNA repair enzymes. Our results demonstrate that YaaA is a new type of DNA-binding protein associated with the oxidative stress response and that this molecular function is likely conserved in other DUF328 family members.
Collapse
Affiliation(s)
- Janani Prahlad
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA,University of Florida Genetics Institute, Gainesville, Florida, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| |
Collapse
|
12
|
Schellhorn HE. Function, Evolution, and Composition of the RpoS Regulon in Escherichia coli. Front Microbiol 2020; 11:560099. [PMID: 33042067 PMCID: PMC7527412 DOI: 10.3389/fmicb.2020.560099] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
For many bacteria, successful growth and survival depends on efficient adaptation to rapidly changing conditions. In Escherichia coli, the RpoS alternative sigma factor plays a central role in the adaptation to many suboptimal growth conditions by controlling the expression of many genes that protect the cell from stress and help the cell scavenge nutrients. Neither RpoS or the genes it controls are essential for growth and, as a result, the composition of the regulon and the nature of RpoS control in E. coli strains can be variable. RpoS controls many genetic systems, including those affecting pathogenesis, phenotypic traits including metabolic pathways and biofilm formation, and the expression of genes needed to survive nutrient deprivation. In this review, I review the origin of RpoS and assess recent transcriptomic and proteomic studies to identify features of the RpoS regulon in specific clades of E. coli to identify core functions of the regulon and to identify more specialized potential roles for the regulon in E. coli subgroups.
Collapse
|
13
|
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in Pseudomonas aeruginosa. mSystems 2020; 5:5/4/e00495-20. [PMID: 32753509 PMCID: PMC7406228 DOI: 10.1128/msystems.00495-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to >1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as >30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.
Collapse
|
14
|
Tso KM, Ni B, Wong HC. Oxidative Disinfectants Activate Different Responses in Vibrio parahaemolyticus. J Food Prot 2019; 82:1890-1895. [PMID: 31622162 DOI: 10.4315/0362-028x.jfp-19-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vibrio parahaemolyticus is a prevalent seafoodborne enteropathogen that has become a global concern since the spread of its pandemic strain in 1996. This study investigates the responses of this pathogen to the oxidative disinfectants hydrogen peroxide, chlorine dioxide, and peracetic acid. Expression of the regulator genes oxyR and rpoS, determined by reverse transcription PCR, in V. parahaemolyticus wild-type, oxyR mutant, and rpoS mutant strains exhibited similar patterns in response to the tested oxidative disinfectants. The transcription of the rpoS gene was markedly enhanced in the oxyR mutant strain in the exponential phase. The expression of catalase KatE1 was tracked by using a LacZ fusion reporter in these strains. The experimental results revealed that KatE1 was a significant scavenger of hydrogen peroxide and peracetic acid in V. parahaemolyticus, and RpoS may partially compensate for the regulatory role of OxyR in the oxyR mutant strain. In contrast to its responses to hydrogen peroxide and paracetic acid, KatE1 was not the primary scavenger of chlorine dioxide in these V. parahaemolyticus strains. This study shows that these disinfectants activated a basic oxidative response in this pathogen with different features.
Collapse
Affiliation(s)
- Kai-Ming Tso
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China (ORCID: https://orcid.org/0000-0001-5556-7416 [H.-C.W.])
| | - Bin Ni
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China (ORCID: https://orcid.org/0000-0001-5556-7416 [H.-C.W.])
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China (ORCID: https://orcid.org/0000-0001-5556-7416 [H.-C.W.])
| |
Collapse
|
15
|
Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM. Structural basis for inhibition of a response regulator of σ S stability by a ClpXP antiadaptor. Genes Dev 2019; 33:718-732. [PMID: 30975721 PMCID: PMC6546054 DOI: 10.1101/gad.320168.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
Dorich et al. present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structural data, together with mechanistic studies, suggest that RssB plasticity is critical for regulation of σS degradation. The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.
Collapse
Affiliation(s)
- Victoria Dorich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Song Tong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Amita Sastry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
16
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
17
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
18
|
Wang R, Ou Y, Zeng X, Guo C. Membrane fatty acids composition and fluidity modification in
Salmonella
Typhimurium by culture temperature and resistance under pulsed electric fields. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ruo‐Yong Wang
- Institute of Environmental and Operational Medicine Tianjin 300050 China
- Air Force Medical Center PLA Beijing 100142 China
| | - Yun Ou
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Chang‐Jiang Guo
- Institute of Environmental and Operational Medicine Tianjin 300050 China
| |
Collapse
|
19
|
Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA. G3-GENES GENOMES GENETICS 2018; 8:2079-2089. [PMID: 29686109 PMCID: PMC5982834 DOI: 10.1534/g3.118.200265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Escherichia coli, the sigma factor σ70 directs RNA polymerase to transcribe growth-related genes, while σ38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ70, and the non-coding 6S RNA which binds to the RNA polymerase-σ70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression.
