1
|
Song L, Yang T, Abubakar YS, Han Y, Zhang R, Li Y, Ye W, Lu GD. OsMbl1 Counteracts OsGdsl1-Mediated Rice Blast Susceptibility by Inhibiting Its Lipase Activity. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230242 DOI: 10.1111/pce.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Plant lectins have a significant impact on the defense against pathogens and insect attacks. The jacalin-related lectin OsMbl1 from rice (Oryza sativa L.) has been reported to play a crucial role in pattern-triggered immunity (PTI). However, the underlying mechanism remains unclear. In this study, we identified a GDSL-like lipase, OsGdsl1, that interacts with OsMbl1 both in vitro and in vivo. The OsGdsl1 protein, which has lipase activity, is localized in the lipid bodies and apoplast. The expression of OsGDSL1 is modulated upon exposure to Magnaporthe oryzae (M. oryzae) or plant hormones. Deletion of the OsGDSL1 gene not only improved the resistance of rice to M. oryzae, but also led to an increased ROS burst after chitin treatments. The expression of some pathogenesis-related (PR) genes was upregulated in the mutants. We also found that OsMbl1 inhibited the lipase activity of OsGdsl1 during infection with M. oryzae. Overall, our results suggest that OsGdsl1 negatively regulates rice immunity to M. oryzae infection by downregulating ROS bursts and PR gene expressions, while its lipase activity, which is inhibited by OsMbl1, contributes to the enhancement of rice innate immunity during M. oryzae infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yijuan Han
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Ruina Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Guo-Dong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Bisht N, Singh T, Ansari MM, Chauhan PS. The hidden language of plant-beneficial microbes: chemo-signaling dynamics in plant microenvironments. World J Microbiol Biotechnol 2025; 41:35. [PMID: 39800824 DOI: 10.1007/s11274-025-04253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour. They also produce phytohormones which help regulate growth and stress responses in plants. Plants also interact with the associated microorganisms by exuding substances such as carbon and nitrogen sources, quorum-sensing molecules, peptide signals, secondary metabolites such as flavonoids and strigolactones. A successful exchange of chemical signals is essential for maintaining these associations, with significant implications for plant growth and development. This review explores the intricate array of signaling molecules and complex mechanisms governing plant-microbe interactions, elucidating the pivotal role of chemo-communication pathways. By examining these molecular dialogues, the review aims to deepen our understanding of chemo-signaling molecules, paving the way for future applications of these networks in promoting agricultural sustainability.
Collapse
Affiliation(s)
- Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
3
|
Frolov A, Shumilina J, Etemadi Afshar S, Mashkina V, Rhomanovskaya E, Lukasheva E, Tsarev A, Sulima AS, Shtark OY, Ihling C, Soboleva A, Tikhonovich IA, Zhukov VA. Responsivity of Two Pea Genotypes to the Symbiosis with Rhizobia and Arbuscular Mycorrhiza Fungi-A Proteomics Aspect of the "Efficiency of Interactions with Beneficial Soil Microorganisms" Trait. Int J Mol Sci 2025; 26:463. [PMID: 39859177 PMCID: PMC11764919 DOI: 10.3390/ijms26020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study was to characterize alterations in the root proteome of highly responsive pea genotype k-8274 plants and low responsive genotype k-3358 ones grown in non-sterile soil, which were associated with root colonization with rhizobial bacteria and arbuscular mycorrhizal fungi (in comparison to proteome shifts caused by soil supplementation with mineral nitrogen salts). Our results clearly indicate that supplementation of the soil with mineral nitrogen-containing salts switched the root proteome of both genotypes to assimilation of the available nitrogen, whereas the processes associated with nitrogen fixation were suppressed. Surprisingly, inoculation with rhizobial bacteria had only a minor effect on the root proteomes of both genotypes. The most pronounced response was observed for the highly responsive k-8274 genotype inoculated simultaneously with rhizobial bacteria and arbuscular mycorrhizal fungi. This response involved activation of the proteins related to redox metabolism and suppression of excessive nodule formation. In turn, the low responsive genotype k-3358 demonstrated a pronounced inoculation-induced suppression of protein metabolism and enhanced diverse defense reactions in pea roots under the same soil conditions. The results of the study shed light on the molecular basis of differential symbiotic responsivity in different pea cultivars. The raw data are available in the PRIDE repository under the project accession number PXD058701 and project DOI 10.6019/PXD058701.
Collapse
Affiliation(s)
- Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Sarah Etemadi Afshar
- Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany; (S.E.A.); (C.I.)
| | - Valeria Mashkina
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Ekaterina Rhomanovskaya
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Elena Lukasheva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Alexander Tsarev
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany; (S.E.A.); (C.I.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 119334 Moscow, Russia; (J.S.); (A.S.)
| | - Igor A. Tikhonovich
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (V.M.); (E.R.); (E.L.); (A.T.); (I.A.T.)
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (A.S.S.); (O.Y.S.)
| |
Collapse
|
4
|
Reveguk T, Fatiukha A, Potapenko E, Reveguk I, Sela H, Klymiuk V, Li Y, Pozniak C, Wicker T, Coaker G, Fahima T. Tandem kinase proteins across the plant kingdom. Nat Genet 2025; 57:254-262. [PMID: 39779952 DOI: 10.1038/s41588-024-02032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Plant pathogens pose a continuous threat to global food production. Recent discoveries in plant immunity research unveiled a unique protein family characterized by an unusual resistance protein structure that combines two kinase domains. This study demonstrates the widespread occurrence of tandem kinase proteins (TKPs) across the plant kingdom. An examination of 104 plant species' genomes uncovered 2,682 TKPs. The majority (95.6%) of these kinase domains are part of the receptor-like kinase-Pelle family, which is crucial for cell surface responses in plant immunity. Notably, 90% of TKPs comprise dual kinase domains, with over 50% being pseudokinases. Over 56% of these proteins harbor 127 different integrated domains, and over 47% include a transmembrane domain. TKP pseudokinases and/or integrated domains probably serve as decoys, engaging with pathogen effectors to trigger plant immunity. The TKP Atlas we created sheds light on the mechanisms of TKP convergent molecular evolution and potential function.
Collapse
Affiliation(s)
- Tamara Reveguk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Evgenii Potapenko
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Ivan Reveguk
- Laboratory of the Structural Biology of the Cell (BIOC), École Polytechnique, Paris, France
| | - Hanan Sela
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yinghui Li
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Carcea M, Melloni S, Narducci V, Turfani V. Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods 2024; 13:2990. [PMID: 39335918 PMCID: PMC11431102 DOI: 10.3390/foods13182990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The growing scientific evidence on the health benefits of whole-grain food consumption has promoted the manufacturing of a great number of products differing in quality and content of whole-grain components. This is particularly true for commercial wheat-based products where it is not always clear how much whole wheat is present considering that in many cases, they are manufactured from reconstituted mill streams and that there is not a standardised globally accepted definition and metrics to objectively evaluate whole-grain status. Attempts have been made to assess the level of "wholegraininess" in wheat products by measuring specific constituents that correlate with different wheat tissues, especially those that are expected to be found in a true whole-grain wheat product. Wheat germ agglutinin (WGA), a small lectin protein present exclusively in the wheat-germ tissues, has been indicated by several scientists as one of these constituents and after founding that its level changes depending on the amount of germ found in a wheat flour, it has been indicated as a biomarker of whole-grain status for wheat products. In this review, the biochemistry of WGA, its methods of detection, and current knowledge on its possibility to be practically utilized as a reliable marker are critically discussed.
