1
|
Wu R, Chen B, Jia J, Liu J. Relationship between Protein, MicroRNA Expression in Extracellular Vesicles and Rice Seed Vigor. Int J Mol Sci 2024; 25:10504. [PMID: 39408833 PMCID: PMC11476841 DOI: 10.3390/ijms251910504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Plant extracellular vesicles are non-self-replicating particles released by living plant cells and delimited by a lipid bilayer. They contain a large amount of lipids, RNA, and proteins. Seed vigor plays an important role in agricultural production and preservation of germplasm resources. Extracellular vesicles with cross-species communication with bioactive molecules can resist pathogens, exhibit anti-aging properties, and perform other functions; however, its potential influence on seed vigor has not been reported. In this study, rice seeds with different germination percentages were used to extract extracellular vesicles, endogenous proteins, and RNA. Protein qualitative identification and miRNA differential analysis were performed to analyze the regulatory mechanism of extracellular vesicles on seed vigor. Results: The profiles of four miRNA families were found to be significantly different: osa-miR164, osa-miR168, osa-miR166, and osa-miR159. Protein correlation analysis predicted that extracellular vesicles might mediate the synthesis of the seed cell wall; glyoxic acid cycle and tricarboxylic acid cycle; non-specific lipid transfer; mitochondrial quality control; and other biological processes to regulate rice seed viability. In addition, cupin protein, phospholipase D, aldehyde dehydrogenase, seven heat shock proteins (especially BiP1 and BiP2), protein disulfide isomerase-like (PDI), thioredoxin, calnexin and calreticulin, glutathione transferase, and other proteins found in extracellular vesicles were closely related to seed vigor. This provides a novel direction for the study of the regulation mechanism of seed vigor.
Collapse
Affiliation(s)
- Rouxian Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| | | | | | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| |
Collapse
|
2
|
Soulé S, Huang K, Mulet K, Mejias J, Bazin J, Truong NM, Kika JL, Jaubert S, Abad P, Zhao J, Favery B, Quentin M. The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. MOLECULAR PLANT PATHOLOGY 2024; 25:e13491. [PMID: 38961768 PMCID: PMC11222708 DOI: 10.1111/mpp.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.
Collapse
Affiliation(s)
- Salomé Soulé
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Karine Mulet
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Joffrey Mejias
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
CIRAD, UMR PHIMMontpellierFrance
| | - Jérémie Bazin
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRS, INRAE, Université Paris Saclay – Evry, Université de ParisGif sur YvetteFrance
| | - Nhat My Truong
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
Vietnamese‐German Center for Medical Research108 Military Central HospitalHa NoiVietnam.
| | - Junior Lusu Kika
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Stéphanie Jaubert
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Pierre Abad
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Bruno Favery
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Michaël Quentin
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| |
Collapse
|
3
|
Carrillo R, Iwai K, Albertson A, Dang G, Christopher DA. Protein disulfide isomerase-9 interacts with the lumenal region of the transmembrane endoplasmic reticulum stress sensor kinase, IRE1, to modulate the unfolded protein response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1389658. [PMID: 38817940 PMCID: PMC11137178 DOI: 10.3389/fpls.2024.1389658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription. The induced PDIs catalyze disulfide-based polypeptide folding to restore the folding capacity in the ER; however, the substrates with which PDIs interact are largely unknown. Here, we demonstrate that the Arabidopsis PDI-M subfamily member, PDI9, modulates the UPR through interaction with IRE1. This PDI9-IRE1 interaction was largely dependent on Cys63 in the first dithiol redox active domain of PDI9, and Cys233 and Cys107 in the ER lumenal domain of IRE1A and IRE1B, respectively. In vitro and in vivo, PDI9 coimmunoprecipitated with IRE1A and IRE1B. Moreover, the PDI9:RFP and Green Fluorescence Protein (GFP):IRE1 fusions exhibited strong interactions as measured by fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) when coexpressed in mesophyll protoplasts. The UPR-responsive PDI9 promoter:mCherry reporter and the UPR-dependent splicing of the bZIP60 intron from the mRNA of the 35S::bZIP60-intron:GFP reporter were both significantly induced in the pdi9 mutants, indicating a derepression and hyperactivation of UPR. The inductions of both reporters were substantially attenuated in the ire1a-ire1b mutant. We propose a model in which PDI9 modulates the UPR through two competing activities: secretory protein folding and via interaction with IRE1 to maintain proteostasis in plants.
Collapse
Affiliation(s)
| | | | | | | | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
4
|
Hamel L, Comeau M, Tardif R, Poirier‐Gravel F, Paré M, Lavoie P, Goulet M, Michaud D, D'Aoust M. Heterologous expression of influenza haemagglutinin leads to early and transient activation of the unfolded protein response in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1146-1163. [PMID: 38038125 PMCID: PMC11022800 DOI: 10.1111/pbi.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | | |
Collapse
|
5
|
Allsman LA, Bellinger MA, Huang V, Duong M, Contreras A, Romero AN, Verboonen B, Sidhu S, Zhang X, Steinkraus H, Uyehara AN, Martinez SE, Sinclair RM, Soriano GS, Diep B, Byrd V. D, Noriega A, Drakakaki G, Sylvester AW, Rasmussen CG. Subcellular positioning during cell division and cell plate formation in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1204889. [PMID: 37484472 PMCID: PMC10360171 DOI: 10.3389/fpls.2023.1204889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Introduction During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.
Collapse
Affiliation(s)
- Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Marschal A. Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Vivian Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew Duong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alondra Contreras
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Andrea N. Romero
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Verboonen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Sukhmani Sidhu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaoguo Zhang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Holly Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Rosalie M. Sinclair
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Gabriela Salazar Soriano
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Beatrice Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Dawson Byrd V.
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alexander Noriega
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Montpetit J, Clúa J, Hsieh YF, Vogiatzaki E, Müller J, Abel S, Strasser R, Poirier Y. Endoplasmic reticulum calnexins participate in the primary root growth response to phosphate deficiency. PLANT PHYSIOLOGY 2023; 191:1719-1733. [PMID: 36567484 PMCID: PMC10022610 DOI: 10.1093/plphys/kiac595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Accumulation of incompletely folded proteins in the endoplasmic reticulum (ER) leads to ER stress, activates ER protein degradation pathways, and upregulates genes involved in protein folding. This process is known as the unfolded protein response (UPR). The role of ER protein folding in plant responses to nutrient deficiencies is unclear. We analyzed Arabidopsis (Arabidopsis thaliana) mutants affected in ER protein quality control and established that both CALNEXIN (CNX) genes function in the primary root response to phosphate (Pi) deficiency. CNX1 and CNX2 are homologous ER lectins promoting protein folding of N-glycosylated proteins via the recognition of the GlcMan9GlcNAc2 glycan. Growth of cnx1-1 and cnx2-2 single mutants was similar to that of the wild type under high and low Pi conditions, but the cnx1-1 cnx2-2 double mutant showed decreased primary root growth under low Pi conditions due to reduced meristematic cell division. This phenotype was specific to Pi deficiency; the double mutant responded normally to osmotic and salt stress. Expression of CNX2 mutated in amino acids involved in binding the GlcMan9GlcNAc2 glycan failed to complement the cnx1-1 cnx2-2 mutant. The root growth phenotype was Fe-dependent and was associated with root apoplastic Fe accumulation. Two genes involved in Fe-dependent inhibition of primary root growth under Pi deficiency, the ferroxidase LOW PHOSPHATE 1 (LPR1) and P5-type ATPase PLEIOTROPIC DRUG RESISTANCE 2 (PDR2) were epistatic to CNX1/CNX2. Overexpressing PDR2 failed to complement the cnx1-1 cnx2-2 root phenotype. The cnx1-1 cnx2-2 mutant showed no evidence of UPR activation, indicating a limited effect on ER protein folding. CNX might process a set of N-glycosylated proteins specifically involved in the response to Pi deficiency.
