1
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Carter MJ, Bogdanov YD, Smith RC, Cox KL, Frampton S, Ferson L, Foxall RB, Hussain K, Strefford JC, Beers SA, Cragg MS. The ETS-family transcription factor PU.1 is a critical regulator of the inhibitory Fcγ receptor IIB expression in humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf109. [PMID: 40420414 DOI: 10.1093/jimmun/vkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
The inhibitory Fc gamma receptor IIB (FcγRIIB) is a critical determinant of humoral immunity. By providing feedback inhibition, through inhibitory signalling or competition for antibody Fc engagement, it counterbalances and contextualises cellular responses to signals emanating from co-ligated activating receptors, such as the B-cell receptor and activating FcγR. These activities collectively suppress the emergence of B- cell-mediated autoimmune disease and immune complex-mediated pathologies. However, FcγRIIB upregulation within the tumour microenvironment limits the efficacy of monoclonal antibody (mAb)-mediated immunotherapy of cancer. While the functional significance of FcγRIIB is well established in mice, its physiological roles and the regulatory mechanisms governing its expression remain incompletely understood in humans. Here we characterise the molecular determinants of FcγRIIB expression in human immune models and primary cells. Our findings reveal that the ETS-family transcription factor PU.1 plays a crucial role in regulating basal and inducible FcγRIIB expression. Moreover, when co-expressed, PU.1 co-operates with the related ETS-family member SPIB to drive FcγRIIB expression. PU.1 binding to the proximal FcγRIIB promoter elicits transcription, at least in part, through recruitment of the CBP/p300 transcriptional co-activators. Interestingly, similar mechanisms are also observed at the proximal promoters of the activating FcγRI and FcγRIIA, suggesting that additional, potentially lineage specific, factors cooperate with PU.1 to drive the distinct expression patterns of these FcγR. These insights pave the way for future investigations aimed at understanding the molecular mechanisms responsible for cell lineage-specific FcγR expression and subsequently manipulating them for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew J Carter
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Yury D Bogdanov
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Rosanna C Smith
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Kerry L Cox
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Sarah Frampton
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Lili Ferson
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Russel B Foxall
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Khiyam Hussain
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Jonathan C Strefford
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
4
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
5
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
6
|
Olafsdottir TA, Thorleifsson G, Lopez de Lapuente Portilla A, Jonsson S, Stefansdottir L, Niroula A, Jonasdottir A, Eggertsson HP, Halldorsson GH, Thorlacius GE, Arnthorsson AO, Bjornsdottir US, Asselbergs FW, Bentlage AEH, Eyjolfsson GI, Gudmundsdottir S, Gunnarsdottir K, Halldorsson BV, Holm H, Ludviksson BR, Melsted P, Norddahl GL, Olafsson I, Saevarsdottir S, Sigurdardottir O, Sigurdsson A, Temming R, Önundarson PT, Thorsteinsdottir U, Vidarsson G, Sulem P, Gudbjartsson DF, Jonsdottir I, Nilsson B, Stefansson K. Sequence variants influencing the regulation of serum IgG subclass levels. Nat Commun 2024; 15:8054. [PMID: 39277589 PMCID: PMC11401918 DOI: 10.1038/s41467-024-52470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4), encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here, we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years, we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma, autoimmune diseases, and blood traits. Seven variants map to the IGH locus, three to the Fcγ receptor (FCGR) locus, and two to the human leukocyte antigen (HLA) region, affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f), G2m(n) and G3m(b*) allotypes, and IgG1, IgG2 and IgG3, respectively. Additionally, we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3, ZPBP2, GSDMB, ORMDL3). Interestingly, the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics.
Collapse
Affiliation(s)
- Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | - Aitzkoa Lopez de Lapuente Portilla
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Jonsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Alvotech, Sæmundargötu 15-19, Reykjavík, Iceland
| | | | - Abhishek Niroula
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Broad Institute, Cambridge, MA, USA
| | | | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur S Bjornsdottir
- Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Folkert W Asselbergs
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | | | - Robin Temming
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- The Laboratory in Mjodd, Reykjavik, Iceland
| | - Pall T Önundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Broad Institute, Cambridge, MA, USA.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
7
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Wang H, Mao X, Zhong Y, Zhao X, Li C, Jiang J, Hong Z, Wang N, Wang F. Human amniotic mesenchymal stem cells inhibit immune rejection injury from allogeneic mouse heart transplantation: A preliminary study on the microRNA expression. Transpl Immunol 2024; 84:102022. [PMID: 38452986 DOI: 10.1016/j.trim.2024.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Mesenchymal stem cell therapy is a new treatment for immune rejection in heart transplantation. The aim of this paper is to investigate the effect of human amniotic mesenchymal stem cells (hAMSCs) on alleviating immune rejection of allogeneic heart transplantation in mice and its possible underlying mechanism. METHODS We injected hAMSCs into cervical ectopic heart transplantation model mice via tail vein to observe the survival time, the pathological changes of donor myocardium, and the fluorescent distribution of hAMSCs after the transplantation. MicroRNAs (miRs) with significantly differential expression were obtained by RNA sequencing and bioinformatic analysis, and a dual luciferase reporter gene assay together with real-time quantitative PCR (qRT-PCR) was performed to verify the relationship between miRs and their targeting genes. RESULTS The intervention of hAMSCs prolonged the graft survival time and alleviated the pathological damage of the donor heart. The injected hAMSCs were distributed mainly in the liver, spleen, and kidney, only a very small portion in the donor and recipient hearts. In the allogeneic transplantation models, the expression of miR-34b-5p significantly increased after hAMSC treatment. MiR-34b-5p showed a knockdown effect on gene Fc gamma receptor 2B (FCGR2B). CONCLUSIONS hAMSCs can reduce the immune rejection injury after allogeneic heart transplantation. This effect may be associated with the upregulation of miR-34b-5p expression to knock down its targeting gene FCGR2B.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China; Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xin Mao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China; Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yue Zhong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Xu Zhao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Chuntian Li
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Jun Jiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Zheng Hong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China; Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
9
|
Garcia JPT, Tayo LL. Theoretical Studies of DNA Microarray Present Potential Molecular and Cellular Interconnectivity of Signaling Pathways in Immune System Dysregulation. Genes (Basel) 2024; 15:393. [PMID: 38674328 PMCID: PMC11049615 DOI: 10.3390/genes15040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.