Collapse
Affiliation(s)
- Marina Carcea
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Sahara Melloni
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Valentina Narducci
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Valeria Turfani
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
6
|
Hadizadeh I, Peivastegan B, Nielsen KL, Auvinen P, Sipari N, Pirhonen M. Transcriptome analysis unravels the biocontrol mechanism of Serratia plymuthica A30 against potato soft rot caused by Dickeya solani. PLoS One 2024; 19:e0308744. [PMID: 39240997 PMCID: PMC11379202 DOI: 10.1371/journal.pone.0308744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Faculty of Biological and Environmental Sciences, Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Martínez-Navarro SM, de Iceta Soler X, Martínez-Martínez M, Olazábal-Morán M, Santos-Moriano P, Gómez S. Structural and Phylogenetic In Silico Characterization of Vitis vinifera PRR Protein as Potential Target for Plasmopara viticola Infection. Int J Mol Sci 2024; 25:9553. [PMID: 39273500 PMCID: PMC11395273 DOI: 10.3390/ijms25179553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms are activated. PRRs (Pattern Recognition Receptors) and particularly RLKs (receptor-like kinases) take part in the first barrier of the immune system, and, as a consequence, the kinase signaling cascade is activated, resulting in an immune response. In this context, discovering new lectin-RLK (LecRLK) membrane-bounded proteins has emerged as a promising strategy. The genome-wide localization of potential LecRLKs involved in disease defense was reported in two grapevine varieties of great economic impact: Chardonnay and Pinot Noir. A total of 23 potential amino acid sequences were identified, exhibiting high-sequence homology and evolution related to tandem events. Based on the domain architecture, a carbohydrate specificity ligand assay was conducted with docking, revealing two sequences as candidates for specific Vitis vinifera-Plasmopara viticola host-pathogen interaction. This study confers a starting point for designing new effective antifungal treatments directed at LecRLK targets in Vitis vinifera.
Collapse
Affiliation(s)
| | | | | | | | - Paloma Santos-Moriano
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (S.M.M.-N.); (X.d.I.S.); (M.M.-M.); (M.O.-M.); (S.G.)
| | | |
Collapse
|
8
|
Jibran R, Tahir J, Andre CM, Janssen BJ, Drummond RSM, Albert NW, Zhou Y, Davies KM, Snowden KC. DWARF27 and CAROTENOID CLEAVAGE DIOXYGENASE 7 genes regulate release, germination and growth of gemma in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2024; 15:1358745. [PMID: 38984156 PMCID: PMC11231376 DOI: 10.3389/fpls.2024.1358745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Strigolactones (SLs), a class of carotenoid-derived hormones, play a crucial role in flowering plants by regulating underground communication with symbiotic arbuscular mycorrhizal fungi (AM) and controlling shoot and root architecture. While the functions of core SL genes have been characterized in many plants, their roles in non-tracheophyte plants like liverworts require further investigation. In this study, we employed the model liverwort species Marchantia polymorpha, which lacks detectable SL production and orthologs of key SL biosynthetic genes, including CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) and MORE AXILLARY GROWTH 1 (MAX1). However, it retains some SL pathway components, including DWARF27 (D27) and CCD7. To help elucidate the function of these remaining components in M. polymorpha, knockout mutants were generated for MpD27-1, MpD27-2 and MpCCD7. Phenotypic comparisons of these mutants with the wild-type control revealed a novel role for these genes in regulating the release of gemmae from the gemma cup and the germination and growth of gemmae in the dark. Mpd27-1, Mpd27-2, and Mpccd7 mutants showed lower transcript abundance of genes involved in photosynthesis, such as EARLY LIGHT INDUCED (ELI), and stress responses such as LATE EMBRYOGENESIS ABUNDANT (LEA) but exhibited higher transcript levels of ETHYLENE RESPONSE FACTORS (ERFs) and SL and carotenoid related genes, such as TERPENE SYNTHASE (TS), CCD7 and LECITHIN-RETINAL ACYL TRANSFERASE (LRAT). Furthermore, the mutants of M. polymorpha in the SL pathway exhibited increased contents of carotenoid. This unveils a previously unrecognized role for MpD27-1, MpD27-2 and MpCCD7 in controlling release, germination, and growth of gemmae in response to varying light conditions. These discoveries enhance our comprehension of the regulatory functions of SL biosynthesis genes in non-flowering plants.
Collapse
Affiliation(s)
- Rubina Jibran
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jibran Tahir
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Christelle M Andre
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Bart J Janssen
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Revel S M Drummond
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Yanfei Zhou
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Kevin M Davies
- Metabolite Traits in Plants, The New Zealand Institute for Plant and Food Research Limited, Palmerston, North, New Zealand
| | - Kimberley C Snowden
- Plant Development, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
9
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Lu WC, Chiu CS, Chan YJ, Mulio AT, Li PH. New perspectives on different Sacha inchi seed oil extractions and its applications in the food and cosmetic industries. Crit Rev Food Sci Nutr 2023; 65:475-493. [PMID: 37950645 DOI: 10.1080/10408398.2023.2276882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Sacha inchi oil is growing in demand worldwide owing to its high fatty acid content of linolenic acid (44.30%-51.62%) and linoleic acid (34.08%-36.13%). In addition, Sacha inchi oil also contains phytosterols, such as stigmasterols (346- 456 μg/g), sitosterols (435-563 μg/g), and campesterols (10.47% ± 4.36%). Its main tocopherol is gamma-tocopherol (120.41-125.69 mg/100 g). The antinutrients in Sacha inchi seeds can be reduced by roasting prior to extraction. Various extractions, including both conventional and novel methods, have been used to extract Sacha inchi oil. However, the variety of extraction methods and origins of the seeds change the nutrient profiles, antinutrient content, and physicochemical properties. Incorporation of Sacha inchi oil into food products can increase its nutritional value, and it works as a moisturizing agent in cosmetic products. To obtain Sacha inchi oil with the desired properties and nutritional profile, this review summarizes the effects of different Sacha inchi seed oil extraction methods and processes on chemical compounds, antinutrient content, and physicochemical properties, including their potential and recent applications in food and cosmetic industries.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua county, Taiwan
| | | | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung City, Taiwan
| |
Collapse
|
11
|
Sandhu AK, Brown MR, Subramanian S, Brözel VS. Bradyrhizobium diazoefficiens USDA 110 displays plasticity in the attachment phenotype when grown in different soybean root exudate compounds. Front Microbiol 2023; 14:1190396. [PMID: 37275139 PMCID: PMC10233038 DOI: 10.3389/fmicb.2023.1190396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Bradyrhizobium diazoefficiens, a symbiotic nitrogen fixer for soybean, forms nodules after developing a symbiotic association with the root. For this association, bacteria need to move toward and attach to the root. These steps are mediated by the surface and phenotypic cell properties of bacteria and secreted root exudate compounds. Immense work has been carried out on nodule formation and nitrogen fixation, but little is known about the phenotype of these microorganisms under the influence of different root exudate chemical compounds (RECCs) or how this phenotype impacts the root attachment ability. Methods To address this knowledge gap, we studied the impact of 12 different RECCs, one commonly used carbon source, and soil-extracted solubilized organic matter (SESOM) on attachment and attachment-related properties of B. diazoefficiens USDA110. We measured motility-related properties (swimming, swarming, chemotaxis, and flagellar expression), attachment-related properties (surface hydrophobicity, biofilm formation, and attachment to cellulose and soybean roots), and surface polysaccharide properties (colony morphology, exopolysaccharide quantification, lectin binding profile, and lipopolysaccharide profiling). Results and discussion We found that USDA 110 displays a high degree of surface phenotypic plasticity when grown on the various individual RECCs. Some of the RECCs played specific roles in modulating the motility and root attachment processes. Serine increased cell surface hydrophobicity and root and cellulose attachment, with no EPS formed. Gluconate and lactate increased EPS production and biofilm formation, while decreasing hydrophobicity and root attachment, and raffinose and gentisate promoted motility and chemotaxis. The results also indicated that the biofilm formation trait on hydrophilic surfaces (polystyrene) cannot be related to the attachment ability of Bradyrhizobium to the soybean root. Among the tested phenotypic properties, bacterial cell surface hydrophobicity was the one with a significant impact on root attachment ability. We conclude that USDA 110 displays surface plasticity properties and attachment phenotype determined by individual RECCs from the soybean. Conclusions made based on its behavior in standard carbon sources, such as arabinose or mannitol, do not hold for its behavior in soil.