Collapse
Affiliation(s)
- Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yi-Fang Hsieh
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Evangelia Vogiatzaki
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
De Benedictis M, Gallo A, Migoni D, Papadia P, Roversi P, Santino A. Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsisthaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:281-290. [PMID: 36736010 DOI: 10.1016/j.plaphy.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We report about the response of Arabidopsis thaliana to chronic and temporary Cd2+ stress, and the Cd2+ induced activation of ER stress and unfolded protein response (UPR). Cd2+-induced UPR proceeds mainly through the bZIP60 arm, which in turn activates relevant ER stress marker genes such as BiP3, CNX, PDI5 and ERdj3B in a concentration- (chronic stress) or time- (temporary stress) dependent manner. A more severe Cd-stress triggers programmed cell death (PCD) through the activation of the NAC089 transcription factor. Toxic effects of Cd2+ exposure are reduced in the Atbzip28/bzip60 double mutant in terms of primary root length and fresh shoot weight, likely due to reduced UPR and PCD activation. We also hypothesised that the enhanced Cd2+ tolerance of the Atbzip28/bzip60 double mutant is due to an increase in brassinosteroids signaling, since the amount of the brassinosteroid insensitive1 receptor (BRI1) protein decreases under Cd2+ stress only in Wt plants. These data highlight the complexity of the UPR pathway, since the ER stress response is strictly related to the type of the treatment applied and the multifaceted connections of ER signaling. The reduced sensing of Cd2+ stress in plants with UPR defects can be used as a novel strategy for phytoremediation.
Collapse
Affiliation(s)
- Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy.
| |
Collapse
|
8
|
Musetti R, Pagliari L, Mian G, De Oliveira Cantao FR, Bernardini C, Santi S, van Bel AJE. The sieve-element endoplasmic reticulum: A focal point of phytoplasma-host plant interaction? Front Microbiol 2023; 14:1030414. [PMID: 36819061 PMCID: PMC9932721 DOI: 10.3389/fmicb.2023.1030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.
Collapse
Affiliation(s)
- Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), Università di Padova, via dell' Università, Legnaro, Italy,*Correspondence: Rita Musetti,
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Giovanni Mian
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Fernando R. De Oliveira Cantao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Chiara Bernardini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | | |
Collapse
|
9
|
A Proteomic Analysis for the Red Seaweed Asparagopsis taxiformis. BIOLOGY 2023; 12:biology12020167. [PMID: 36829446 PMCID: PMC9952816 DOI: 10.3390/biology12020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
The red seaweed Asparagopsis taxiformis is a promising ruminant feed additive with anti-methanogenic properties that could contribute to global climate change solutions. Genomics has provided a strong foundation for in-depth molecular investigations, including proteomics. Here, we investigated the proteome of A. taxiformis (Lineage 6) in both sporophyte and gametophyte stages, using soluble and insoluble extraction methods. We identified 741 unique non-redundant proteins using a genome-derived database and 2007 using a transcriptome-derived database, which included numerous proteins predicted to be of fungal origin. We further investigated the genome-derived proteins to focus on seaweed-specific proteins. Ontology analysis indicated a relatively large proportion of ion-binding proteins (i.e., iron, zinc, manganese, potassium and copper), which may play a role in seaweed heavy metal tolerance. In addition, we identified 58 stress-related proteins (e.g., heat shock and vanadium-dependent haloperoxidases) and 44 photosynthesis-related proteins (e.g., phycobilisomes, photosystem I, photosystem II and ATPase), which were in general more abundantly identified from female gametophytes. Forty proteins were predicted to be secreted, including ten rhodophyte collagen-alpha-like proteins (RCAPs), which displayed overall high gene expression levels. These findings provide a comprehensive overview of expressed proteins in A. taxiformis, highlighting the potential for targeted protein extraction and functional characterisation for future biodiscovery.
Collapse
|
10
|
Carrillo R, Christopher DA. Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene. PLANT SIGNALING & BEHAVIOR 2022; 17:2098645. [PMID: 35856340 PMCID: PMC9302528 DOI: 10.1080/15592324.2022.2098645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The ability to measure the activation of the unfolded protein response (UPR) in plants is important when they are exposed to stressful environments. To this end, we developed a unique and versatile biosensor-reporter system to indicate the activation of UPR in living plant cells. The small cytoplasmically spliced intron from the bZIP60 locus was incorporated into the 5' end of the GFP gene, creating the 35S::bZIP60 intron:GFP construct. When this construct is transiently expressed in Arabidopsis protoplasts, the presence of the bZIP60 intron prevents GFP mRNA from being translated under non-UPR conditions. However, when UPR is activated, the IRE1 kinase/ribonuclease splices this intron from the GFP mRNA and its translation proceeds, generating GFP fluorescence. We demonstrated the utility of the system in Arabidopsis leaf protoplasts treated with DTT, which is a chemical inducer of UPR, followed by visualization and quantification using confocal microscopy. The 35S::bZIP60 intron:GFP construct was also expressed in protoplasts from an overexpressor line containing the coding sequence for the UPR-induced, protein folding chaperone, protein disulfide isomerase-9 (PDI9). PDI9 also influences the strength of the UPR signaling pathway. Protoplasts from WT and PDI9 overexpressor plants treated with DTT exhibited significantly higher GFP fluorescence relative to untreated protoplasts, indicating that the bZIP60 intron was spliced from the GFP mRNA in response to activation of UPR. RT-PCR further confirmed the higher induction of PDI9 and bZIP60 (total and spliced) mRNA levels in DTT-treated protoplasts relative to controls. This system can be adapted for monitoring crop stress and for basic studies dissecting the UPR signaling pathway.
Collapse
Affiliation(s)
- Rina Carrillo
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - David A. Christopher
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
11
|
Kim JS, Mochida K, Shinozaki K. ER Stress and the Unfolded Protein Response: Homeostatic Regulation Coordinate Plant Survival and Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3197. [PMID: 36501237 PMCID: PMC9735958 DOI: 10.3390/plants11233197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER), a eukaryotic organelle, is the major site of protein biosynthesis. The disturbance of ER function by biotic or abiotic stress triggers the accumulation of misfolded or unfolded proteins in the ER. The unfolded protein response (UPR) is the best-studied ER stress response. This transcriptional regulatory system senses ER stress, activates downstream genes that function to mitigate stress, and restores homeostasis. In addition to its conventional role in stress responses, recent reports indicate that the UPR is involved in plant growth and development. In this review, we summarize the current knowledge of ER stress sensing and the activation and downstream regulation of the UPR. We also describe how the UPR modulates both plant growth and stress tolerance by maintaining ER homeostasis. Lastly, we propose that the UPR is a major component of the machinery that balances the trade-off between plant growth and survival in a dynamic environment.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
12
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Endoplasmic Reticulum Stress and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2022; 11:antiox11071240. [PMID: 35883731 PMCID: PMC9311536 DOI: 10.3390/antiox11071240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key compartment responsible for protein processing and folding, and it also participates in many signal transduction and metabolic processes. Reactive oxygen species (ROS) are important signaling messengers involved in the redox equilibrium and stress response. A number of abiotic and biotic stresses can trigger the accumulation of unfolded or misfolded proteins and lead to ER stress. In recent years, a number of studies have reported that redox metabolism and ROS are closely related to ER stress. ER stress can benefit ROS generation and even cause oxidative burden in plants, finally leading to oxidative stress depending on the degree of ER stress. Moreover, ER stress activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated ROS signaling, increases antioxidant defense mechanisms, and alters the glutathione (GSH) redox state. Meanwhile, the accumulation of ROS plays a special role in inducing the ER stress response. Given these factors, plants have evolved a series of complex regulatory mechanisms to interact with ROS in response to ER stress. In this review, we summarize the perceptions and responses of plant ER stress and oxidative protein folding in the ER. In addition, we analyze the production and signaling of ROS under ER stress in detail in order to provide a theoretical basis for reducing ER stress to improve the crop survival rate in agricultural applications.
Collapse
|
14
|
Carrillo R, Feldeverd E, Christopher DA. The Use of Fluorescent Protein Fusions to Monitor the Unfolded Protein Response and Protein Foldase-Substrate Interactions in Plant Protoplasts. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2378:69-81. [PMID: 34985694 DOI: 10.1007/978-1-0716-1732-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR) are critical stress response pathways in eukaryotes. To study these types of interactions in plants, a wide range of methods have been used, including generation of transgenic plants, subcellular immunolocalization of protein foldases, and co-immunoprecipitation (co-IP) assays. Although these more time-consuming methods have been successfully implemented, there is a need for a versatile and rapid in vivo system to investigate ER stress and UPR. Here, we describe a transient expression system that uses plant protoplasts to define in vivo subcellular localizations and protein-protein interactions of protein foldases and their substrates fused to fluorescent protein reporters. This accurate and robust assay utilizes a variety of analyses, such as subcellular localization, FLIM-FRET, co-IP, mutagenesis, and RT-PCR in the genetically amenable Arabidopsis model system. We demonstrate the methodology by using the representative protein foldase, protein disulfide isomerase-9 (PDI9), as well as subcellular markers, secretory proteins, and dithiothreitol (DTT)-mediated induction of the UPR as monitored by RT-PCR. Together, these methods yield reliable high output results for investigating subcellular localization and protein-protein interactions in plants to decipher the UPR pathways.