Collapse
|
20
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Yang SS, Hu YB, Wang XD, Gao YR, Li K, Zhang XE, Chen SY, Zhang TY, Gu J, Deng JY. Deletion of sigB Causes Increased Sensitivity to para-Aminosalicylic Acid and Sulfamethoxazole in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:e00551-17. [PMID: 28717039 PMCID: PMC5610497 DOI: 10.1128/aac.00551-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022] Open
Abstract
Although the de novo folate biosynthesis pathway has been well studied in bacteria, little is known about its regulation. In the present study, the sigB gene in Mycobacterium tuberculosis was deleted. Subsequent drug susceptibility tests revealed that the M. tuberculosis ΔsigB strain was more sensitive to para-aminosalicylic acid (PAS) and sulfamethoxazole. Comparative transcriptional analysis was performed, and downregulation of pabB was observed in the ΔsigB strain, which was further verified by a quantitative reverse transcription-PCR and Western blot assay. Then, the production levels of para-aminobenzoic acid (pABA) were compared between the sigB deletion mutant and wild-type strain, and the results showed that sigB deletion resulted in decreased production of pABA. In addition, SigB was able to recognize the promoter of pabB in vitro Furthermore, we found that deleting pabC also caused increased susceptibility to PAS. Taken together, our data revealed that, in M. tuberculosis, sigB affects susceptibility to antifolates through multiple ways, primarily by regulating the expression of pabB To our knowledge, this is the first report showing that SigB modulates pABA biosynthesis and thus affecting susceptibility to antifolates, which broadens our understanding of the regulation of bacterial folate metabolism and mechanisms of susceptibility to antifolates.
Collapse
Affiliation(s)
- Shan-Shan Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang-Bo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xu-De Wang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Yun-Rong Gao
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Kun Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shi-Yun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Tian-Yu Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao-Yu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
23
|
Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00755-16. [PMID: 28115545 DOI: 10.1128/jb.00755-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/12/2017] [Indexed: 01/31/2023] Open
Abstract
The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS ("sensitive" genes), and genes whose expression changes very little with the production of a little RpoS ("insensitive"). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS.IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.
Collapse
|
24
|
Cavaliere P, Norel F. Recent advances in the characterization of Crl, the unconventional activator of the stress sigma factor σS/RpoS. Biomol Concepts 2017; 7:197-204. [PMID: 27180360 DOI: 10.1515/bmc-2016-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022] Open
Abstract
The bacterial RNA polymerase (RNAP) holoenzyme is a multisubunit core enzyme associated with a σ factor that is required for promoter-specific transcription initiation. Besides a primary σ responsible for most of the gene expression during active growth, bacteria contain alternative σ factors that control adaptive responses. A recurring strategy in the control of σ factor activity is their sequestration by anti-sigma factors that occlude the RNAP binding determinants, reducing their activity. In contrast, the unconventional transcription factor Crl binds specifically to the alternative σ factor σS/RpoS, and favors its association with the core RNAP, thereby increasing its activity. σS is the master regulator of the general stress response that protects many Gram-negative bacteria from several harmful environmental conditions. It is also required for biofilm formation and virulence of Salmonella enterica serovar Typhimurium. In this report, we discuss current knowledge on the regulation and function of Crl in Salmonella and Escherichia coli, two bacterial species in which Crl has been studied. We review recent advances in the structural characterization of the Crl-σS interaction that have led to a better understanding of this unusual mechanism of σ regulation.
Collapse
|
25
|
Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J, Gottesman S, Schroeder R, Nudler E. sRNA-Mediated Control of Transcription Termination in E. coli. Cell 2016; 167:111-121.e13. [PMID: 27662085 DOI: 10.1016/j.cell.2016.09.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation.