Collapse
Affiliation(s)
- Armaan Kaur Sandhu
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - McKenzie Rae Brown
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Volker S. Brözel
- Departments of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Zea mays L.) silks infected by multiple fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:985396. [PMID: 36388593 PMCID: PMC9647128 DOI: 10.3389/fpls.2022.985396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays L.) is the third most popular Poaceae crop after wheat and rice and used in feed and pharmaceutical sectors. The maize silk contains bioactive components explored by traditional Chinese herbal medicine for various pharmacological activities. However, Fusarium graminearum, Fusarium verticillioides, Trichoderma atroviride, and Ustilago maydis can infect the maize, produce mycotoxins, hamper the quantity and quality of silk production, and further harm the primary consumer's health. However, the defense mechanism is not fully understood in multiple fungal infections in the silk of Z. mays. In this study, we applied bioinformatics approaches to use the publicly available transcriptome data of Z. mays silk affected by multiple fungal flora to identify core genes involved in combatting disease response. Differentially expressed genes (DEGs) were identified among intra- and inter-transcriptome data sets of control versus infected Z. mays silks. Upon further comparison between up- and downregulated genes within the control of datasets, 4,519 upregulated and 5,125 downregulated genes were found. The DEGs have been compared with genes in the modules of weighted gene co-expression network analysis to relevant specific traits towards identifying core genes. The expression pattern of transcription factors, carbohydrate-active enzymes (CAZyme), and resistance genes was analyzed. The present investigation is supportive of our findings that the gene ontology, immunity stimulus, and resistance genes are upregulated, but physical and metabolic processes such as cell wall organizations and pectin synthesis were downregulated respectively. Our results are indicative that terpene synthase TPS6 and TPS11 are involved in the defense mechanism against fungal infections in maize silk.
Collapse
Affiliation(s)
- Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P. T. V. Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
13
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
14
|
Ai W, Guo T, Lay KD, Ou K, Cai K, Ding Y, Liu J, Cao Y. Isolation of soybean-specific plant growth-promoting rhizobacteria using soybean agglutin and evaluation of their effects to improve soybean growth, yield, and soil nutritional status. Microbiol Res 2022; 261:127076. [PMID: 35636091 DOI: 10.1016/j.micres.2022.127076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
The basic requirements of plant growth-promoting rhizobacteria (PGPR) for field applications are that they have an affinity for the host plant and that they can colonize the rhizosphere. Here, a new technique was established using soybean agglutin (SBA) as a tool to isolate soybean-specific PGPR. Thirty-three PGPR strains with an affinity for soybean were obtained via the screening method with SBA. All 33 isolates were able to produce indole acetic acid and solubilize inorganic phosphate and potassium. Most isolates (93.94%) were able to solubilize organic phosphate and almost half (45.45%) were able to produce siderophores. More than 40% of the isolates exhibited all five plant growth-promoting traits. The isolate Enterobacter sp. strain DN9 was selected for further analyses of its rhizosphere colonization and soybean growth-promoting effects because of its excellent activity in phosphate and potassium solubilization. The luciferase luxAB gene was electrotransformed into DN9, and the labelled DN9 (DN9-L) was able to survive in the soybean rhizosphere and colonize new spaces as the soybean roots elongated. This strain positively affected root system development and soybean seedling growth. In pot and field experiments, the isolates DN9, DW1, and DW13 significantly increased the nutrient contents in rhizosphere soil and soybean leaves. On average, the seed number per plant and the seed weight per plant were increased by 20% and 24% respectively, in plants inoculated with these PGPR strains in the pot experiment. In a field experiment, compared with uninoculated plants, those inoculated with DW1 showed 46.78% higher pod number per plant and 5.23% higher seed oil content; those inoculated with DW13 showed 79.82% higher seed number per plant and 65.10% higher seed weight per plant; and those inoculated with DN9 showed 9.13% higher 100-seed weight. These results show that SBA can be used as a tool to isolate efficient PGPR to enhance soybean production.