Collapse
Affiliation(s)
- Rina Carrillo
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Elizabeth Feldeverd
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - David A Christopher
- Department of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
15
|
Expression Characterization of AtPDI11 and Functional Analysis of AtPDI11 D Domain in Oxidative Protein Folding. Int J Mol Sci 2022; 23:ijms23031409. [PMID: 35163331 PMCID: PMC8836223 DOI: 10.3390/ijms23031409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The formation and isomerization of disulfide bonds mediated by protein disulfide isomerase (PDI) in the endoplasmic reticulum (ER) is of fundamental importance in eukaryotes. Canonical PDI structure comprises four domains with the order of a-b-b′-a′. In Arabidopsis thaliana, the PDI-S subgroup contains only one member, AtPDI11, with an a-a′-D organization, which has no orthologs in mammals or yeast. However, the expression pattern of AtPDI11 and the functioning mechanism of AtPDI11 D domain are currently unclear. In this work, we found that PDI-S is evolutionarily conserved between land plants and algal organisms. AtPDI11 is expressed in various tissues and its induction by ER stress is disrupted in bzip28/60 and ire1a/b mutants that are null mutants of key components in the unfolded protein response (UPR) signal transduction pathway, suggesting that the induction of AtPDI11 by ER stress is mediated by the UPR signaling pathway. Furthermore, enzymatic activity assays and genetic evidence showed that the D domain is crucially important for the activities of AtPDI11. Overall, this work will help to further understand the working mechanism of AtPDI11 in catalyzing disulfide formation in plants.
Collapse
|
16
|
Fan F, Zhang Q, Zhang Y, Huang G, Liang X, Wang CC, Wang L, Lu D. Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding. PLANT PHYSIOLOGY 2022; 188:241-254. [PMID: 34609517 PMCID: PMC8774737 DOI: 10.1093/plphys/kiab457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 05/13/2023]
Abstract
Disulfide bonds play essential roles in the folding of secretory and plasma membrane proteins in the endoplasmic reticulum (ER). In eukaryotes, protein disulfide isomerase (PDI) is an enzyme catalyzing the disulfide bond formation and isomerization in substrates. The Arabidopsis (Arabidopsis thaliana) genome encodes diverse PDIs including structurally distinct subgroups PDI-L and PDI-M/S. It remains unclear how these AtPDIs function to catalyze the correct disulfide formation. We found that one Arabidopsis ER oxidoreductin-1 (Ero1), AtERO1, can interact with multiple PDIs. PDI-L members AtPDI2/5/6 mainly serve as an isomerase, while PDI-M/S members AtPDI9/10/11 are more efficient in accepting oxidizing equivalents from AtERO1 and catalyzing disulfide bond formation. Accordingly, the pdi9/10/11 triple mutant exhibited much stronger inhibition than pdi1/2/5/6 quadruple mutant under dithiothreitol treatment, which caused disruption of disulfide bonds in plant proteins. Furthermore, AtPDI2/5 work synergistically with PDI-M/S members in relaying disulfide bonds from AtERO1 to substrates. Our findings reveal the distinct but overlapping roles played by two structurally different AtPDI subgroups in oxidative protein folding in the ER.
Collapse
Affiliation(s)
- Fenggui Fan
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qiao Zhang
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhong Huang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xuelian Liang
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
- Author for communication:
| |
Collapse
|
17
|
Yao D, Arguez MA, He P, Bent AF, Song J. Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. MOLECULAR PLANT 2021; 14:2088-2103. [PMID: 34418551 PMCID: PMC9070964 DOI: 10.1016/j.molp.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 08/15/2021] [Indexed: 05/02/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification reversibly catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) and plays a key role in multiple cellular processes. The molecular mechanisms by which PARylation regulates innate immunity remain largely unknown in eukaryotes. Here we show that Arabidopsis UBC13A and UBC13B, the major drivers of lysine 63 (K63)-linked polyubiquitination, directly interact with PARPs/PARGs. Activation of pathogen-associated molecular pattern (PAMP)-triggered immunity promotes these interactions and enhances PARylation of UBC13. Both parp1 parp2 and ubc13a ubc13b mutants are compromised in immune responses with increased accumulation of total pathogenesis-related (PR) proteins but decreased accumulation of secreted PR proteins. Protein disulfide-isomerases (PDIs), essential components of endoplasmic reticulum quality control (ERQC) that ensure proper folding and maturation of proteins destined for secretion, complex with PARPs/PARGs and are PARylated upon PAMP perception. Significantly, PARylation of UBC13 regulates K63-linked ubiquitination of PDIs, which may further promote their disulfide isomerase activities for correct protein folding and subsequent secretion. Taken together, these results indicate that plant immunity is coordinately regulated by PARylation and K63-linked ubiquitination.
Collapse
Affiliation(s)
- Dongsheng Yao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Marcus A Arguez
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC PLANT BIOLOGY 2021; 21:557. [PMID: 34814838 PMCID: PMC8609882 DOI: 10.1186/s12870-021-03325-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. RESULTS In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. CONCLUSION Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- Institute of Shandong River Wetlands, Jinan, Shandong, 271100, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhou Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Mengyu Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
19
|
Panting M, Holme IB, Björnsson JM, Zhong Y, Brinch-Pedersen H. CRISPR/Cas9 and Transgene Verification of Gene Involvement in Unfolded Protein Response and Recombinant Protein Production in Barley Grain. FRONTIERS IN PLANT SCIENCE 2021; 12:755788. [PMID: 34868146 PMCID: PMC8634432 DOI: 10.3389/fpls.2021.755788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The use of plants as heterologous hosts to produce recombinant proteins has some intriguing advantages. There is, however, the potential of overloading the endoplasmic reticulum (ER) capacity when producing recombinant proteins in the seeds. This leads to an ER-stress condition and accumulating of unfolded proteins. The unfolded protein response (UPR) is activated to alleviate the ER-stress. With the aim to increase the yield of human epidermal growth factor (EGF) and mouse leukemia inhibitory factor (mLIF) in barley, we selected genes reported to have increased expression during ER-induced stress. The selected genes were calreticulin (CRT), protein disulfide isomerase (PDI), isopentenyl diphosphate isomerase (IPI), glutathione-s-transferase (GST), HSP70, HSP26, and HSP16.9. These were knocked out using CRISPR/Cas9 or overexpressed by conventional transgenesis. The generated homozygous barley lines were crossed with barley plants expressing EGF or mLIF and the offspring plants analyzed for EGF and mLIF protein accumulation in the mature grain. All manipulated genes had an impact on the expression of UPR genes when plantlets were subjected to tunicamycin (TN). The PDI knockout plant showed decreased protein body formation, with protein evenly distributed in the cells of the endosperm. The two genes, GST and IPI, were found to have a positive effect on recombinant protein production. mLIF expression was increased in a F2 homozygous GST knockout mutant background as compared to a F2 GST wild-type offspring. The overexpression of IPI in a F1 cross showed a significant increase in EGF expression. We demonstrate that manipulation of UPR related genes can have a positive effect on recombinant protein accumulation.
Collapse
Affiliation(s)
- Michael Panting
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Inger Baeksted Holme
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | | | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| |
Collapse
|
20
|
Howell SH. Evolution of the unfolded protein response in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2625-2635. [PMID: 33840122 DOI: 10.1111/pce.14063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 05/23/2023]
Abstract
The unfolded protein response (UPR) in plants is elicited by endoplasmic reticulum stress, which can be brought about by adverse environmental conditions. The response is mediated by a conserved signalling network composed of two branches - one branch involving inositol requiring enzyme1- basic leucine zipper60 (IRE1-bZIP60) signalling pathway and another branch involving the membrane transcription factors, bZIP17 and -28. The UPR has been reported in Chlamydomonas reinhardtii, a unicellular green alga, which lacks some canonical UPR signalling components found in vascular plants, raising the question whether C. reinhardtii uses other means such as oxidative signalling or Regulated IRE1-Dependent Decay to activate the UPR. In vascular plants, IRE1 splices bZIP60 mRNA in response to endoplasmic reticulum stress by cutting at a site in the RNA that is highly conserved in structure and sequence. Monocots have a single IRE1 gene required for viability in rice, while dicots have two IRE1 genes, IRE1a and -b. Brassicas have a third IRE1 gene, IRE1c, which lacks a lumenal domain, but is required in combination with IRE1b for gametogenesis. Vascular and non-vascular plants upregulate a similar set of genes in response to endoplasmic reticulum stress despite differences in the complexity of their UPR signalling networks.
