1
|
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025; 15:548. [PMID: 40305359 PMCID: PMC12024907 DOI: 10.3390/biom15040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Forensic DNA phenotyping (FDP) has emerged as an essential tool in criminal investigations, enabling the prediction of physical traits based on genetic information. This review explores the genetic factors influencing skin pigmentation, particularly within Asian populations, with a focus on Thailand. Key genes such as Oculocutaneous Albinism II (OCA2), Dopachrome Tautomerase (DCT), KIT Ligand (KITLG), and Solute Carrier Family 24 Member 2 (SLC24A2) are examined for their roles in melanin production and variations that lead to different skin tones. The OCA2 gene is highlighted for its role in transporting ions that help stabilize melanosomes, while specific variants in the DCT gene, including single nucleotide polymorphisms (SNPs) rs2031526 and rs3782974, are discussed for their potential effects on pigmentation in Asian groups. The KITLG gene, crucial for developing melanocytes, includes the SNP rs642742, which is linked to lighter skin in East Asians. Additionally, recent findings on the SLC24A2 gene are presented, emphasizing its connection to pigmentation through calcium regulation in melanin production. Finally, the review addresses the ethical considerations of using FDP in Thailand, where advances in genetic profiling raise concerns about privacy, consent, and discrimination. Establishing clear guidelines is vital to balancing the benefits of forensic DNA applications with the protection of individual rights.
Collapse
Affiliation(s)
- Gabriel Perez Palomeque
- PhD Program in Medical Sciences, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (K.W.)
| |
Collapse
|
2
|
Forte M, Galliano D, Della Vedova AM, Pellicer A. Parents facing polygenic embryo scores: the 'best choice of a best life' and psychological counselling. Hum Reprod 2025:deaf056. [PMID: 40204628 DOI: 10.1093/humrep/deaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Indexed: 04/11/2025] Open
Abstract
Advances in reproductive medicine and genetic technologies now offer prospective parents the option to test IVF embryos for genetic predispositions to complex diseases, such as coronary heart disease and psychiatric disorders, through polygenic embryo screening (PES). However, limited clinical data on its real-world use leaves parents facing complex decisions based on probabilistic risk scores, requiring them to weigh uncertain benefits against potential harms. While clinical, ethical, and societal concerns regarding PES have been extensively discussed, the psychological considerations have received less attention. This paper highlights the importance of decision aids as part of psychological interventions, which are crucial for helping parents navigate these choices and make informed decisions based on individual perceptions and experiences. Additionally, determining how and when to disclose genetic risk information to children presents significant challenges for families. Early disclosure may lead to anxiety, while withholding information could undermine trust later in life. Psychological counseling is therefore an essential component in supporting families through these sensitive decisions. While PES offers opportunities to reduce genetic risks, it also introduces significant challenges that require thoughtful consideration and comprehensive support for both parents and children.
Collapse
Affiliation(s)
- Marina Forte
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Moon H, Kim M, Sim H, Hong S, Jeon H, Cho J, Choi M. Comprehensive Profiling of Genetic and Nongenetic Factors that Influence Skin Traits in Asian Women from 4 Countries. J Invest Dermatol 2025:S0022-202X(25)00290-8. [PMID: 40010489 DOI: 10.1016/j.jid.2025.02.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Brightness, pore size, wrinkles, color, elasticity, moisture, transepidermal water loss, pH, and sebum are traits that directly affect skin health and aesthetics, which vary substantially among ethnic groups and individuals. Although a complex combination of genetic and environmental factors influences these traits, an accurate estimation of skin phenotypic determination in individuals from Asian countries remains to be determined. In this study, we established the ASTAGR (Asian Skin Traits and Genetics Research) cohort, comprising 2762 female participants from 4 Asian countries (Korea, Vietnam, Thailand, and Indonesia). We documented 26 skin traits and conducted extensive skin-related surveys among the participants. Estimation of the quantitative contribution from whole-genome sequencing-based genotyping, combined with the survey findings, led to a comprehensive documentation of skin trait determination and its variation by country. This approach also revealed major variables affecting each skin trait. Our transethnic GWAS revealed 10 significant associations, 5 of which, to our knowledge, have not been previously reported. This study provides a comprehensive profile of skin traits and their regulation in the 4 Asian countries.
Collapse
Affiliation(s)
- Hyunchae Moon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyungtai Sim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungjoon Hong
- Korea Testing & Research Institute, Gwacheon-si, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinsik Cho
- Korea Testing & Research Institute, Gwacheon-si, Republic of Korea; Interdisciplinary Postgraduate Course in Biomedical Engineering, Jeju National University, Jeju, Republic of Korea.
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Tian Y, Lin Y, Ma Y, Li J, Sahu SK, Fan J, Lin C, Li Z, Shi M, He F, Bai L, Fu Y, Deng Z, Guo H, Li H, Li Q, Xu Y, Lan T, Hou Z, Xia Y, Yang S. Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs. BIOLOGY 2025; 14:30. [PMID: 39857261 PMCID: PMC11760849 DOI: 10.3390/biology14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
The formation of animal breeds usually begins with a small subsample from their ancestral population. Deleterious mutations accumulate in the population under genetic drift, inbreeding, and artificial selection during the development and maintenance of traits desired by humans. White raccoon dogs are among the most popular breeds of farmed raccoon dogs, but white raccoon dogs are more susceptible to disease and have a lower reproductive ability. However, the accumulation of deleterious mutations in this white breed is largely unknown. By analyzing and comparing whole-genome sequencing data from 20 white raccoon dogs and 38 normal raccoon dogs, we detected an increased occurrence of loss-of-function (LoF) mutations in white raccoon dogs compared with normal raccoon dogs. With the finding of a significantly higher dosage of homozygous missense mutations in the white raccoon dog genome, we detected a greater fitness cost in white raccoon dogs. Although a much higher FROH level for ROH fragments longer than 1 Mb has been reported in white raccoon dogs, we did not detect a genetic signal of genetic purging in white raccoon dogs. This study provides valuable genomic resources and new insights into the accumulation of mutation loads in farmed raccoon dogs.
Collapse
Affiliation(s)
- Yinping Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yu Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Jiayi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Sunil Kumar Sahu
- BGI Research, Wuhan 430074, China;
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Jiale Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Chen Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Zhiang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Z.L.); (Q.L.)
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China;
| | - Lianduo Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yuan Fu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Zhangwen Deng
- Guangxi Zhuang Autonomous Region Forest Inventory and Planning Institute, Nanning 530011, China;
| | - Huabing Guo
- Forest Inventory and Planning Institute of Jilin Province, Changchun 130022, China;
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Qiye Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Z.L.); (Q.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
| | - Tianming Lan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| |
Collapse
|
5
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
6
|
Luo S, Li Z, Wang M, Liu Z, Wang D, Bai Y, Ge H, Yu Y, Yu Y, Chen W, Wang Y, Zhang C, Yu J, Song C, Lv C, Zhen Q, Han Y, Sun L. Genome wide association study and meta-analysis identified multiple new risk loci for freckles in 4813 Chinese individuals. Pigment Cell Melanoma Res 2024; 37:808-821. [PMID: 38970458 DOI: 10.1111/pcmr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Freckle is a prevalent pigmentary dermatosis with an obvious hereditary component. Dozens of freckles risk loci have been discovered through research on multiple traits or other diseases, rather than as an independent trait. To discover novel variants associated with freckles, we performed GWAS and meta-analysis in 4813 Chinese individuals. We conducted GWAS and meta-analysis of two cohorts: 197 patients and 1603 controls (Cohort I), and 336 patients and 2677 controls (Cohort II), both from China. Then we performed linkage disequilibrium (LD) analysis, eQTL study, and enrichment analysis with association results for functional implications. Finally, we discovered 59 new SNPs and 13 novel susceptibility genes associated with freckles (Pmeta <5 × 10-8), which has enriched the genetic research on freckles.