Collapse
Affiliation(s)
- Wenfeng Ai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tingting Guo
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Khien Duc Lay
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kangmiao Ou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ke Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Ding
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yuanyuan Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
15
|
Oguri S. Structure and Function of Plant Chitin-binding Lectins and Tomato Lectin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2123.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Suguru Oguri
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry Tokyo University of Agriculture
| |
Collapse
|
16
|
Oguri S. Structure and Function of Plant Chitin-binding Lectins and Tomato Lectin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2123.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Suguru Oguri
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry Tokyo University of Agriculture
| |
Collapse
|
17
|
Cohen LJ, Han SM, Lau P, Guisado D, Liang Y, Nakashige TG, Ali T, Chiang D, Rahman A, Brady SF. Unraveling function and diversity of bacterial lectins in the human microbiome. Nat Commun 2022; 13:3101. [PMID: 35661736 PMCID: PMC9166713 DOI: 10.1038/s41467-022-29949-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
The mechanisms by which commensal organisms affect human physiology remain poorly understood. Lectins are non-enzymatic carbohydrate binding proteins that all organisms employ as part of establishing a niche, evading host-defenses and protecting against pathogens. Although lectins have been extensively studied in plants, bacterial pathogens and human immune cells for their role in disease pathophysiology and as therapeutics, the role of bacterial lectins in the human microbiome is largely unexplored. Here we report on the characterization of a lectin produced by a common human associated bacterium that interacts with myeloid cells in the blood and intestine. In mouse and cell-based models, we demonstrate that this lectin induces distinct immunologic responses in peripheral and intestinal leukocytes and that these responses are specific to monocytes, macrophages and dendritic cells. Our analysis of human microbiota sequencing data reveal thousands of unique sequences that are predicted to encode lectins, many of which are highly prevalent in the human microbiome yet completely uncharacterized. Based on the varied domain architectures of these lectins we predict they will have diverse effects on the human host. The systematic investigation of lectins in the human microbiome should improve our understanding of human health and provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Louis J Cohen
- Department of Medicine, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sun M Han
- Department of Medicine, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pearson Lau
- Department of Medicine, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Guisado
- Department of Medicine, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yupu Liang
- Rockefeller University, New York, NY, USA
| | - Toshiki G Nakashige
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, NY, USA
| | - Thamina Ali
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, NY, USA
| | - David Chiang
- Division of Internal Medicine-Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adeeb Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Aljabali AA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, El-Tanani M, Tambuwala MM. Protein-based nanomaterials: a new tool for targeted drug delivery. Ther Deliv 2022; 13:321-338. [PMID: 35924586 DOI: 10.4155/tde-2021-0091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.
Collapse
Affiliation(s)
- Alaa Aa Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Rawan H Alsharedeh
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
19
|
Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis. Arch Microbiol 2022; 204:346. [PMID: 35608680 PMCID: PMC9127036 DOI: 10.1007/s00203-022-02959-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Lectins participate in the defense against microorganisms and in signaling the damage caused by pathogens to the cell surface and/or intracellular in plants. This study aims to analyze the antifungal potential of lectins extracted from seeds of Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC, against Candida albicans and Candida tropicalis. The antimicrobial tests were performed by microdilution against Candida spp. The test to verify the combined lectin/fluconazole effect was performed using subinhibitory concentrations of lectins and with antifungal ranging from 0.5 to 512 µg/mL. The ability to inhibit the morphological transition of Candida spp. was evaluated by microcultivation in a moist chamber. The results of the minimum inhibitory concentration revealed no antifungal activity against the tested strains. However, lectins modified the action of fluconazole, reducing the IC50 of the drug against C. albicans. Lectins were also able to discretely modulate the morphological transition of the tested strains.
Collapse
|
20
|
Yan H, Haak DC, Li S, Huang L, Bombarely A. Exploring transposable element-based markers to identify allelic variations underlying agronomic traits in rice. PLANT COMMUNICATIONS 2022; 3:100270. [PMID: 35576152 PMCID: PMC9251385 DOI: 10.1016/j.xplc.2021.100270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 06/10/2023]
Abstract
Transposable elements (TEs) are a major force in the production of new alleles during domestication; nevertheless, their use in association studies has been limited because of their complexity. We have developed a TE genotyping pipeline (TEmarker) and applied it to whole-genome genome-wide association study (GWAS) data from 176 Oryza sativa subsp. japonica accessions to identify genetic elements associated with specific agronomic traits. TE markers recovered a large proportion (69%) of single-nucleotide polymorphism (SNP)-based GWAS peaks, and these TE peaks retained ca. 25% of the SNPs. The use of TEs in GWASs may reduce false positives associated with linkage disequilibrium (LD) among SNP markers. A genome scan revealed positive selection on TEs associated with agronomic traits. We found several cases of insertion and deletion variants that potentially resulted from the direct action of TEs, including an allele of LOC_Os11g08410 associated with plant height and panicle length traits. Together, these findings reveal the utility of TE markers for connecting genotype to phenotype and suggest a potential role for TEs in influencing phenotypic variations in rice that impact agronomic traits.
Collapse
Affiliation(s)
- Haidong Yan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Graduate Program in Genetics, Bioinformatics and Computational Biology (GBCB), Virginia Tech, Blacksburg, VA 24061, USA
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Graduate Program in Genetics, Bioinformatics and Computational Biology (GBCB), Virginia Tech, Blacksburg, VA 24061, USA
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China
| | - Aureliano Bombarely
- Department of Bioscience, Universita degli Studi di Milano (UNIMI), 20133 Milano, Italy; Instituto de Biologıa Molecular y Celular de Plantas (IBMCP), UPV-CSIC, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Huang X, Huang X, Guo L, He L, Xiao D, Zhan J, Wang A, Liang R. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi] in Response to Pseudo-Rust Disease. Int J Mol Sci 2022; 23:5223. [PMID: 35563613 PMCID: PMC9101505 DOI: 10.3390/ijms23095223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.
Collapse
Affiliation(s)
- Xinlu Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Xiaoxi Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Renfan Liang
- Academy of Agricultural Science, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
23
|
Surface Properties and Adherence of Bradyrhizobium diazoefficiens to Glycine max Roots Are Altered When Grown in Soil Extracted Nutrients. NITROGEN 2021. [DOI: 10.3390/nitrogen2040031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Soybean roots are colonized and nodulated by multiple strains of compatible nitrogen-fixing rhizobia primarily belonging to the Genus Bradyrhizobium. Motility towards the root and attachment to root hairs are key determinants of competitive colonization and subsequent nodulation. Bacterial surface properties and motility are known to vary with chemical composition of the culture medium, and root adhesion and nodulation occur in a soil environment rather than laboratory medium. We asked whether the nodulation-promoting factors motility, surface hydrophobicity and surface adhesion of Bradyrhizobium are affected by growth in a soil nutrient environment. B. diazoefficiens USDA 110, 126, 3384, and B. elkanii USDA 26 were grown in mineral salt medium with peptone, yeast extract and arabinose (PSY), and in a soil extracted soluble organic matter (SESOM) medium. Surface hydrophobicity was determined by partitioning into hydrocarbon, motility by transition through soft agar, and surface-exposed saccharides by lectin profiling, followed by biofilm formation and soybean root adhesion capacity of populations. SESOM-grown populations were generally less motile and more hydrophobic. They bound fewer lectins than PSY-grown populations, indicating a simpler surface saccharide profile. SESOM populations of USDA 110 did not form detectable biofilm, but showed increased binding to soy roots. Our results indicate that growth in a soil environment impacts surface properties, motility, and subsequent soy root adhesion propensity. Hence, evaluation of Bradyrhizobium for nodulation efficiency should be performed using soil from the specific field where the soybeans are to be planted, rather than laboratory culture media.