Collapse
Affiliation(s)
- Nadezda Sedlyarova
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Renée Schroeder
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:857-862. [PMID: 26953142 DOI: 10.1016/j.scitotenv.2016.02.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
An Escherichia coli BW25113 wildtype strain and mutant strains lacking genes that protect against oxidative stress were examined at different growth phases for susceptibility to zero-valent iron (nZVI). Viability of cells was determined by the plate count method. All mutant strains were more susceptible than the wild type strain to nZVI; however, susceptibility differed among the mutant strains. Consistent with the role of rpoS as a global stress regulator, an rpoS gene knockout mutant exhibited the greatest susceptibility to nZVI under the majority of conditions tested (except exponential and declining phases at longer exposure time). Mutants lacking genes encoding the inducible and constitutively expressed cytosolic superoxide dismutases, sodA and sodB, respectively, were more susceptible to nZVI than a mutant lacking the gene encoding sodC, a periplasmic superoxide dismutase. This suggests that nZVI induces oxidative stress inside the cells via superoxide generation. Quantitative polymerase chain reaction was used to examine the expression of katG, a gene encoding the catalase-peroxidase enzyme, in nZVI-treated E. coli at different growth phases. Results showed that nZVI repressed the expression of katG in all but lag phases.
Collapse
Affiliation(s)
- Krittanut Chaithawiwat
- International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok 10330, Thailand; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Alisa Vangnai
- Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - John M McEvoy
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Birgit Pruess
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
27
|
Trachtmann N, Alvarez Fong KF, Guitart Font E, Sprenger GA. Construction of chromosomally encoded lacZ
and gfp
reporter strains of Escherichia coli
for the study of global regulation of metabolism. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
| | | | - Emma Guitart Font
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| | - Georg A. Sprenger
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| |
Collapse
|
28
|
Naveen V, Hsiao CD. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence. PLoS One 2016; 11:e0157165. [PMID: 27275780 PMCID: PMC4898720 DOI: 10.1371/journal.pone.0157165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022] Open
Abstract
Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest that elevated expression of NrdR could be a suitable means to retard bacterial growth and virulence, as its elevated expression reduces bacterial fitness and impairs host cell adhesion.
Collapse
Affiliation(s)
- Vankadari Naveen
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chwan-Deng Hsiao
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Engineering Synthetic Multistress Tolerance in Escherichia coli by Using a Deinococcal Response Regulator, DR1558. Appl Environ Microbiol 2015; 82:1154-1166. [PMID: 26655758 DOI: 10.1128/aem.03371-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.
Collapse
|
30
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
31
|
Fu H, Yuan J, Gao H. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Arch Biochem Biophys 2015; 584:28-35. [DOI: 10.1016/j.abb.2015.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/03/2023]
|
32
|
Franchini AG, Ihssen J, Egli T. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth. PLoS One 2015. [PMID: 26204448 PMCID: PMC4512719 DOI: 10.1371/journal.pone.0133793] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For heterotrophic microbes, limited availability of carbon and energy sources is one of the major nutritional factors restricting the rate of growth in most ecosystems. Physiological adaptation to this hunger state requires metabolic versatility which usually involves expression of a wide range of different catabolic pathways and of high-affinity carbon transporters; together, this allows for simultaneous utilization of mixtures of carbonaceous compounds at low concentrations. In Escherichia coli the stationary phase sigma factor RpoS and the signal molecule cAMP are the major players in the regulation of transcription under such conditions; however, their interaction is still not fully understood. Therefore, during growth of E. coli in carbon-limited chemostat culture at different dilution rates, the transcriptomes, expression of periplasmic proteins and catabolomes of strains lacking one of these global regulators, either rpoS or adenylate cyclase (cya), were compared to those of the wild-type strain. The inability to synthesize cAMP exerted a strong negative influence on the expression of alternative carbon source uptake and degradation systems. In contrast, absence of RpoS increased the transcription of genes belonging to high-affinity uptake systems and central metabolism, presumably due to reduced competition of σD with σS. Phenotypical analysis confirmed this observation: The ability to respire alternative carbon substrates and to express periplasmic high-affinity binding proteins was eliminated in cya and crp mutants, while these properties were not affected in the rpoS mutant. As expected, transcription of numerous stress defence genes was negatively affected by the rpoS knock-out mutation. Interestingly, several genes of the RpoS stress response regulon were also down-regulated in the cAMP-negative strain indicating a coordinated global regulation. The results demonstrate that cAMP is crucial for catabolic flexibility during slow, carbon-limited growth, whereas RpoS is primarily involved in the regulation of stress response systems necessary for the survival of this bacterium under hunger conditions.