Collapse
Affiliation(s)
- Sihan Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Minhao Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhili Liu
- Dalian Dermatosis Hospital, Dalian, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yanxia Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Chang Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Jing Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Can Song
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | | | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Yang Han
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
7
|
Ben-Jemaa S, Boussaha M, Mandonnet N, Bardou P, Naves M. Uncovering structural variants in Creole cattle from Guadeloupe and their impact on environmental adaptation through whole genome sequencing. PLoS One 2024; 19:e0309411. [PMID: 39186744 PMCID: PMC11346954 DOI: 10.1371/journal.pone.0309411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Structural variants play an important role in evolutionary processes. Besides, they constitute a large source of inter individual genetic variation that might represent a major factor in the aetiology of complex, multifactorial traits. Their importance in adaptation is becoming increasingly evident in literature. Yet, the characterization of the genomic landscape of structural variants in local breeds remains scarce to date. Herein, we investigate patterns and gene annotation of structural variants in the Creole cattle from Guadeloupe breed using whole genome sequences from 23 bulls representative of the population. In total, we detected 32821 ascertained SV defining 15258 regions, representing ~ 17% of the Creole cattle genome. Among these, 6639 regions have not been previously reported in the Database of Genomic Variants archive. Average number of structural variants detected per individual in the studied population is in the same order of magnitude of that observed in indicine populations and higher than that reported in taurine breeds. We observe an important within-individual variability where approximately half of the detected structural variants have low frequency (MAF < 0.25). Most of the detected structural variants (55%) occurred in intergenic regions. Genic structural variants overlapped with 7793 genes and the predicted effect of most of them is ranked as "modifier". Among the structural variants that were predicted to have a high functional impact on the protein, a 5.5 Kb in length, highly frequent deletion on chromosome 2, affects ALPI, a gene associated with the interaction between gut microbiota and host immune system. The 6639 newly identified structural variants regions include three deletions and three duplications shared by more than 80% of individuals that are significantly enriched for genes related to tRNA threonylcarbamoyladenosine metabolic process, important for temperature adaptation in thermophilic organisms, therefore suggesting a potential role in the thermotolerance of Creole cattle from Guadeloupe cattle to tropical climate. Overall, highly frequent structural variants that are specific to the Creole cattle population encompass olfactory receptor and immunity genes as well as genes involved in muscle tone, muscle development and contraction. Beyond mapping and characterizing structural variants in the Creole cattle from Guadeloupe breed, this study provides valuable information for a better understanding of the potential role of chromosomal rearrangements in adaptive traits in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France
- Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourragères, Université de Carthage, 2049, Ariana, Tunisia
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, Ecole Nationale Vétérinaire de Toulouse (ENVT), 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 31320, Castanet-Tolosan, France
| | | |
Collapse
|
8
|
Kamitaki N, Hujoel MLA, Mukamel RE, Gebara E, McCarroll SA, Loh PR. A sequence of SVA retrotransposon insertions in ASIP shaped human pigmentation. Nat Genet 2024; 56:1583-1591. [PMID: 39048794 PMCID: PMC11319198 DOI: 10.1038/s41588-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Retrotransposons comprise about 45% of the human genome1, but their contributions to human trait variation and evolution are only beginning to be explored2,3. Here, we find that a sequence of SVA retrotransposon insertions in an early intron of the ASIP (agouti signaling protein) gene has probably shaped human pigmentation several times. In the UK Biobank (n = 169,641), a recent 3.3-kb SVA insertion polymorphism associated strongly with lighter skin pigmentation (0.22 [0.21-0.23] s.d.; P = 2.8 × 10-351) and increased skin cancer risk (odds ratio = 1.23 [1.18-1.27]; P = 1.3 × 10-28), appearing to underlie one of the strongest common genetic influences on these phenotypes within European populations4-6. ASIP expression in skin displayed the same association pattern, with the SVA insertion allele exhibiting 2.2-fold (1.9-2.6) increased expression. This effect had an unusual apparent mechanism: an earlier, nonpolymorphic, human-specific SVA retrotransposon 3.9 kb upstream appeared to have caused ASIP hypofunction by nonproductive splicing, which the new (polymorphic) SVA insertion largely eliminated. Extended haplotype homozygosity indicated that the insertion allele has risen to allele frequencies up to 11% in European populations over the past several thousand years. These results indicate that a sequence of retrotransposon insertions contributed to a species-wide increase, then a local decrease, of human pigmentation.
Collapse
Affiliation(s)
- Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward Gebara
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Bukayev A, Gorin I, Aidarov B, Darmenov A, Balanovska E, Zhabagin M. Predictive accuracy of genetic variants for eye color in a Kazakh population using the IrisPlex system. BMC Res Notes 2024; 17:187. [PMID: 38970104 PMCID: PMC11227171 DOI: 10.1186/s13104-024-06856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
OBJECTIVE This study assesses the accuracy of the IrisPlex system, a genetic eye color prediction tool for forensic analysis, in the Kazakh population. The study compares previously published genotypes of 515 Kazakh individuals from varied geographical and ethnohistorical contexts with phenotypic data on their eye color, introduced for the first time in this research. RESULTS The IrisPlex panel's effectiveness in predicting eye color in the Kazakh population was validated. It exhibited slightly lower accuracy than in Western European populations but was higher than in Siberian populations. The sensitivity was notably high for brown-eyed individuals (0.99), but further research is needed for blue and intermediate eye colors. This study establishes IrisPlex as a useful predictive tool in the Kazakh population and provides a basis for future investigations into the genetic basis of phenotypic variations in this diverse population.
Collapse
Affiliation(s)
- Alizhan Bukayev
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Igor Gorin
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Baglan Aidarov
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Akynkali Darmenov
- Karaganda Academy of the Ministry of Internal Affairs of the Republic of Kazakhstan named after Barimbek Beisenov, Karaganda, 100000, Kazakhstan
| | | | - Maxat Zhabagin
- National Center for Biotechnology, Astana, 010000, Kazakhstan.
| |
Collapse
|
10
|
Ng JY, Zhou H, Li T, Chew FT. Comparisons between wrinkles and photo-ageing detected and self-reported by the participant or identified by trained assessors reveal insights from Chinese individuals in the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. J Physiol Anthropol 2024; 43:14. [PMID: 38762735 PMCID: PMC11102249 DOI: 10.1186/s40101-024-00361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Changes develop on the facial skin as a person ages. Other than chronological time, it has been discovered that gender, ethnicity, air pollution, smoking, nutrition, and sun exposure are notable risk factors that influence the development of skin ageing phenotypes such as wrinkles and photo-ageing. These risk factors can be quantified through epidemiological collection methods. We previously studied wrinkles and photo-ageing in detail using photo-numeric scales. The analysis was performed on the ethnic Chinese skin by three trained assessors. Recent studies have shown that it is possible to use self-reported data to identify skin-related changes including skin colour and skin cancer. In order to investigate the association between risk factors and skin ageing phenotypic outcomes in large-scale epidemiological studies, it would be useful to evaluate whether it is also possible for participants to self-report signs of ageing on their skin. AIM We have previously identified several validated photo-numeric scales for wrinkling and photo-ageing to use on ethnic Chinese skin. Using these scales, our trained assessors grade wrinkling and photo-ageing with moderately high inter-assessor concordance and agreement. The main objective of this study involves letting participants grade self-reported wrinkling and photo-ageing using these same scales. We aim to compare the concordance and agreement between signs of skin ageing by the participant and signs of ageing identified by our assessors. METHOD Three trained assessors studied facial photo-ageing on 1081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. Self-reported facial photo-ageing data by the same 1081 participants were also collated and the two sets of data are compared. RESULTS Here, we found that self-reported signs of photo-ageing are concordant with photo-ageing detected by our assessors. This finding is consistent whether photo-ageing is evaluated through studying wrinkle variations (Spearman's rank correlation (ρ) value: 0.246-0.329) or through studying dyspigmentation patterns (Spearman's rank correlation (ρ) value 0.203-0.278). When studying individual wrinkles, both participants and assessors often detect the presence of the same wrinkle (Spearman's rank correlation (ρ) value 0.249-0.366). A weak-to-fair level of agreement between both participants and assessors (Cohen's kappa (κ) values: 0.041-0.233) persists and is statistically significant after accounting for agreements due to chance. Both the participant and the assessor are largely consistent in evaluating the extent of photo-ageing (area under curve (AUC) values 0.689-0.769) and in discerning between the presence or absence of a given facial wrinkle (area under curve (AUC) values 0.601-0.856). CONCLUSION When we analyse the overall appearance of the face, our results show that signs of photo-ageing identified by the participant are concordant with signs of photo-ageing identified by our assessors. When we focused our analysis on specific areas of the face, we found that participants were more likely to identify and self-report the same wrinkles that our assessors have also detected. Here, we found that self-reported signs of skin ageing provide a satisfactory approximation to the signs of skin ageing identified by our assessors. The ability to use self-reported signs of skin ageing should also be evaluated on scales beyond the ones discussed in this study. Currently, there are not as many photo-numeric scales for quantifying dyspigmentation patterns as there are for quantifying wrinkle variations. As Chinese skin is known to become dyspigmented more easily with age, more photo-numeric scales need to be developed and properly validated.