Collapse
|
24
|
Naithani S, Komath SS, Nonomura A, Govindjee G. Plant lectins and their many roles: Carbohydrate-binding and beyond. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153531. [PMID: 34601337 DOI: 10.1016/j.jplph.2021.153531] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Lectins are ubiquitous proteins that reversibly bind to specific carbohydrates and, thus, serve as readers of the sugar code. In photosynthetic organisms, lectin family proteins play important roles in capturing and releasing photosynthates via an endogenous lectin cycle. Often, lectin proteins consist of one or more lectin domains in combination with other types of domains. This structural diversity of lectins is the basis for their current classification, which is consistent with their diverse functions in cell signaling associated with growth and development, as well as in the plant's response to biotic, symbiotic, and abiotic stimuli. Furthermore, the lectin family shows evolutionary expansion that has distinct clade-specific signatures. Although the function(s) of many plant lectin family genes are unknown, studies in the model plant Arabidopsis thaliana have provided insights into their diverse roles. Here, we have used a biocuration approach rooted in the critical review of scientific literature and information available in the public genomic databases to summarize the expression, localization, and known functions of lectins in Arabidopsis. A better understanding of the structure and function of lectins is expected to aid in improving agricultural productivity through the manipulation of candidate genes for breeding climate-resilient crops, or by regulating metabolic pathways by applications of plant growth regulators.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arthur Nonomura
- Department of Chemistry, Northern Arizona University, South San Francisco Street, Flagstaff, AZ, 86011, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
25
|
Cloning, Characterization, Expression Analysis, and Agglutination Studies of Novel Gene Encoding β-D-Galactose, N-Acetyl-D-Glucosamine and Lactose-Binding Lectin from Rice Bean (Vigna umbellata). Mol Biotechnol 2021; 64:293-310. [PMID: 34611825 DOI: 10.1007/s12033-021-00410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Lectins are glycoproteins and known for their peculiar carbohydrate-binding activity and their insect-pest-resistant properties. Earlier we have published our research finding on novel gene encoding Bowman-Birk type protease inhibitor with insecticidal properties from rice bean. This paper presents first report on cloning, sequencing, and expression of RbL ORF of 843 bp encoding 280 amino acids long lectin precursor from rice bean (Vigna umbellata) seeds. Blast analysis revealed more than 90% similarity of RbL protein with Vigna aconitifolia and Vigna angularis lectins. Phylogenetic analysis also revealed a close relationship between RbL and other legume lectins. Sequence analysis of genomic DNA revealed intronless nature of RbL gene (GenBank accession No. MT043160). The isolated RbL ORF was expressed in E. coli BL-21(DE3) cells and maximum expression was recorded with 0.5 mM IPTG after 4 h incubation at 37 °C. Western blotting confirmed RbL protein expression in E. coli. Recombinant protein (His6-RbL) of ~ 35 kDa m.wt was purified using Ni-NTA affinity chromatography to the extent of 0.26 mg/ml. In silico analysis characterized RbL protein as acidic, stable, hydrophobic, and secretary protein with one signal peptide cleavage site (A26-A27) and four N-glycosylation sites. Template-based 3D model of RbL was structured using MODELLER tool and validated as good quality model. Structural analysis revealed dominance of β-pleated sheets and β-turns in RbL protein structure. β-D-galactose, N-acetyl-D-glucosamine, and lactose were predicted as putative ligands for RbL protein. Hydrogen bonding and hydrophobic forces were the major interactions between the predicted ligands and RbL protein. Agglutination and agglutination inhibition assays confirmed the binding specificity of RbL protein with the trypsinized rabbit erythrocytes and with the predicted ligands, respectively. Gene ontology analysis functionally annotated RbL protein as a plant defense protein. The novel information generated in the study is not mere pre-experimental findings but could also lay foundation for future research on exploring RbL gene and encoding protein for different biomedical and biotechnological applications.
Collapse
|
26
|
Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J Appl Microbiol 2021; 132:841-854. [PMID: 34416098 DOI: 10.1111/jam.15263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.
Collapse
Affiliation(s)
- Diego C Carneiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luzimar G Fernandez
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Joana P Monteiro-Cunha
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raquel G Benevides
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
27
|
Perduca M, Bovi M, Destefanis L, Nadali D, Fin L, Parolini F, Sorio D, Carrizo ME, Monaco HL. Three-dimensional structure and properties of the giant reed (Arundo donax) lectin (ADL). Glycobiology 2021; 31:1543-1556. [PMID: 34192315 DOI: 10.1093/glycob/cwab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Arundo donax lectin (ADL) is a 170 amino acid protein that can be purified from the rhizomes of the giant reed or giant cane exploiting its selective binding to chitin followed by elution with N-acetyl-D-glucosamine. The lectin is listed in the UniProt server, the largest protein sequence database, as an uncharacterized protein with chitin-binding domains (A0A0A9P802). This paper reports the purification, three-dimensional structure and ligand-binding properties of ADL. The lectin is a homodimer in which the two protomers are linked by two disulphide bridges. Each polypeptide chain presents four carbohydrate-binding modules that belong to family 18 (CBM18). A high degree of sequence similarity is observed among the modules present in each protomer. We have determined the X-ray structure of the apo-protein to a resolution of 1.70 Å. The carbohydrate-binding modules, that span a sequence of approximately 40 amino acids, present four internal disulfide bridges a very short antiparallel central beta sheet and three short alpha helices, two on one side of the beta sheet and one on the other. The structures of the complexes of the lectin with N-acetylglucosamine, N-acetyllactosamine, N-acetylneuraminic acid and N-N'diacetylchitobiose reveal that ADL has two primary and two secondary carbohydrate-binding sites per dimer. They are located at the interface between the two protomers and each binding site involves residues of both chains. The lectin presents structural similarity to the wheat germ agglutinin (WGA) family, in particular to isoform 3.
Collapse
Affiliation(s)
- Massimiliano Perduca
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Michele Bovi
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Laura Destefanis
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Divina Nadali
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Laura Fin
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Francesca Parolini
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, Italy
| | - Maria E Carrizo
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Hugo L Monaco
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Italy
| |
Collapse
|
28
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
29
|
Petrova N, Nazipova A, Gorshkov O, Mokshina N, Patova O, Gorshkova T. Gene Expression Patterns for Proteins With Lectin Domains in Flax Stem Tissues Are Related to Deposition of Distinct Cell Wall Types. FRONTIERS IN PLANT SCIENCE 2021; 12:634594. [PMID: 33995436 PMCID: PMC8121149 DOI: 10.3389/fpls.2021.634594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 05/10/2023]
Abstract
The genomes of higher plants encode a variety of proteins with lectin domains that are able to specifically recognize certain carbohydrates. Plants are enriched in a variety of potentially complementary glycans, many of which are located in the cell wall. We performed a genome-wide search for flax proteins with lectin domains and compared the expression of the encoding genes in different stem tissues that have distinct cell wall types with different sets of major polysaccharides. Over 400 genes encoding proteins with lectin domains that belong to different families were revealed in the flax genome; three quarters of these genes were expressed in stem tissues. Hierarchical clustering of the data for all expressed lectins grouped the analyzed samples according to their characteristic cell wall type. Most lectins differentially expressed in tissues with primary, secondary, and tertiary cell walls were predicted to localize at the plasma membrane or cell wall. These lectins were from different families and had various architectural types. Three out of four flax genes for proteins with jacalin-like domains were highly upregulated in bast fibers at the stage of tertiary cell wall deposition. The dynamic changes in transcript level of many genes for lectins from various families were detected in stem tissue over the course of gravitropic response induced by plant gravistimulation. The data obtained in this study indicate a large number of lectin-mediated events in plants and provide insight into the proteins that take part in tissue specialization and reaction to abiotic stress.
