1
|
Usman S, Xu D, Ma J, Sheoran N, Okoye CO, Guo X. Comparative Genomics Reveals the Molecular Mechanisms of a Newly Isolated Pediococcus cellicola zy165 Strain and Its Adaptation in Corn Silage. Biochem Genet 2025:10.1007/s10528-025-11114-2. [PMID: 40327195 DOI: 10.1007/s10528-025-11114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/20/2025] [Indexed: 05/07/2025]
Abstract
Understanding how lactic acid bacteria (LAB) adapt to the silage environment is crucial for optimizing fermentation processes and developing efficient inoculants. In this study, Pediococcus cellicola zy165, isolated from fermented whole-crop corn, was subjected to whole-genome sequencing and comparative genomic analysis with two reference strains from NCBI (P. cellicola DSM 17757, and P. cellicola NBRC 106103, isolated from distilled-spirit-fermenting cellars), to elucidate its adaptation mechanisms in silage. The genome of P. cellicola zy165, which includes a circular plasmid and a CRISPR element, revealed enrichment in genes linked to carbohydrate metabolism, transport, and regulatory functions. Key adaptations for silage fermentation were evidenced by the presence of diverse phosphotransferase system (PTS) components, facilitating efficient sugar uptake and metabolism, alongside enzymes like phosphoglycerate mutase and L-lactate dehydrogenase, which are pivotal for glycolysis and lactic acid production, respectively. Additionally, the strain's genome encodes for acetate kinase, suggesting a strategic approach to pH management and energy conservation. Unique to P. cellicola zy165, genes encoding alpha-galactosidase and fructoselysine 6-phosphate deglycase were identified, indicating specialized capabilities for carbohydrate degradation in the silage niche. Structural variations and mutation analyses further highlighted adaptive genetic changes, including those in DNA metabolic processes, which could enhance survival under silage conditions. These genomic insights highlight the potential of P. cellicola zy165 as an effective silage inoculant, showcasing its evolutionary adaptations to the anaerobic, nutrient-rich corn silage environment.
Collapse
Affiliation(s)
- Samaila Usman
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Dongmei Xu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jing Ma
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Neha Sheoran
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Mejía-Caballero A, López-Sánchez R, Ramos-Cerrillo B, Garciarrubio A, Segovia L. Genomic insights into habitat adaptation of Lactobacillus species. World J Microbiol Biotechnol 2025; 41:61. [PMID: 39900839 PMCID: PMC11790720 DOI: 10.1007/s11274-025-04275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Lactobacillus is one of the most important genera within the lactic acid bacteria group, due to its importance in the food industry and the health field. This diversity can be explained either by their radiation in different environments or by the domestication process in artificial habitats, such as fermented foods. In this study, we performed a comparative genomic analysis of 1020 Lactobacillus genomes, categorizing them into five broad habitats: insects, vertebrates (including humans and animals), vegetables, free-living environments, and dairy products. Utilizing phylogenetic relationships, genomic distances, and gene presence/absence profiles, we identified distinct clustering patterns associated with specific environmental adaptations. Notably, species within the Lactobacillus delbrueckii clade exhibited GC content variations fivefold greater than those observed in other bacterial genera, indicating significant genomic divergence. Insect-associated species showed a strong correlation between genes for carbohydrate utilization and those for amino acid biosynthesis across all habitats. However, individual gene analyses revealed no consistent correlation between habitat adaptation and phylogenetic proximity, suggesting that Lactobacillus employs strain-specific adaptive mechanisms rather than universal genetic markers. Notably, around 50% of the genes associated with specific habitats are hypothetical. Our findings highlight the genomic complexity of Lactobacillus, driven by diverse adaptive strategies, and underscore the need for more comprehensive sampling to fully elucidate the evolutionary dynamics within this important genus.
