1
|
Anguita-Ruiz A, Vatanparast H, Walsh C, Barbara G, Natoli S, Eisenhauer B, Ramirez-Mayans J, Anderson GH, Guerville M, Ligneul A, Gil A. Alternative biological functions of lactose: a narrative review. Crit Rev Food Sci Nutr 2025:1-14. [PMID: 40013417 DOI: 10.1080/10408398.2025.2470394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Lactose, commonly known as "milk sugar," offers various health benefits beyond its role as an energy source. As a precursor for essential molecules, lactose impacts calcium absorption, has low cariogenicity, affects satiety, enhances athletic performance, and potentially functions as a prebiotic for gut health. However, not all individuals can digest lactose, with a minority of the population exhibiting gastrointestinal symptoms after its consumption. The ability to digest lactose during adulthood is a genetically conferred trait known as lactase persistence, which is also likely affected by epigenetic alterations and other endogenous factors. In the present review, we highlight the multifaceted health effects of lactose, including its impact on calcium absorption, its low cariogenicity, its role in satiety control, its ability to enhance athletic performance, and its potential benefits as a prebiotic for gut health. Since these benefits are inherently dependent on lactose intake trends and the digestion capacity of populations, we also present the latest available information on the current trends in lactose consumption around the world. Overall, the gathered evidence suggests that moderate lactose consumption is recommended, as it can foster multiple lifelong health benefits.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- ISGlobal, Barcelona, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, and School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Corinna Walsh
- Department of Nutrition and Dietetics, University of the Free State, South Africa
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | | | | | - Jaime Ramirez-Mayans
- Department of Gastroenterology and Nutrition of the National Institute of Pediatrics and Private Practice, University of Mexico, Mexico
| | - G Harvey Anderson
- Nutritional Sciences and Physiology, Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | - Angel Gil
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, II University of Granada, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute IBS.GRANADA, Granada University Hospital Complex, Granada, Spain
| |
Collapse
|
2
|
Garnås E. Saturated fat in an evolutionary context. Lipids Health Dis 2025; 24:28. [PMID: 39875911 PMCID: PMC11773866 DOI: 10.1186/s12944-024-02399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption. In the present paper, the intake of saturated fat in ancestral and contemporary dietary settings is discussed. It is shown that while saturated fatty acids have been consumed by human ancestors across time and space, they do not feature dominantly in the diets of hunter-gatherers or projected nutritional inputs of genetic accommodation. A higher intake of high-fat dairy and meat products produces a divergent fatty acid profile that can increase the risk of cardiovascular and inflammatory disease and decrease the overall satiating-, antioxidant-, and nutrient capacity of the diet. By prioritizing fiber-rich and micronutrient-dense foods, as well as items with a higher proportion of unsaturated fatty acids, and in particular the long-chain polyunsaturated omega-3 fatty acids, a nutritional profile that is better aligned with that of wild and natural diets is achieved. This would help prevent the burdening diseases of civilization, including heart disease, cancer, and neurodegenerative conditions. Saturated fat is a natural part of a balanced diet; however, caution is warranted in a food environment that differs markedly from the one to which we are adapted.
Collapse
Affiliation(s)
- Eirik Garnås
- Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.
| |
Collapse
|
3
|
Malyarchuk BA. Genetic aspects of lactase deficiency in indigenous populations of Siberia. Vavilovskii Zhurnal Genet Selektsii 2024; 28:650-658. [PMID: 39440313 PMCID: PMC11491482 DOI: 10.18699/vjgb-24-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/25/2024] Open
Abstract
The ability to metabolize lactose in adulthood is associated with the persistence of lactase enzyme activity. In European populations, lactase persistence is determined mainly by the presence of the rs4988235-T variant in the MCM6 gene, which increases the expression of the LCT gene, encoding lactase. The highest rates of lactase persistence are characteristic of Europeans, and the lowest rates are found in East Asian populations. Analysis of published data on the distribution of the hypolactasia-associated variant rs4988235-C in the populations of Central Asia and Siberia showed that the frequency of this variant increases in the northeastern direction. The frequency of this allele is 87 % in Central Asia, 90.6 % in Southern Siberia, and 92.9 % in Northeastern Siberia. Consequently, the ability of the population to metabolize lactose decreases in the same geographical direction. The analysis of paleogenomic data has shown that the higher frequency of the rs4988235-T allele in populations of Central Asia and Southern Siberia is associated with the eastward spread of ancient populations of the Eastern European steppes, starting from the Bronze Age. The results of polymorphism analysis of exons and adjacent introns of the