Collapse
Affiliation(s)
- Alessandro G. Franchini
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Julian Ihssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Thomas Egli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Hol FJH, Galajda P, Woolthuis RG, Dekker C, Keymer JE. The idiosyncrasy of spatial structure in bacterial competition. BMC Res Notes 2015; 8:245. [PMID: 26081497 PMCID: PMC4470050 DOI: 10.1186/s13104-015-1169-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Background The spatial structure of a habitat can have a strong impact on community dynamics. Different experimental approaches exist to explore the effect of spatial structure on bacterial communities. To investigate the effect of ‘space’, a single implementation of spatial structure is often contrasted to bacterial community dynamics in well-mixed cultures. While such comparisons are useful, it is likely that the observed dynamics will be particular to the specific experimental implementation of spatial structure. In order to address this question, we track the community dynamics of a two-strain Escherichia coli community in various spatial habitats and relate the observed dynamics to the structure of a habitat. Results By tracking the community dynamics of rpoS wild-type and mutant E. coli in radially expanding colonies on solid and semi-solid agar plates, we find that the mutant strain outcompetes the wild-type on semi-solid agar plates, whereas the two strains coexist on solid agar. We compare these results to previous studies in which the same two strains were shown to coexist in habitats spatially structured by microfabrication, while the mutant outcompeted the wild-type in well-mixed batch cultures. Together, these observations show that different implementations of space may result in qualitatively different community dynamics. Furthermore, we argue that the same competitive outcome (e.g. coexistence) may arise from distinct underlying dynamics in different experimental implementations of spatial structure. Conclusions Our observations demonstrate that different experimental implementations of spatial structure may not only lead to quantitatively different communities (changes in the relative abundance of types) but can also lead to qualitatively different outcomes of long-term community dynamics (coexistence versus extinction and loss of biodiversity).
Collapse
Affiliation(s)
- Felix J H Hol
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - Peter Galajda
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands. .,Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari krt. 62, Szeged, Hungary.
| | - Rutger G Woolthuis
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - Juan E Keymer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands. .,Department of Ecology, Faculty of Biological Sciences, P. Catholic University of Chile, Alameda 340, Santiago, Chile. .,Institute of Physics, Faculty of Physics, P. Catholic University of Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
34
|
Peano C, Wolf J, Demol J, Rossi E, Petiti L, De Bellis G, Geiselmann J, Egli T, Lacour S, Landini P. Characterization of the Escherichia coli σ(S) core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis. Sci Rep 2015; 5:10469. [PMID: 26020590 PMCID: PMC4447067 DOI: 10.1038/srep10469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022] Open
Abstract
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase “core enzyme” (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σS-associated RNA polymerase form (EσS) during transition from exponential to stationary phase. We identified 63 binding sites for EσS overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σS-encoding rpoS gene. EσS binding did not always correlate with an increase in transcription level, suggesting that, at some σS-dependent promoters, EσS might remain poised in a pre-initiation state upon binding. A large fraction of EσS-binding sites corresponded to promoters recognized by RNA polymerase associated with σ70 or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, EσS appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of EσS in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.
Collapse
Affiliation(s)
- Clelia Peano
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Wolf
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Julien Demol
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Geiselmann
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Thomas Egli
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Stephan Lacour
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
rpoS-Regulated core genes involved in the competitive fitness of Salmonella enterica Serovar Kentucky in the intestines of chickens. Appl Environ Microbiol 2014; 81:502-14. [PMID: 25362062 DOI: 10.1128/aem.03219-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Kentucky has become the most frequently isolated serovar from poultry in the United States over the past decade. Despite its prevalence in poultry, it causes few human illnesses in the United States. The dominance of S. Kentucky in poultry does not appear to be due to single introduction of a clonal strain, and its reduced virulence appears to correlate with the absence of virulence genes grvA, sseI, sopE, and sodC1. S. Kentucky's prevalence in poultry is possibly attributable to its metabolic adaptation to the chicken cecum. While there were no difference in the growth rate of S. Kentucky and S. Typhimurium grown microaerophilically in cecal contents, S. Kentucky persisted longer when chickens were coinfected with S. Typhimurium. The in vivo advantage that S. Kentucky has over S. Typhimurium appears to be due to differential regulation of core Salmonella genes via the stationary-phase sigma factor rpoS. Microarray analysis of Salmonella grown in cecal contents in vitro identified several metabolic genes and motility and adherence genes that are differentially activated in S. Kentucky. The contributions of four of these operons (mgl, prp, nar, and csg) to Salmonella colonization in chickens were assessed. Deletion of mgl and csg reduced S. Kentucky persistence in competition studies in chickens infected with wild-type or mutant strains. Subtle mutations affecting differential regulation of core Salmonella genes appear to be important in Salmonella's adaptation to its animal host and especially for S. Kentucky's emergence as the dominant serovar in poultry.
Collapse
|
36
|
Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics. Antimicrob Agents Chemother 2014; 59:76-84. [PMID: 25313216 DOI: 10.1128/aac.03407-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.