Collapse
Affiliation(s)
- Alejandra Mejía-Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Blanca Ramos-Cerrillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Li L, Zhang H, Meng D, Yin H. Transcriptomics of Lactobacillus paracasei: metabolism patterns and cellular responses under high-density culture conditions. Front Bioeng Biotechnol 2023; 11:1274020. [PMID: 37901845 PMCID: PMC10601642 DOI: 10.3389/fbioe.2023.1274020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Lactobacillus paracasei has significant potential for development and application in the environmental field, particularly in addressing malodor pollution. This study aims to investigate the cellular response of L. paracasei B1 under high-density culture conditions. The selected strain has previously shown effective deodorizing and bacteriostatic abilities. Transcriptomics techniques are employed to dissect the nutrient metabolism pattern of L. paracasei B1 and its response mechanism under environmental stress. The study characterizes the functions of key differentially expressed genes during growth before and after optimizing the culture conditions. The optimization of fermentation culture conditions provides a suitable growth environment for L. paracasei B1, inducing an enhancement of its phosphotransferase system for sugar source uptake and maintaining high levels of glycolysis and pyruvate metabolism. Consequently, the strain is able to grow and multiply rapidly. Under acid stress conditions, glycolysis and pyruvate metabolism are inhibited, and L. paracasei B1 generates additional energy through aerobic respiration to meet the energy demand. The two-component system and quorum sensing play roles in the response and regulation of L. paracasei B1 to adverse environments. The strain mitigates oxygen stress damage through glutathione metabolism, cysteine and methionine metabolism, base excision repair, and purine and pyrimidine metabolism. Additionally, the strain enhances lysine synthesis, the alanine, aspartate, and glutamate metabolic pathways, and relies on the ABC transport system to accumulate amino acid-compatible solutes to counteract acid stress and osmotic stress during pH regulation. These findings establish a theoretical basis for the further development and application of L. paracasei B1 for its productive properties.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
4
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
5
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Nishiwaki T. Development of Food Processing Technology Using LacticAcid bacteria Isolated from Local Foods in Niigata. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang R, Wu J, Jiang N, Lin H, An F, Wu C, Yue X, Shi H, Wu R. Recent developments in horizontal gene transfer with the adaptive innovation of fermented foods. Crit Rev Food Sci Nutr 2022; 63:569-584. [PMID: 35647734 DOI: 10.1080/10408398.2022.2081127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Horizontal gene transfer (HGT) has contributed significantly to the adaptability of bacteria, yeast and mold in fermented foods, whose evidence has been found in several fermented foods. Although not every HGT has biological significance, it plays an important role in improving the quality of fermented foods. In this review, how HGT facilitated microbial domestication and adaptive evolution in fermented foods was discussed. HGT can assist in the industrial innovation of fermented foods, and this adaptive evolution strategy can improve the quality of fermented foods. Additionally, the mechanism underlying HGT in fermented foods were analyzed. Furthermore, the critical bottlenecks involved in optimizing HGT during the production of fermented foods and strategies for optimizing HGT were proposed. Finally, the prospect of HGT for promoting the industrial innovation of fermented foods was highlighted. The comprehensive report on HGT in fermented foods provides a new trend for domesticating preferable starters for food fermentation, thus optimizing the quality and improving the industrial production of fermented foods.
Collapse
Affiliation(s)
- Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
8
|
Barbieri F, Laghi L, Montanari C, Lan Q, Levante A, Gardini F, Tabanelli G. Insights into the Metabolomic Diversity of Latilactobacillus sakei. Foods 2022; 11:foods11030477. [PMID: 35159627 PMCID: PMC8834233 DOI: 10.3390/foods11030477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Latilactobacillus sakei (L. sakei), widely used as a starter culture in fermented sausages, is a species adapted to meat environments. Its ability to survive for a long time in such products is due to the exploitation of different metabolic pathways to gain energy (hexose and pentose sugar fermentation, amino acids catabolism, etc.). Since L. sakei demonstrates high phenotypic and metabolic strain biodiversity, in this work, a metabolomic approach was used to compare five strains of different origins. They were cultivated in a defined medium with glucose or ribose at two concentrations, and analyzed through nuclear magnetic resonance (1H-NMR) spectroscopy to monitor amino acid consumptions and accumulation of organic acids and aroma compounds. The results showed that all the strains were able to use arginine, especially when cultivated with ribose, while serine was consumed mainly in the presence of glucose. Aroma compounds (i.e., diacetyl and acetoin) were mainly accumulated in samples with ribose. These aspects are relevant for starter cultures selection, to confer specific features to fermented sausages, and to optimize the fermentations. Moreover, the use of 1H-NMR allowed the fast identification of different classes of compounds (without derivatization or extraction procedures), providing a powerful tool to increase the knowledge of the metabolic diversity of L. sakei.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (Q.L.); (F.G.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (Q.L.); (F.G.)