Collapse
Affiliation(s)
- Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
10
|
Keller CW, Chuquisana O, Derdelinckx J, Gross CC, Berger K, Robinson J, Nimmerjahn F, Wiendl H, Willcox N, Lünemann JD. Impaired B cell Expression of the Inhibitory Fcγ Receptor IIB in Myasthenia Gravis. Ann Neurol 2022; 92:1046-1051. [PMID: 36094152 DOI: 10.1002/ana.26507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which pathogenic immunoglobulin G (IgG) antibodies (Abs) bind to acetylcholine receptors (AChR) or to functionally related molecules at the neuromuscular junction. B cell expression of the inhibitory IgG receptor, FcγRIIB, maintains peripheral immune tolerance and its absence renders B cells hyperresponsive to autoantigen. Here, we report that FcγRIIB expression levels are substantially reduced in B lineage cells derived from immunotherapy-naïve patients with AChR-Ab+ early-onset MG (EOMG). In contrast, genetic variants associated with impaired FcγRIIB expression are not enriched in MG, indicating post-transcriptional dysregulation. FcγR-targeted therapies could have therapeutic benefits in MG. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Judith Derdelinckx
- Department of Neurology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, Antwerp, Belgium.,Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - James Robinson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Leeds, UK.,National Institute of Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nick Willcox
- Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Barlev AN, Malkiel S, Kurata-Sato I, Dorjée AL, Suurmond J, Diamond B. FcɣRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J Clin Invest 2022; 132:157250. [PMID: 35819855 PMCID: PMC9435648 DOI: 10.1172/jci157250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
FcɣRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcɣRIIB expression on B cell activation and plasma cell differentiation. Loss of FcɣRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcɣRIIB in both mouse and human. This high expression of FcɣRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium fluxin the absence of FcɣRIIB triggering. Marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice. Importantly, SLE patients exhibited decreased expression of FcɣRIIB, most strongly in MZ B cells. Thus, we present a model where high FcɣRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.
Collapse
Affiliation(s)
- Ashley N Barlev
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Izumi Kurata-Sato
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
12
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Kim J, Lee JY, Kim HG, Kwak MW, Kang TH. Fc Receptor Variants and Disease: A Crucial Factor to Consider in the Antibody Therapeutics in Clinic. Int J Mol Sci 2021; 22:9489. [PMID: 34502398 PMCID: PMC8431278 DOI: 10.3390/ijms22179489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
The fragment crystallizable (Fc) domain of antibodies is responsible for their protective function and long-lasting serum half-life via Fc-mediated effector function, transcytosis, and recycling through its interaction with Fc receptors (FcRs) expressed on various immune leukocytes, epithelial, and endothelial cells. Therefore, the Fc-FcRs interaction is a control point of both endogenous and therapeutic antibody function. There are a number of reported genetic variants of FcRs, which include polymorphisms in (i) extracellular domain of FcRs, which change their affinities to Fc domain of antibodies; (ii) both cytoplasmic and intracellular domain, which alters the extent of signal transduction; and (iii) the promoter region of the FcRs gene, which affects the expression level of FcRs, thus being associated with the pathogenesis of disease indications. In this review, we firstly describe the correlation between the genetic variants of FcRs and immunological disorders by individual differences in the extent of FcRs-mediated regulations. Secondly, we discuss the influence of the genetic variants of FcRs on the susceptibility to infectious diseases or cancer in the perspective of FcRs-induced effector functions. Overall, we concluded that the genetic variants of FcRs are one of the key elements in the design of antibody therapeutics due to their variety of clinical outcomes among individuals.
Collapse
Affiliation(s)
- Jin Kim
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
| | - Ji Young Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Korea;
| | - Han Gil Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| | - Min Woo Kwak
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| | - Tae Hyun Kang
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
- Department of Chemistry, Kookmin University, Seoul 02707, Korea;
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| |
Collapse
|
14
|
Moraru M, Perez-Portilla A, Al-Akioui Sanz K, Blazquez-Moreno A, Arnaiz-Villena A, Reyburn HT, Vilches C. FCGR Genetic Variation in Two Populations From Ecuador Highlands-Extensive Copy-Number Variation, Distinctive Distribution of Functional Polymorphisms, and a Novel, Locally Common, Chimeric FCGR3B/A (CD16B/A) Gene. Front Immunol 2021; 12:615645. [PMID: 34108956 PMCID: PMC8183472 DOI: 10.3389/fimmu.2021.615645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Fcγ receptors (FcγR), cell-surface glycoproteins that bind antigen-IgG complexes, control both humoral and cellular immune responses. The FCGR locus on chromosome 1q23.3 comprises five homologous genes encoding low-affinity FcγRII and FcγRIII, and displays functionally relevant polymorphism that impacts on human health. Recurrent events of non-allelic homologous recombination across the FCGR locus result in copy-number variation of ~82.5 kbp-long fragments known as copy-number regions (CNR). Here, we characterize a recently described deletion that we name CNR5, which results in loss of FCGR3A, FCGR3B, and FCGR2C, and generation of a recombinant FCGR3B/A gene. We show that the CNR5 recombination spot lies at the beginning of the third FCGR3 intron. Although the FCGR3B/A-encoded hybrid protein CD16B/A reaches the plasma membrane in transfected cells, its possible natural expression, predictably restricted to neutrophils, could not be demonstrated in resting or interferon γ-stimulated cells. As the CNR5-deletion was originally described in an Ecuadorian family from Llano Grande (an indigenous community in North-Eastern Quito), we characterized the FCGR genetic variation in two populations from the highlands of Ecuador. Our results reveal that CNR5-deletion is relatively frequent in Llano Grande (5 carriers out of 36 donors). Furthermore, we found a high frequency of two strong-phagocytosis variants: the FCGR3B-NA1 haplotype and the CNR1 duplication, which translates into an increased FCGR3B and FCGR2C copy-number. CNR1 duplication was particularly increased in Llano Grande, 77.8% of the studied sample carrying at least one such duplication. In contrast, an extended haplotype CD16A-176V – CD32C-ORF+2B.2 – CD32B-2B.4 including strong activating and inhibitory FcγR variants was absent in Llano Grande and found at a low frequency (8.6%) in Ecuador highlands. This particular distribution of FCGR polymorphism, possibly a result of selective pressures, further confirms the importance of a comprehensive, joint analysis of all genetic variations in the locus and warrants additional studies on their putative clinical impact. In conclusion, our study confirms important ethnic variation at the FCGR locus; it shows a distinctive FCGR polymorphism distribution in Ecuador highlands; provides a molecular characterization of a novel CNR5-deletion associated with CD16A and CD16B deficiency; and confirms its presence in that population.