Collapse
Affiliation(s)
- Stephen H Howell
- Genetics, Development and Cell Biology Department, Plant Sciences Institute, Iowa State University, 1111 WOI Road, Ames, Iowa, USA
| |
Collapse
|
21
|
Feldeverd E, Porter BW, Yuen CYL, Iwai K, Carrillo R, Smith T, Barela C, Wong K, Wang P, Kang BH, Matsumoto K, Christopher DA. The Arabidopsis Protein Disulfide Isomerase Subfamily M Isoform, PDI9, Localizes to the Endoplasmic Reticulum and Influences Pollen Viability and Proper Formation of the Pollen Exine During Heat Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:610052. [PMID: 33447253 PMCID: PMC7802077 DOI: 10.3389/fpls.2020.610052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 05/03/2023]
Abstract
Plants adapt to heat via thermotolerance pathways in which the activation of protein folding chaperones is essential. In eukaryotes, protein disulfide isomerases (PDIs) facilitate the folding of nascent and misfolded proteins in the secretory pathway by catalyzing the formation and isomerization of disulfide bonds and serving as molecular chaperones. In Arabidopsis, several members of the PDI family are upregulated in response to chemical inducers of the unfolded protein response (UPR), including both members of the non-classical PDI-M subfamily, PDI9 and PDI10. Unlike classical PDIs, which have two catalytic thioredoxin (TRX) domains separated by two non-catalytic TRX-fold domains, PDI-M isoforms are orthologs of mammalian P5/PDIA6 and possess two tandem catalytic domains. Here, PDI9 accumulation was found to be upregulated in pollen in response to heat stress. Histochemical staining of plants harboring the PDI9 and PDI10 promoters fused to the gusA gene indicated they were actively expressed in the anthers of flowers, specifically in the pollen and tapetum. Immunoelectron microscopy revealed that PDI9 localized to the endoplasmic reticulum in root and pollen cells. transfer DNA (T-DNA) insertional mutations in the PDI9 gene disrupted pollen viability and development in plants exposed to heat stress. In particular, the pollen grains of pdi9 mutants exhibited disruptions in the reticulated pattern of the exine and an increased adhesion of pollen grains. Pollen in the pdi10 single mutant did not display similar heat-associated defects, but pdi9 pdi10 double mutants (DMs) completely lost exine reticulation. Interestingly, overexpression of PDI9 partially led to heat-associated defects in the exine. We conclude that PDI9 plays an important role in pollen thermotolerance and exine biogenesis. Its role fits the mechanistic theory of proteostasis in which an ideal balance of PDI isoforms is required in the endoplasmic reticulum (ER) for normal exine formation in plants subjected to heat stress.
Collapse
Affiliation(s)
- Elizabeth Feldeverd
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Brad W. Porter
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Christen Y. L. Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Kaela Iwai
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Rina Carrillo
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Tyler Smith
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Cheyenne Barela
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Katherine Wong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - Pengfei Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, China
| | - Byung-Ho Kang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, China
| | - Kristie Matsumoto
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
22
|
Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato ( Solanum Lycopersicum L.). Genes (Basel) 2020; 12:genes12010023. [PMID: 33375673 PMCID: PMC7824348 DOI: 10.3390/genes12010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.
Collapse
|
23
|
Meng Z, Zhao Y, Liu L, Du X. Genome-wide characterization of the PDI gene family in Medicago truncatula and their roles in response to endoplasmic reticulum stress. Genome 2020; 64:599-614. [PMID: 33306442 DOI: 10.1139/gen-2020-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein disulfide isomerases (PDIs) are pivotal protein folding catalysts in the endoplasmic reticulum (ER) through formation of disulfide bond, isomerization, and inhibition of misfolded protein aggregation. When protein folding capacity is overwhelmed by the demands during transitions between growth phases or under environmental changes, the accumulation of unfolded or misfolded proteins in the ER triggers ER stress. However, little is known about the PDI gene family in the model legume Medicago truncatula, especially the responses to ER stress. Therefore, we identified 17 putative PDI genes from the genome of M. truncatula and present their gene and protein structures, phylogenetic relationships, chromosomal distributions, and synteny analysis with the orthologs in four other eudicot species, including Arabidopsis thaliana, Glycine max, Brassica rapa, and Vitis vinifera. Moreover, expression profiles derived from transcriptome data showed distinct expression patterns of MtPDI genes among plant organs, while real-time quantitative PCR analysis and data from the proteome revealed the potential roles of MtPDI genes in response to ER stress. Our study provides a foundation for further investigations of the biological roles of PDI genes in Medicago, especially their roles in response to ER stress.
Collapse
Affiliation(s)
- Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuwei Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lijie Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
24
|
Fan F, Zhang Q, Lu D. Identification of N-glycosylation sites on AtERO1 and AtERO2 using a transient expression system. Biochem Biophys Res Commun 2020; 533:481-485. [PMID: 32977945 DOI: 10.1016/j.bbrc.2020.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
N-glycosylation is an important protein modification that generally occurs at the Asn residue in an Asn-X-Ser/Thr sequon. Ero1 and its homologs play key roles in catalyzing the oxidative folding in the endoplasmic reticulum (ER). Recently, we found that Arabidopsis (Arabidopsis thaliana) ERO1 and AtERO2 displayed different characteristics in catalyzing oxidative protein folding in the ER. All known Ero1s are glycosylated proteins, including AtERO1 and AtERO2 that were analyzed when they were transiently translated in mammalian cells. However, the exact N-glycosylation sites on AtERO1 and AtERO2 remains to be determined. In this work, using a plant transient expression system, we identified the N-glycosylation sites on both AtERO1 and AtERO2. We found that AtERO1 has one N-glycosylation site, while AtERO2 contains two, all in the N-X-S/T sequons. Interestingly, we found that Ero1 homologs from human, rice, soybean and Arabidopsis, all have a conserved N-glycosylation site near the inner active site that reduces molecular oxygen and provides the oxidizing equivalents. The identification of N-glycosylation sites on AtERO1/2 proteins will help understand the function of N-glycosylation not only in AtERO1/2, but also in other Ero1 homologs.
Collapse
Affiliation(s)
- Fenggui Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China. https://orcid.org/0000-0003-4157-9330
| | - Qiao Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China.
| |
Collapse
|
25
|
Berková V, Kameniarová M, Ondrisková V, Berka M, Menšíková S, Kopecká R, Luklová M, Novák J, Spíchal L, Rashotte AM, Brzobohatý B, Černý M. Arabidopsis Response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of Cytokinin Signaling and Plant Proteome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1563. [PMID: 33202776 PMCID: PMC7698199 DOI: 10.3390/plants9111563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
Cytokinins are multifaceted plant hormones that play crucial roles in plant interactions with the environment. Modulations in cytokinin metabolism and signaling have been successfully used for elevating plant tolerance to biotic and abiotic stressors. Here, we analyzed Arabidopsis thaliana response to INhibitor of CYtokinin DEgradation (INCYDE), a potent inhibitor of cytokinin dehydrogenase. We found that at low nanomolar concentration, the effect of INCYCE on seedling growth and development was not significantly different from that of trans-Zeatin treatment. However, an alteration in the spatial distribution of cytokinin signaling was found at low micromolar concentrations, and proteomics analysis revealed a significant impact on the molecular level. An in-depth proteome analysis of an early (24 h) response and a dose-dependent response after 168 h highlighted the effects on primary and secondary metabolism, including alterations in ribosomal subunits, RNA metabolism, modulations of proteins associated with chromatin, and the flavonoid and phenylpropanoid biosynthetic pathway. The observed attenuation in stress-response mechanisms, including abscisic acid signaling and the metabolism of jasmonates, could explain previously reported positive effects of INCYDE under mild stress conditions.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Simona Menšíková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 77200 Olomouc, Czech Republic;
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 811, USA;
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (V.B.); (M.K.); (V.O.); (M.B.); (S.M.); (R.K.); (M.L.); (J.N.); (B.B.)