- Correspondence: ; Tel.: +39-0547-338105
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (Q.L.); (F.G.)
| | - Qiuyu Lan
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (Q.L.); (F.G.)
| | - Alessia Levante
- Department of Food and Drug, University of Parma, 43121 Parma, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (Q.L.); (F.G.)
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| |
Collapse
|
9
|
Genomic and metabolic features of the Lactobacillus sakei JD10 revealed potential probiotic traits. Microbiol Res 2021; 256:126954. [PMID: 34973546 DOI: 10.1016/j.micres.2021.126954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Lactic acid bacteria that inhabit in the lung play important roles in maintaining the microbiome balance by interacting with the host immune system. Numerous metabolites (e.g., short chain fatty acids, bacteriocins, and hydrogen peroxide) produced by Lactobacillus sakei possess a special inhibitory spectrum against invading pathogens. In this research, the whole genome of L. sakei JD10 strain isolated from the porcine lung was sequenced and investigated. The whole size of the L. sakei JD10 chromosome was 1,989,921 bp, which encoded a total of 1951 predicted genes. Genome analyses revealed that many genes encoded carbohydrate-active enzymes (CAZymes) were predicted, which were responsible for the carbohydrate degradation and short chain fatty acids production. The metabolic profiles of short chain fatty acids in the L. sakei JD10 culture medium were measured by GC/TOFMS, and their regulatory effects on bacterial phagocytosis of RAW264.7 cells were also determined. The bacteriocin-producing genes of the L. sakei JD10 genome were also predicted, and a bacteriocin gene encoding carnocin was characterized and its molecular structure was analyzed. Two CRISPR-Cas system related genes were identified from the L. sakei JD10 genome, revealed that precise and efficient genome editing technologies could be applied for genetic engineering-manipulation. In all, investigation on the genomic features and metabolic features of L. sakei JD10 showed the potential probiotic traits to fight against pathogenic infection and regulate the host immune function.
Collapse
|
10
|
Integrated Phenotypic-Genotypic Analysis of Latilactobacillus sakei from Different Niches. Foods 2021; 10:foods10081717. [PMID: 34441495 PMCID: PMC8393274 DOI: 10.3390/foods10081717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing attention has been paid to the potential probiotic effects of Latilactobacillus sakei. To explore the genetic diversity of L. sakei, 14 strains isolated from different niches (feces, fermented kimchi, and meat products) and 54 published strains were compared and analyzed. The results showed that the average genome size and GC content of L. sakei were 1.98 Mb and 41.22%, respectively. Its core genome mainly encodes translation and transcription, amino acid synthesis, glucose metabolism, and defense functions. L. sakei has open pan-genomic characteristics, and its pan-gene curve shows an upward trend. The genetic diversity of L. sakei is mainly reflected in carbohydrate utilization, antibiotic tolerance, and immune/competition-related factors, such as clustering regular interval short palindromic repeat sequence (CRISPR)-Cas. The CRISPR system is mainly IIA type, and a few are IIC types. This work provides a basis for the study of this species.