Collapse
Affiliation(s)
- Manuela Moraru
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Adriana Perez-Portilla
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Karima Al-Akioui Sanz
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Alfonso Blazquez-Moreno
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| |
Collapse
|
15
|
Kuitwaard K, van Doorn PA, Bengrine T, van Rijs W, Baas F, Nagelkerke SQ, Kuijpers TW, Fokkink WJR, Bunschoten C, Broers MC, Willemsen SP, Jacobs BC, Huizinga R. Genetic biomarkers for intravenous immunoglobulin response in chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 2021; 28:1677-1683. [PMID: 33460483 PMCID: PMC8247870 DOI: 10.1111/ene.14742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a clinical and electrophysiological heterogeneous immune-mediated polyneuropathy. Intravenous immunoglobulin (IVIg), corticosteroids, and plasma exchange are proven effective treatments for CIDP. The clinical response to IVIg is variable between patients and currently unexplained. Finding biomarkers related to treatment response can help to understand the diversity of CIDP and personalise treatment choice. METHODS We investigated whether genetic variation between patients may explain some of these differences in treatment response. Based on previous publications, we selected six candidate genes that might affect immune and axonal functions, IVIg metabolism, and treatment response in CIDP. Genetic variants were assessed in 172 CIDP patients treated with at least one course of IVIg (2 g/kg). A response to IVIg was defined by ≥1 grade improvement on the modified Rankin Scale. Blood samples were tested for variations in CNTN2, PRF1, FCGRT, FCGR2B, GJB1, and SH2D2A genes. RESULTS In univariate analysis, patients with the FCGR2B promoter variant 2B.4/2B.1 responded more often to IVIg than patients with the 2B.1/2B.1 variant (odds ratio [OR] = 6.9, 95% confidence interval [CI] = 1.6-30; p = 0.003). Patients with the p.(Ala91Val) variant of PRF1 were less often IVIg responsive (OR = 0.34, 95% CI = 0.13-0.91; p = 0.038). In multivariate analysis, both PRF1 and FCGR2B showed discriminative ability to predict the chance of IVIg response (area under the curve = 0.67). CONCLUSIONS Variations in PRF1 and the promoter region of FCGR2B are associated with the response to IVIg in CIDP. These findings, which require validation, are a first step towards the understanding of the heterogeneity in the treatment response in CIDP.
Collapse
Affiliation(s)
- Krista Kuitwaard
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.,Department of Neurology, Albert Schweitzer hospital, Dordrecht, the Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Thiziri Bengrine
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Wouter van Rijs
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.,Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Willem-Jan R Fokkink
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.,Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Carina Bunschoten
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Merel C Broers
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Epidemiology and Biostatistics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.,Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Amiah MA, Ouattara A, Okou DT, N'Guetta SPA, Yavo W. Polymorphisms in Fc Gamma Receptors and Susceptibility to Malaria in an Endemic Population. Front Immunol 2020; 11:561142. [PMID: 33281811 PMCID: PMC7689034 DOI: 10.3389/fimmu.2020.561142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Repeated infections by Plasmodium falciparum result in a humoral response that could reduce disease symptoms and prevent the development of clinical malaria. The principal mechanism underlying this humoral response is that immunoglobulin G (IgG) binds directly to the parasites, thus causing their neutralization. However, the action of antibodies alone is not always sufficient to eliminate pathogens from an organism. One key element involved in the recognition of IgG that plays a crucial role in the destruction of the parasites responsible for spreading malaria is the family of Fc gamma receptors. These receptors are expressed on the surface of immune cells. Several polymorphisms have been detected in the genes encoding these receptors, associated with susceptibility or resistance to malaria in different populations. In this review, we describe identified polymorphisms within the family of Fc gamma receptors and the impact of these variations on the response of a host to infection as well as provide new perspectives for the design of an effective vaccine for malaria.