Collapse
|
37
|
Nešvera J, Holátko J, Pátek M. Analysis of Corynebacterium glutamicum promoters and their applications. Subcell Biochem 2014; 64:203-21. [PMID: 23080252 DOI: 10.1007/978-94-007-5055-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Promoters are DNA sequences which function as regulatory signals of transcription initiation catalyzed by RNA polymerase. Since promoters substantially influence levels of gene expression, they have become powerful tools in metabolic engineering. Methods for their localization used in Corynebacterium glutamicum and techniques for the analysis of their function are described in this review. C. glutamicum promoters can be classified according to the respective σ factors which direct RNA polymerase to these structures. C. glutamicum promoters are recognized by holo-RNA polymerase formed by subunits α(2)ββ'ω + σ. C. glutamicum codes for seven different sigma factors: the principal sigma factor σ(A) and alternative sigma factors σ(B), σ(C), σ(D), σ(E), σ(H) and σ(M), which recognize various classes of promoters. The promoters of housekeeping genes recognized by σ(A), which are active during the exponential growth, form the largest described group. These promoters and their mutant derivatives are the most frequently used elements in modulation of gene expression in C. glutamicum. Promoters recognized by alternative sigma factors and their consensus sequences are gradually emerging.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | | | | |
Collapse
|
38
|
Selection of Escherichia coli heat shock promoters toward their application as stress probes. J Biotechnol 2014; 188:61-71. [PMID: 25128614 DOI: 10.1016/j.jbiotec.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/24/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023]
Abstract
The mechanism of heat shock response of Escherichia coli can be explored to program novel biological functions. In this study, the strongest heat shock promoters were identified by microarray experiments conducted at different temperatures (37°C and 45°C, 5min). The promoters of the genes ibpA, dnaK and fxsA were selected and validated by RT-qPCR. These promoters were used to construct and characterize stress probes using green fluorescence protein (GFP). Cellular stress levels were evaluated in experiments conducted at different shock temperatures during several exposure times. It was concluded that the strength of the promoter is not the only relevant factor in the construction of an efficient stress probe. Furthermore, it was found to be crucial to test and optimize the ribosome binding site (RBS) in order to obtain translational efficiency that balances the transcription levels previously verified by microarrays and RT-qPCR. These heat shock promoters can be used to trigger in situ gene expression of newly constructed biosynthetic pathways.
Collapse
|
39
|
Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol 2014; 17:1275-85. [PMID: 25041421 DOI: 10.1111/1462-2920.12567] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/05/2014] [Indexed: 01/04/2023]
Abstract
Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites. Production of YafQ increased persister cell formation with multiple antibiotics, and by investigating changes in protein expression, we found that YafQ reduced tryptophanase levels (TnaA mRNA has 16 putative YafQ cleavage sites). Consistently, TnaA mRNA levels were also reduced by YafQ. Tryptophanase is activated in the stationary phase by the stationary-phase sigma factor RpoS, which was also reduced dramatically upon production of YafQ. Tryptophanase converts tryptophan into indole, and as expected, indole levels were reduced by the production of YafQ. Corroborating the effect of YafQ on persistence, addition of indole reduced persistence. Furthermore, persistence increased upon deleting tnaA, and persistence decreased upon adding tryptophan to the medium to increase indole levels. Also, YafQ production had a much smaller effect on persistence in a strain unable to produce indole. Therefore, YafQ increases persistence by reducing indole, and TA systems are related to cell signalling.