Collapse
|
11
|
Gonzalez-Fandos E, Vazquez de Castro M, Martinez-Laorden A, Perez-Arnedo I. Behavior of Listeria monocytogenes and Other Microorganisms in Sliced Riojano Chorizo (Spanish Dry-Cured Sausage) during Storage under Modified Atmospheres. Microorganisms 2021; 9:1384. [PMID: 34202256 PMCID: PMC8306544 DOI: 10.3390/microorganisms9071384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Sliced ready-to-eat meat products packaged under modified atmospheres are often marketed since they cover consumer demands. The slicing process could be a potential risk for consumers since contamination with Listeria monocytogenes could occur during this stage. The current study evaluated the behavior of L. monocytogenes and other microorganisms in commercial sliced Riojano chorizo. This meat product was sliced and inoculated with L. monocytogenes (3.5 log CFU/g) before packaging under different atmospheres (air, vacuum, 100% N2, 20% CO2/80% N2 and 40% CO2/60% N2) and stored at 4 °C for up to 60 days. Samples were taken on days 0, 7, 21, 28 and 60 of storage. L. monocytogenes, mesophiles, Enterobacteriaceae, lactic acid bacteria, Micrococcaceae, molds and yeast counts were evaluated. Additionally, water activity, humidity and pH were determined. L. monocytogenes counts decreased in inoculated sliced chorizo during storage. Packaging conditions and day of storage influenced microbial counts. After 60 days, a significant reduction (p ≤ 0.05) in the initial Listeria contamination levels (3.5. log CFU/g) between 1.1 and 1.46 logarithmic units was achieved in the sausages packaged in modified atmosphere. The highest reductions were observed in slices packaged in 40% CO2/60% N2 after 60 days of storage at 4 °C.
Collapse
Affiliation(s)
- Elena Gonzalez-Fandos
- CIVA Research Center, Food Technology Department, University of La Rioja, Madre de Dios 53, 26006 Logroño, La Rioja, Spain; (M.V.d.C.); (A.M.-L.); (I.P.-A.)
| | | | | | | |
Collapse
|
12
|
Chen Y, Yu L, Qiao N, Xiao Y, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits. Foods 2020; 9:E1366. [PMID: 32993033 PMCID: PMC7600897 DOI: 10.3390/foods9101366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023] Open
Abstract
Latilactobacillus curvatus is a candidate probiotic that has been included in the list of recommended biological agents for certification by the European Food Safety Authority. According to the published genomic information, L. curvatus has several genes that encode metabolic pathways of carbohydrate utilization. In addition, there are some differences in cell surface complex related genes of L. curvatus from different sources. L. curvatus also has several genes that encode bacteriocin production, which can produce Curvacin A and Sakacin P. Due to its ability to produce bacteriocin, it is often used as a bioprotective agent in fermented meat products, to inhibit the growth of a variety of pathogenic and spoilage bacteria. L. curvatus exerts some probiotic effects, such as mediating the production of IL-10 by dendritic cells through NF-κB and extracellular regulated protein kinases (ERK) signals to relieve colitis in mice. This review is the first summary of the genomic and biological characteristics of L. curvatus. Our knowledge on its role in the food industry and human health is also discussed, with the aim of providing a theoretical basis for the development of applications of L. curvatus.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Nanzhen Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Comparative genomics of Lactobacillus sakei supports the development of starter strain combinations. Microbiol Res 2019; 221:1-9. [DOI: 10.1016/j.micres.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
|
14
|
Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation. Int J Food Microbiol 2018; 286:37-47. [DOI: 10.1016/j.ijfoodmicro.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 11/23/2022]
|
15
|
Ojha KS, Burgess CM, Duffy G, Kerry JP, Tiwari BK. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei. PLoS One 2018; 13:e0191053. [PMID: 29370210 PMCID: PMC5784923 DOI: 10.1371/journal.pone.0191053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
The lethal effects of soundwaves on a range of microorganisms have been known for almost a century whereas, the use of ultrasound to promote or control their activity is much more recent. Moreover, the fundamental molecular mechanism influencing the behaviour of microorganisms subjected to ultrasonic waves is not well established. In this study, we investigated the influence of ultrasonic frequencies of 20, 45, 130 and 950 kHz on growth kinetics of Lactobacillus sakei. A significant increase in the growth rate of L. sakei was observed following ultrasound treatment at 20 kHz despite the treatment yielding a significant reduction of ca. 3 log cfu/mL in cells count. Scanning electron microscopy showed that ultrasound caused significant changes on the cell surface of L. sakei culture with the formation of pores "sonoporation". Phenotypic microarrays showed that all ultrasound treated L. sakei after exposure to various carbon, nitrogen, phosphorus and sulphur sources had significant variations in nutrient utilisation. Integration of this phenotypic data with the genome of L. sakei revealed that various metabolic pathways were being influenced by the ultrasound treatments. Results presented in this study showed that the physiological response of L. sakei in response to US is frequency dependent and that it can influence metabolic pathways. Hence, ultrasound treatments can be employed to modulate microbial activity for specialised applications.