Collapse
Affiliation(s)
- Mireille Ahou Amiah
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - David Tea Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Simon-Pierre Assanvo N'Guetta
- Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - William Yavo
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Department of Parasitology and Mycology, Faculty of Pharmacy, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| |
Collapse
|
18
|
Luo S, Long H, Lu Q. Recent advances in understanding pathogenesis and therapeutic strategies of Systemic Lupus Erythematosus. Int Immunopharmacol 2020; 89:107028. [PMID: 33039962 DOI: 10.1016/j.intimp.2020.107028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multi-system-involving autoimmune disorder mainly affecting young and middle-aged women. Autoantibodies formation and immune complex deposition as well as other immune mechanisms contribute to heterogeneous clinical presentation, which leads to challenges for diagnosis and management. Although the exact pathogenesis of SLE is highly complicated, the pathophysiological understanding of SLE is constantly evolving and relevant studies were continually published, providing a better understanding of the molecular mechanisms. Moreover, new therapeutic strategies and management plans targeting pivotal factors involved in the pathogenesis of SLE got well established recently. In this article, we reviewed recent studies to provide an update in understanding pathogenesis and therapeutic strategies of SLE.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
19
|
Transient and chronic childhood immune thrombocytopenia are distinctly affected by Fc-γ receptor polymorphisms. Blood Adv 2020; 3:2003-2012. [PMID: 31270082 DOI: 10.1182/bloodadvances.2019000068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
In childhood immune thrombocytopenia (ITP), anti-platelet autoantibodies mediate platelet clearance through Fc-γ receptor (FcγR)-bearing phagocytes. In 75% to 90% of patients, the disease has a transient, self-limiting character. Here we characterized how polymorphisms of FcγR genes affect disease susceptibility, response to intravenous immunoglobulin (IVIg) treatment, and long-term recovery from childhood ITP. Genotyping of the FCGR2/3 locus was performed in 180 children with newly diagnosed ITP, 22 children with chronic ITP, and 180 healthy control children by multiplex ligation-dependent probe amplification. Children with newly diagnosed ITP were randomly assigned to a single administration of IVIg or observation, and followed for 1 year (Treatment With or Without IVIg for Kids With ITP [TIKI] trial). We defined transient ITP as a complete recovery (≥100 × 109/L) 3 months after diagnosis, including both self-limiting disease/IVIg responders and chronic ITP as absence of a complete recovery at 12 months. ITP susceptibility, as well as spontaneous recovery and response to IVIg, was associated with the genetic variants FCGR2C*ORF and FCGR2A*27W and the FCGR2B promoter variant 2B.4. These variants were overrepresented in patients with transient (N = 131), but not chronic (N = 43), disease. The presence of FCGR2C*ORF predisposed to transient ITP with an odds ratio of 4.7 (95% confidence interval, 1.9-14.3). Chronic ITP was associated with a deletion of FCGR2C/FCGR3B (copy number region 1) with an odds ratio of 6.2 (95% confidence interval, 1.8-24.7). Taken together, susceptibility to transient and chronic ITP is distinctly affected by polymorphic variants of FCGR2/3 genes. Our data suggest that genotyping of the FCGR2/3 locus may be useful for prognosis and guidance of treatment decisions in newly diagnosed childhood ITP.
Collapse
|
20
|
Li SS, Gilbert PB, Carpp LN, Pyo CW, Janes H, Fong Y, Shen X, Neidich SD, Goodman D, deCamp A, Cohen KW, Ferrari G, Hammer SM, Sobieszczyk ME, Mulligan MJ, Buchbinder SP, Keefer MC, DeJesus E, Novak RM, Frank I, McElrath MJ, Tomaras GD, Geraghty DE, Peng X. Fc Gamma Receptor Polymorphisms Modulated the Vaccine Effect on HIV-1 Risk in the HVTN 505 HIV Vaccine Trial. J Virol 2019; 93:e02041-18. [PMID: 31434737 PMCID: PMC6803257 DOI: 10.1128/jvi.02041-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.
Collapse
Affiliation(s)
- Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Scott D Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mark J Mulligan
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan P Buchbinder
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Michael C Keefer
- Division of Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
21
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
22
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC. FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human. Nat Commun 2019; 10:1970. [PMID: 31036800 PMCID: PMC6488660 DOI: 10.1038/s41467-019-09434-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen. The inhibitory receptor, FcγRIIb, is reported to limit autoimmune B cell response. Here the authors show that FcγRIIb has a dual role in both human and mouse, with reduced FcγRIIb expression or function associated with enhanced pre-immune B cell tolerance, yet defective control of mature autoreactive B cells in the germinal center.
Collapse
Affiliation(s)
- Marion Espéli
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France.
| | - Rachael Bashford-Rogers
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Nagham Alouche
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France
| | - Limy Wong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK
| | - Alice E Denton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Michelle A Linterman
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Kenneth G C Smith
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
24
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
27
|
Abstract
IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Taia T Wang
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Rony Dahan
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jad Maamary
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| |
Collapse
|
28
|
Fcγ Receptor Function and the Design of Vaccination Strategies. Immunity 2017; 47:224-233. [PMID: 28813656 DOI: 10.1016/j.immuni.2017.07.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Through specific interactions with distinct types of Fcγ receptors (FcγRs), the Fc domain of immunoglobulin G (IgG) mediates a wide spectrum of immunological functions that influence both innate and adaptive responses. Recent studies indicate that IgG Fc-FcγR interactions are dynamically regulated during an immune response through the control of the Fc-associated glycan structure and Ig subclass composition on the one hand and selective FcγR expression on immune cells on the other, which together determine the capacity of IgG to interact in a cell-type-specific manner with specific members of the FcγR family. Here, we present a framework that synthesizes the current understanding of the contribution of FcγR pathways to the induction and regulation of antibody and T cell responses. Within this context, we discuss vaccination strategies to elicit broad and potent immune responses based on the immunomodulatory properties of Fc-FcγR interactions.