Collapse
Affiliation(s)
- Natalia Petrova
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Alsu Nazipova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oleg Gorshkov
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Olga Patova
- Institute of Physiology, FRC Komi Science Centre of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- *Correspondence: Tatyana Gorshkova,
| |
Collapse
|
30
|
Katoch R, Tripathi A. Research advances and prospects of legume lectins. J Biosci 2021; 46:104. [PMID: 34815374 PMCID: PMC8608583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2023]
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
31
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Oliveira MV, Lossio CF, Silva MTL, Bari AU, Lima LD, Souza-Filho CHD, Nascimento KS. Comprehensive review on Caelsalpinioideae lectins: From purification to biological activities. Int J Biol Macromol 2020; 162:333-348. [DOI: 10.1016/j.ijbiomac.2020.06.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
32
|
Abstract
Salinity is one of the major stresses affecting rice production worldwide, and various strategies are being employed to increase salt tolerance. Recently, there has been resurgence of interest to characterize SalTol QTL harbouring number of critical genes involved in conferring salt stress tolerance in rice. The present study reports the structure of SALT, a SalTol QTL encoded protein by X-ray crystallography (PDB ID: 5GVY; resolution 1.66 Å). Each SALT chain was bound to one mannose via 8 hydrogen bonds. Compared to previous structure reported for similar protein, our structure showed a buried surface area of 900 Å2 compared to only 240 Å2 for previous one. Small-angle X-ray scattering (SAXS) data analysis showed that the predominant solution shape of SALT protein in solution is also dimer characterized by a radius of gyration and maximum linear dimension of 2.1 and 6.5 nm, respectively. The SAXS profiles and modelling confirmed that the dimeric association and relative positioning in solution matched better with our crystal structure instead of previously reported structure. Together, structural/biophysical data analysis uphold a tight dimeric structure for SALT protein with one mannose bound to each protein, which remains novel to date, as previous structures indicated one sugar unit sandwiched loosely between two protein chains.
Collapse
|
33
|
Affiliation(s)
- Khara Lucius
- Khara Lucius, ND, FABNO, is a naturopathic doctor at the Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Rhizobium-Legume Symbiosis: Molecular Determinants and Geospecificity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Duquenoy A, Bellais S, Gasc C, Schwintner C, Dore J, Thomas V. Assessment of Gram- and Viability-Staining Methods for Quantifying Bacterial Community Dynamics Using Flow Cytometry. Front Microbiol 2020; 11:1469. [PMID: 32676069 PMCID: PMC7333439 DOI: 10.3389/fmicb.2020.01469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Over the past years, gut microbiota became a major field of interest with increasing reports suggesting its association with a large number of human diseases. In this context, there is a major interest to develop analysis tools allowing simple and cost-effective population pattern analysis of these complex ecosystems to follow changes over time. Whereas sequence-based metagenomics profiling is widely used for microbial ecosystems characterization, it still requires time and specific expertise for analysis. Flow cytometry overcomes these disadvantages, providing key information on communities within hours. In addition, it can potentially be used to select, isolate and cultivate specific bacteria of interest. In this study, we evaluated the culturability of strictly anaerobic bacteria that were stained with a classical Live/Dead staining, and then sorted using flow cytometry under anaerobic conditions. This sorting of “viable” fraction demonstrated that 10–80% of identified “viable” cells of pure cultures of strictly anaerobic bacteria were culturable. In addition, we tested the use of a combination of labeled vancomycin and Wheat Germ Agglutinin (WGA) lectin to discriminate Gram-positive from Gram-negative bacteria in complex ecosystems. After validation on both aerobic/anaerobic facultative and strictly anaerobic bacteria, the staining methods were applied on complex ecosystems, revealing differences between culture conditions and demonstrating that minor pH variations have strong impacts on microbial community structure, which was confirmed by 16S rRNA gene sequencing. This combination of staining methods makes it possible to follow-up evolutions of complex microbial communities, supporting its future use as a rapid analysis tool in various applications. The flow cytometry staining method that was developed has the potential to facilitate the analysis of complex ecosystems by highlighting changes in bacterial communities’ dynamics. It is assumed to be applicable as an efficient and fast approach to improve the control of processes linked to a wide range of ecosystems or known communities of bacterial species in both research and industrial contexts.
Collapse
Affiliation(s)
| | - Samuel Bellais
- Bioaster, Institut de Recherche Technologique, Paris, France
| | | | | | - Joël Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Vincent Thomas
- Bioaster, Institut de Recherche Technologique, Paris, France
| |
Collapse
|
36
|
Lawanprasert A, Guinan CA, Langford EA, Hawkins CE, Sloand JN, Fescemyer HW, Aronson MR, Halle JA, Marden JH, Medina SH. Discovery of antitumor lectins from rainforest tree root transcriptomes. PLoS One 2020; 15:e0229467. [PMID: 32097449 PMCID: PMC7041804 DOI: 10.1371/journal.pone.0229467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Glycans are multi-branched sugars that are displayed from lipids and proteins. Through their diverse polysaccharide structures they can potentiate a myriad of cellular signaling pathways involved in development, growth, immuno-communication and survival. Not surprisingly, disruption of glycan synthesis is fundamental to various human diseases; including cancer, where aberrant glycosylation drives malignancy. Here, we report the discovery of a novel mannose-binding lectin, ML6, which selectively recognizes and binds to these irregular tumor-specific glycans to elicit potent and rapid cancer cell death. This lectin was engineered from gene models identified in a tropical rainforest tree root transcriptome and is unusual in its six canonical mannose binding domains (QxDxNxVxY), each with a unique amino acid sequence. Remarkably, ML6 displays antitumor activity that is >105 times more potent than standard chemotherapeutics, while being almost completely inactive towards non-transformed, healthy cells. This activity, in combination with results from glycan binding studies, suggests ML6 differentiates healthy and malignant cells by exploiting divergent glycosylation pathways that yield naïve and incomplete cell surface glycans in tumors. Thus, ML6 and other high-valence lectins may serve as novel biochemical tools to elucidate the glycomic signature of different human tumors and aid in the rational design of carbohydrate-directed therapies. Further, understanding how nature evolves proteins, like ML6, to combat the changing defenses of competing microorganisms may allow for fundamental advances in the way we approach combinatorial therapies to fight therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States of America
| | - Caitlin A. Guinan
- Department of Biology, Penn State University, University Park, PA, United States of America
| | - Erica A. Langford
- Department of Biology, Penn State University, University Park, PA, United States of America
| | - Carly E. Hawkins
- Department of Biology, Penn State University, University Park, PA, United States of America
| | - Janna N. Sloand
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States of America
| | - Howard W. Fescemyer
- Department of Biology, Penn State University, University Park, PA, United States of America
| | - Matthew R. Aronson
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States of America
| | - Jacob A. Halle
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States of America
| | - James H. Marden
- Department of Biology, Penn State University, University Park, PA, United States of America
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Scott H. Medina
- Department of Biomedical Engineering, Penn State University, University Park, PA, United States of America
| |
Collapse
|
37
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|
38
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
39
|
Sergeant K, Printz B, Guerriero G, Renaut J, Lutts S, Hausman JF. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. BIOLOGY 2019; 8:E60. [PMID: 31430995 PMCID: PMC6784106 DOI: 10.3390/biology8030060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
In this study, the cell-wall-enriched subproteomes at three different heights of alfalfa stems were compared. Since these three heights correspond to different states in stem development, a view on the dynamics of the cell wall proteome during cell maturation is obtained. This study of cell wall protein-enriched fractions forms the basis for a description of the development process of the cell wall and the linking cell wall localized proteins with the evolution of cell wall composition and structure. The sequential extraction of cell wall proteins with CaCl2, EGTA, and LiCl-complemented buffers was combined with a gel-based proteome approach and multivariate analysis. Although the highest similarities were observed between the apical and intermediate stem regions, the proteome patterns are characteristic for each region. Proteins that bind carbohydrates and have proteolytic activity, as well as enzymes involved in glycan remobilization, accumulate in the basal stem region. Beta-amylase and ferritin likewise accumulate more in the basal stem segment. Therefore, remobilization of nutrients appears to be an important process in the oldest stem segment. The intermediate and apical regions are sites of cell wall polymer remodeling, as suggested by the high abundance of proteins involved in the remodeling of the cell wall, such as xyloglucan endoglucosylase, beta-galactosidase, or the BURP-domain containing polygalacturonase non-catalytic subunit. However, the most striking change between the different stem parts is the strong accumulation of a DUF642-conserved domain containing protein in the apical region of the stem, which suggests a particular role of this protein during the early development of stem tissues.