| |
Collapse
|
26
|
Kalmankar NV, Venkatesan R, Balaram P, Sowdhamini R. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci Rep 2020; 10:12658. [PMID: 32728092 PMCID: PMC7391643 DOI: 10.1038/s41598-020-69452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26–37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), #74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bangalore, Karnataka, 560064, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Department of Biological Sciences, Indian Institute of Science, Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
27
|
Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans. mSphere 2020; 5:5/1/e00062-20. [PMID: 32075883 PMCID: PMC7031613 DOI: 10.1128/msphere.00062-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Candida albicans remains a significant threat to the lives of immunocompromised people. An understanding of the virulence and infection ability of C. albicans cells in the mammalian host may help with clinical treatment and drug discovery. The DNA damage response pathway is closely related to morphology regulation and virulence, as well as the ability to survive in host cells. In this study, we checked the role of the nucleotide excision repair (NER) pathway, the key repair system that functions to remove a large variety of DNA lesions such as those caused by UV light, but whose function has not been well studied in C. albicans. We found that Rad23, but not Rad4, plays a role in virulence that appears independent of the function of the NER pathway. Our research revealed that the NER pathway represented by Rad4/Rad23 may not play a direct role in virulence but that Rad23 may play a unique role in regulating the transcription of virulence genes that may contribute to the virulence of C. albicans. In the pathogenic yeast Candida albicans, the DNA damage response contributes to pathogenicity by regulating cell morphology transitions and maintaining survival in response to DNA damage induced by reactive oxygen species (ROS) in host cells. However, the function of nucleotide excision repair (NER) in C. albicans has not been extensively investigated. To better understand the DNA damage response and its role in virulence, we studied the function of the Rad23 nucleotide excision repair protein in detail. The RAD23 deletion strain and overexpression strain both exhibit UV sensitivity, confirming the critical role of RAD23 in the nucleotide excision repair pathway. Genetic interaction assays revealed that the role of RAD23 in the UV response relies on RAD4 but is independent of RAD53, MMS22, and RAD18. RAD4 and RAD23 have similar roles in regulating cell morphogenesis and biofilm formation; however, only RAD23, but not RAD4, plays a negative role in virulence regulation in a mouse model. We found that the RAD23 deletion strain showed decreased survival in a Candida-macrophage interaction assay. Transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) data further revealed that RAD23, but not RAD4, regulates the transcription of a virulence factor, SUN41, suggesting a unique role of RAD23 in virulence regulation. Taking these observations together, our work reveals that the RAD23-related nucleotide excision pathway plays a critical role in the UV response but may not play a direct role in virulence. The virulence-related role of RAD23 may rely on the regulation of several virulence factors, which may give us further understanding about the linkage between DNA damage repair and virulence regulation in C. albicans. IMPORTANCECandida albicans remains a significant threat to the lives of immunocompromised people. An understanding of the virulence and infection ability of C. albicans cells in the mammalian host may help with clinical treatment and drug discovery. The DNA damage response pathway is closely related to morphology regulation and virulence, as well as the ability to survive in host cells. In this study, we checked the role of the nucleotide excision repair (NER) pathway, the key repair system that functions to remove a large variety of DNA lesions such as those caused by UV light, but whose function has not been well studied in C. albicans. We found that Rad23, but not Rad4, plays a role in virulence that appears independent of the function of the NER pathway. Our research revealed that the NER pathway represented by Rad4/Rad23 may not play a direct role in virulence but that Rad23 may play a unique role in regulating the transcription of virulence genes that may contribute to the virulence of C. albicans.
Collapse
|
28
|
Functional Diversification of ER Stress Responses in Arabidopsis. Trends Biochem Sci 2019; 45:123-136. [PMID: 31753702 DOI: 10.1016/j.tibs.2019.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.
Collapse
|
29
|
Pu Y, Ruberti C, Angelos ER, Brandizzi F. AtIRE1C, an unconventional isoform of the UPR master regulator AtIRE1, is functionally associated with AtIRE1B in Arabidopsis gametogenesis. PLANT DIRECT 2019; 3:e00187. [PMID: 31799493 PMCID: PMC6883098 DOI: 10.1002/pld3.187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR), a highly conserved set of eukaryotic intracellular signaling cascades, controls the homeostasis of the endoplasmic reticulum (ER) in normal physiological growth and situations causing accumulation of potentially toxic levels of misfolded proteins in the ER, a condition known as ER stress. During evolution, eukaryotic lineages have acquired multiple UPR effectors, which have increased the pliability of cytoprotective responses to physiological and environmental stresses. The ER-associated protein kinase and ribonuclease IRE1 is a UPR effector that is conserved from yeast to metazoans and plants. IRE1 assumes dispensable roles in growth in yeast but it is essential in mammals and plants. The Arabidopsis genome encodes two isoforms of IRE1, IRE1A and IRE1B, whose protein functional domains are conserved across eukaryotes. Here, we describe the identification of a third Arabidopsis IRE1 isoform, IRE1C. This protein lacks the ER lumenal domain that has been implicated in sensing ER stress in the IRE1 isoforms known to date. Through functional analyses, we demonstrate that IRE1C is not essential in growth and stress responses when deleted from the genome singularly or in combination with an IRE1A knockout allele. However, we found that IRE1C exerts an essential role in gametogenesis when IRE1B is also depleted. Our results identify a novel, plant-specific IRE1 isoform and highlight that at least the control of gametogenesis in Arabidopsis requires an unexpected functional coordination of IRE1C and IRE1B. More broadly, our findings support the existence of a functional form of IRE1 that is required for development despite the remarkable absence of a protein domain that is critical for the function of other known IRE1 isoforms.
Collapse
Affiliation(s)
- Yunting Pu
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Cristina Ruberti
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Evan R. Angelos
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Federica Brandizzi
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
30
|
Nguyen VC, Nakamura Y, Kanehara K. Membrane lipid polyunsaturation mediated by FATTY ACID DESATURASE 2 (FAD2) is involved in endoplasmic reticulum stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:478-493. [PMID: 31001857 DOI: 10.1111/tpj.14338] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER-synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue-specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin-induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Van Cam Nguyen
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yuki Nakamura
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kazue Kanehara
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| |
Collapse
|
31
|
Wu X, Yan J, Wu Y, Zhang H, Mo S, Xu X, Zhou F, Ding H. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC PLANT BIOLOGY 2019; 19:270. [PMID: 31226939 PMCID: PMC6588876 DOI: 10.1186/s12870-019-1849-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/24/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The Bemisia tabaci is a major leaf feeding insect pest to pepper (Capsicum annuum), causing serious damage to pepper growth and yield. It is particularly important to study the mechanism of pepper resistance to B. tabaci, and to breed and promote the varieties of pepper resistant to B. tabaci. However, very limited molecular mechanism is available about how plants perceive and defend themselves from the destructive pest. Proteome technologies have provided an idea method for studying plant physiological processes in response to B. tabaci. RESULTS Here, a highly resistant genotype and a highly susceptible genotype were exposed to B. tabaci feeding for 48 h to explore the defense mechanisms of pepper resistance to B. tabaci. The proteomic differences between both genotypes were compared using isobaric tag for relative and absolute quantification (iTRAQ). The quantitative data were validated by parallel reaction monitoring (PRM). The results showed that 37 differential abundance proteins (DAPs) were identified in the RG (resistant genotype), while 17 DAPs were identified in the SG (susceptible genotype) at 48 h after B. tabaci feeding. 77 DAPs were identified when comparing RG with SG without feeding. The DAP functions were determined for the classification of the pathways, mainly involved in redox regulation, stress response, protein metabolism, lipid metabolism and carbon metabolism. Some candidate DAPs are closely related to B. tabaci resistance such as annexin D4-like (ANN4), calreticulin-3 (CRT3), heme-binding protein 2-like (HBP1), acidic endochitinase pcht28-like (PR3) and lipoxygenase 2 (LOX2). CONCLUSIONS Taken together, this study indicates complex resistance-related events in B. tabaci interaction, provides novel insights into the molecular mechanism underlying the response of plant to B. tabaci, and identifies some candidate proteins against B. tabaci attack.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jiaxing Yan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yahong Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haibo Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shuangrong Mo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Fucai Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
32
|
Mildažienė V, Aleknavičiūtė V, Žūkienė R, Paužaitė G, Naučienė Z, Filatova I, Lyushkevich V, Haimi P, Tamošiūnė I, Baniulis D. Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression. Sci Rep 2019; 9:6437. [PMID: 31015543 PMCID: PMC6478675 DOI: 10.1038/s41598-019-42893-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Treatment of plant seeds with electromagnetic fields or non-thermal plasmas aims to take advantage of plant functional plasticity towards stimulation of plant agricultural performance. In this study, the effects of pre-sowing seed treatment using 200 Pa vacuum (7 min), 5.28 MHz radio-frequency cold plasma (CP -2, 5, and 7 min) and electromagnetic field (EMF -5, 10, 15 min) on seed germination kinetics, content of phytohormones, morphometric parameters of seedlings and leaf proteome were assessed. CP 7 min and EMF 15 min treatments caused 19-24% faster germination in vitro; germination in the substrate was accelerated by vacuum (9%) and EMF 15 min (17%). The stressors did not change the seed germination percentage, with exception of EMF 5 min treatment that caused a decrease by 7.5%. Meanwhile both CP 7 min and EMF 15 min treatments stimulated germination, but the EMF treatment resulted in higher weight of leaves. Stressor-specific changes in phytohormone balance were detected in seeds: vacuum treatment decreased zeatin amount by 39%; CP treatments substantially increased gibberellin content, but other effects strongly varied with the treatment duration; the abscisic acid content was reduced by 55-60% after the EMF treatment. Analysis of the proteome showed that short exposure of seeds to the EMF or CP induced a similar long-term effect on gene expression in leaves, mostly stimulating expression of proteins involved in photosynthetic processes and their regulation.