Collapse
Affiliation(s)
- Jun Yan Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hongyu Zhou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Tianqi Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
11
|
Furrer RA, Barlevy D, Pereira S, Carmi S, Lencz T, Lázaro-Muñoz G. Public Attitudes, Interests, and Concerns Regarding Polygenic Embryo Screening. JAMA Netw Open 2024; 7:e2410832. [PMID: 38743425 PMCID: PMC11094562 DOI: 10.1001/jamanetworkopen.2024.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/16/2024] Open
Abstract
Importance Polygenic embryo screening (PES) is a novel technology that estimates the likelihood of developing future conditions (eg, diabetes or depression) and traits (eg, height or cognitive ability) in human embryos, with the goal of selecting which embryos to use. Given its commercial availability and concerns raised by researchers, clinicians, bioethicists, and professional organizations, it is essential to inform key stakeholders and relevant policymakers about the public's perspectives on this technology. Objective To survey US adults to examine general attitudes, interests, and concerns regarding PES use. Design, Setting, and Participants For this survey study, data were collected from 1 stratified sample and 1 nonprobability sample (samples 1 and 2, respectively) between March and July 2023. The surveys measured approval, interest, and concerns regarding various applications of PES. In the second sample, presentation of a list of potential concerns was randomized (presented at survey onset vs survey end). The survey was designed using Qualtrics and distributed to participants through Prolific, an online sampling firm. Sample 1 was nationally representative with respect to gender, age, and race and ethnicity; sample 2 was recruited without specific demographic criteria. Analyses were conducted between March 2023 and February 2024. Main Outcomes and Measures Participants reported their approval, interest, and concerns regarding various applications of PES and outcomes screened (eg, traits and conditions). Statistical analysis was conducted using independent samples t tests and repeated-measures analyses of variance. Results Of the 1435 respondents in sample 1, demographic data were available for 1427 (mean [SD] age, 45.8 [16.0] years; 724 women [50.7%]). Among these 1427 sample 1 respondents, 1027 (72.0%) expressed approval for PES and 1169 (81.9%) expressed some interest in using PES if already undergoing in vitro fertilization (IVF). Approval among these respondents for using PES for embryo selection was notably high for physical health conditions (1109 [77.7%]) and psychiatric health conditions (1028 [72.0%]). In contrast, there was minority approval for embryo selection based on PES for behavioral traits (514 [36.0%]) and physical traits (432 [30.3%]). Nevertheless, concerns about PES leading to false expectations and promoting eugenic practices were pronounced, with 787 of 1422 (55.3%) and 780 of 1423 (54.8%) respondents finding them very to extremely concerning, respectively. Sample 2 included 192 respondents (mean [SD] age 37.7 [12.2] years; 110 men [57.3%]). These respondents were presented concerns at survey onset (n = 95) vs survey end (n = 97), which was associated with less approval (28-percentage point decrease) and more uncertainty (24 percentage-point increase) but with only slightly higher disapproval (4 percentage-point increase). Conclusions and Relevance These findings suggest that it is critical for health care professionals and medical societies to consider and understand the perspectives of diverse stakeholders (eg, patients undergoing IVF, clinicians, and the general public), given the absence of regulation and the recent commercial availability of PES.
Collapse
Affiliation(s)
- Rémy A. Furrer
- Center for Bioethics, Harvard Medical School, Boston, Massachusetts
| | - Dorit Barlevy
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Todd Lencz
- Institute of Behavioral Science, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Division of Research, Department of Psychiatry, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, New York
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Boston
| |
Collapse
|
12
|
Fazzari V, Moo-Choy A, Panoyan MA, Abbatangelo CL, Polimanti R, Novroski NM, Wendt FR. Multi-ancestry tandem repeat association study of hair colour using exome-wide sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581865. [PMID: 38464141 PMCID: PMC10925195 DOI: 10.1101/2024.02.24.581865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hair colour variation is influenced by hundreds of positions across the human genome but this genetic contribution has only been narrowly explored. Genome-wide association studies identified single nucleotide polymorphisms (SNPs) influencing hair colour but the biology underlying these associations is challenging to interpret. We report 16 tandem repeats (TRs) with effects on different models of hair colour plus two TRs associated with hair colour in diverse ancestry groups. Several of these TRs expand or contract amino acid coding regions of their localized protein such that structure, and by extension function, may be altered. We also demonstrate that independent of SNP variation, these TRs can be used to great an additive polygenic score that predicts darker hair colour. This work adds to the growing body of evidence regarding TR influence on human traits with relatively large and independent effects relative to surrounding SNP variation.
Collapse
|
13
|
Feng Y, Xie N, Inoue F, Fan S, Saskin J, Zhang C, Zhang F, Hansen MEB, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Belay G, Njamnshi AK, Marks MS, Oancea E, Ahituv N, Tishkoff SA. Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans. Nat Genet 2024; 56:258-272. [PMID: 38200130 PMCID: PMC11005318 DOI: 10.1038/s41588-023-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Xie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Human Phenome Institute, School of Life Science, Fudan University, Shanghai, China
| | - Joshua Saskin
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Chao Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone, Botswana
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN); Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elena Oancea
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
15
|
Granja R, Machado H. Forensic DNA phenotyping and its politics of legitimation and contestation: Views of forensic geneticists in Europe. SOCIAL STUDIES OF SCIENCE 2023; 53:850-868. [PMID: 32729409 PMCID: PMC10696903 DOI: 10.1177/0306312720945033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forensic DNA Phenotyping (FDP) is a set of techniques that aim to infer externally visible characteristics in humans - such as eye, hair and skin color - and biogeographical ancestry of an unknown person, based on biological material. FDP has been applied in various jurisdictions in a limited number of high-profile cases to provide intelligence for criminal investigations. There are on-going controversies about the reliability and validity of FDP, which come together with debates about the ethical challenges emerging from the use of this technology in the criminal justice system. Our study explores how, in the context of complex politics of legitimation of and contestation over the use of FDP, forensic geneticists in Europe perceive this technology's potential applications, utility and risks. Forensic geneticists perform several forms of discursive boundary work, making distinctions between science and the criminal justice system, experts and non-experts, and good and bad science. Such forms of boundary work reconstruct the complex positioning vis-à-vis legal and scientific realities. In particular, while mobilizing interest in FDP, forensic geneticists simultaneously carve out notions of risk, accountability and scientific conduct that perform distance from FDP' implications in the criminal justice system.
Collapse
|
16
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
17
|
Wang K, Prüfer K, Krause-Kyora B, Childebayeva A, Schuenemann VJ, Coia V, Maixner F, Zink A, Schiffels S, Krause J. High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry. CELL GENOMICS 2023; 3:100377. [PMID: 37719142 PMCID: PMC10504632 DOI: 10.1016/j.xgen.2023.100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 09/19/2023]
Abstract
The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head.
Collapse
Affiliation(s)
- Ke Wang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai 200438, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany
| | | | - Verena J. Schuenemann
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland
- Human Evolution and Archaeological Sciences, University of Vienna, 1030 Vienna, Austria
| | - Valentina Coia
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
18
|
Noreen S, Ballard D, Mehmood T, Khan A, Khalid T, Rakha A. Evaluation of loci to predict ear morphology using two SNaPshot assays. Forensic Sci Med Pathol 2023; 19:335-356. [PMID: 36401782 PMCID: PMC10518297 DOI: 10.1007/s12024-022-00545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
Abstract
Human ear morphology prediction with SNP-based genotypes is growing in forensic DNA phenotyping and is scarcely explored in Pakistan as a part of EVCs (externally visible characteristics). The ear morphology prediction assays with 21 SNPs were assessed for their potential utility in forensic identification of population. The SNaPshot™ multiplex chemistries, capillary electrophoresis methods and GeneMapper™ software were used for obtaining genotypic data. A total of 33 ear phenotypes were categorized with digital photographs of 300 volunteers. SHEsis software was applied to make LD plot. Ordinal and multinomial logistic regression was implemented for association testing. Multinomial logistic regression was executed to construct the prediction model in 90% training and 10% testing subjects. Several influential SNPs for ear phenotypic variation were found in association testing. The model based on genetic markers predicted ear phenotypes with moderate to good predictive accuracies demonstrated with the area under curve (AUC), sensitivity and specificity of predicted phenotypes. As an additional EVC, the estimated ear phenotypic profiles have the possibility of determining the human ear morphology differences in unknown biological samples found in crimes that do not result in a criminal database hit. Furthermore, this can help in facial reconstruction and act as an investigational lead.
Collapse
Affiliation(s)
- Saadia Noreen
- Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
- King’s Forensics, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, UK
| | - David Ballard
- King’s Forensics, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, UK
| | - Tahir Mehmood
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12 Pakistan
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Tanveer Khalid
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
| |
Collapse
|
19
|
Brancato D, Coniglio E, Bruno F, Agostini V, Saccone S, Federico C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes (Basel) 2023; 14:1604. [PMID: 37628655 PMCID: PMC10454093 DOI: 10.3390/genes14081604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction.