Collapse
Affiliation(s)
- Ying Hu
- Department of Chemical Engineering and, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | | | | | | | | |
Collapse
|
40
|
IraL is an RssB anti-adaptor that stabilizes RpoS during logarithmic phase growth in Escherichia coli and Shigella. mBio 2014; 5:e01043-14. [PMID: 24865554 PMCID: PMC4045071 DOI: 10.1128/mbio.01043-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RpoS (σ(S)), the general stress response sigma factor, directs the expression of genes under a variety of stressful conditions. Control of the cellular σ(S) concentration is critical for appropriately scaled σ(S)-dependent gene expression. One way to maintain appropriate levels of σ(S) is to regulate its stability. Indeed, σ(S) degradation is catalyzed by the ClpXP protease and the recognition of σ(S) by ClpXP depends on the adaptor protein RssB. Three anti-adaptors (IraD, IraM, and IraP) exist in Escherichia coli K-12; each interacts with RssB and inhibits RssB activity under different stress conditions, thereby stabilizing σ(S). Unlike K-12, some E. coli isolates, including uropathogenic E. coli strain CFT073, show comparable cellular levels of σ(S) during the logarithmic and stationary growth phases, suggesting that there are differences in the regulation of σ(S) levels among E. coli strains. Here, we describe IraL, an RssB anti-adaptor that stabilizes σ(S) during logarithmic phase growth in CFT073 and other E. coli and Shigella strains. By immunoblot analyses, we show that IraL affects the levels and stability of σ(S) during logarithmic phase growth. By computational and PCR-based analyses, we reveal that iraL is found in many E. coli pathotypes but not in laboratory-adapted strains. Finally, by bacterial two-hybrid and copurification analyses, we demonstrate that IraL interacts with RssB by a mechanism distinct from that used by other characterized anti-adaptors. We introduce a fourth RssB anti-adaptor found in E. coli species and suggest that differences in the regulation of σ(S) levels may contribute to host and niche specificity in pathogenic and nonpathogenic E. coli strains. IMPORTANCE Bacteria must cope with a variety of environmental conditions in order to survive. RpoS (σ(S)), the general stress response sigma factor, directs the expression of many genes under stressful conditions in both pathogenic and nonpathogenic Escherichia coli strains. The regulation of σ(S) levels and activity allows appropriately scaled σ(S)-dependent gene expression. Here, we describe IraL, an RssB anti-adaptor that, unlike previously described anti-adaptors, stabilizes σ(S) during the logarithmic growth phase in the absence of additional stress. We also demonstrate that iraL is found in a large number of E. coli and Shigella isolates. These data suggest that strains containing iraL are able to initiate σ(S)-dependent gene expression under conditions under which strains without iraL cannot. Therefore, IraL-mediated σ(S) stabilization may contribute to host and niche specificity in E. coli.
Collapse
|
41
|
Abstract
ABSTRACT: Bacterial adaptation to suboptimal nutrient environments, including host and/or extreme environments, is subject to complex, coordinated control involving many proteins and RNAs. Among the γ-proteobacteria, which includes many pathogens, the RpoS regulon has been a key focus for many years. Although the RpoS regulator was first identified as a growth phase-dependent regulator, our current understanding of RpoS is now more nuanced as this central regulator also has roles in exponential phase, biofilm development, bacterial virulence and bacterial persistence, as well as in stress adaptation. Induction of RpoS can also exert substantial metabolic effects by negatively regulating key systems including flagella biosynthesis, cryptic phage gene expression and the tricarboxylic acid cycle. Although core RpoS-controlled metabolic functions are conserved, there are substantial differences in RpoS regulation even among closely related bacteria, indicating that regulatory plasticity may be an important aspect of RpoS regulation, which is important in evolutionary adaptation to specialized environments.
Collapse
Affiliation(s)
- Herb E Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
42
|
Landini P, Egli T, Wolf J, Lacour S. sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:1-13. [PMID: 24596257 DOI: 10.1111/1758-2229.12112] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 06/03/2023]
Abstract
Bacterial cells often face hostile environmental conditions, to which they adapt by activation of stress responses. In Escherichia coli, environmental stresses resulting in significant reduction in growth rate stimulate the expression of the rpoS gene, encoding the alternative σ factor σ(S). The σ(S) protein associates with RNA polymerase, and through transcription of genes belonging to the rpoS regulon allows the activation of a 'general stress response', which protects the bacterial cell from harmful environmental conditions. Each step of this process is finely tuned in order to cater to the needs of the bacterial cell: in particular, selective promoter recognition by σ(S) is achieved through small deviations from a common consensus DNA sequence for both σ(S) and the housekeeping σ(70). Recognition of specific DNA elements by σ(S) is integrated with the effects of environmental signals and the interaction with regulatory proteins, in what represents a fascinating example of multifactorial regulation of gene expression. In this report, we discuss the function of the rpoS gene in the general stress response, and review the current knowledge on regulation of rpoS expression and on promoter recognition by σ(S).
Collapse
Affiliation(s)
- Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
43
|
Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation. J Bacteriol 2013; 196:707-15. [PMID: 24272779 DOI: 10.1128/jb.00938-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli adapts its lifestyle to the variations of environmental growth conditions, swapping between swimming motility or biofilm formation. The stationary-phase sigma factor RpoS is an important regulator of this switch, since it stimulates adhesion and represses flagellar biosynthesis. By measuring the dynamics of gene expression, we show that RpoS inhibits the transcription of the flagellar sigma factor, FliA, in exponential growth phase. RpoS also partially controls the expression of CsgD and CpxR, two transcription factors important for bacterial adhesion. We demonstrate that these two regulators repress the transcription of fliA, flgM, and tar and that this regulation is dependent on the growth medium. CsgD binds to the flgM and fliA promoters around their -10 promoter element, strongly suggesting direct repression. We show that CsgD and CpxR also affect the expression of other known modulators of cell motility. We propose an updated structure of the regulatory network controlling the choice between adhesion and motility.