Collapse
Affiliation(s)
- Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania.
| | | | - Rasa Žūkienė
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Giedrė Paužaitė
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Zita Naučienė
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Irina Filatova
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Veronika Lyushkevich
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Kaunas reg, Lithuania
| | - Inga Tamošiūnė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Kaunas reg, Lithuania
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Kaunas reg, Lithuania
| |
Collapse
|
33
|
HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci 2019; 20:ijms20020390. [PMID: 30658467 PMCID: PMC6359015 DOI: 10.3390/ijms20020390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor A2 (HsfA2) is part of the Heat Shock Factor (HSF) network, and plays an essential role beyond heat shock in environmental stress responses and cellular homeostatic control. Arabidopsis thaliana cell cultures derived from wild type (WT) ecotype Col-0 and a knockout line deficient in the gene encoding HSFA2 (HSFA2 KO) were grown aboard the International Space Station (ISS) to ascertain whether the HSF network functions in the adaptation to the novel environment of spaceflight. Microarray gene expression data were analyzed using a two-part comparative approach. First, genes differentially expressed between the two environments (spaceflight to ground) were identified within the same genotype, which represented physiological adaptation to spaceflight. Second, gene expression profiles were compared between the two genotypes (HSFA2 KO to WT) within the same environment, which defined genes uniquely required by each genotype on the ground and in spaceflight-adapted states. Results showed that the endoplasmic reticulum (ER) stress and unfolded protein response (UPR) define the HSFA2 KO cells' physiological state irrespective of the environment, and likely resulted from a deficiency in the chaperone-mediated protein folding machinery in the mutant. Results further suggested that additional to its universal stress response role, HsfA2 also has specific roles in the physiological adaptation to spaceflight through cell wall remodeling, signal perception and transduction, and starch biosynthesis. Disabling HsfA2 altered the physiological state of the cells, and impacted the mechanisms induced to adapt to spaceflight, and identified HsfA2-dependent genes that are important to the adaption of wild type cells to spaceflight. Collectively these data indicate a non-thermal role for the HSF network in spaceflight adaptation.
Collapse
|
34
|
Wang F, Lin R, Li Y, Wang P, Feng J, Chen W, Xu S. TabZIP74 Acts as a Positive Regulator in Wheat Stripe Rust Resistance and Involves Root Development by mRNA Splicing. FRONTIERS IN PLANT SCIENCE 2019; 10:1551. [PMID: 31921229 PMCID: PMC6927285 DOI: 10.3389/fpls.2019.01551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/06/2019] [Indexed: 05/07/2023]
Abstract
Basic leucine zipper (bZIP) membrane-bound transcription factors (MTFs) play important roles in regulating plant growth and development, abiotic stress responses, and disease resistance. Most bZIP MTFs are key components of signaling pathways in endoplasmic reticulum (ER) stress responses. In this study, a full-length cDNA sequence encoding bZIP MTF, designated TabZIP74, was isolated from a cDNA library of wheat near-isogenic lines of Taichung29*6/Yr10 inoculated with an incompatible race CYR32 of Puccinia striiformis f. sp. tritici (Pst). Phylogenic analysis showed that TabZIP74 is highly homologous to ZmbZIP60 in maize and OsbZIP74 in rice. The mRNA of TabZIP74 was predicted to form a secondary structure with two kissing hairpin loops that could be spliced, causing an open reading frame shift immediately before the hydrophobic region to produce a new TabZIP74 protein without the transmembrane domain. Pst infection and the abiotic polyethylene glycol (PEG) and abscisic acid (ABA) treatments lead to TabZIP74 mRNA splicing in wheat seedling leaves, while both spliced and unspliced forms in roots were detected. In the confocal microscopic examination, TabZIP74 is mobilized in the nucleus from the membrane of tobacco epidermal cells in response to wounding. Knocking down TabZIP74 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced wheat seedling susceptibility to stripe rust and decreased drought tolerance and lateral roots of silenced plants. These findings demonstrate that TabZIP74 mRNA is induced to splice when stressed by biotic and abiotic factors, acts as a critically positive regulator for wheat stripe rust resistance and drought tolerance, and is necessary for lateral root development.
Collapse
Affiliation(s)
- Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ruiming Lin
| | - Yuanyuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- China Agricultural University, College of Plant Protection, Beijing, China
| | - Jing Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shichang Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Roomi S, Masi A, Conselvan GB, Trevisan S, Quaggiotti S, Pivato M, Arrigoni G, Yasmin T, Carletti P. Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks. FRONTIERS IN PLANT SCIENCE 2018; 9:1812. [PMID: 30619394 PMCID: PMC6299182 DOI: 10.3389/fpls.2018.01812] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/21/2018] [Indexed: 05/06/2023]
Abstract
Background and Aim: Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. Methods: Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quantification) technique. Out of 902 protein families identified and quantified for HS treated vs. untreated roots, 92 proteins had different relative content. Bioinformatic tools such as STRING, KEGG, IIS and Cytoscape were used to interpret the biological function, pathway analysis and visualization of network amongst the identified proteins. Results: From this analysis it was possible to evaluate that all of the identified proteins were functionally classified into several categories, mainly redox homeostasis, response to inorganic substances, energy metabolism, protein synthesis, cell trafficking, and division. Conclusion: In the present study an overview of the metabolic pathways most modified by HS biological activity is provided. Activation of enzymes of the glycolytic pathway and up regulation of ribosomal protein indicated a stimulation in energy metabolism and protein synthesis. Regulation of the enzymes involved in redox homeostasis suggest a pivotal role of reactive oxygen species in the signaling and modulation of HS-induced responses.
Collapse
Affiliation(s)
- Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | | | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padua and Azienda Ospedaliera di Padova, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| |
Collapse
|
36
|
Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, Faigenboim A, Rutley N, Beery A, Harel A, Weckwerth W, Firon N. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:1558. [PMID: 30483278 PMCID: PMC6240657 DOI: 10.3389/fpls.2018.01558] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/04/2018] [Indexed: 05/19/2023]
Abstract
Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.
Collapse
Affiliation(s)
- Sridharan Jegadeesan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture of The Hebrew University of Jerusalem, Rehovot, Israel
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Etan Pressman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shimon Meir
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nicholas Rutley
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Avital Beery
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Arye Harel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Nurit Firon
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
37
|
Li LJ, Lu XC, Ma HY, Lyu DG. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. JOURNAL OF PLANT RESEARCH 2018; 131:865-878. [PMID: 29855747 DOI: 10.1007/s10265-018-1045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/10/2018] [Indexed: 05/16/2023]
Abstract
Soil temperature is known to affect plant growth and productivity. In this study we found that low root-zone temperature (LRT) inhibited the growth of apple (Malus baccata Borkh.) seedlings. To elucidate the molecular mechanism of LRT response, we performed comparative proteome analysis of the apple roots under LRT for 6 days. Total proteins of roots were extracted and separated by two-dimensional gel electrophoresis (2-DE) and 29 differentially accumulated proteins were successfully identified by MALDI-TOF/TOF mass spectrometry. They were involved in protein transport/processing/degradation (21%), glycometabolism (20%), response to stress (14%), oxidoreductase activity (14%), protein binding (7%), RNA metabolism (7%), amino acid biosynthesis (3%) and others (14%). The results revealed that LRT inhibited glycometabolism and RNA metabolism. The up-regulated proteins which were associated with oxidoreductase activity, protein metabolism and defense response, might be involved in protection mechanisms against LRT stress in the apple seedlings. Subsequently, 8 proteins were selected for the mRNA quantification analysis, and we found 6 of them were consistently regulated between protein and mRNA levels. In addition, the enzyme activities in ascorbate-glutathione (AsA-GSH) cycle were determined, and APX activity was increased and GR activity was decreased under LRT, in consistent with the protein levels. This study provides new insights into the molecular mechanisms of M. baccata in responding to LRT.