Collapse
Affiliation(s)
- Desiree Brancato
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Elvira Coniglio
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Francesca Bruno
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Vincenzo Agostini
- Department Science and Technical Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Salvatore Saccone
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| |
Collapse
|
20
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
21
|
Ben-Jemaa S, Adam G, Boussaha M, Bardou P, Klopp C, Mandonnet N, Naves M. Whole genome sequencing reveals signals of adaptive admixture in Creole cattle. Sci Rep 2023; 13:12155. [PMID: 37500674 PMCID: PMC10374910 DOI: 10.1038/s41598-023-38774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
The Creole cattle from Guadeloupe (GUA) are well adapted to the tropical environment. Its admixed genome likely played an important role in such adaptation. Here, we sought to detect genomic signatures of selection in the GUA genome. For this purpose, we sequenced 23 GUA individuals and combined our data with sequenced genomes of 99 animals representative of European, African and indicine groups. We detect 17,228,983 single nucleotide polymorphisms (SNPs) in the GUA genome, providing the most detailed exploration, to date, of patterns of genetic variation in this breed. We confirm the higher level of African and indicine ancestries, compared to the European ancestry and we highlight the African origin of indicine ancestry in the GUA genome. We identify five strong candidate regions showing an excess of indicine ancestry and consistently supported across the different detection methods. These regions encompass genes with adaptive roles in relation to immunity, thermotolerance and physical activity. We confirmed a previously identified horn-related gene, RXFP2, as a gene under strong selective pressure in the GUA population likely owing to human-driven (socio-cultural) pressure. Findings from this study provide insight into the genetic mechanisms associated with resilience traits in livestock.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France.
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia.
| | | | - Mekki Boussaha
- AgroParisTech, GABI, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Bardou
- GenPhySE, Ecole Nationale Vétérinaire de Toulouse (ENVT), INRA, Université de Toulouse, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Christophe Klopp
- Genotoul Bioinfo, BioInfoMics, MIAT UR875, Sigenae, INRAE, Castanet-Tolosan, France
| | | | | |
Collapse
|
22
|
Ang KC, Canfield VA, Foster TC, Harbaugh TD, Early KA, Harter RL, Reid KP, Leong SL, Kawasawa Y, Liu D, Hawley JW, Cheng KC. Native American genetic ancestry and pigmentation allele contributions to skin color in a Caribbean population. eLife 2023; 12:e77514. [PMID: 37294081 PMCID: PMC10371226 DOI: 10.7554/elife.77514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Our interest in the genetic basis of skin color variation between populations led us to seek a Native American population with genetically African admixture but low frequency of European light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago Territory of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three albino individuals were determined to be homozygous for a causative multi-nucleotide polymorphism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 and single allele effect size was -8 melanin units. Derived allele frequencies of SLC24A5A111T and SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of -6 and -4, respectively. Native American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 24-29). The responsible hypopigmenting genetic variants remain to be identified, since none of the published polymorphisms predicted in prior literature to affect skin color in Native Americans caused detectable hypopigmentation in the Kalinago.
Collapse
Affiliation(s)
- Khai C Ang
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Victor A Canfield
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Tiffany C Foster
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Thaddeus D Harbaugh
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Kathryn A Early
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Rachel L Harter
- Department of Pathology, Penn State College of MedicineHersheyUnited States
| | - Katherine P Reid
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Shou Ling Leong
- Department of Family & Community Medicine, Penn State College of MedicineHersheyUnited States
| | - Yuka Kawasawa
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Institute of Personalized Medicine, Penn State College of MedicineHersheyUnited States
| | - Dajiang Liu
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Public Health Sciences, Penn State College of MedicineHersheyUnited States
| | | | - Keith C Cheng
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Department of Biochemistry and Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
23
|
Villaplana-Velasco A, Pigeyre M, Engelmann J, Rawlik K, Canela-Xandri O, Tochel C, Lona-Durazo F, Mookiah MRK, Doney A, Parra EJ, Trucco E, MacGillivray T, Rannikmae K, Tenesa A, Pairo-Castineira E, Bernabeu MO. Fine-mapping of retinal vascular complexity loci identifies Notch regulation as a shared mechanism with myocardial infarction outcomes. Commun Biol 2023; 6:523. [PMID: 37188768 PMCID: PMC10185685 DOI: 10.1038/s42003-023-04836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is increasing evidence that the complexity of the retinal vasculature measured as fractal dimension, Df, might offer earlier insights into the progression of coronary artery disease (CAD) before traditional biomarkers can be detected. This association could be partly explained by a common genetic basis; however, the genetic component of Df is poorly understood. We present a genome-wide association study (GWAS) of 38,000 individuals with white British ancestry from the UK Biobank aimed to comprehensively study the genetic component of Df and analyse its relationship with CAD. We replicated 5 Df loci and found 4 additional loci with suggestive significance (P < 1e-05) to contribute to Df variation, which previously were reported in retinal tortuosity and complexity, hypertension, and CAD studies. Significant negative genetic correlation estimates support the inverse relationship between Df and CAD, and between Df and myocardial infarction (MI), one of CAD's fatal outcomes. Fine-mapping of Df loci revealed Notch signalling regulatory variants supporting a shared mechanism with MI outcomes. We developed a predictive model for MI incident cases, recorded over a 10-year period following clinical and ophthalmic evaluation, combining clinical information, Df, and a CAD polygenic risk score. Internal cross-validation demonstrated a considerable improvement in the area under the curve (AUC) of our predictive model (AUC = 0.770 ± 0.001) when comparing with an established risk model, SCORE, (AUC = 0.741 ± 0.002) and extensions thereof leveraging the PRS (AUC = 0.728 ± 0.001). This evidences that Df provides risk information beyond demographic, lifestyle, and genetic risk factors. Our findings shed new light on the genetic basis of Df, unveiling a common control with MI, and highlighting the benefits of its application in individualised MI risk prediction.
Collapse
Affiliation(s)
- Ana Villaplana-Velasco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Marie Pigeyre
- Population Health Research Institute (PHRI), Department of Medicine, Faculty of Health Sciences, McMaster University, McMaster University, Hamilton, Ontario, Canada
| | - Justin Engelmann
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit, IGC, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Tochel
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | - Alex Doney
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Esteban J Parra
- University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Emanuele Trucco
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Tom MacGillivray
- VAMPIRE project, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kristiina Rannikmae
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Albert Tenesa
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, IGC, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Erola Pairo-Castineira
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK.
- The Bayes Centre, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
24
|
Farré X, Blay N, Cortés B, Carreras A, Iraola-Guzmán S, de Cid R. Skin Phototype and Disease: A Comprehensive Genetic Approach to Pigmentary Traits Pleiotropy Using PRS in the GCAT Cohort. Genes (Basel) 2023; 14:149. [PMID: 36672889 PMCID: PMC9859115 DOI: 10.3390/genes14010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Human pigmentation has largely been associated with different disease prevalence among populations, but most of these studies are observational and inconclusive. Known to be genetically determined, pigmentary traits have largely been studied by Genome-Wide Association Study (GWAS), mostly in Caucasian ancestry cohorts from North Europe, identifying robustly, several loci involved in many of the pigmentary traits. Here, we conduct a detailed analysis by GWAS and Polygenic Risk Score (PRS) of 13 pigmentary-related traits in a South European cohort of Caucasian ancestry (n = 20,000). We observed fair phototype strongly associated with non-melanoma skin cancer and other dermatoses and confirmed by PRS-approach the shared genetic basis with skin and eye diseases, such as melanoma (OR = 0.95), non-melanoma skin cancer (OR = 0.93), basal cell carcinoma (OR = 0.97) and darker phototype with vitiligo (OR = 1.02), cataracts (OR = 1.04). Detailed genetic analyses revealed 37 risk loci associated with 10 out of 13 analyzed traits, and 16 genes significantly associated with at least two pigmentary traits. Some of them have been widely reported, such as MC1R, HERC2, OCA2, TYR, TYRP1, SLC45A2, and some novel candidate genes C1QTNF3, LINC02876, and C1QTNF3-AMACR have not been reported in the GWAS Catalog, with regulatory potential. These results highlight the importance of the assess phototype as a genetic proxy of skin functionality and disease when evaluating open mixed populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafael de Cid
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
25
|
Wendt FR, Pathak GA, Polimanti R. Phenome-wide association study of loci harboring de novo tandem repeat mutations in UK Biobank exomes. Nat Commun 2022; 13:7682. [PMID: 36509785 PMCID: PMC9744822 DOI: 10.1038/s41467-022-35423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
When present in coding regions, tandem repeats (TRs) may have large effects on protein structure and function contributing to health and disease. We use a family-based design to identify de novo TRs and assess their impact at the population level in 148,607 European ancestry participants from the UK Biobank. The 427 loci with de novo TR mutations are enriched for targets of microRNA-184 (21.1-fold, P = 4.30 × 10-5, FDR = 9.50 × 10-3). There are 123 TR-phenotype associations with posterior probabilities > 0.95. These relate to body structure, cognition, and cardiovascular, metabolic, psychiatric, and respiratory outcomes. We report several loci with large likely causal effects on tissue microstructure, including the FAN1-[TG]N and carotid intima-media thickness (mean thickness: beta = 5.22, P = 1.22 × 10-6, FDR = 0.004; maximum thickness: beta = 6.44, P = 1.12 × 10-6, FDR = 0.004). Two exonic repeats FNBP4-[GGT]N and BTN2A1-[CCT]N alter protein structure. In this work, we contribute clear and testable hypotheses of dose-dependent TR implications linking genetic variation and protein structure with health and disease outcomes.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
26
|
Cerdeña JP, Grubbs V, Non AL. Racialising genetic risk: assumptions, realities, and recommendations. Lancet 2022; 400:2147-2154. [PMID: 36502852 DOI: 10.1016/s0140-6736(22)02040-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica P Cerdeña
- Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Anthropology, University of Connecticut, Storrs, CT, USA
| | - Vanessa Grubbs
- Department of Ambulatory and Preventive Medicine, Alameda Health System, Oakland, CA, USA
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, CA, USA.