Collapse
Affiliation(s)
- K Shikha Ojha
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | | | | | - Joseph P Kerry
- Food Packaging Group, University College Cork, Cork, Ireland
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
16
|
McLeod A, Mosleth EF, Rud I, Branco dos Santos F, Snipen L, Liland KH, Axelsson L. Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome. PLoS One 2017; 12:e0187542. [PMID: 29099858 PMCID: PMC5669474 DOI: 10.1371/journal.pone.0187542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Effects of glucose availability were investigated in Lactobacillus sakei strains 23K and LS25 cultivated in anaerobic, glucose-limited chemostats set at high (D = 0.357 h-1) and low (D = 0.045 h-1) dilution rates. We observed for both strains a shift from homolactic towards more mixed acid fermentation when comparing high to low growth rates. However, this change was more pronounced for LS25 than for 23K, where dominating products were lactate>formate>acetate≥ethanol at both conditions. A multivariate approach was used for analyzing proteome and transcriptome data from the bacterial cultures, where the predictive power of the omics data was used for identifying features that can explain the differences in the end-product profiles. We show that the different degree of response to the same energy restriction revealed interesting strain specific regulation. An elevated formate production level during slow growth, more for LS25 than for 23K, was clearly reflected in correlating pyruvate formate lyase expression. With stronger effect for LS25, differential expression of the Rex transcriptional regulator and NADH oxidase, a target of Rex, indicated that maintainance of the cell redox balance, in terms of the NADH/NAD+ ratio, may be a key process during the metabolic change. The results provide a better understanding of different strategies that cells may deploy in response to changes in substrate availability.
Collapse
Affiliation(s)
- Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ellen F. Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ida Rud
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Lars Axelsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
17
|
Xing Z, Geng W, Li C, Sun Y, Wang Y. Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments. Sci Rep 2017; 7:12827. [PMID: 28993659 PMCID: PMC5634458 DOI: 10.1038/s41598-017-12916-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
It is important for probiotics that are currently utilized in the dairy industry to have clear genetic backgrounds. In this study, the genetic characteristics of Lactobacillus kefiranofaciens ZW3 were studied by undertaking a comparative genomics study, and key genes for adaptation to different environments were investigated and validated in vitro. Evidence for horizontal gene transfer resulting in strong self-defense mechanisms was detected in the ZW3 genome. We identified a series of genes relevant for dairy environments and the intestinal tract, particularly for extracellular polysaccharide (EPS) production. Reverse transcription-qPCR (RT-qPCR) revealed significant increases in the relative expression of pgm, ugp, and uge during the mid-logarithmic phase, whereas the expression of pgi was higher at the beginning of the stationary phase. The enzymes encoded by these four genes concertedly regulated carbon flux, which in turn modulated the production of EPS precursors. Moreover, ZW3 tolerated pH 3.5 and 3% bile salt and retained cell surface hydrophobicity and auto-aggregation. In conclusion, we explored the potential of ZW3 for utilization in both the dairy industry and in probiotic applications. Additionally, we elucidated the regulation of the relevant genes involved in EPS production.