MCM6 and LCT genes in indigenous populations of Siberia indicate the possibility that polymorphic variants may potentially be related to lactose metabolism exist in East Asian populations. In East Asian populations, including Siberian ethnic groups, a ~26.5 thousand nucleotide pairs long region of the MCM6 gene, including a combination of the rs4988285-A, rs2070069-G, rs3087353-T, and rs2070068-A alleles, was found. The rs4988285 and rs2070069 loci are located in the enhancer region that regulates the activity of the LCT gene. Analysis of paleogenomic sequences showed that the genomes of Denisovans and Neanderthals are characterized by the above combination of alleles of the MCM6 gene. Thus, the haplotype discovered appears to be archaic. It could have been inherited from a common ancestor of modern humans, Neanderthals, and Denisovans, or it could have been acquired by hybridization with Denisovans or Neanderthals. The data obtained indicate a possible functional significance of archaic variants of the MCM6 gene.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
4
|
Jelenkovic A, Ibáñez-Zamacona ME, Rebato E. Human adaptations to diet: Biological and cultural coevolution. ADVANCES IN GENETICS 2024; 111:117-147. [PMID: 38908898 DOI: 10.1016/bs.adgen.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Modern humans evolved in Africa some 200,000 years ago, and since then, human populations have expanded and diversified to occupy a broad range of habitats and use different subsistence modes. This has resulted in different adaptations, such as differential responses to diseases and different abilities to digest or tolerate certain foods. The shift from a subsistence strategy based on hunting and gathering during the Palaeolithic to a lifestyle based on the consumption of domesticated animals and plants in the Neolithic can be considered one of the most important dietary transitions of Homo sapiens. In this text, we review four examples of gene-culture coevolution: (i) the persistence of the enzyme lactase after weaning, which allows the digestion of milk in adulthood, related to the emergence of dairy farming during the Neolithic; (ii) the population differences in alcohol susceptibility, in particular the ethanol intolerance of Asian populations due to the increased accumulation of the toxic acetaldehyde, related to the spread of rice domestication; (iii) the maintenance of gluten intolerance (celiac disease) with the subsequent reduced fitness of its sufferers, related to the emergence of agriculture and (iv) the considerable variation in the biosynthetic pathway of long-chain polyunsaturated fatty acids in native populations with extreme diets.
Collapse
Affiliation(s)
- Aline Jelenkovic
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - María Eugenia Ibáñez-Zamacona
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Esther Rebato
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
5
|
Sequeira JJ, Nizamuddin S, van Driem G, Mustak MS. TAS2R38 bitter taste perception in the Koṅkaṇī Sārasvata Brahmin population. Genes Genomics 2023; 45:1409-1422. [PMID: 37336804 DOI: 10.1007/s13258-023-01409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND The TAS2R38 gene carries markers for phenylthiocarbamide (PTC) sensitivity. Various studies have investigated the genotype-phenotype association pattern for bitter tasting ability and other factors in different populations. However, a paucity of such information for endogamous Indian populations is the reason behind this study. OBJECTIVE To study the association of phenylthiocarbamide (PTC) sensitivity with TAS2R38 gene variations in Koṅkaṇī Sārasvata Brahmin population. METHODS We studied the association of the alleles rs714598, rs1726866, rs10246939 with PTC sensitivity and other factors in the Koṅkaṇī Sārasvata Brahmin population. DNA was extracted from 114 individuals belonging to the Koṅkaṇī Sārasvata Brahmin community. The TAS2R38 gene was sequenced to find the genotype distribution pattern. The association between genotype and phenotype was checked using the Chi-Square test and multifactorial logistical regression. RESULTS We observed a 58.8% frequency of the AVI haplotype, which is the most prevalent in European populations. A higher number of non-taster haplotypes and diplotypes were observed in Koṅkaṇī Sārasvata Brahmins, with the allele rs10246939 showing a significant association with PTC bitter taste sensitivity in both allelic (p = 8.6 × 10-4; Allele-G, OR = 3.57 [95% CI = 1.66-7.69]) and genotype-based (p = 6.9 × 10-4; genotype-AG, OR = 3.11 [95% CI = 0.73-13.20]; genotype-GG, OR = 40 [95% CI = 3.58-447.03]) tests. CONCLUSION Our results are in line with earlier studies, which report an association between PTC sensitivity and the TAS2R38 gene in different populations. In the global context, Koṅkaṇī Sārasvata Brahmins, who are mostly distributed along the southwestern coast of India, show a PTC sensitivity pattern slightly similar to that of West Eurasian populations. Our findings suggest ancestry specific selection in TAS2R38 gene variations for taste sensitivity at global level.
Collapse
Affiliation(s)
- Jaison Jeevan Sequeira
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangaluru, 574199, India
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, 79016, Freiburg, Germany
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Länggassstrasse 49, 3012, Bern, Switzerland
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangaluru, 574199, India.