Collapse
|
44
|
Hol FJH, Galajda P, Nagy K, Woolthuis RG, Dekker C, Keymer JE. Spatial structure facilitates cooperation in a social dilemma: empirical evidence from a bacterial community. PLoS One 2013; 8:e77042. [PMID: 24167557 PMCID: PMC3805552 DOI: 10.1371/journal.pone.0077042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/06/2013] [Indexed: 11/25/2022] Open
Abstract
Cooperative organisms are ubiquitous in nature, despite their vulnerability to exploitation by cheaters. Although numerous theoretical studies suggest that spatial structure is critical for cooperation to persist, the spatial ecology of microbial cooperation remains largely unexplored experimentally. By tracking the community dynamics of cooperating (rpoS wild-type) and cheating (rpoS mutant) Escherichia coli in well-mixed flasks and microfabricated habitats, we demonstrate that spatial structure stabilizes coexistence between wild-type and mutant and thus facilitates cooperator maintenance. We develop a method to interpret our experimental results in the context of game theory, and show that the game wild-type and mutant bacteria play in an unstructured environment changes markedly over time, and eventually obeys a prisoner's dilemma leading to cheater dominance. In contrast, when wild-type and mutant E. coli co-inhabit a spatially-structured habitat, cooperators and cheaters coexist at intermediate frequencies. Our findings show that even in microhabitats lacking patchiness or spatial heterogeneities in resource availability, surface growth allows cells to form multi-cellular aggregates, yielding a self-structured community in which cooperators persist.
Collapse
Affiliation(s)
- Felix J. H. Hol
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Peter Galajda
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Rutger G. Woolthuis
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Juan E. Keymer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
45
|
Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. Proc Natl Acad Sci U S A 2013; 110:15955-60. [PMID: 24043782 DOI: 10.1073/pnas.1311642110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteria use multiple sigma factors to coordinate gene expression in response to environmental perturbations. In Escherichia coli and other γ-proteobacteria, the transcription factor Crl stimulates σ(S)-dependent transcription during times of cellular stress by promoting the association of σ(S) with core RNA polymerase. The molecular basis for specific recognition of σ(S) by Crl, rather than the homologous and more abundant primary sigma factor σ(70), is unknown. Here we use bacterial two-hybrid analysis in vivo and p-benzoyl-phenylalanine cross-linking in vitro to define the features in σ(S) responsible for specific recognition by Crl. We identify residues in σ(S) conserved domain 2 (σ(S)2) that are necessary and sufficient to allow recognition of σ(70) conserved domain 2 by Crl, one near the promoter-melting region and the other at the position where a large nonconserved region interrupts the sequence of σ(70). We then use luminescence resonance energy transfer to demonstrate directly that Crl promotes holoenzyme assembly using these specificity determinants on σ(S). Our results explain how Crl distinguishes between sigma factors that are largely homologous and activates discrete sets of promoters even though it does not bind to promoter DNA.
Collapse
|
46
|
Puentes-Téllez PE, Kovács ÁT, Kuipers OP, van Elsas JD. Comparative genomics and transcriptomics analysis of experimentally evolved Escherichia coli MC1000 in complex environments. Environ Microbiol 2013; 16:856-70. [PMID: 24033913 DOI: 10.1111/1462-2920.12239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/30/2013] [Indexed: 11/30/2022]
Abstract
It has recently become feasible to study the basis and nature of evolutionary changes in bacteria in an experimental setting using defined media. However, assessment of adaptive changes in complex environments has been scarce. In an effort to describe the responses in such environments, we unravel, in a comparative approach, the transcriptional and genetic profiles of 19 Escherichia coli strains that evolved in Luria Bertani medium under three different oxygen regimes over 1000 generations. A positive relationship between upregulation of gene expression and the number of mutations was observed, suggesting that a number of metabolic pathways were activated. Phenotypic polymorphisms were observed in parallel cultures, of which some were related with mutations at the regulatory level. Non-parallel responses were observed at the intrapopulational level, which is indicative of diversifying selection. Parallel responses encompassed transcriptome diversity, and their effects were directly affected by differing genomic backgrounds. A fluctuating selective force produced higher phenotypic diversity compared with constant forces. This study demonstrates how phenotypic innovations may depend on the relationship between genomic changes and local ecological conditions. Using both comparative genomics and transcriptomics approaches, the results help elucidating various adaptive responses in cultures in unexplored complex environments.