| |
Collapse
|
27
|
Sari O I, Simsek SZ, Filoglu G, Bulbul O. Predicting Eye and Hair Color in a Turkish Population Using the HIrisPlex System. Genes (Basel) 2022; 13:2094. [PMID: 36421769 PMCID: PMC9690125 DOI: 10.3390/genes13112094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Forensic DNA Phenotyping (FDP) can reveal the appearance of an unknown individual by predicting the ancestry, phenotype (i.e., hair, eye, skin color), and age from DNA obtained at the crime scene. The HIrisPlex system has been developed to simultaneously predict eye and hair color. However, the prediction accuracy of the system needs to be assessed for the tested population before implementing FDP in casework. In this study, we evaluated the performance of the HIrisPlex system on 149 individuals from the Turkish population. We applied the single-based extension (SNaPshot chemistry) method and used the HIrisPlex online tool to test the prediction of the eye and hair colors. The accuracy of the HIrisPlex system was assessed through the calculation of the area under the receiver characteristic operating curves (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The results showed that the proposed method successfully predicted the eye and hair color, especially for blue (100%) and brown (95.60%) eye and black (95.23) and brown (98.94) hair colors. As observed in previous studies, the system failed to predict intermediate eye color, representing 25% in our cohort. The majority of incorrect predictions were observed for blond hair color (40.7%). Previous HIrisPlex studies have also noted difficulties with these phenotypes. Our study shows that the HIrisPlex system can be applied to forensic casework in Turkey with careful interpretation of the data, particularly intermediate eye color and blond hair color.
Collapse
Affiliation(s)
- Ilksen Sari O
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Gelisim University, 34310 Istanbul, Turkey
| | - Sumeyye Zulal Simsek
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Gonul Filoglu
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Ozlem Bulbul
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| |
Collapse
|
28
|
Ng JY, Chew FT. A systematic review of skin ageing genes: gene pleiotropy and genes on the chromosomal band 16q24.3 may drive skin ageing. Sci Rep 2022; 12:13099. [PMID: 35907981 PMCID: PMC9338925 DOI: 10.1038/s41598-022-17443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Skin ageing is the result of intrinsic genetic and extrinsic lifestyle factors. However, there is no consensus on skin ageing phenotypes and ways to quantify them. In this systematic review, we first carefully identified 56 skin ageing phenotypes from multiple literature sources and sought the best photo-numeric grading scales to evaluate them. Next, we conducted a systematic review on all 44 Genome-wide Association Studies (GWAS) on skin ageing published to date and identified genetic risk factors (2349 SNPs and 366 genes) associated with skin ageing. We identified 19 promising SNPs found to be significantly (p-Value < 1E-05) associated with skin ageing phenotypes in two or more independent studies. Here we show, using enrichment analyses strategies and gene expression data, that (1) pleiotropy is a recurring theme among skin ageing genes, (2) SNPs associated with skin ageing phenotypes are mostly located in a small handful of 44 pleiotropic and hub genes (mostly on the chromosome band 16q24.3) and 32 skin colour genes. Since numerous genes on the chromosome band 16q24.3 and skin colour genes show pleiotropy, we propose that (1) genes traditionally identified to contribute to skin colour have more than just skin pigmentation roles, and (2) further progress towards understand the development of skin pigmentation requires understanding the contributions of genes on the chromosomal band 16q24.3. We anticipate our systematic review to serve as a hub to locate primary literature sources pertaining to the genetics of skin ageing and to be a starting point for more sophisticated work examining pleiotropic genes, hub genes, and skin ageing phenotypes.
Collapse
Affiliation(s)
- Jun Yan Ng
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, Faculty of Science, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, Faculty of Science, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
29
|
Simcoe MJ, Shah A, Fan B, Choquet H, Weisschuh N, Waseem NH, Jiang C, Melles RB, Ritch R, Mahroo OA, Wissinger B, Jorgenson E, Wiggs JL, Garway-Heath DF, Hysi PG, Hammond CJ. Genome-Wide Association Study Identifies Two Common Loci Associated with Pigment Dispersion Syndrome/Pigmentary Glaucoma and Implicates Myopia in its Development. Ophthalmology 2022; 129:626-636. [PMID: 35031440 DOI: 10.1016/j.ophtha.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To identify genetic variants associated with pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) in unrelated patients and to further understand the genetic and potentially causal relationships between PDS and associated risk factors. DESIGN A 2-stage genome-wide association meta-analysis with replication and subsequent in silico analyses including Mendelian randomization. PARTICIPANTS A total of 574 cases with PG or PDS and 52 627 controls of European descent. METHODS Genome-wide association analyses were performed in 4 cohorts and meta-analyzed in 3 stages: (1) a discovery meta-analysis was performed in 3 cohorts, (2) replication was performed in the fourth cohort, and (3) all 4 cohorts were meta-analyzed to increase statistical power. Two-sample Mendelian randomization was used to determine whether refractive error and intraocular pressure exert causal effects over PDS. MAIN OUTCOME MEASURES The association of genetic variants with PDS and whether myopia exerts causal effects over PDS. RESULTS Significant association was present at 2 novel loci for PDS/PG. These loci and follow-up analyses implicate the genes gamma secretase activator protein (GSAP) (lead single nucleotide polymorphism [SNP]: rs9641220, P = 6.0×10-10) and glutamate metabotropic receptor 5 (GRM5)/TYR (lead SNP: rs661177, P = 3.9×10-9) as important factors in disease risk. Mendelian randomization showed significant evidence that negative refractive error (myopia) exerts a direct causal effect over PDS (P = 8.86×10-7). CONCLUSIONS Common SNPs relating to the GSAP and GRM5/TYR genes are associated risk factors for the development of PDS and PG. Although myopia is a known risk factor, this study uses genetic data to demonstrate that myopia is, in part, a cause of PDS and PG.
Collapse
Affiliation(s)
- Mark J Simcoe
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ameet Shah
- Department of Ophthalmology, Royal Free Hospital NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Baojian Fan
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Naushin H Waseem
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Ronald B Melles
- Kaiser Permanente Northern California, Department of Ophthalmology, Redwood City, California
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Omar A Mahroo
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Janey L Wiggs
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - David F Garway-Heath
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Pirro G Hysi
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Christopher J Hammond
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom.
| |
Collapse
|
30
|
Demars J, Labrune Y, Iannuccelli N, Deshayes A, Leroux S, Gilbert H, Aymard P, Benitez F, Riquet J. A genome-wide epistatic network underlies the molecular architecture of continuous color variation of body extremities. Genomics 2022; 114:110361. [PMID: 35378242 DOI: 10.1016/j.ygeno.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
Deciphering the molecular architecture of coat coloration for a better understanding of the biological mechanisms underlying pigmentation still remains a challenge. We took advantage of a rabbit French experimental population in which both a pattern and a gradient of coloration from white to brown segregated within the himalayan phenotype. The whole experimental design was genotyped using the high density Affymetrix® AxiomOrcun™ SNP Array and phenotyped into 6 different groups ordered from the lighter to the darker. Genome-wide association analyses pinpointed an oligogenic determinism, under recessive and additive inheritance, involving genes already known in melanogenesis (ASIP, KIT, MC1R, TYR), and likely processed pseudogenes linked to ribosomal function, RPS20 and RPS14. We also identified (i) gene-gene interactions through ASIP:MC1R affecting light cream/beige phenotypes while KIT:RPS responsible of dark chocolate/brown colors and (ii) a genome-wide epistatic network involving several others coloration genes such as POT1 or HPS5. Finally, we determined the recessive inheritance of the English spotting phenotype likely involving a copy number variation affecting at least the end of the coding sequence of the KIT gene. Our analyses of coloration as a continuous trait allowed us to go beyond much of the established knowledge through the detection of additional genes and gene-gene interactions that may contribute to the molecular architecture of the coloration phenotype.