Collapse
|
29
|
Abstract
The antiviral activity of antibodies reflects the bifunctional properties of these molecules. While the Fab domains mediate highly specific antigenic recognition to block virus entry, the Fc domain interacts with diverse types of Fcγ receptors (FcγRs) expressed on the surface of effector leukocytes to induce the activation of distinct immunomodulatory pathways. Fc-FcγR interactions are tightly regulated to control IgG-mediated inflammation and immunity and are largely determined by the structural heterogeneity of the IgG Fc domain, stemming from differences in the primary amino acid sequence of the various subclasses, as well as the structure and composition of the Fc-associated N-linked glycan. Engagement of specific FcγR types on effector leukocytes has diverse consequences that affect several aspects of innate and adaptive immunity. In this review, we provide an overview of the complexity of FcγR-mediated pathways, discussing their role in the in vivo protective activity of anti-HIV-1 antibodies. We focus on recent studies on broadly neutralizing anti-HIV-1 antibodies that revealed that Fc-FcγR interactions are required to achieve full therapeutic activity through clearance of IgG-opsonized virions and elimination of HIV-infected cells. Manipulation of Fc-FcγR interactions to specifically activate distinct FcγR-mediated pathways has the potential to affect downstream effector responses, influencing thereby the in vivo protective activity of anti-HIV-1 antibodies; a strategy that has already been successfully applied to other IgG-based therapeutics, substantially improving their clinical efficacy.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Abstract
A key determinant for the survival of organisms is their capacity to recognize and respond efficiently to foreign antigens. This is largely accomplished by the orchestrated activity of the innate and adaptive branches of the immune system. Antibodies are specifically generated in response to foreign antigens, facilitating thereby the specific recognition of antigens of almost infinite diversity. Receptors specific for the Fc domain of antibodies, Fc receptors, are expressed on the surface of the various myeloid leukocyte populations and mediate the binding and recognition of antibodies by innate leukocytes. By directly linking the innate and the adaptive components of immunity, Fc receptors play a central role in host defense and the maintenance of tissue homeostasis through the induction of diverse proinflammatory, anti-inflammatory, and immunomodulatory processes that are initiated upon engagement by the Fc domain. In this chapter, we discuss the mechanisms that regulate Fc domain binding to the various types of Fc receptors and provide an overview of the astonishing diversity of effector functions that are mediated through Fc-FcR interactions on myeloid cells. Lastly, we discuss the impact of FcR-mediated interactions in the context of IgG-mediated inflammation, autoimmunity, susceptibility to infection, and responsiveness to antibody-based therapeutics.
Collapse
|
31
|
Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017; 29:303-310. [PMID: 28472280 PMCID: PMC5890892 DOI: 10.1093/intimm/dxx025] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
32
|
Shi Y, Yang CQ, Wang SW, Li W, Li J, Wang SM. Characterization of Fc gamma receptor IIb expression within abdominal aortic aneurysm. Biochem Biophys Res Commun 2017; 485:295-300. [DOI: 10.1016/j.bbrc.2017.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
|
33
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
34
|
DeFranco AL. Germinal centers and autoimmune disease in humans and mice. Immunol Cell Biol 2016; 94:918-924. [PMID: 27562062 DOI: 10.1038/icb.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are involved in the pathogenesis of many autoimmune diseases. Although the mechanisms underlying the antibody response to infection or vaccination are reasonably well understood, we still have a poor understanding of the nature of autoimmune antibody responses. The most well studied are the anti-nuclear antibody responses characteristic of systemic lupus erythematosus and studies over the past decade or so have demonstrated a critical role for signaling by TLR7 and/or TLR9 in B cells to promote these responses. These Toll-like receptors (TLRs) can promote T-cell-independent extrafollicular antibody responses with a heavy-chain class switch and a low degree of somatic mutation, but they can also strongly boost the germinal center response that gives rise to high-affinity antibodies and long-lived plasma cells. TLRs have been shown to enhance affinity maturation in germinal center responses to produce high-affinity neutralizing antibodies in several virus infection models of mice. Although more data are needed, it appears that anti-nuclear antibodies in mouse models of lupus and in lupus patients can be generated by either pathway, provided there are genetic susceptibility alleles that compromise B-cell tolerance at one or another stage. Limited data in other autoimmune diseases suggest that the germinal center response may be the predominant pathway leading to autoantibodies in those diseases. A better understanding of the mechanisms of autoantibody production may ultimately be helpful in the development of targeted therapeutics for lupus or other autoimmune diseases.
Collapse
Affiliation(s)
- Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Comprehensive Assessment of the Association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: Evidence from a Meta-Analysis. Sci Rep 2016; 6:31617. [PMID: 27538381 PMCID: PMC4990922 DOI: 10.1038/srep31617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
We performed a meta analysis to assess the relationship of FCGRs polymorphisms with the risk of SLE. Thirty-five articles (including up to 5741 cases and 6530 controls) were recruited for meta-analysis. The strongest association was observed between FCGR2B rs1050501 and SLE under the recessive genotypic model of C allele in the overall population (CC vs CT/TT, OR = 1.754, 95%CI: 1.422–2.165, P = 1.61 × 10−7) and in Asian population (CC vs CT/TT, OR = 1.784, 95%CI; 1.408–2.261, P = 1.67 × 10−6). We also found that FCGR3A rs396991 were significant association with the susceptibility to SLE in overall population in recessive model of T allele (TT vs TG/GG, OR = 1.263, 95%CI: 1.123–1.421, P = 9.62 × 10−5). The results also showed that significant association between FCGR2A rs1801274 and SLE under the allelic model in the overall population (OR = 0.879 per A allele, 95%CI: 0.819–0.943, P = 3.31 × 10−4). The meta-analysis indicated that FCGR3B copy number polymorphism NA1·NA2 was modestly associated with SLE in overall population (OR = 0.851 per NA1, 95%CI: 0.772–0.938, P = 1.2 × 10−3). We concluded that FCGR2B rs1050501 C allele and FCGR3A rs396991 T allele might contribute to susceptibility and development of SLE, and were under recessive association model. While, FCGR2A rs1801274 A allele and FCGR3B NA1 were associated with SLE and reduced the risk of SLE.