Collapse
Affiliation(s)
- Zhuqing Xing
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Food Engineering and Biotechnology Institute, Tianjin University of Science & Technology, Tianjin, 300457, China.,Chinese medical college of TJUTCM, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Weitao Geng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Food Engineering and Biotechnology Institute, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chao Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Food Engineering and Biotechnology Institute, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ye Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Food Engineering and Biotechnology Institute, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Food Engineering and Biotechnology Institute, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
18
|
Papizadeh M, Rohani M, Nahrevanian H, Javadi A, Pourshafie MR. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb Pathog 2017; 111:118-131. [DOI: 10.1016/j.micpath.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
|
19
|
Zagorec M, Champomier-Vergès MC. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017; 5:microorganisms5030056. [PMID: 28878171 PMCID: PMC5620647 DOI: 10.3390/microorganisms5030056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a wide genomic diversity that can be observed when studying different strains and on which probably rely its multiple facets in meat products: starter, spoiler, or protective culture. The emerging exploration of the microbial ecology of meat products also revealed the multiplicity of bacterial interactions L. sakei has to face and their various consequences on microbial quality and safety at the end of storage.
Collapse
|
20
|
Abstract
During the past decade, scientists have made great strides in understanding the microbiome's role in human health. Today, the microbiome has become key in scientific research, therapeutic development, medical treatment, and as a news feature in the media. Most studies have focused on the microbiome of our gut, but recently researchers have turned their attention to other microbiomes, including that of the skin. These studies of gut and skin microbiomes are yielding very informative results, new treatment strategies, and the development of new prebiotic and probiotic products for the treatment of many skin conditions.
Collapse
Affiliation(s)
- Mia Maguire
- BioRegenerative Sciences, Inc., 505 Coast Blvd South #208, La Jolla, CA, 92037, USA
| | - Greg Maguire
- BioRegenerative Sciences, Inc., 505 Coast Blvd South #208, La Jolla, CA, 92037, USA.
| |
Collapse
|
21
|
Salvetti E, O'Toole PW. The Genomic Basis of Lactobacilli as Health-Promoting Organisms. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0011-2016. [PMID: 28643623 PMCID: PMC11687495 DOI: 10.1128/microbiolspec.bad-0011-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Lactobacilli occupy a unique position in human culture and scientific history. Like brewer's and baker's yeast, lactobacilli have been associated with food production and preservation for thousands of years. Lactobacillus species are used in mixed microbial cultures, such as the classical Lactobacillus bulgaricus/Streptococcus thermophilus inoculum for yogurt fermentation, or combinations of diverse lactobacilli/yeasts in kefir grains. The association of lactobacilli consumption with greater longevity and improved health formed the basis for developing lactobacilli as probiotics, whose market has exploded worldwide in the past 10 years. The decade that followed the determination of the first genome sequence of a food-associated species, Lactobacillus plantarum, saw the application to lactobacilli of a full range of functional genomics methods to identify the genes and gene products that govern their distinctive phenotypes and health associations. In this review, we will briefly remind the reader of the range of beneficial effects attributed to lactobacilli, and then explain the phylogenomic basis for the distribution of these traits across the genus. Recognizing the strain specificity of probiotic effects, we review studies of intraspecific genomic variation and their contributions to identifying probiotic traits. Finally we offer a perspective on classification of lactobacilli into new genera in a scheme that will make attributing probiotic properties to clades, taxa, and species more logical and more robust.
Collapse
Affiliation(s)
- Elisa Salvetti
- School of Microbiology and APC Microbiome Institute, University College Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
22
|
Abstract
Fermented sausages are highly treasured traditional foods. A large number of distinct sausages with different properties are produced using widely different recipes and manufacturing processes. Over the last years, eating fermented sausages has been associated with potential health hazards due to their high contents of saturated fats, high NaCl content, presence of nitrite and its degradation products such as nitrosamines, and use of smoking which can lead to formation of toxic compounds such as polycyclic aromatic hydrocarbons. Here we review the recent literature regarding possible health effects of the ingredients used in fermented sausages. We also go through attempts to improve the sausages by lowering the content of saturated fats by replacing them with unsaturated fats, reducing the NaCl concentration by partly replacing it with KCl, and the use of selected starter cultures with desirable properties. In addition, we review the food pathogenic microorganisms relevant for fermented sausages(Escherichia coli,Salmonella enterica,Staphylococcus aureus,Listeria monocytogenes,Clostridium botulinum, andToxoplasma gondii)and processing and postprocessing strategies to inhibit their growth and reduce their presence in the products.