| |
Collapse
|
6
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
7
|
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, Rivera-Chira M, León-Velarde F, Kiyamu M, Brutsaert TD, Bigham AW, Lee FS. High-Altitude Andean H194R HIF2A Allele Is a Hypomorphic Allele. Mol Biol Evol 2023; 40:msad162. [PMID: 37463421 PMCID: PMC10370452 DOI: 10.1093/molbev/msad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julien Weinstein
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - María Inclán
- División de. Estudios Políticos, Centro de Investigación y Docencia Económicas, Mexico City, CDMX, Mexico
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Barroso GV, Lohmueller KE. Inferring the mode and strength of ongoing selection. Genome Res 2023; 33:632-643. [PMID: 37055196 PMCID: PMC10234300 DOI: 10.1101/gr.276386.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Genome sequence data are no longer scarce. The UK Biobank alone comprises 200,000 individual genomes, with more on the way, leading the field of human genetics toward sequencing entire populations. Within the next decades, other model organisms will follow suit, especially domesticated species such as crops and livestock. Having sequences from most individuals in a population will present new challenges for using these data to improve health and agriculture in the pursuit of a sustainable future. Existing population genetic methods are designed to model hundreds of randomly sampled sequences but are not optimized for extracting the information contained in the larger and richer data sets that are beginning to emerge, with thousands of closely related individuals. Here we develop a new method called trio-based inference of dominance and selection (TIDES) that uses data from tens of thousands of family trios to make inferences about natural selection acting in a single generation. TIDES further improves on the state of the art by making no assumptions regarding demography, linkage, or dominance. We discuss how our method paves the way for studying natural selection from new angles.
Collapse
Affiliation(s)
- Gustavo V Barroso
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Muktupavela RA, Petr M, Ségurel L, Korneliussen T, Novembre J, Racimo F. Modeling the spatiotemporal spread of beneficial alleles using ancient genomes. eLife 2022; 11:e73767. [PMID: 36537881 PMCID: PMC9767474 DOI: 10.7554/elife.73767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Ancient genome sequencing technologies now provide the opportunity to study natural selection in unprecedented detail. Rather than making inferences from indirect footprints left by selection in present-day genomes, we can directly observe whether a given allele was present or absent in a particular region of the world at almost any period of human history within the last 10,000 years. Methods for studying selection using ancient genomes often rely on partitioning individuals into discrete time periods or regions of the world. However, a complete understanding of natural selection requires more nuanced statistical methods which can explicitly model allele frequency changes in a continuum across space and time. Here we introduce a method for inferring the spread of a beneficial allele across a landscape using two-dimensional partial differential equations. Unlike previous approaches, our framework can handle time-stamped ancient samples, as well as genotype likelihoods and pseudohaploid sequences from low-coverage genomes. We apply the method to a panel of published ancient West Eurasian genomes to produce dynamic maps showcasing the inferred spread of candidate beneficial alleles over time and space. We also provide estimates for the strength of selection and diffusion rate for each of these alleles. Finally, we highlight possible avenues of improvement for accurately tracing the spread of beneficial alleles in more complex scenarios.
Collapse
Affiliation(s)
- Rasa A Muktupavela
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Martin Petr
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Laure Ségurel
- UMR5558 Biométrie et Biologie Evolutive, CNRS - Université Lyon 1VilleurbanneFrance
| | | | - John Novembre
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| |
Collapse
|
10
|
Edinur HA, Mat-Ghani SNA, Chambers GK. Ethnicity-based classifications and medical genetics: One Health approaches from a Western Pacific perspective. Front Genet 2022; 13:970549. [PMID: 36147511 PMCID: PMC9485872 DOI: 10.3389/fgene.2022.970549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
A new era presently dawns for medical genetics featuring individualised whole genome sequencing and promising personalised medical genetics. Accordingly, we direct readers attention to the continuing value of allele frequency data from Genome-Wide Association Surveys (GWAS) and single gene surveys in well-defined ethnic populations as a guide for best practice in diagnosis, therapy, and prescription. Supporting evidence is drawn from our experiences working with Austronesian volunteer subjects across the Western Pacific. In general, these studies show that their gene pool has been shaped by natural selection and become highly diverged from those of Europeans and Asians. These uniquely evolved patterns of genetic variation underlie contrasting schedules of disease incidence and drug response. Thus, recognition of historical bonds of kinship among Austronesian population groups across the Asia Pacific has distinct public health advantages from a One Health perspective. Other than diseases that are common among them like gout and diabetes, Austronesian populations face a wide range of climate-dependent infectious diseases including vector-borne pathogens as they are now scattered across the Pacific and Indian Oceans. However, we caution that the value of genetic survey data in Austronesians (and other groups too) is critically dependent on the accuracy of attached descriptive information in associated metadata, including ethnicity and admixture.
Collapse
Affiliation(s)
- Hisham A. Edinur
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Geoffrey K. Chambers
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
11
|
Németh S, Kriegshäuser G, Hovhannesyan K, Hayrapetyan H, Oberkanins C, Sarkisian T. Very low frequency of the lactase persistence allele LCT-13910T in the Armenian population. Ann Hum Biol 2022; 49:260-262. [PMID: 36129808 DOI: 10.1080/03014460.2022.2126887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Primary lactose malabsorption is characterised by a down-regulation of lactase activity after weaning and inability to digest lactose in adulthood. It has been suggested that the historical introduction of dairying led to a positive selection for lactase persistence variants in a regulatory region upstream of the LCT gene. Here, we genotyped 202 Armenian subjects for LCT-13910T, a lactase persistence variant which is widespread in Europeans. The homozygous C/C genotype associated with primary hypolactasia, the heterozygous C/T and the homozygous T/T lactase persistence genotypes were found in 191 (94.6%), 11 (5.4%), and 0 (0.0%) samples, respectively. The frequency for the LCT-13910*T allele was 2.7%. The observed allele frequency of 2.7% for LCT-13910T is even lower than previously reported and supports current phenotypic data about lactose malabsorption in Armenia.