Collapse
Affiliation(s)
- Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg.
| | - Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| |
Collapse
|
40
|
Chitin Prevalence and Function in Bacteria, Fungi and Protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:19-59. [DOI: 10.1007/978-981-13-7318-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
|
42
|
Wang H, Gao G, Ke L, Zhou J, Rao P. Isolation and Characterization of a Lectin-like Protein (SBLP) from the Dried Roots of Scutellaria baicalensis (Lamiaceae). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel lectin-like protein with MW 63.2 kDa, designated as SBLP, has been isolated and characterized from the dried roots of Scutellaria baicalensis Georgi (Lamiaceae). SBLP was purified by ammonium sulfate precipitation and anion exchange chromatography. It is a glycoprotein according to a PAS staining assay and consisting of protein (86.0%) and sugar (14.0%). Its N-terminal amino acid sequence was determined as GSAVGFLY by Edman degradation. SBLP showed hemagglutinating activity against human and rooster erythrocytes, which were stable below 60°C and in the pH range of 4 −10. Furthermore, SBLP was found to be stimulated by Ca2+, Na+, Ba2+, Zn2+ ions, which suggested it was a metal-dependent lectin. SBLP inhibited the growth of Fusarium oxysporum f.sp. lycopersici and Alternaria eichhorniae in the a dose-dependent manner, and suppressed the proliferation of HepG2 tumor cells with an IC50 of 1.00 μM. This is the first report of a lectin from Radix Scutellariae.
Collapse
Affiliation(s)
- Huiqin Wang
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Guanzhen Gao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Lijing Ke
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Jianwu Zhou
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| |
Collapse
|
43
|
Toxicity of Potential Fungal Defense Proteins towards the Fungivorous Nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. Appl Environ Microbiol 2018; 84:AEM.02051-18. [PMID: 30242007 PMCID: PMC6238071 DOI: 10.1128/aem.02051-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 01/27/2023] Open
Abstract
Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops. Resistance of fungi to predation is thought to be mediated by toxic metabolites and proteins. Many of these fungal defense effectors are highly abundant in the fruiting body and not produced in the vegetative mycelium. The defense function of fruiting body-specific proteins, however, including cytoplasmically localized lectins and antinutritional proteins such as biotin-binding proteins, is mainly based on toxicity assays using bacteria as a heterologous expression system, with bacterivorous/omnivorous model organisms as predators. Here, we present an ecologically more relevant experimental setup to assess the toxicity of potential fungal defense proteins towards the fungivorous, stylet-feeding nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. As a heterologous expression host, we exploited the filamentous fungus Ashbya gossypii. Using this new system, we assessed the toxicity of six previously characterized, cytoplasmically localized, potential defense proteins from fruiting bodies of different fungal phyla against the two fungivorous nematodes. We found that all of the tested proteins were toxic against both nematodes, albeit to various degrees. The toxicity of these proteins against both fungivorous and bacterivorous nematodes suggests that their targets have been conserved between the different feeding groups of nematodes and that bacterivorous nematodes are valid model organisms to assess the nematotoxicity of potential fungal defense proteins. IMPORTANCE Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops.
Collapse
|
44
|
Bauhinia lectins: Biochemical properties and biotechnological applications. Int J Biol Macromol 2018; 119:811-820. [DOI: 10.1016/j.ijbiomac.2018.07.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023]
|
45
|
Marquez N, Giachero ML, Gallou A, Debat HJ, Cranenbrouck S, Di Rienzo JA, Pozo MJ, Ducasse DA, Declerck S. Transcriptional Changes in Mycorrhizal and Nonmycorrhizal Soybean Plants upon Infection with the Fungal Pathogen Macrophomina phaseolina. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:842-855. [PMID: 29498566 DOI: 10.1094/mpmi-11-17-0282-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macrophomina phaseolina is a soil-borne fungal pathogen with a wide host range that causes charcoal rot in soybean [Glycine max (L.) Merr.]. Control of the disease is a challenge, due to the absence of genetic resistance and effective chemical control. Alternative or complementary measures are needed, such as the use of biological control agents, in an integrated approach. Several studies have demonstrated the role of arbuscular mycorrhizal fungi (AMF) in enhancing plant resistance or tolerance to biotic stresses, decreasing the symptoms and pressure caused by various pests and diseases, including M. phaseolina in soybean. However, the specific contribution of AMF in the regulation of the plant response to M. phaseolina remains unclear. Therefore, the objective of the present study was to investigate, under strict in-vitro culture conditions, the global transcriptional changes in roots of premycorrhized soybean plantlets challenged by M. phaseolina (+AMF+Mp) as compared with nonmycorrhizal soybean plantlets (-AMF+Mp). MapMan software was used to distinguish transcriptional changes, with special emphasis on those related to plant defense responses. Soybean genes identified as strongly upregulated during infection by the pathogen included pathogenesis-related proteins, disease-resistance proteins, transcription factors, and secondary metabolism-related genes, as well as those encoding for signaling hormones. Remarkably, the +AMF+Mp treatment displayed a lower number of upregulated genes as compared with the -AMF+Mp treatment. AMF seemed to counteract or balance costs upon M. phaseolina infection, which could be associated to a negative impact on biomass and seed production. These detailed insights in soybean-AMF interaction help us to understand the complex underlying mechanisms involved in AMF-mediated biocontrol and support the importance of preserving and stimulating the existing plant-AMF associates, via adequate agricultural practices, to optimize their agro-ecological potential.