Collapse
|
23
|
First Complete Genome Sequence of the Skin-Improving Lactobacillus curvatus Strain FBA2, Isolated from Fermented Vegetables, Determined by PacBio Single-Molecule Real-Time Technology. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00884-16. [PMID: 27587811 PMCID: PMC5009968 DOI: 10.1128/genomea.00884-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first complete genome sequence of Lactobacillus curvatus was determined by PacBio RS II. The single circular chromosome (1,848,756 bp, G+C content of 42.1%) of L. curvatus FBA2, isolated from fermented vegetables, contained low G+C regions (26.9% minimum) and 43 sets of >1,000-bp identical sequence pairs. No plasmids were detected.
Collapse
|
24
|
A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Appl Environ Microbiol 2015; 81:7233-43. [PMID: 26253671 DOI: 10.1128/aem.02116-15] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli.
Collapse
|
25
|
Amadoro C, Rossi F, Piccirilli M, Colavita G. Features of Lactobacillus Sakei Isolated from Italian Sausages: Focus on Strains from Ventricina del Vastese. Ital J Food Saf 2015; 4:5449. [PMID: 27802352 PMCID: PMC5076685 DOI: 10.4081/ijfs.2015.5449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/24/2023] Open
Abstract
In this study bacterial isolates from Ventricina del Vastese sausage, previously identified as Lactobacillus (L.) sakei, were characterised genotypically, physiologically and on the basis of some technologically relevant traits. A total of 70 L. sakei isolates from sausages manufactured with spontaneous fermentation in the same producing plant were taken into account. Six genotypic groups were distinguished on the basis of Rep-polymerase chain reaction with the GTG5 primer, some of which were found only in the sausages ripened at temperatures lower than 10°C for the first two months and lower than 16°C for the remaining three months, according to the traditional ripening process. Six strains were selected as representative of the genotypic profiles and further characterised. A high diversity in their fermentation profiles was observed, and different groups were separated on the basis of growth and acidifying capacity in meat extract. None of the strains produced histamine or tyramine in vitro. One strain was able to slightly inhibit Listeria (L.) monocytogenes and L. innocua and all six strains were able to slightly inhibit Enterobacteriaceae isolated from Ventricina del Vastese sausages in vitro. Results showed that most L. sakei strains can have a role in improving the safety of low acidity fermented sausages, even though a limited acidifying capacity was observed in a meat-like substrate, and that L. sakei strains able to produce biogenic amines are unlikely to occur in spontaneously fermented meat products.
Collapse
Affiliation(s)
- Carmela Amadoro
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| | - Franca Rossi
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| | - Michele Piccirilli
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| |
Collapse
|
26
|
Alkema W, Boekhorst J, Wels M, van Hijum SAFT. Microbial bioinformatics for food safety and production. Brief Bioinform 2015; 17:283-92. [PMID: 26082168 PMCID: PMC4793891 DOI: 10.1093/bib/bbv034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
Collapse
|
27
|
Xu HQ, Gao L, Jiang YS, Tian Y, Peng J, Xa QQ, Chen Y. Transcriptome response ofLactobacillus sakeito meat protein environment. J Basic Microbiol 2014; 55:490-9. [DOI: 10.1002/jobm.201400540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/07/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-qing Xu
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Lu Gao
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Yun-shen Jiang
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Ying Tian
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Jin Peng
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Qi-quan Xa
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| | - Yu Chen
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu, P. R. China
| |
Collapse
|
28
|
Jin Kim H, Kim MJ, Lee Turner T, Lee MK. Pyrosequencing-based analysis of the bacterial community during fermentation of Alaska pollock sikhae: traditional Korean seafood. J GEN APPL MICROBIOL 2014; 60:227-33. [DOI: 10.2323/jgam.60.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hyo Jin Kim
- Fermentation Research Center, Korea Food Research Institute
| | - Min-Jeong Kim
- Fermentation Research Center, Korea Food Research Institute
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | - Myung-Ki Lee
- Fermentation Research Center, Korea Food Research Institute
| |
Collapse
|
29
|
Genome Sequence of Lactobacillus sakei subsp. sakei LS25, a Commercial Starter Culture Strain for Fermented Sausage. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00475-13. [PMID: 23846274 PMCID: PMC3709151 DOI: 10.1128/genomea.00475-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lactobacillus sakei is a lactic acid bacterium associated primarily with fermented meat and fish. Here, we present the draft genome sequence of L. sakei subsp. sakei strain LS25, a commercial starter culture strain for fermented sausage.