Collapse
Affiliation(s)
| | | | | | - Hasmik Hayrapetyan
- Center of Medical Genetics and Primary Health Care, Yerevan, Armenia.,Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | | | - Tamara Sarkisian
- Center of Medical Genetics and Primary Health Care, Yerevan, Armenia.,Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
12
|
Schnedl WJ, Meier-Allard N, Michaelis S, Lackner S, Enko D, Mangge H, Holasek SJ. Serum Diamine Oxidase Values, Indicating Histamine Intolerance, Influence Lactose Tolerance Breath Test Results. Nutrients 2022; 14:nu14102026. [PMID: 35631167 PMCID: PMC9146026 DOI: 10.3390/nu14102026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Lactose intolerance (LIT) is one of the major causes of irritable bowel syndrome (IBS) spectrum complaints. Differences in inadequate lactose digestion are described as various LIT phenotypes with basically unknown pathophysiology. In LIT patients, we retrospectively assessed the effect of histamine intolerance (HIT) on expiratory hydrogen (H2) during H2 lactose breath tests. In a retrospective evaluation of charts from 402 LIT patients, 200 patients were identified as having only LIT. The other 202 LIT patients were found to additionally have diamine oxidase (DAO) values of <10 U/mL, which indicates histamine intolerance (HIT). To identify HIT, standardized questionnaires, low serum DAO values and responses to a histamine-reduced diet were used. Patients were separated into three diagnostic groups according to the result of H2 breath tests: (1) LIT, with an H2 increase of >20 parts per million (ppm), but a blood glucose (BG) increase of >20 mg/dL, (2) LIT with an H2 increase of 20 ppm in combination with a BG increase of <20 mg/dL, and (3) LIT with an exhaled H2 increase of <20 ppm and BG increase of <20 mg/dL. Pairwise comparison with the Kruskal Wallis test was used to compare the areas under the curve (AUC) of LIT and LIT with HIT patients. Exhaled H2 values were significantly higher in H2 > 20 ppm and BG < 20 mg/dL patients with LIT and HIT (p = 0.007). This diagnostic group also showed a significant higher number of patients (p = 0.012) and a significant higher number of patients with gastrointestinal (GI) symptoms during H2 breath tests (p < 0.001). Therefore, low serum DAO values, indicating HIT, influence results of lactose tolerance breath tests.
Collapse
Affiliation(s)
- Wolfgang J. Schnedl
- Practice for General Internal Medicine, Dr. Theodor Körnerstrasse 19b, 8600 Bruck an der Mur, Austria
- Correspondence: ; Tel.: +43-3612-55833; Fax: +43-3612-55833-22
| | - Nathalie Meier-Allard
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria; (N.M.-A.); (S.L.); (S.J.H.)
| | - Simon Michaelis
- Institute of Clinical Chemistry, Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria; (S.M.); (D.E.)
| | - Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria; (N.M.-A.); (S.L.); (S.J.H.)
| | - Dietmar Enko
- Institute of Clinical Chemistry, Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria; (S.M.); (D.E.)
- Clinical Institute of Medical, Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036 Graz, Austria;
| | - Harald Mangge
- Clinical Institute of Medical, Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036 Graz, Austria;
| | - Sandra J. Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria; (N.M.-A.); (S.L.); (S.J.H.)
| |
Collapse
|
13
|
Leontiadis GI, Longstreth GF. Evolutionary Medicine Perspectives: Helicobacter pylori, Lactose Intolerance, and 3 Hypotheses for Functional and Inflammatory Gastrointestinal and Hepatobiliary Disorders. Am J Gastroenterol 2022; 117:721-728. [PMID: 35169106 DOI: 10.14309/ajg.0000000000001681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Many clinicians have suboptimal knowledge of evolutionary medicine. This discipline integrates social and basic sciences, epidemiology, and clinical medicine, providing explanations, especially ultimate causes, for many conditions. Principles include genetic variation from population bottleneck and founder effects, evolutionary trade-offs, and coevolution. For example, host-microbe coevolution contributes to the inflammatory and carcinogenic variability of Helicobacter pylori. Antibiotic-resistant strains are evolving, but future therapy could target promutagenic proteins. Ancient humans practicing dairying achieved survival and reproduction advantages of postweaning lactase persistence and passed this trait to modern descendants, delegitimizing lactose intolerance as "disease" in people with lactase nonpersistence. Three evolutionary hypotheses are each relevant to multiple diseases: (i) the polyvagal hypothesis posits that prehistoric adaptation of autonomic nervous system reactions to stress is beneficial acutely but, when continued chronically, predisposes individuals to painful functional gastrointestinal disorders, in whom it may be a biomarker; (ii) the thrifty gene hypothesis proposes genetic adaptation to feast-famine cycles among Pleistocene migrants to America, which is mismatched with Indigenous Americans' current diet and physical activity, predisposing them to obesity, nonalcoholic fatty liver disease, and gallstones and their complications; and (iii) the hygiene hypothesis proposes alteration of the gut microbiome, with which humans have coevolved, in allergic and autoimmune disease pathogenesis; for example, association of microbiome-altering proton pump inhibitor use with pediatric eosinophilic esophagitis, early-life gastrointestinal infection with celiac disease, and infant antibiotic use and an economically advanced environment with inflammatory bowel disease. Evolutionary perspectives broaden physicians' understanding of disease processes, improve care, and stimulate research.