Collapse
Affiliation(s)
- Li-Jie Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Chen Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huai-Yu Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| | - De-Guo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
38
|
Geng X, Zang X, Li H, Liu Z, Zhao A, Liu J, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:252-260. [PMID: 30080611 DOI: 10.1016/j.plantsci.2018.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 05/18/2023]
Abstract
Conditions that disrupt protein folding, such as heat stress, can overwhelm the capacity of cells to fold proteins, thus causing endoplasmic reticulum (ER) stress. In Arabidopsis thaliana and other plants, inositol-requiring enzyme-1 mediated unconventional splicing of bZIP60 plays a crucial role in the heat and ER stress responses. However, little is known about this pathway in wheat (Triticum aestivum), especially its importance in heat tolerance. Here, we found that heat stress induced upregulation and unconventional splicing of TabZIP60 occurred in wheat seedlings. Constitutive expression of the spliced form of TabZIP60 (TabZIP60s) enhanced heat tolerance in Arabidopsis, but overexpression of the unspliced form (TabZIP60u) did not. RNA-sequencing analysis revealed ER stress related genes involved in heat responses in TabZIP60s-overexpression transgenic Arabidopsis. Chromatin immunoprecipitation-qPCR showed that TabZIP60s directly binds to 17 target genes including AtbZIP60. Also, the 26S proteasome pathway post-translationally regulates TabZIP60s levels during heat stress responses. Our findings suggest that unconventional splicing of TabZIP60 could contribute to heat tolerance in transgenic plants by modulating the expression of ER stress-related genes.
Collapse
Affiliation(s)
- Xiaoli Geng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xinshan Zang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haoran Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Aiju Zhao
- Hebei Academy of Agriculture and Forest Sciences, Shijiazhuang, 050035, China
| | - Jian Liu
- Seed Management Station of Shanghai, No. 628, Wuzhong Road, Minhang District, Shanghai, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Zhang Z, Liu X, Li R, Yuan L, Dai Y, Wang X. Identification and Functional Analysis of a Protein Disulfide Isomerase ( AtPDI1) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:913. [PMID: 30073003 PMCID: PMC6060501 DOI: 10.3389/fpls.2018.00913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 05/30/2023]
Abstract
Protein disulfide isomerase (PDI) catalyzes the conversion of thiol-disulfide and plays an important role in various physiological events in animals. A PDI (OaPDI) from a tropical plant was detailed studied and it was found to be involved in response of biotic stress (Gruber et al., 2007). However, the activities of PDI related to physiological functions in plants are poorly understood. In the present study, a homolog of human PDI in Arabidopsis (AtPDI1), encoded by the gene (At3g54960), was characterized. The recombinant AtPDI1 protein had disulfide isomerase activity in vitro and two pairs of conservative cysteines in catalytic domains play a crucial role in the PDI activities. Expression of AtPDI1 in Escherichia coli significantly enhanced stress tolerance of cells and the mutations of critical cysteines almost lose this function. In plants, AtPDI1 was strongly induced by abiotic stresses and exogenous abscisic acid. An ArabidopsisAtPDI1 knockdown mutant (pdi1) and overexpression lines of transgenic plants obtained by this investigation were used to further examine the function of AtPDI1. The mutant line was more sensitive to stresses than the wild-type, while overexpressing AtPDI1 increased tolerance of seedlings to abiotic stresses, with a higher germination ratio and longer length of roots than the wild-type. Our results suggested AtPDI1 played roles in anti-stresses in Arabidopsis, which relate to the activities of PDI.
Collapse
|
40
|
Ozgur R, Uzilday B, Iwata Y, Koizumi N, Turkan I. Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3333-3345. [PMID: 29415271 DOI: 10.1093/jxb/ery040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
Secretory proteins undergo modifications such as glycosylation and disulphide bond formation before proper folding, and move to their final destination via the endomembrane system. Accumulation of unfolded proteins in the endoplasmic reticulum (ER) due to suboptimal environmental conditions triggers a response called the unfolded protein response (UPR), which induces a set of genes that elevate protein folding capacity in the ER. This review aims to establish a connection among ER stress, UPR, and reactive oxygen species (ROS), which remains an unexplored topic in plants. For this, we focused on mechanisms of ROS production originating from ER stress, the interaction between ER stress and overall ROS signalling process in the cell, and the interaction of ER stress with other organellar ROS signalling pathways such as of the mitochondria and chloroplasts. The roles of the UPR during plant hormone signalling and abiotic and biotic stress responses are also discussed in connection with redox and ROS signalling.
Collapse
Affiliation(s)
- Rengin Ozgur
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Baris Uzilday
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai Osaka, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai Osaka, Japan
| | - Ismail Turkan
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| |
Collapse
|
41
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
42
|
Xia K, Zeng X, Jiao Z, Li M, Xu W, Nong Q, Mo H, Cheng T, Zhang M. Formation of Protein Disulfide Bonds Catalyzed by OsPDIL1;1 is Mediated by MicroRNA5144-3p in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:331-342. [PMID: 29194535 DOI: 10.1093/pcp/pcx189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/23/2017] [Indexed: 05/20/2023]
Abstract
Correct folding of proteins in the endoplasmic reticulum is important for their stability and function under stress. The protein disulfide isomerase (PDI) OsPDIL1;1 is a key protein-folding catalyst in rice (Oryza sativa L.). Here, microRNA5144 (osa-miR5144-3p) is reported to mediate the formation of protein disulfide bonds via targeting OsPDIL1;1 mRNA in rice seeds and seedlings during development and under conditions of abiotic stress, respectively. Expression analysis of transgenic rice and identification of cleavage sites showed that OsPDIL1;1 mRNA is a target of osa-miR5144-3p. Expression of osa-miR5144-3p and OsPDIL1;1 was shown to be inversely regulated in developing organs and under abiotic stress. The down-regulation of osa-miR5144-3p or overexpression of OsPDIL1;1 in transgenic rice showed increased total protein-disulfide bond content, compared with the wild type. This indicates that protein-disulfide bond formation is enhanced by down-regulation of osa-miR5144-3p or overexpression of OsPDIL1;1. These transgenic rice plants also displayed strong resistance to salinity and mercury stress, in comparison with the wild type. In contrast, the transgenic rice plants overexpressing osa-miR5144-3p or down-regulating OsPDIL1;1 had a lower protein-disulfide bond content; they were susceptible to abiotic stress and produced abnormal grains with small and loosely packed starch granules. These results indicate that protein-disulfide bond formation catalyzed by OsPDIL1;1 is modulated by osa-miR5144-3p in rice during development and is involved in resistance to abiotic stress.