Collapse
Affiliation(s)
- Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Yann Labrune
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Nathalie Iannuccelli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Alice Deshayes
- UMR967, CEA, INSERM, Institut de Radiobiologie Cellulaire et Moléculaire, Télomères et réparation du chromosome, F- 92265 Fontenay-aux-Roses, France.
| | - Sophie Leroux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Patrick Aymard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Florence Benitez
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
31
|
Investigating the genetic architecture of eye colour in a Canadian cohort. iScience 2022; 25:104485. [PMID: 35712076 PMCID: PMC9194134 DOI: 10.1016/j.isci.2022.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Eye color is highly variable in populations with European ancestry, ranging from low to high quantities of melanin in the iris. Polymorphisms in the HERC2/OCA2 locus have the largest effect on eye color in these populations, although other genomic regions also influence eye color. We performed genome-wide association studies of eye color in a Canadian cohort of European ancestry (N = 5,641) and investigated candidate causal variants. We uncovered several candidate causal signals in the HERC2/OCA2 region, whereas other loci likely harbor a single causal signal. We observed colocalization of eye color signals with the expression or methylation profiles of cultured primary melanocytes. Genetic correlations of eye and hair color suggest high genome-wide pleiotropy, but locus-level differences in the genetic architecture of both traits. Overall, we provide a better picture of the polymorphisms underpinning eye color variation, which may be a consequence of specific molecular processes in the iris melanocytes. Genome-wide association studies of eye color in 5,641 participants Multiple independent candidate causal variants were identified across HERC2/OCA2 Single candidate causal variants observed on or near IRF4, SLC24A4, TYR, and TYRP1 Colocalization of eye color signals with expression and methylation profiles
Collapse
|
32
|
Kim Y, Yin J, Huang H, Jorgenson E, Choquet H, Asgari MM. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. Commun Biol 2022; 5:386. [PMID: 35449187 PMCID: PMC9023580 DOI: 10.1038/s42003-022-03301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/18/2022] [Indexed: 01/07/2023] Open
Abstract
Actinic keratosis (AK) is a common precancerous cutaneous neoplasm that arises on chronically sun-exposed skin. AK susceptibility has a moderate genetic component, and although a few susceptibility loci have been identified, including IRF4, TYR, and MC1R, additional loci have yet to be discovered. We conducted a genome-wide association study of AK in non-Hispanic white participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (n = 63,110, discovery cohort), with validation in the Mass-General Brigham (MGB) Biobank cohort (n = 29,130). We identified eleven loci (P < 5 × 10-8), including seven novel loci, of which four novel loci were validated. In a meta-analysis (GERA + MGB), one additional novel locus, TRPS1, was identified. Genes within the identified loci are implicated in pigmentation (SLC45A2, IRF4, BNC2, TYR, DEF8, RALY, HERC2, and TRPS1), immune regulation (FOXP1 and HLA-DQA1), and cell signaling and tissue remodeling (MMP24) pathways. Our findings provide novel insight into the genetics and pathogenesis of AK susceptibility.
Collapse
Affiliation(s)
- Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| |
Collapse
|
33
|
Marley AR, Li M, Champion VL, Song Y, Han J, Li X. Citrus-Gene interaction and melanoma risk in the UK Biobank. Int J Cancer 2022; 150:976-983. [PMID: 34724200 PMCID: PMC10015424 DOI: 10.1002/ijc.33862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022]
Abstract
High citrus consumption may increase melanoma risk; however, little is known about the biological mechanisms of this association, or whether it is modified by genetic variants. We conducted a genome-wide analysis of gene-citrus consumption interactions on melanoma risk among 1563 melanoma cases and 193 296 controls from the UK Biobank. Both the 2-degrees-of-freedom (df) joint test of genetic main effect and gene-environment (G-E) interaction and the standard 1-df G-E interaction test were performed. Three index SNPs (lowest P-value SNP among highly correlated variants [r2 > .6]) were identified from among the 365 genome-wide significant 2-df test results (rs183783391 on chromosome 3 [MITF], rs869329 on chromosome 9 [MTAP] and rs11446223 on chromosome 16 [DEF8]). Although all three were statistically significant for the 2-df test (4.25e-08, 1.98e-10 and 4.93e-13, respectively), none showed evidence of interaction according to the 1-df test (P = .73, .24 and .12, respectively). Eight nonindex, 2-df test significant SNPs on chromosome 16 were significant (P < .05) according to the 1-df test, providing evidence of citrus-gene interaction. Seven of these SNPs were mapped to AFG3L1P (rs199600347, rs111822773, rs113178244, rs3803683, rs73283867, rs78800020, rs73283871), and one SNP was mapped to GAS8 (rs74583214). We identified several genetic loci that may elucidate the association between citrus consumption and melanoma risk. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Andrew R Marley
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University School of Public health, Bloomington, Indiana, USA
| | - Victoria L Champion
- Department of Community Health Systems, Indiana University School of Nursing, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Jiali Han
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Xin Li
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
34
|
Jonnalagadda M, Bharti N, Kasibhatla SM, Wagh MA, Joshi R, Ozarkar S, Ashma R. MC1R diversity and its role in skin pigmentation variation in West Maharashtra, India. Am J Hum Biol 2022; 34:e23734. [PMID: 35188998 DOI: 10.1002/ajhb.23734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES MC1R polymorphisms have been reported to be under a selective constraint in populations inhabiting high UVR regions such as Africans; however, these patterns are not consistent. Here we analyze the MC1R gene in West Maharashtra, India to see if sequence diversity corresponds to their diverse pigmentary profiles and if MC1R is constrained in dark skinned tribal as compared to lighter skinned caste populations. METHODS A 2648 bp region of this gene was sequenced in 102 individuals and the data was compared for π, ϴ diversity indices. Tajima's D was assessed for signatures of purifying selection and MC1R variants were associated with MI measures using the additive, dominant, and recessive models. Pairwise FST was tested among study populations and between study populations and 1000 Genomes regional samples. RESULTS MC1R diversity was not uniquely patterned among castes and tribes. Non-synonymous variants rs2228479A, rs1805007_T, and rs885479_A showed low variability in these populations. Selection tests did not indicate any constraint on MC1R and pairwise FST were also low among the study populations (-0.0163 to 0.06112). The SNP rs3212359 was significantly associated with MI measures when tested using different association models. CONCLUSIONS We do not find evidence of a selective constraint on MC1R. The presence of a large number of unique haplotypes and low FST values at this locus suggests that MC1R polymorphisms may not be influencing pigmentation variation among castes and tribes in this region. Observed associations between rs3212359 and MI measures need to be validated through studies on larger samples and in-vitro functional studies.
Collapse
Affiliation(s)
- Manjari Jonnalagadda
- Symbiosis School for Liberal Arts, Symbiosis International (Deemed University), Pune, India
| | - Neeraj Bharti
- HPC-MBA Group, C-DAC Innovation Park, Centre for Development of Advanced Computing, Pune, India
| | | | - Mayur A Wagh
- Symbiosis School for Liberal Arts, Symbiosis International (Deemed University), Pune, India
| | - Rajendra Joshi
- HPC-MBA Group, C-DAC Innovation Park, Centre for Development of Advanced Computing, Pune, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, India
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
35
|
Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting Physical Appearance from DNA Data-Towards Genomic Solutions. Genes (Basel) 2022; 13:genes13010121. [PMID: 35052461 PMCID: PMC8774670 DOI: 10.3390/genes13010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The idea of forensic DNA intelligence is to extract from genomic data any information that can help guide the investigation. The clues to the externally visible phenotype are of particular practical importance. The high heritability of the physical phenotype suggests that genetic data can be easily predicted, but this has only become possible with less polygenic traits. The forensic community has developed DNA-based predictive tools by employing a limited number of the most important markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many other appearance phenotypes requires big data coupled with sophisticated machine learning methods to develop accurate genomic predictors. A significant challenge in developing universal genomic predictive methods will be the collection of sufficiently large data sets. These should be created using whole-genome sequencing technology to enable the identification of rare DNA variants implicated in phenotype determination. It is worth noting that the correctness of the forensic sketch generated from the DNA data depends on the inclusion of an age factor. This, however, can be predicted by analysing epigenetic data. An important limitation preventing whole-genome approaches from being commonly used in forensics is the slow progress in the development and implementation of high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology suggests that such methods may possibly be developed in forensics.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Paweł Teisseyre
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Jan Mielniczuk
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Central Forensic Laboratory of the Police, 00-583 Warsaw, Poland
- Correspondence: ; Tel.: +48-126-645-024
| |
Collapse
|
36
|
Venkataraman GR, DeBoever C, Tanigawa Y, Aguirre M, Ioannidis AG, Mostafavi H, Spencer CCA, Poterba T, Bustamante CD, Daly MJ, Pirinen M, Rivas MA. Bayesian model comparison for rare-variant association studies. Am J Hum Genet 2021; 108:2354-2367. [PMID: 34822764 PMCID: PMC8715195 DOI: 10.1016/j.ajhg.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.