Collapse
Affiliation(s)
- Grigorios I Leontiadis
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - George F Longstreth
- Section of Gastroenterology, Veterans Administration San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
14
|
Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. Human population genomics approach in food metabolism. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Graham BE, Plotkin B, Muglia L, Moore JH, Williams SM. Estimating prevalence of human traits among populations from polygenic risk scores. Hum Genomics 2021; 15:70. [PMID: 34903281 PMCID: PMC8670062 DOI: 10.1186/s40246-021-00370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
The genetic basis of phenotypic variation across populations has not been well explained for most traits. Several factors may cause disparities, from variation in environments to divergent population genetic structure. We hypothesized that a population-level polygenic risk score (PRS) can explain phenotypic variation among geographic populations based solely on risk allele frequencies. We applied a population-specific PRS (psPRS) to 26 populations from the 1000 Genomes to four phenotypes: lactase persistence (LP), melanoma, multiple sclerosis (MS) and height. Our models assumed additive genetic architecture among the polymorphisms in the psPRSs, as is convention. Linear psPRSs explained a significant proportion of trait variance ranging from 0.32 for height in men to 0.88 for melanoma. The best models for LP and height were linear, while those for melanoma and MS were nonlinear. As not all variants in a PRS may confer similar, or even any, risk among diverse populations, we also filtered out SNPs to assess whether variance explained was improved using psPRSs with fewer SNPs. Variance explained usually improved with fewer SNPs in the psPRS and was as high as 0.99 for height in men using only 548 of the initial 4208 SNPs. That reducing SNPs improves psPRSs performance may indicate that missing heritability is partially due to complex architecture that does not mandate additivity, undiscovered variants or spurious associations in the databases. We demonstrated that PRS-based analyses can be used across diverse populations and phenotypes for population prediction and that these comparisons can identify the universal risk variants.
Collapse
Affiliation(s)
- Britney E Graham
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian Plotkin
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Louis Muglia
- Burroughs Wellcome Fund, Research Triangle Park, NC, 27614, USA
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Williams
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Vicente M, Lankheet I, Russell T, Hollfelder N, Coetzee V, Soodyall H, Jongh MD, Schlebusch CM. Male-biased migration from East Africa introduced pastoralism into southern Africa. BMC Biol 2021; 19:259. [PMID: 34872534 PMCID: PMC8650298 DOI: 10.1186/s12915-021-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hunter-gatherer lifestyles dominated the southern African landscape up to ~ 2000 years ago, when herding and farming groups started to arrive in the area. First, herding and livestock, likely of East African origin, appeared in southern Africa, preceding the arrival of the large-scale Bantu-speaking agro-pastoralist expansion that introduced West African-related genetic ancestry into the area. Present-day Khoekhoe-speaking Namaqua (or Nama in short) pastoralists show high proportions of East African admixture, linking the East African ancestry with Khoekhoe herders. Most other historical Khoekhoe populations have, however, disappeared over the last few centuries and their contribution to the genetic structure of present-day populations is not well understood. In our study, we analyzed genome-wide autosomal and full mitochondrial data from a population who trace their ancestry to the Khoekhoe-speaking Hessequa herders from the southern Cape region of what is now South Africa. RESULTS We generated genome-wide data from 162 individuals and mitochondrial DNA data of a subset of 87 individuals, sampled in the Western Cape Province, South Africa, where the Hessequa population once lived. Using available comparative data from Khoe-speaking and related groups, we aligned genetic date estimates and admixture proportions to the archaeological proposed dates and routes for the arrival of the East African pastoralists in southern Africa. We identified several Afro-Asiatic-speaking pastoralist groups from Ethiopia and Tanzania who share high affinities with the East African ancestry present in southern Africa. We also found that the East African pastoralist expansion was heavily male-biased, akin to a pastoralist migration previously observed on the genetic level in ancient Europe, by which Pontic-Caspian Steppe pastoralist groups represented by the Yamnaya culture spread across the Eurasian continent during the late Neolithic/Bronze Age. CONCLUSION We propose that pastoralism in southern Africa arrived through male-biased migration of an East African Afro-Asiatic-related group(s) who introduced new subsistence and livestock practices to local southern African hunter-gatherers. Our results add to the understanding of historical human migration and mobility in Africa, connected to the spread of food-producing and livestock practices.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Imke Lankheet
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thembi Russell
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Vinet Coetzee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.