Collapse
|
36
|
Suurmond J, Calise J, Malkiel S, Diamond B. DNA-reactive B cells in lupus. Curr Opin Immunol 2016; 43:1-7. [PMID: 27504587 DOI: 10.1016/j.coi.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
IgG anti-DNA antibodies are both diagnostic and pathogenic for systemic lupus erythematosus (SLE). They contribute to tissue inflammation through direct tissue binding and to systemic inflammation through activation of Toll-like receptors by nucleic acid-containing immune complexes. IgG DNA-reactive antibodies originate when B cell tolerance mechanisms are impaired. The heterogeneous immune perturbations in SLE lead to the survival and activation of DNA-reactive B cells in various B cell subsets at distinct stages of B cell maturation and differentiation. We propose that the spectrum of B cell alterations and failed tolerance mechanisms for DNA-reactive B cells in lupus patients is best understood by studying genetic risk alleles. This implies that the B cells producing IgG anti-DNA antibodies and the failed tolerance mechanisms(s) will differ across patients. A better understanding of these differences should lead to better patient stratification, improved outcomes of clinical trials, and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jolien Suurmond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Justine Calise
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA; PhD Program in Molecular Medicine, Hofstra-Northwell School of Medicine, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Susan Malkiel
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
37
|
Kang S, Rogers JL, Monteith AJ, Jiang C, Schmitz J, Clarke SH, Tarrant TK, Truong YK, Diaz M, Fedoriw Y, Vilen BJ. Apoptotic Debris Accumulates on Hematopoietic Cells and Promotes Disease in Murine and Human Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2016; 196:4030-9. [PMID: 27059595 DOI: 10.4049/jimmunol.1500418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2016] [Indexed: 11/19/2022]
Abstract
Apoptotic debris, autoantibody, and IgG-immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that PBMCs from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction. Accumulation of IgG-ICs is evident on ex vivo myeloid cells from MRL/lpr mice by 10 wk of age and steadily increases prior to lupus nephritis. IgG and FcγRI play a critical role in disease pathology. Passive transfer of pathogenic IgG into IgG-deficient MRL/lpr mice promotes the accumulation of IgG-ICs prior to significant B cell expansion, BAFF secretion, and lupus nephritis. In contrast, diminishing the burden IgG-ICs in MRL/lpr mice through deficiency in FcγRI markedly improves these lupus pathologies. Taken together, our findings reveal a previously unappreciated role for the cell surface accumulation of IgG-ICs in human and murine lupus.
Collapse
Affiliation(s)
- SunAh Kang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Andrew J Monteith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Chuancang Jiang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709
| | - John Schmitz
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Teresa K Tarrant
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Young K Truong
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599;
| |
Collapse
|
38
|
Tsang-A-Sjoe MWP, Nagelkerke SQ, Bultink IEM, Geissler J, Tanck MWT, Tacke CE, Ellis JA, Zenz W, Bijl M, Berden JH, de Leeuw K, Derksen RH, Kuijpers TW, Voskuyl AE. Fc-gamma receptor polymorphisms differentially influence susceptibility to systemic lupus erythematosus and lupus nephritis. Rheumatology (Oxford) 2016; 55:939-48. [DOI: 10.1093/rheumatology/kev433] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 01/09/2023] Open
|
39
|
Hargreaves CE, Iriyama C, Rose-Zerilli MJJ, Nagelkerke SQ, Hussain K, Ganderton R, Lee C, Machado LR, Hollox EJ, Parker H, Latham KV, Kuijpers TW, Potter KN, Coupland SE, Davies A, Stackpole M, Oates M, Pettitt AR, Glennie MJ, Cragg MS, Strefford JC. Evaluation of High-Throughput Genomic Assays for the Fc Gamma Receptor Locus. PLoS One 2015; 10:e0142379. [PMID: 26545243 PMCID: PMC4636148 DOI: 10.1371/journal.pone.0142379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Cancer immunotherapy has been revolutionised by the use monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics.
Collapse
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Chisako Iriyama
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Sietse Q. Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Khiyam Hussain
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Rosalind Ganderton
- Molecular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, United Kingdom
| | - Charlotte Lee
- Molecular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, United Kingdom
| | - Lee R. Machado
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
- School of Health, University of Northampton, Northampton, NN2 7AL, United Kingdom
| | - Edward J. Hollox
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Kate V. Latham
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
- Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Kathleen N. Potter
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Sarah E. Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, United Kingdom
| | - Andrew Davies
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Michael Stackpole
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, United Kingdom
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, United Kingdom
| | - Andrew R. Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, United Kingdom
| | - Martin J. Glennie
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Mark S. Cragg
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Jonathan C. Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
41
|
Association of Nicotinamide Phosphoribosyltransferase (NAMPT) Gene Polymorphisms and of Serum NAMPT Levels with Dilated Cardiomyopathy in a Chinese Population. Int J Mol Sci 2015; 16:22299-318. [PMID: 26389889 PMCID: PMC4613309 DOI: 10.3390/ijms160922299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 02/05/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) has crucial roles for myocardial development, cardiomyocyte energy metabolism and cell death/survival by regulating NAD+-dependent sirtuin-1 (SIRT1) deacetylase. This study aimed to determine if the single nucleotide polymorphisms (SNPs) of the NAMPT gene may affect the susceptibility and prognosis for patients with dilated cardiomyopathy (DCM) and to describe the association of serum NAMPT levels with clinical features of DCM. Three SNPs (rs61330082, rs2505568, and rs9034) were analyzed by the polymerase chain reaction-restriction fragment length polymorphism method in a case-control study of 394 DCM patients and 395 controls from China. Serum NAMPT levels were measured by enzyme-linked immunosorbent assay kits. The homozygote for the minor allele at rs2505568 and rs9034 could not be detected in this study. Rs9034 T allele and CT genotype were associated with increased DCM risk (OR: 1.63, 95% CI = 1.16–2.27, p = 0.005 and OR: 1.72, 95% CI = 1.20–2.50, p = 0.0027, respectively). Nominally significant decreased DCM risk was found to be associated with the A allele and AT genotype of rs2505568 (OR: 0.48, 95% CI = 0.35–0.67, p < 0.0001 and OR: 0.44, 95% CI = 0.31–0.62, p < 0.0001, respectively), but it should be interpreted with caution because of Hardy-Weinberg disequilibrium in the control group. Of five haplotypes constructed, TAC (rs61330082-rs2505568-rs9034) was a protective haplotype to DCM (OR: 0.22, 95% CI = 0.13–0.39, p = 1.84 × 10−8). The Cox multivariate survival analysis indicated that the rs9034 CT genotype (hazard ratio (HR): 0.59, 95% CI = 0.37–0.96, p = 0.03) was an independently multivariate predictor for longer overall survival in DCM patients. Serum NAMPT levels were significantly higher in the DCM group than controls (p < 0.0001) and gradually increased with the increase of New York Heart Association grade in DCM patients. However, there was a lack of association of the three SNPs with serum NAMPT levels. Spearman correlation test revealed that the NAMPT level was positively associated with brain natriuretic peptide (r = 0.56, p = 0.001), left ventricular end-diastolic diameter (r = 0.293, p = 0.011) and left ventricular end-diastolic volume (r = 0.294, p = 0.011). Our study suggested that NAMPT may play an important role in the development of DCM.