Collapse
Affiliation(s)
- Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuan Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhengli Jiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maolin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quandong Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Mo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Taihui Cheng
- Panyu District Guangzhou Agricultural Science Research Institute, Guangzhou 511400, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
43
|
Pastor-Cantizano N, Bernat-Silvestre C, Marcote MJ, Aniento F. Loss of Arabidopsis p24 function affects ERD2 trafficking and Golgi structure, and activates the unfolded protein response. J Cell Sci 2018; 131:jcs.203802. [PMID: 28871045 DOI: 10.1242/jcs.203802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, probably due to an inhibition of COPI-dependent Golgi-to-ER transport of ERD2a and thus retrieval of K/HDEL ligands. Although the p24δ3δ4δ5δ6 mutant showed enhanced sensitivity to salt stress, it did not show obvious phenotypic alterations under standard growth conditions. Interestingly, this mutant showed a constitutive activation of the unfolded protein response (UPR) and the transcriptional upregulation of the COPII subunit gene SEC31A, which may help the plant to cope with the transport defects seen in the absence of p24 proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| |
Collapse
|
44
|
Kayum MA, Park JI, Nath UK, Saha G, Biswas MK, Kim HT, Nou IS. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 2017; 18:885. [PMID: 29145809 PMCID: PMC5691835 DOI: 10.1186/s12864-017-4277-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. Results We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1–1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5–2 gene for ABA stress, and BrPDI1–4, 6–1 and 9–2 were putative candidate genes for both cold and chilling injury stresses. Conclusions Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses. Electronic supplementary material The online version of this article (10.1186/s12864-017-4277-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Gopal Saha
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Hoy-Taek Kim
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
45
|
Yuen CYL, Wang P, Kang BH, Matsumoto K, Christopher DA. A Non-Classical Member of the Protein Disulfide Isomerase Family, PDI7 of Arabidopsis thaliana, Localizes to the cis-Golgi and Endoplasmic Reticulum Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1103-1117. [PMID: 28444333 DOI: 10.1093/pcp/pcx057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Members of the protein disulfide isomerase (PDI)-C subfamily are chimeric proteins containing the thioredoxin (Trx) domain of PDIs, and the conserved N- and C-terminal Pfam domains of Erv41p/Erv46p-type cargo receptors. They are unique to plants and chromalveolates. The Arabidopsis genome encodes three PDI-C isoforms: PDI7, PDI12 and PDI13. Here we demonstrate that PDI7 is a 65 kDa integral membrane glycoprotein expressed throughout many Arabidopsis tissues. Using a PDI7-specific antibody, we show through immunoelectron microscopy that PDI7 localizes to the endoplasmic reticulum (ER) and Golgi membranes in wild-type root tip cells, and was also detected in vesicles. Tomographic modeling of the Golgi revealed that PDI7 was confined to the cis-Golgi, and accumulated primarily at the cis-most cisterna. Shoot apical meristem cells from transgenic plants overexpressing PDI7 exhibited a dramatic increase in anti-PDI7 labeling at the cis-Golgi. When N- or C-terminal fusions between PDI7 and the green fluorescent protein variant, GFP(S65T), were expressed in mesophyll protoplasts, the fusions co-localized with the ER marker, ER-mCherry. However, when GFP(S65T) was positioned internally within PDI7 (PDI7-GFPint), the fusion strongly co-localized with the cis-Golgi marker, mCherry-SYP31, and faintly labeled the ER. In contrast to the Golgi-resident fusion protein (Man49-mCherry), PDI7-GFPint did not redistribute to the ER after brefeldin A treatment. Protease protection experiments indicated that the Trx domain of PDI7 is located within the ER/Golgi lumen. We propose a model where PDI-C isoforms function as cargo receptors for proteins containing exposed cysteine residues, cycling them from the Golgi back to the ER.
Collapse
Affiliation(s)
- Christen Y L Yuen
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - Pengfei Wang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Byung-Ho Kang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Kristie Matsumoto
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - David A Christopher
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| |
Collapse
|
46
|
Angelos E, Ruberti C, Kim SJ, Brandizzi F. Maintaining the factory: the roles of the unfolded protein response in cellular homeostasis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:671-682. [PMID: 27943485 PMCID: PMC5415411 DOI: 10.1111/tpj.13449] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 05/07/2023]
Abstract
Much like a factory, the endoplasmic reticulum (ER) assembles simple cellular building blocks into complex molecular machines known as proteins. In order to protect the delicate protein folding process and ensure the proper cellular delivery of protein products under environmental stresses, eukaryotes have evolved a set of signaling mechanisms known as the unfolded protein response (UPR) to increase the folding capacity of the ER. This process is particularly important in plants, because their sessile nature commands adaptation for survival rather than escape from stress. As such, plants make special use of the UPR, and evidence indicates that the master regulators and downstream effectors of the UPR have distinct roles in mediating cellular processes that affect organism growth and development as well as stress responses. In this review we outline recent developments in this field that support a strong relevance of the UPR to many areas of plant life.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Sang-Jin Kim
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Remelli W, Santabarbara S, Carbonera D, Bonomi F, Ceriotti A, Casazza AP. Iron Binding Properties of Recombinant Class A Protein Disulfide Isomerase from Arabidopsis thaliana. Biochemistry 2017; 56:2116-2125. [DOI: 10.1021/acs.biochem.6b01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- William Remelli
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
- Istituto
di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria
26, 20133 Milano, Italy
| | - Stefano Santabarbara
- Istituto
di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria
26, 20133 Milano, Italy
| | - Donatella Carbonera
- Dipartimento
di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesco Bonomi
- Dipartimento
di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, DeFENS, Università di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Aldo Ceriotti
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| |
Collapse
|
48
|
Chen Z, Chen M, Jiang M. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:179-192. [PMID: 27940269 DOI: 10.1016/j.plaphy.2016.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Soil mercury (Hg) contamination is a major factor that affects agricultural yield and food security. Hydrogen sulfide (H2S) plays multifunctional roles in mediating a variety of responses to abiotic stresses. The effects of exogenous H2S on rice (Oryza sativa var 'Nipponbare') growth and metabolism under mercuric chloride (HgCl2) stress were investigated in this study. Either 100 or 200 μM sodium hydrosulfide (NaHS, a donor of H2S) pretreatment improved the transcription of bZIP60, a membrane-associated transcription factor, and then enhanced the expressions of non-protein thiols (NPT) and metallothioneins (OsMT-1) to sequester Hg in roots and thus inhibit Hg transport to shoots. Meanwhile, H2S promoted seedlings growth significantly even in the presences of Hg and superoxide dismutase (SOD, EC 1.15.1.1) or catalase (CAT, EC 1.11.1.6) inhibitors, diethyldithiocarbamate (DDC) or 3-amino-1,2,4-triazole (AT). H2S might act as an antioxidant to inhibit or scavenge reactive oxygen species (ROS) productions for maintaining the lower MDA and H2O2 levels, and thereby preventing oxidative damages. All these results indicated H2S effectively alleviated Hg toxicity by sequestering it in roots or by regulating ROS in seedlings and then thus significantly promoted rice growth.
Collapse
Affiliation(s)
- Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, No.1139 Shifu Road, Taizhou 318000, People's Republic of China.
| | - Moshun Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, No.1139 Shifu Road, Taizhou 318000, People's Republic of China
| | - Ming Jiang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, No.1139 Shifu Road, Taizhou 318000, People's Republic of China
| |
Collapse
|
49
|
Meng Z, Ruberti C, Gong Z, Brandizzi F. CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:486-501. [PMID: 27747970 PMCID: PMC5340296 DOI: 10.1111/tpj.13397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/07/2016] [Indexed: 05/13/2023]
Abstract
Completion of a plant's life cycle depends on successful prioritization of signaling favoring either growth or defense. Although hormones are pivotal regulators of growth-defense tradeoffs, the underlying signaling mechanisms remain obscure. The unfolded protein response (UPR) is essential for physiological growth as well as management of endoplasmic reticulum (ER) stress in unfavorable growth conditions. The plant UPR transducers are the kinase and ribonuclease IRE1 and the transcription factors bZIP28 and bZIP60. We analyzed management of the tradeoff between growth and ER stress defense by the stress response hormone salicylic acid (SA) and the UPR, which is modulated by SA via unknown mechanisms. We show that the plant growth and stress regulator CPR5, which represses accumulation of SA, favors growth in physiological conditions through inhibition of the SA-dependent IRE1-bZIP60 arm that antagonizes organ growth; CPR5 also favors growth in stress conditions through repression of ER stress-induced bZIP28/IRE1-bZIP60 arms. By demonstrating a physical interaction of CPR5 with bZIP60 and bZIP28, we provide mechanistic insights into CPR5-mediated modulation of UPR signaling. These findings define a critical surveillance strategy for plant growth-ER stress defense tradeoffs based on CPR5 and SA-modulated UPR signaling, whereby CPR5 acts as a positive modulator of growth in physiological conditions and in stress by antagonizing SA-dependent growth inhibition through UPR modulation.
Collapse
Affiliation(s)
- Zhe Meng
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
50
|
Peng RH, Qiu J, Tian YS, Gao JJ, Han HJ, Fu XY, Zhu B, Xu J, Wang B, Li ZJ, Wang LJ, Yao QH. Disulfide isomerase-like protein AtPDIL1-2 is a good candidate for trichlorophenol phytodetoxification. Sci Rep 2017; 7:40130. [PMID: 28059139 PMCID: PMC5216352 DOI: 10.1038/srep40130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1-2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b' domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jin Qiu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Yong-Sheng Tian
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jian-jie Gao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Hong-juan Han
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Xiao-Yan Fu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Zhu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Jing Xu
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Bo Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Zhen-jun Li
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Li-juan Wang
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| | - Quan-Hong Yao
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences; Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Rd., Shanghai, People’s Republic of China
| |
Collapse
|