- SciLife Lab, Uppsala, Sweden.
| |
Collapse
|
17
|
Guimarães Alves AC, Sukow NM, Adelman Cipolla G, Mendes M, Leal TP, Petzl-Erler ML, Lehtonen Rodrigues Souza R, Rainha de Souza I, Sanchez C, Santolalla M, Loesch D, Dean M, Machado M, Moon JY, Kaplan R, North KE, Weiss S, Barreto ML, Lima-Costa MF, Guio H, Cáceres O, Padilla C, Tarazona-Santos E, Mata IF, Dieguez E, Raggio V, Lescano A, Tumas V, Borges V, Ferraz HB, Rieder CR, Schumacher-Schuh A, Santos-Lobato BL, Chana-Cuevas P, Fernandez W, Arboleda G, Arboleda H, Arboleda-Bustos CE, O’Connor TD, Beltrame MH, Borda V. Tracing the Distribution of European Lactase Persistence Genotypes Along the Americas. Front Genet 2021; 12:671079. [PMID: 34630506 PMCID: PMC8493957 DOI: 10.3389/fgene.2021.671079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
In adulthood, the ability to digest lactose, the main sugar present in milk of mammals, is a phenotype (lactase persistence) observed in historically herder populations, mainly Northern Europeans, Eastern Africans, and Middle Eastern nomads. As the -13910∗T allele in the MCM6 gene is the most well-characterized allele responsible for the lactase persistence phenotype, the -13910C > T (rs4988235) polymorphism is commonly evaluated in lactase persistence studies. Lactase non-persistent adults may develop symptoms of lactose intolerance when consuming dairy products. In the Americas, there is no evidence of the consumption of these products until the arrival of Europeans. However, several American countries' dietary guidelines recommend consuming dairy for adequate human nutrition and health promotion. Considering the extensive use of dairy and the complex ancestry of Pan-American admixed populations, we studied the distribution of -13910C > T lactase persistence genotypes and its flanking haplotypes of European origin in 7,428 individuals from several Pan-American admixed populations. We found that the -13910∗T allele frequency in Pan-American admixed populations is directly correlated with allele frequency of the European sources. Moreover, we did not observe any overrepresentation of European haplotypes in the -13910C > T flanking region, suggesting no selective pressure after admixture in the Americas. Finally, considering the dominant effect of the -13910∗T allele, our results indicate that Pan-American admixed populations are likely to have higher frequency of lactose intolerance, suggesting that general dietary guidelines deserve further evaluation across the continent.
Collapse
Affiliation(s)
- Ana Cecília Guimarães Alves
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
- Programa de Pós-Graduação em Genética, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Natalie Mary Sukow
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gabriel Adelman Cipolla
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marla Mendes
- Laboratório de Diversidade Genética Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago P. Leal
- Laboratório de Diversidade Genética Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
- Programa de Pós-Graduação em Genética, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Programa de Pós-Graduação em Genética, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratório de Polimorfismos e Ligação, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ilíada Rainha de Souza
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratório de Polimorfismos Genéticos, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cesar Sanchez
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
| | - Meddly Santolalla
- Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Douglas Loesch
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Moara Machado
- Laboratório de Diversidade Genética Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Mauricio L. Barreto
- Universidade Federal da Bahia, Instituto de Saúde Coletiva, Salvador, Brazil
- Fundação Oswaldo Cruz, Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Salvador, Brazil
| | - M. Fernanda Lima-Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Belo Horizonte, Brazil
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Saúde Pública, Belo Horizonte, Brazil
| | - Heinner Guio
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru
| | - Omar Cáceres
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
- Carrera de Medicina Humana, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| | - Carlos Padilla
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
| | - Eduardo Tarazona-Santos
- Laboratório de Diversidade Genética Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ignacio F. Mata
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Elena Dieguez
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Víctor Raggio
- Department of Genetics, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andres Lescano
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Vitor Tumas
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanderci Borges
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henrique B. Ferraz
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos R. Rieder
- Departamento de Neurologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Artur Schumacher-Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Pedro Chana-Cuevas
- CETRAM, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - William Fernandez
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E. Arboleda-Bustos
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Timothy D. O’Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Program for Personalized and Genomic Medicine, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Marcia Holsbach Beltrame
- Laboratório de Genética Molecular Humana, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
- Programa de Pós-Graduação em Genética, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Ali AT, Liebert A, Lau W, Maniatis N, Swallow DM. The hazards of genotype imputation in chromosomal regions under selection: A case study using the Lactase gene region. Ann Hum Genet 2021; 86:24-33. [PMID: 34523124 DOI: 10.1111/ahg.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
Although imputation of missing SNP results has been widely used in genetic studies, claims about the quality and usefulness of imputation have outnumbered the few studies that have questioned its limitations. But it is becoming clear that these limitations are real-for example, disease association signals can be missed in regions of LD breakdown. Here, as a case study, using the chromosomal region of the well-known lactase gene, LCT, we address the issue of imputation in the context of variants that have become frequent in a limited number of modern population groups only recently, due to selection. We study SNPs in a 500 bp region covering the enhancer of LCT, and compare imputed genotypes with directly genotyped data. We examine the haplotype pairs of all individuals with discrepant and missing genotypes. We highlight the nonrandom nature of the allelic errors and show that most incorrect imputations and missing data result from long haplotypes that are evolutionarily closely related to those carrying the derived alleles, while some relate to rare and recombinant haplotypes. We conclude that bias of incorrectly imputed and missing genotypes can decrease the accuracy of imputed results substantially.