Collapse
|
42
|
Quast I, Cueni F, Nimmerjahn F, Tackenberg B, Lünemann JD. Deregulated Fcγ receptor expression in patients with CIDP. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e148. [PMID: 26380354 PMCID: PMC4547878 DOI: 10.1212/nxi.0000000000000148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
Abstract
Objective: To evaluate the expression of activating and inhibitory Fc-gamma receptors (FcγRs) before and during clinically effective therapy with IV immunoglobulin (IVIg) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: Peripheral blood leukocyte subsets, including classical CD14highCD16− and nonclassical inflammatory CD14lowCD16+ monocytes as well as naive CD19+CD27− and memory CD19+CD27+ B cells, were obtained at baseline and monitored at 2 and 4–8 weeks after initiation of IVIg therapy. Results: Compared with healthy donors matched by age and sex, patients with CIDP showed increased expression levels of the activating high-affinity FcγR1 on CD14highCD16− (p < 0.001) and CD14lowCD16+ monocytes (p < 0.001). Expression of the activating low-affinity FcγRIIA was increased on CD14lowCD16+ monocytes (p = 0.023). Conversely, expression of the inhibitory FcγRIIB was reduced on naive (p = 0.009) and memory (p = 0.002) B cells as well as on CD14highCD16− monocytes (p = 0.046). Clinically effective IVIg therapy partially restored deregulated FcγR expression on B cell subsets and monocytes. Conclusions: The FcγR regulatory system is disturbed in patients with CIDP. Balancing activating vs inhibitory FcγR expression might provide a clinical benefit for patients with CIDP.
Collapse
Affiliation(s)
- Isaak Quast
- Institute of Experimental Immunology (I.Q., F.C., J.D.L.), Department of Neuroinflammation, University of Zürich, Switzerland; Department of Biology (F.N.), Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurology (B.T.), University Hospital Marburg, Marburg, Germany; and Department of Neurology (J.D.L.), University Hospital Basel, Basel, Switzerland
| | - Flavio Cueni
- Institute of Experimental Immunology (I.Q., F.C., J.D.L.), Department of Neuroinflammation, University of Zürich, Switzerland; Department of Biology (F.N.), Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurology (B.T.), University Hospital Marburg, Marburg, Germany; and Department of Neurology (J.D.L.), University Hospital Basel, Basel, Switzerland
| | - Falk Nimmerjahn
- Institute of Experimental Immunology (I.Q., F.C., J.D.L.), Department of Neuroinflammation, University of Zürich, Switzerland; Department of Biology (F.N.), Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurology (B.T.), University Hospital Marburg, Marburg, Germany; and Department of Neurology (J.D.L.), University Hospital Basel, Basel, Switzerland
| | - Björn Tackenberg
- Institute of Experimental Immunology (I.Q., F.C., J.D.L.), Department of Neuroinflammation, University of Zürich, Switzerland; Department of Biology (F.N.), Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurology (B.T.), University Hospital Marburg, Marburg, Germany; and Department of Neurology (J.D.L.), University Hospital Basel, Basel, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology (I.Q., F.C., J.D.L.), Department of Neuroinflammation, University of Zürich, Switzerland; Department of Biology (F.N.), Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany; Department of Neurology (B.T.), University Hospital Marburg, Marburg, Germany; and Department of Neurology (J.D.L.), University Hospital Basel, Basel, Switzerland
| |
Collapse
|
43
|
Vuyyuru R, Shen S, Manser T. Testing the role of the FcγRIIB immunoreceptor tyrosine-based inhibitory motif in regulation of the B cell immune response. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:247-64. [PMID: 26417440 PMCID: PMC4578524 DOI: 10.1002/iid3.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/09/2015] [Accepted: 04/25/2015] [Indexed: 01/07/2023]
Abstract
In vitro studies have demonstrated that the immunoreceptor tyrosine-based inhibitory motif (ITIM) of the inhibitory Fc receptor FcγRIIB is critical for mediating attenuation of signaling via immunoreceptor tyrosine-based activation motif (ITAM) containing receptors, such as the B cell antigen receptor (BCR), when FcγRIIB is co-cross-linked to these activation receptors. To test the role of the FcγRIIB ITIM motif in regulation of the B cell immune response in vivo, we constructed lines of transgenic mice expressing a form of FcγRIIB with an inactivating tyrosine (Y) to phenylalanine (F) mutation in the ITIM motif. Detailed studies of one of these lines, in which the mutant FcγRIIB was expressed on B cells and other cell types that normally express this receptor, were performed. No quantitative differences in germinal center (GC) B cell responses were observed between the mutant FcγRIIB transgenic line and control mice. However, serum antibody and antibody forming cell responses were often observed to be elevated in the ITIM mutant FcγRIIB transgenic mice as compared to controls, though not to the same extent as mice deficient in expression of FcγRIIB. Moreover, primary B cells from the ITIM mutant FcγRIIB line did not display the same level of augmented BCR signaling as primary FcγRIIB deficient B cells under conditions inducing co-cross-linking of FcγRIIB and the BCR. In total, these data suggest that a functional ITIM motif is not required for all in vivo inhibitory activity of this receptor. However, we also found that the transgenic ITIM mutant FcγRIIB receptor was expressed at abnormal levels in several hematopoietic lineages. Thus, confirmation of our findings will require the generation and analysis of mice in which an ITIM mutant form of FcγRIIB is expressed in vivo as is the endogenous receptor.