Collapse
Affiliation(s)
| | - Christopher DeBoever
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Matthew Aguirre
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Timothy Poterba
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland.
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Ji P, Wang H, Cheng Y, Liang S. Prognostic prediction and gene regulation network of EIF2S2 in hepatocellular carcinoma based on data mining. J Gastrointest Oncol 2021; 12:3061-3078. [PMID: 35070430 PMCID: PMC8748036 DOI: 10.21037/jgo-21-748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor with a high fatality rate, predicting poor prognosis and therapeutic effect. Screening potential prognostic genes in HCC could be a creative way to advance clinical treatment. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) has reportedly been linked to several tumors, including liver cancer, but the prognostic predictions remain unknown. Therefore, we aimed to clarify the prognostic role and interaction network of EIF2S2 in HCC using bioinformatics data. METHODS We screened EIF2S2 using the Oncomine, Ualcan, and TCGA databases. R software was used to analyze the mRNA level and clinicopathological characteristics of hepatocellular carcinoma. Evaluation of the correlations between EIF2S2 and patients' survival was made using the Kaplan-Meier curves and Cox proportional hazards regression model. Then, the influence of EIF2S2 gene mutations on the prognosis of patients was explored by cBioPortal. The protein-protein interaction network of 50 similar genes related to EIF2S2 was implemented by GEPIA2 and Metascape. The LinkedOmics database allowed us to carry out Gene Set Enrichment Analysis. Finally, we constructed the EIF2S2 kinase, miRNA, and transcription factor target networks using GeneMANIA. RESULTS EIF2S2 mRNA was overexpressed in HCC and was closely associated with clinicopathological features, including gender, age, race, tumor grade, and stage. There was no correlation between EIF2S2 genetic mutations and prognostic survival. Combining Cox proportional hazards regression model analyses, high-expressed EIF2S2 predicted poor prognosis in HCC patients. Additionally, we screened the top three EIF2S2-related genes (PFDN4, HM13, and SNRPD1), the 50 similar genes, and then constructed a 50-similar-gene protein-protein interaction network identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using Metascape. EIF2S2 target networks in HCC were identified in kinase, miRNA, and transcription factor networks, including the mitogen-activated protein kinase 1 (MAPK1), miRNAs (Mir-144), and transcription factors (GGAANCGGAANY_UNKNOWN) using GeneMANIA. CONCLUSIONS EIF2S2 plays a crucial role in the gene-regulating network of HCC and may be a potential prognostic marker or therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Piyou Ji
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Haitao Wang
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yu Cheng
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaohua Liang
- Department of Human Anatomy, Basic Medical College, Binzhou Medical University, Yantai, China
| |
Collapse
|
38
|
Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr Oncol 2021; 28:4756-4771. [PMID: 34898573 PMCID: PMC8628692 DOI: 10.3390/curroncol28060401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) and candidate pathway studies have identified low-penetrant genetic variants associated with cutaneous melanoma. We investigated the association of melanoma-risk variants with primary melanoma tumor prognostic characteristics and melanoma-specific survival. The Genes, Environment, and Melanoma Study enrolled 3285 European origin participants with incident invasive primary melanoma. For each of 47 melanoma-risk single nucleotide polymorphisms (SNPs), we used linear and logistic regression modeling to estimate, respectively, the per allele mean changes in log of Breslow thickness and odds ratios for presence of ulceration, mitoses, and tumor-infiltrating lymphocytes (TILs). We also used Cox proportional hazards regression modeling to estimate the per allele hazard ratios for melanoma-specific survival. Passing the false discovery threshold (p = 0.0026) were associations of IRF4 rs12203592 and CCND1 rs1485993 with log of Breslow thickness, and association of TERT rs2242652 with presence of mitoses. IRF4 rs12203592 also had nominal associations (p < 0.05) with presence of mitoses and melanoma-specific survival, as well as a borderline association (p = 0.07) with ulceration. CCND1 rs1485993 also had a borderline association with presence of mitoses (p = 0.06). MX2 rs45430 had nominal associations with log of Breslow thickness, presence of mitoses, and melanoma-specific survival. Our study indicates that further research investigating the associations of these genetic variants with underlying biologic pathways related to tumor progression is warranted.
Collapse
|
39
|
Xu M, Mehl L, Zhang T, Thakur R, Sowards H, Myers T, Jessop L, Chesi A, Johnson ME, Wells AD, Michael HT, Bunda P, Jones K, Higson H, Hennessey RC, Jermusyk A, Kovacs MA, Landi MT, Iles MM, Goldstein AM, Choi J, Chanock SJ, Grant SF, Chari R, Merlino G, Law MH, Brown KM, Brown KM. A UVB-responsive common variant at chromosome band 7p21.1 confers tanning response and melanoma risk via regulation of the aryl hydrocarbon receptor, AHR. Am J Hum Genet 2021; 108:1611-1630. [PMID: 34343493 DOI: 10.1016/j.ajhg.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Wang Y. Association of pigmentation related-genes polymorphisms and geographic environmental variables in the Chinese population. Hereditas 2021; 158:24. [PMID: 34238381 PMCID: PMC8268332 DOI: 10.1186/s41065-021-00189-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human skin color is highly heritable and one of the most variable phenotypic traits. However, the genetic causes and environmental selective pressures underlying this phenotypic variation have remained largely unknown. To investigate whether the pigmentation related-genes polymorphisms are associated with the geographic environmental variables. We selected randomly 795 healthy individuals from eight ethnic groups in nine provinces in China. Six single nucleotide polymorphisms (SNPs) of SLC45A2 and TYR were genotyped using Agena MassARRAY. The Chi-square test and Spearman correlation analysis were used to compare the frequency distribution of genotypes among different ethnic groups and evaluate the relationship between SNP genetic diversity and environmental variables, respectively. Results The results indicated that rs28777 and rs183671 (SLC45A2) and rs1042602 (TYR) genotype frequency distributions were significantly different between the Xinjiang-Uighur and other ethnic groups (P < 0.05). Spearman correlation analysis found that rs28777-A (r = − 0.090, P = 0.011), rs183671-G (r = − 0.105, P = 0.003), rs1042602-A (r = − 0.108, P = 0.002), rs1126809-A (r = − 0.151, P < 0.001) allele frequencies were negatively correlated with the longitude; rs183671-G (r = 0.151), rs1042602-A (r = 0.157) and rs1126809-A (r = 0.138) allele frequencies were positively associated with the latitude (P < 0.001); rs183671-G (r = 0.116, P = 0.001), rs1042602-A (r = 0.105, P = 0.003) and rs1126809-A (r = 0.070, P = 0.048) allele frequencies were positively correlated with the sunshine hours; rs183671-G (r = − 0.076, P = 0.033), rs1042602-A (r = − 0.079, P = 0.027) and rs1126809-A (r = − 0.076, P = 0.031) were negatively correlated with the annual average temperature. Conclusions Our results confirmed the idea that environmental factors have been an important selective pressure upon pigmentation related gene polymorphisms. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00189-7.
Collapse
Affiliation(s)
- Yuxin Wang
- Queen Mary School, Nanchang University, 461 Bayi Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
43
|
Abstract
Some of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 y, we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today. Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all of the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1,158 individuals from West Eurasia covering a period of 40,000 y combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on 170 skin pigmentation-associated variants ascertained in the UK Biobank. However, we also show that this signal is driven by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Western Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.