Collapse
Affiliation(s)
- Aminah T Ali
- University College London Research Department of Genetics Evolution and Environment, London, UK
| | - Anke Liebert
- University College London Research Department of Genetics Evolution and Environment, London, UK
| | - Winston Lau
- University College London Research Department of Genetics Evolution and Environment, London, UK
| | - Nikolas Maniatis
- University College London Research Department of Genetics Evolution and Environment, London, UK
| | - Dallas M Swallow
- University College London Research Department of Genetics Evolution and Environment, London, UK
| |
Collapse
|
19
|
Wells JCK, Pomeroy E, Stock JT. Evolution of Lactase Persistence: Turbo-Charging Adaptation in Growth Under the Selective Pressure of Maternal Mortality? Front Physiol 2021; 12:696516. [PMID: 34497534 PMCID: PMC8419441 DOI: 10.3389/fphys.2021.696516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of the capacity to digest milk in some populations represents a landmark in human evolution, linking genetic change with a component of niche construction, namely dairying. Alleles promoting continued activity of the enzyme lactase through the life-course (lactase persistence) evolved in several global regions within the last 7,000 years. In some European regions, these alleles underwent rapid selection and must have profoundly affected fertility or mortality. Elsewhere, alleles spread more locally. However, the functional benefits underlying the rapid spread of lactase persistence remain unclear. Here, we set out the hypothesis that lactase persistence promoted skeletal growth, thereby offering a generic rapid solution to childbirth complications arising from exposure to ecological change, or to new environments through migration. Since reduced maternal growth and greater neonatal size both increase the risk of obstructed labour, any ecological exposure impacting these traits may increase maternal mortality risk. Over many generations, maternal skeletal dimensions could adapt to new ecological conditions through genetic change. However, this adaptive strategy would fail if ecological change was rapid, including through migration into new niches. We propose that the combination of consuming milk and lactase persistence could have reduced maternal mortality by promoting growth of the pelvis after weaning, while high calcium intake would reduce risk of pelvic deformities. Our conceptual framework provides locally relevant hypotheses to explain selection for lactase persistence in different global regions. For any given diet and individual genotype, the combination of lactase persistence and milk consumption would divert more energy to skeletal growth, either increasing pelvic dimensions or buffering them from worsening ecological conditions. The emergence of lactase persistence among dairying populations could have helped early European farmers adapt rapidly to northern latitudes, East African pastoralists adapt to sudden climate shifts to drier environments, and Near Eastern populations counteract secular declines in height associated with early agriculture. In each case, we assume that lactase persistence accelerated the timescale over which maternal skeletal dimensions could change, thus promoting both maternal and offspring survival. Where lactase persistence did not emerge, birth weight was constrained at lower levels, and this contributes to contemporary variability in diabetes risk.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, Population Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, ON, Canada.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
20
|
Rotival M, Cossart P, Quintana-Murci L. Reconstructing 50,000 years of human history from our DNA: lessons from modern genomics. C R Biol 2021; 344:177-187. [PMID: 34213855 DOI: 10.5802/crbiol.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022]
Abstract
The advent of high throughput sequencing approaches and ancient DNA techniques have enabled reconstructing the history of human populations at an unprecedented level of resolution. The symposium from the French Academy of Sciences "50,000 ans d'épopée humaine dans notre ADN" has reviewed some of the latest contributions from the fields of genomics, archaeology, and linguistics to our understanding of >300,000 years of human history. DNA has revealed the richness of the human journey, from the deep divergences between human populations in Africa, to the first encounters of Homo Sapiens with other hominins on their way to Eurasia and the peopling of Remote Oceania. The symposium has also emphasized how migrations, cultural practices, and environmental pathogens have contributed to shape the genetic diversity of modern humans, through admixture, genetic drift or genetic adaptation. Finally, special attention was also given to how human behaviours have shaped the genome of other species, through the spreading of microbes and pathogens, as in the case of Yersinia Pestis, or through domestication, as elegantly demonstrated for dogs, horses, and apples. Altogether, this conference illustrated how the complex history of human populations is tightly linked with their contemporary genetic diversity that, in turn, has direct effects on their identity and health.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Pascale Cossart
- Bacteria/Cell Interactions Unit, Institut Pasteur, U604, Inserm, Paris 75015, France
| | - Lluis Quintana-Murci
- Chair of Human Genomics and Evolution, Collège de France, Paris, 75005, France.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| |
Collapse
|
21
|
Evaluating the Robustness of Biomarkers of Dairy Food Intake in a Free-Living Population Using Single- and Multi-Marker Approaches. Metabolites 2021; 11:metabo11060395. [PMID: 34204298 PMCID: PMC8235731 DOI: 10.3390/metabo11060395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022] Open
Abstract
Studies examining associations between self-reported dairy intake and health are inconclusive, but biomarkers hold promise for elucidating such relationships by offering objective measures of dietary intake. Previous human intervention studies identified several biomarkers for dairy foods in blood and urine using non-targeted metabolomics. We evaluated the robustness of these biomarkers in a free-living cohort in the Netherlands using both single- and multi-marker approaches. Plasma and urine from 246 participants (54 ± 13 years) who completed a food frequency questionnaire were analyzed using liquid and gas chromatography-mass spectrometry. The targeted metabolite panel included 37 previously-identified candidate biomarkers of milk, cheese, and/or yoghurt consumption. Associations between biomarkers and energy-adjusted dairy food intakes were assessed by a ‘single-marker’ generalized linear model, and stepwise regression was used to select the best ‘multi-marker’ panel. Multi-marker models that also accounted for common covariates better captured the subtle differences for milk (urinary galactose, galactitol; sex, body mass index, age) and cheese (plasma pentadecanoic acid, isoleucine, glutamic acid) over single-marker models. No significant associations were observed for yogurt. Further examination of other facets of validity of these biomarkers may improve estimates of dairy food intake in conjunction with self-reported methods, and help reach a clearer consensus on their health impacts.