Collapse
Affiliation(s)
- Raja Vuyyuru
- Department of Microbiology and Immunology, Thomas Jefferson University Philadelphia, PA, USA
| | - Shixue Shen
- Department of Microbiology and Immunology, Thomas Jefferson University Philadelphia, PA, USA
| | - Tim Manser
- Department of Microbiology and Immunology, Thomas Jefferson University Philadelphia, PA, USA
| |
Collapse
|
44
|
The presence of FCGR2B promoter or transmembrane region variant alleles leads to reduced serum IL-6 levels in rheumatoid arthritis. Rheumatol Int 2015; 35:1311-8. [DOI: 10.1007/s00296-015-3226-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
45
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
46
|
Immunopathology of systemic lupus erythematosus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Sellge G, Barkowsky M, Kramer S, Gebhardt T, Sander LE, Lorentz A, Bischoff SC. Interferon-γ regulates growth and controls Fcγ receptor expression and activation in human intestinal mast cells. BMC Immunol 2014; 15:27. [PMID: 24996251 PMCID: PMC4227132 DOI: 10.1186/1471-2172-15-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/20/2014] [Indexed: 01/05/2023] Open
Abstract
Background Development and function of tissue resident mast cells (MCs) is tightly controlled by various cytokines, most of which belong to the typical T helper (Th) 2-type cytokines such as IL-3 and IL-4. The effects of the Th1-type cytokine IFN-γ on human MCs is less clear. Results Here, we analyzed the effects of IFN-γ on tissue-derived, mature human MCs. We found that INF-γ decreases proliferation, without affecting apoptosis in human intestinal MCs cultured in the presence of optimal concentrations of stem cell factor (SCF) or SCF and IL-4. However, in the absence of growth factors or at suboptimal concentrations of SCF, INF-γ promotes survival through inhibition of MC apoptosis. Interestingly, we found that INF-γ has no effect on FcϵRI expression and FcϵRI-mediated release of histamine and leukotriene (LT)C4, while it has profound effects on FcγR expression and activation. We show that intestinal MCs express FcγRI, FcγRIIa, and FcγRIIc, whereas FcγRIIb expression was found in only 40% of the isolates and FcγRIII was never detectable. INF-γ strongly increases FcγRI and decreases FcγRIIa expression. INF-γ-naïve MCs produce LTC4 but fail to degranulate upon crosslinking of surface-bound monomeric IgG. In contrast, INF-γ-treated MCs rapidly release granule-stored histamine in addition to de novo-synthesized LTC4. Conclusion In summary, we identify INF-γ as an important regulator of tissue-resident human MCs. IFN-γ displays a dual function by blocking extensive MC proliferation, while decreasing apoptosis in starving MCs and enhancing FcγRI expression and activation. These results emphasize the involvement of mucosal MCs in Th1-mediated disorders.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol 2014; 5:254. [PMID: 24910634 PMCID: PMC4038777 DOI: 10.3389/fimmu.2014.00254] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 104 to 8 × 107 M−1. The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.
Collapse
Affiliation(s)
- Caitlin Gillis
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Aurélie Gouel-Chéron
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France ; Department of Anesthesia and Intensive Care, Hospital of Bichat-Claude Bernard, Public Assistance-Hospitals of Paris , Paris , France
| | - Friederike Jönsson
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Pierre Bruhns
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| |
Collapse
|
49
|
Ackerman ME, Alter G. Opportunities to exploit non-neutralizing HIV-specific antibody activity. Curr HIV Res 2014; 11:365-77. [PMID: 24191934 DOI: 10.2174/1570162x113116660058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
Antibodies act as a nexus between innate and adaptive immunity: they provide a means to engage a spectrum of innate immune effector cells in order to clear viral particles and infected cells and prime antigen presentation. This functional landscape is remarkably complex, and depends on antibody isotype, subclass, and glycosylation; the expression levels and patterns of a suite of Fc receptors with both complementary and opposing activities; and a host of innate immune cells capable of differential responses to opsonized particles and present at different sites. In vivo, even neutralizing antibodies rely on their ability to act as molecular beacons and recruit innate immune effector cells in order to provide protection, and results from both human and macaque studies have implicated these effector functions in vaccinemediated protection. Thus, while enhancing effector function is a tractable handle for potentiating antibody-mediated protection from HIV infection, success will depend critically on leveraging understanding of the means by which antibodies with specific functional profiles could be elicited, which effector functions could provide optimal protection, and perhaps most critically, how to efficiently recruit the innate effector cells present at sites of infection.
Collapse
Affiliation(s)
- Margaret E Ackerman
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA.
| | | |
Collapse
|
50
|
Abstract
Fc receptors play a central role in maintaining the homeostatic balance in the immune system. Our knowledge of the structure and function of these receptors and their naturally occurring polymorphisms, including single nucleotide polymorphisms and/or copy number variations, continues to expand. Through studies of their impact on human biology and clinical phenotype, the contributions of these variants to the pathogenesis, progression, and/or treatment outcome of many diseases that involve immunoglobulin have become evident. They affect susceptibility to bacterial and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory diseases, and impact the development of many autoimmune conditions. In this chapter, we will provide an overview of these genetic variations in classical FcγRs, FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and comprehensive understanding of the FcR polymorphisms and genomic architecture.
Collapse
Affiliation(s)
- Marc Daeron
- grid.428999.70000000123536535Institut Pasteur, Paris, France
| | - Falk Nimmerjahn
- grid.5330.50000000121073311Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|