Collapse
|
44
|
Feng Y, McQuillan MA, Tishkoff SA. Evolutionary genetics of skin pigmentation in African populations. Hum Mol Genet 2021; 30:R88-R97. [PMID: 33438000 PMCID: PMC8117430 DOI: 10.1093/hmg/ddab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Skin color is a highly heritable human trait, and global variation in skin pigmentation has been shaped by natural selection, migration and admixture. Ethnically diverse African populations harbor extremely high levels of genetic and phenotypic diversity, and skin pigmentation varies widely across Africa. Recent genome-wide genetic studies of skin pigmentation in African populations have advanced our understanding of pigmentation biology and human evolutionary history. For example, novel roles in skin pigmentation for loci near MFSD12 and DDB1 have recently been identified in African populations. However, due to an underrepresentation of Africans in human genetic studies, there is still much to learn about the evolutionary genetics of skin pigmentation. Here, we summarize recent progress in skin pigmentation genetics in Africans and discuss the importance of including more ethnically diverse African populations in future genetic studies. In addition, we discuss methods for functional validation of adaptive variants related to skin pigmentation.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Palmal S, Adhikari K, Mendoza-Revilla J, Fuentes-Guajardo M, Silva de Cerqueira CC, Bonfante B, Chacón-Duque JC, Sohail A, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Lozano RB, Everardo-Martínez P, Gómez-Valdés J, Villamil-Ramírez H, Hünemeier T, Ramallo V, Parolin ML, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Faux P, Ruiz-Linares A. Prediction of eye, hair and skin colour in Latin Americans. Forensic Sci Int Genet 2021; 53:102517. [PMID: 33865096 DOI: 10.1016/j.fsigen.2021.102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Collapse
Affiliation(s)
- Sagnik Palmal
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú; Unit of Human Evolutionary Genetics, Institut Pasteur, Paris 75015, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Betty Bonfante
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Juan Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Anood Sohail
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Claudia Jaramillo
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan; GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- National Institute of Anthropology and History, Mexico City 6600, Mexico; Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena 07745, Germany
| | | | - Jorge Gómez-Valdés
- National Institute of Anthropology and History, Mexico City 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil; Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Maria-Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus), Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | | | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Arica 1000000, Chile
| | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Faux
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France.
| | - Andrés Ruiz-Linares
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China.
| |
Collapse
|
46
|
Evaluation of supervised machine-learning methods for predicting appearance traits from DNA. Forensic Sci Int Genet 2021; 53:102507. [PMID: 33831816 DOI: 10.1016/j.fsigen.2021.102507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022]
Abstract
The prediction of human externally visible characteristics (EVCs) based solely on DNA information has become an established approach in forensic and anthropological genetics in recent years. While for a large set of EVCs, predictive models have already been established using multinomial logistic regression (MLR), the prediction performances of other possible classification methods have not been thoroughly investigated thus far. Motivated by the question to identify a potential classifier that outperforms these specific trait models, we conducted a systematic comparison between the widely used MLR and three popular machine learning (ML) classifiers, namely support vector machines (SVM), random forest (RF) and artificial neural networks (ANN), that have shown good performance outside EVC prediction. As examples, we used eye, hair and skin color categories as phenotypes and genotypes based on the previously established IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers. We compared and assessed the performances of each of the four methods, complemented by detailed hyperparameter tuning that was applied to some of the methods in order to maximize their performance. Overall, we observed that all four classification methods showed rather similar performance, with no method being substantially superior to the others for any of the traits, although performances varied slightly across the different traits and more so across the trait categories. Hence, based on our findings, none of the ML methods applied here provide any advantage on appearance prediction, at least when it comes to the categorical pigmentation traits and the selected DNA markers used here.
Collapse
|
47
|
Simcoe M, Valdes A, Liu F, Furlotte NA, Evans DM, Hemani G, Ring SM, Smith GD, Duffy DL, Zhu G, Gordon SD, Medland SE, Vuckovic D, Girotto G, Sala C, Catamo E, Concas MP, Brumat M, Gasparini P, Toniolo D, Cocca M, Robino A, Yazar S, Hewitt A, Wu W, Kraft P, Hammond CJ, Shi Y, Chen Y, Zeng C, Klaver CCW, Uitterlinden AG, Ikram MA, Hamer MA, van Duijn CM, Nijsten T, Han J, Mackey DA, Martin NG, Cheng CY, Hinds DA, Spector TD, Kayser M, Hysi PG. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. SCIENCE ADVANCES 2021; 7:eabd1239. [PMID: 33692100 PMCID: PMC7946369 DOI: 10.1126/sciadv.abd1239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.
Collapse
Affiliation(s)
- Mark Simcoe
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Ana Valdes
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences Bristol Medical School University of Bristol, Bristol, UK
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
- Epidemiology and Biostatistics Department, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Cinzia Sala
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Eulalia Catamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Daniela Toniolo
- Division of Genetics of Common Disorders, S. Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Alex Hewitt
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher J Hammond
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
| | - Yan Chen
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Timothy D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
- Department of Ophthalmology, King's College London, London, UK
| |
Collapse
|
48
|
Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol 2020; 30:560-571. [PMID: 33320376 DOI: 10.1111/exd.14260] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the light of substantial discoveries in epithelial and hair pigmentation pathophysiology, this review summarizes the current understanding of skin pigmentation mechanisms. Melanocytes are pigment-producing cells, and their key regulating transcription factor is the melanocyte-specific microphthalmia-associated transcription factor (m-MITF). Ultraviolet (UV) radiation is a unique modulator of skin pigmentation influencing tanning pathways. The delayed tanning pathway occurs as UVB produces keratinocyte DNA damage, causing p53-mediated expression of the pro-opiomelanocortin (POMC) gene that is processed to release α-melanocyte-stimulating hormone (α-MSH). α-MSH stimulates the melanocortin 1 receptor (MC1R) on melanocytes, leading to m-MITF expression and melanogenesis. POMC cleavage also releases β-endorphin, which creates a neuroendocrine pathway that promotes UV-seeking behaviours. Mutations along the tanning pathway can affect pigmentation and increase the risk of skin malignancies. MC1R variants have received considerable attention, yet the allele is highly polymorphic with varied phenotypes. Vitiligo presents with depigmented skin lesions due to autoimmune destruction of melanocytes. UVB phototherapy stimulates melanocyte stem cells in the hair bulge to undergo differentiation and upwards migration resulting in perifollicular repigmentation of vitiliginous lesions, which is under sophisticated signalling control. Melanocyte stem cells, normally quiescent, undergo cyclic activation/differentiation and downward migration with the hair cycle, providing pigment to hair follicles. Physiological hair greying results from progressive loss of melanocyte stem cells and can be accelerated by acute stress-induced, sympathetic driven hyperproliferation of the melanocyte stem cells. Ultimately, by reviewing the pathways governing epithelial and follicular pigmentation, numerous areas of future research and potential points of intervention are highlighted.
Collapse
Affiliation(s)
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Wang S, Rohwer S, de Zwaan DR, Toews DPL, Lovette IJ, Mackenzie J, Irwin D. Selection on a small genomic region underpins differentiation in multiple color traits between two warbler species. Evol Lett 2020; 4:502-515. [PMID: 33312686 PMCID: PMC7719548 DOI: 10.1002/evl3.198] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Speciation is one of the most important processes in biology, yet the study of the genomic changes underlying this process is in its infancy. North American warbler species Setophaga townsendi and Setophaga occidentalis hybridize in a stable hybrid zone, following a period of geographic separation. Genomic differentiation accumulated during geographic isolation can be homogenized by introgression at secondary contact, whereas genetic regions that cause low hybrid fitness can be shielded from such introgression. Here, we examined the genomic underpinning of speciation by investigating (1) the genetic basis of divergent pigmentation traits between species, (2) variation in differentiation across the genome, and (3) the evidence for selection maintaining differentiation in the pigmentation genes. Using tens of thousands of single nucleotide polymorphisms (SNPs) genotyped in hundreds of individuals within and near the hybrid zone, genome-wide association mapping revealed a single SNP associated with cheek, crown, breast coloration, and flank streaking, reflecting pleiotropy (one gene affecting multiple traits) or close physical linkage of different genes affecting different traits. This SNP is within an intron of the RALY gene, hence we refer to it as the RALY SNP. We then examined between-species genomic differentiation, using both genotyping-by-sequencing and whole genome sequencing. We found that the RALY SNP is within one of the highest peaks of differentiation, which contains three genes known to influence pigmentation: ASIP, EIF2S2, and RALY (the ASIP-RALY gene block). Heterozygotes at this gene block are likely of reduced fitness, as the geographic cline of the RALY SNP has been narrow over two decades. Together, these results reflect at least one barrier to gene flow within this narrow (∼200 kb) genomic region that modulates plumage difference between species. Despite extensive gene flow between species across the genome, this study provides evidence that selection on a phenotype-associated genomic region maintains a stable species boundary.
Collapse
Affiliation(s)
- Silu Wang
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Sievert Rohwer
- Department of Biology and Burke MuseumUniversity of WashingtonSeattleWashington98195
| | - Devin R. de Zwaan
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - David P. L. Toews
- Department of Biology619 Mueller LaboratoryPennsylvania State UniversityUniversity ParkPennsylvania16802
| | - Irby J. Lovette
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyIthacaNew York14850
| | - Jacqueline Mackenzie
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Darren Irwin
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| |
Collapse
|
50
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|