Collapse
|
30
|
van Hijum SAFT, Vaughan EE, Vogel RF. Application of state-of-art sequencing technologies to indigenous food fermentations. Curr Opin Biotechnol 2013; 24:178-86. [DOI: 10.1016/j.copbio.2012.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022]
|
31
|
Hugenholtz J. Traditional biotechnology for new foods and beverages. Curr Opin Biotechnol 2013; 24:155-9. [PMID: 23395405 DOI: 10.1016/j.copbio.2013.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022]
Abstract
The food and beverage industry is re-discovering fermentation as a crucial step in product innovation. Fermentation can provide various benefits such as unique flavor, health and nutrition, texture and safety (shelf life), while maintaining a 100% natural label. In this review several examples are presented on how fermentation is used to replace, modify or improve current, artificially produced, foods and beverages and how also fermentation can be used for completely novel consumer products.
Collapse
Affiliation(s)
- Jeroen Hugenholtz
- Swammerdam Institute for Life Sciences, University of Amsterdam and Coca-Cola Corporate Research, Mainburger Strasse 19, 84072 Au/Hallertau, Germany.
| |
Collapse
|
32
|
Intestinal origin of sourdough Lactobacillus reuteri isolates as revealed by phylogenetic, genetic, and physiological analysis. Appl Environ Microbiol 2012; 78:6777-80. [PMID: 22798372 DOI: 10.1128/aem.01678-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus reuteri is both a gut symbiont and a stable member of sourdough microbiota. This study employed multilocus sequence analysis and an analysis of host-specific physiological and genetic traits to assign five sourdough isolates to rodent- or human-specific lineages. Comparative genome hybridization revealed that the model sourdough isolate LTH2584 had a genome content very similar to that of the model rodent isolate 100-23. These results demonstrate that sourdough isolates of L. reuteri are of intestinal origin.
Collapse
|
33
|
Rimaux T, Rivière A, Illeghems K, Weckx S, De Vuyst L, Leroy F. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH. Appl Environ Microbiol 2012; 78:4874-83. [PMID: 22544250 PMCID: PMC3416364 DOI: 10.1128/aem.07724-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/18/2012] [Indexed: 11/20/2022] Open
Abstract
The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.
Collapse
Affiliation(s)
- T Rimaux
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids. Food Microbiol 2012; 29:224-8. [DOI: 10.1016/j.fm.2011.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022]
|
35
|
Francl AL, Hoeflinger JL, Miller MJ. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization. Microbiology (Reading) 2012; 158:944-952. [DOI: 10.1099/mic.0.052928-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alyssa L. Francl
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L. Hoeflinger
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
McLeod A, Snipen L, Naterstad K, Axelsson L. Global transcriptome response in Lactobacillus sakei during growth on ribose. BMC Microbiol 2011; 11:145. [PMID: 21702908 PMCID: PMC3146418 DOI: 10.1186/1471-2180-11-145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. RESULTS The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman). Putative catabolite-responsive element (cre) sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA)-mediated carbon catabolite repression (CCR) mechanism, possibly with the EIIman being indirectly involved. CONCLUSIONS Our data shows that the ribose uptake and catabolic machinery in L. sakei is highly regulated at the transcription level. A global regulation mechanism seems to permit a fine tuning of the expression of enzymes that control efficient exploitation of available carbon sources.
Collapse
Affiliation(s)
- Anette McLeod
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Ås, NO-1432, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Ås, NO-1432, Norway
| | - Kristine Naterstad
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
| | - Lars Axelsson
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
| |
Collapse
|