Collapse
Affiliation(s)
- Nathalie Marquez
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
- 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María L Giachero
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Adrien Gallou
- 3 Centro Nacional de Referencia de Control Biológico, Km 1.5 Carretera Tecomán-Estación FFCC. Apdo. Postal 67, Tecomán, Colima, México
| | - Humberto J Debat
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Sylvie Cranenbrouck
- 4 Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de l'Université catholique de Louvain (MUCL), Part of the Belgian Coordinated Collections of Microorganisms (BCCM), Croix du Sud 2, bte L7.05.06, B-1358, Louvain-la-Neuve, Belgium
| | - Julio A Di Rienzo
- 5 Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing Agr; Felix Aldo Marrone 746, 5000 Córdoba, Argentina
| | - María J Pozo
- 6 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Daniel A Ducasse
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Stéphane Declerck
- 7 Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Croix du Sud 2, bte L7.05.06, B-1358, Louvain-la-Neuve, Belgium
| |
Collapse
|
46
|
Tan MK, El-Bouhssini M, Wildman O, Tadesse W, Chambers G, Luo S, Emebiri L. Development of SNP assays for hessian fly response genes, Hfr-1 and Hfr-2, for marker-assisted selection in wheat breeding. BMC Genet 2018; 19:50. [PMID: 30064355 PMCID: PMC6066933 DOI: 10.1186/s12863-018-0659-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background The Hessian fly response genes, Hfr-1 and Hfr-2, have been reported to be significantly induced in a Hessian fly attack. Nothing is known about the allelic variants of these two genes in susceptible (S) and resistant (R) wheat cultivars. Results Basic local alignment search tool (BLAST) analysis of Hessian fly response genes have identified three alleles of Hessian fly response gene 1 (Hfr-1) on chromosome 4AL and 7DS, and 10 alleles of Hessian fly response gene 2 (Hfr-2) on chromosome 2BS, 2DL, 4BS, 4BL, 5AL and 5BL. Resequencing exons of Hfr-1 and Hfr-2 have identified a single nucleotide polymorphism (SNP) in the lectin domain of each gene that segregates some R sources from S cultivars. Two SNP assays have been developed. The SNP883_Hfr-1 assay characterizes a ‘G/A’ SNP in Hfr-1, which differentiates 14 Hessian fly R cultivars from S ones. The SNP1294_Hfr-2 assay differentiates 12 R cultivars from S ones. Each of the two SNPs identified in Hfr-1 and Hfr-2 is ‘G/A’ and resulted in an amino acid change from isoleucine to valine in the lectin domain of the proteins of the alleles in the R cultivars. In addition to the genotype profiles of Hfr-1 and Hfr-2, generated for a set of 249 wheat cultivars which included a set of 39 R cultivars, this study has genotyped the Hessian fly response gene, HfrDrd, and the H32 gene for the wheat germplasm. Resistant cultivars from different origins with one, two, three or four resistance (R) genes in various combinations/permutations have been identified. Conclusion This study has identified allelic differences in two Hessian fly response genes, Hfr-1 and Hfr-2, between S and R cultivars and developed one SNP assay for each of the genes. These two SNP assays for Hfr-1 and Hfr-2, together with the published assays for HfrDrd and the H32 gene, can be used for the selection and incorporation of one or more of these 4 R genes identified in the different R sources in wheat breeding programs. Electronic supplementary material The online version of this article (10.1186/s12863-018-0659-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mui-Keng Tan
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia.
| | - Mustapha El-Bouhssini
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P.O. Box 6299, Rabat, Morocco
| | - Ossie Wildman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Instituts, P.O. Box 6299, Rabat, Morocco
| | - Grant Chambers
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Shuming Luo
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Livinus Emebiri
- NSW Department of Primary Industries, Wagga Wagga Agricultural Research Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia.,Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, 2650, Australia
| |
Collapse
|
47
|
Mikhailov AL, Timofeeva OA, Nevmerzhitskaya YY, Mironov VF. Molecular Heterogeneity of Lectins in Wheat Seedlings under the Action of Stevioside and Heavy Metals. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2018; 479:64-66. [PMID: 29790030 DOI: 10.1134/s0012496618020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 11/23/2022]
Abstract
The effect of the diterpene glycoside stevioside and high concentrations of heavy metals on the molecular heterogeneity of lectins was studied in seedlings of Kazanskaya 560 winter wheat cultivar. Stevioside induced the emergence of a new 45-kDa lectin. Cultivation of wheat seedlings in CdSO4 and ZnSO4 solutions resulted in the emergence of the protein with Mr = 88 kDa. We detected the presence of both lectins in seedlings during combined treatment with stevioside and heavy metals.
Collapse
Affiliation(s)
- A L Mikhailov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008 Tatarstan, Russia
| | - O A Timofeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008 Tatarstan, Russia
| | - Yu Yu Nevmerzhitskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008 Tatarstan, Russia.
| | - V F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420008 Tatarstan, Russia
| |
Collapse
|
48
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
49
|
Abstract
Fungi and plants do not have an adaptive immune system. Innate immunity serves as their sole defense, often based on carbohydrate recognition by lectins. In a twist of nature, as revealed by Sommer et al. (2018) in this issue of Structure, a conserved fungal immunoprotein adopts the shape of a miniature virus.
Collapse
Affiliation(s)
- Gabriele Cordara
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | | | - Ute Krengel
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway.
| |
Collapse
|
50
|
Santi C, Molesini B, Guzzo F, Pii Y, Vitulo N, Pandolfini T. Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti. Genes (Basel) 2017; 8:E396. [PMID: 29257077 PMCID: PMC5748714 DOI: 10.3390/genes8120396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Plant lipid-transfer proteins (LTPs) are small basic secreted proteins, which are characterized by lipid-binding capacity and are putatively involved in lipid trafficking. LTPs play a role in several biological processes, including the root nodule symbiosis. In this regard, the Medicago truncatula nodulin 5 (MtN5) LTP has been proved to positively regulate the nodulation capacity, controlling rhizobial infection and nodule primordia invasion. To better define the lipid transfer protein MtN5 function during the symbiosis, we produced MtN5-downregulated and -overexpressing plants, and we analysed the transcriptomic changes occurring in the roots at an early stage of Sinorhizobium meliloti infection. We also carried out the lipid profile analysis of wild type (WT) and MtN5-overexpressing roots after rhizobia infection. The downregulation of MtN5 increased the root hair curling, an early event of rhizobia infection, and concomitantly induced changes in the expression of defence-related genes. On the other hand, MtN5 overexpression favoured the invasion of the nodules by rhizobia and determined in the roots the modulation of genes that are involved in lipid transport and metabolism as well as an increased content of lipids, especially galactolipids that characterize the symbiosome membranes. Our findings suggest the potential participation of LTPs in the synthesis and rearrangement of membranes occurring during the formation of the infection threads and the symbiosome membrane.
Collapse
Affiliation(s)
- Chiara Santi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano BZ, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | | |
Collapse
|