Collapse
|
47
|
Dudin O, Lacour S, Geiselmann J. Expression dynamics of RpoS/Crl-dependent genes in Escherichia coli. Res Microbiol 2013; 164:838-47. [PMID: 23867204 DOI: 10.1016/j.resmic.2013.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
Abstract
The alternative sigma factor RpoS is a central regulator of the stress response in many Proteobacteria, acting both during exponential growth and in stationary phase. The small protein Crl increases the interaction between RpoS and RNA polymerase and thereby activates certain RpoS-dependent promoters. However, the growth-phase dependence of the interaction of Crl with different forms of polymerase remains unknown. We use 41 GFP transcriptional fusions to study the dynamics of gene regulation by RpoS and Crl during growth transition from exponential to stationary phase in Escherichia coli. We confirm that RpoS can regulate gene expression in exponential phase, both positively and negatively. Crl slightly stimulates transcription by RpoS in exponential phase and controls a subset of RpoS-dependent genes in stationary phase. Growth temperature strongly affects induction of specific promoters by RpoS, whereas its impact on gene regulation by Crl is much less significant. In addition, we identify five new genes regulated by Crl (ada, cbpA, glgS, sodC and flgM) and demonstrate that Crl improves promoter binding and opening by RpoS-containing RNA polymerase at the hdeA promoter. Our study also shows that Crl is a cognate enhancer of RpoS activity under different growth conditions, since its deletion has no effect on genes transcribed by other sigma factors.
Collapse
Affiliation(s)
- Omaya Dudin
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Institut Jean Roget, Domaine de La Merci, Université Joseph Fourier, BP 170, 38042 Grenoble cedex 9, France.
| | | | | |
Collapse
|
48
|
Jin Y, Wu J, Li Y, Cai Z, Huang JD. Modification of the RpoS network with a synthetic small RNA. Nucleic Acids Res 2013; 41:8332-40. [PMID: 23842672 PMCID: PMC3783183 DOI: 10.1093/nar/gkt604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.
Collapse
Affiliation(s)
- Ye Jin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, People's Republic of China, GIAT-HKU joint Center for Synthetic Biology Engineering Research, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Haibin Road 1121, Nansha district, Guangzhou, Guangdong province, People's Republic of China, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China and Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | | | | | | | | |
Collapse
|
49
|
ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes. Microbiology (Reading) 2013; 159:1497-1509. [DOI: 10.1099/mic.0.065797-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Mitra A, Fay PA, Morgan JK, Vendura KW, Versaggi SL, Riordan JT. Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS One 2012; 7:e46288. [PMID: 23029465 PMCID: PMC3459932 DOI: 10.1371/journal.pone.0046288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is dependent on acid resistance for gastric passage and low oral infectious dose, and the locus of enterocyte effacement (LEE) for intestinal colonization. Mutation of rpoN, encoding sigma factor N (σ(N)), dramatically alters the growth-phase dependent regulation of both acid resistance and the LEE. This study reports on the determinants of σ(N)-directed acid resistance and LEE expression, and the underlying mechanism attributable to this phenotype. Glutamate-dependent acid resistance (GDAR) in TW14359ΔrpoN correlated with increased expression of the gadX-gadW regulatory circuit during exponential growth, whereas upregulation of arginine-dependent acid resistance (ADAR) genes adiA and adiC in TW14359ΔrpoN did not confer acid resistance by the ADAR mechanism. LEE regulatory (ler), structural (espA and cesT) and effector (tir) genes were downregulated in TW14359ΔrpoN, and mutation of rpoS encoding sigma factor 38 (σ(S)) in TW14359ΔrpoN restored acid resistance and LEE genes to WT levels. Stability, but not the absolute level, of σ(S) was increased in TW14359ΔrpoN; however, increased stability was not solely attributable to the GDAR and LEE expression phenotype. Complementation of TW14359ΔrpoN with a σ(N) allele that binds RNA polymerase (RNAP) but not DNA, did not restore WT levels of σ(S) stability, gadE, ler or GDAR, indicating a dependence on transcription from a σ(N) promoter(s) and not RNAP competition for the phenotype. Among a library of σ(N) enhancer binding protein mutants, only TW14359ΔntrC, inactivated for nitrogen regulatory protein NtrC, phenocopied TW14359ΔrpoN for σ(S) stability, GDAR and ler expression. The results of this study suggest that during exponential growth, NtrC-σ(N) regulate GDAR and LEE expression through downregulation of σ(S) at the post-translational level; likely by altering σ(S) stability or activity. The regulatory interplay between NtrC, other EBPs, and σ(N)-σ(S), represents a mechanism by which EHEC can coordinate GDAR, LEE expression and other cellular functions, with nitrogen availability and physiologic stimuli.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Pamela A. Fay
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Jason K. Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Khoury W. Vendura
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Salvatore L. Versaggi
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - James T. Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|