Collapse
|
22
|
López S, Tarekegn A, Band G, van Dorp L, Bird N, Morris S, Oljira T, Mekonnen E, Bekele E, Blench R, Thomas MG, Bradman N, Hellenthal G. Evidence of the interplay of genetics and culture in Ethiopia. Nat Commun 2021; 12:3581. [PMID: 34117245 PMCID: PMC8196081 DOI: 10.1038/s41467-021-23712-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The rich linguistic, ethnic and cultural diversity of Ethiopia provides an unprecedented opportunity to understand the level to which cultural factors correlate with-and shape-genetic structure in human populations. Using primarily new genetic variation data covering 1,214 Ethiopians representing 68 different ethnic groups, together with information on individuals' birthplaces, linguistic/religious practices and 31 cultural practices, we disentangle the effects of geographic distance, elevation, and social factors on the genetic structure of Ethiopians today. We provide evidence of associations between social behaviours and genetic differences among present-day peoples. We show that genetic similarity is broadly associated with linguistic affiliation, but also identify pronounced genetic similarity among groups from disparate language classifications that may in part be attributable to recent intermixing. We also illustrate how groups reporting the same culture traits are more genetically similar on average and show evidence of recent intermixing, suggesting that shared cultural traits may promote admixture. In addition to providing insights into the genetic structure and history of Ethiopia, we identify the most important cultural and geographic predictors of genetic differentiation and provide a resource for designing sampling protocols for future genetic studies involving Ethiopians.
Collapse
Affiliation(s)
- Saioa López
- Research Department of Genetics, Evolution & Environment, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Ayele Tarekegn
- Department of Archaeology and Heritage Management, College of Social Sciences, Addis Ababa University, New Classrooms (NCR) Building, Second Floor, Office No. 214, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lucy van Dorp
- Research Department of Genetics, Evolution & Environment, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Nancy Bird
- Research Department of Genetics, Evolution & Environment, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Sam Morris
- Research Department of Genetics, Evolution & Environment, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Tamiru Oljira
- Genomics & Bioinformatics Research Directorate (GBRD), Ethiopian Biotechnology Institute (EBTi), Addis Ababa, Ethiopia
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Endashaw Bekele
- College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Roger Blench
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of History, University of Jos, Jos, Nigeria
| | - Mark G Thomas
- Research Department of Genetics, Evolution & Environment, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | | | - Garrett Hellenthal
- Research Department of Genetics, Evolution & Environment, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
23
|
Campbell MC, Ranciaro A. Human adaptation, demography and cattle domestication: an overview of the complexity of lactase persistence in Africa. Hum Mol Genet 2021; 30:R98-R109. [PMID: 33847744 DOI: 10.1093/hmg/ddab027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
Lactase persistence (LP) is a genetically-determined trait that is prevalent in African, European and Arab populations with a tradition of animal herding and milk consumption. To date, genetic analyses have identified several common variants that are associated with LP. Furthermore, data have indicated that these functional alleles likely have been maintained in pastoralist populations due to the action of recent selection, exemplifying the ongoing evolution of anatomically modern humans. Additionally, demographic history has also played a role in the geographic distribution of LP and associated alleles in Africa. In particular, the migration of ancestral herders and their subsequent admixture with local populations were integral to the spread of LP alleles and the culture of pastoralism across the continent. The timing of these demographic events was often correlated with known major environmental changes and/or the ability of domesticated cattle to resist/avoid infectious diseases. This review summarizes recent advances in our understanding of the genetic basis and evolutionary history of LP, as well as the factors that influenced the origin and spread of pastoralism in Africa.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Biology, Howard University, EE Just Hall Biology Building, 415 College Street NW, Washington, DC 20059, USA
| | - Alessia Ranciaro
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Abstract
Some human traits arise via organic evolution while others are acquired from the prevailing culture via a process of social learning. A mainstream interpretation is that evolution amounts to a change in the relative frequency of gene variants in a population and that culture coevolves at arm's length. Matters look different if one starts instead from the view that organisms are modified during evolution because of changes in gene expression as much as changes in the relative frequency of gene variants. Gene expression, i.e. generation of the product encoded by a gene, is not under genetic control, for it requires location- and time-specific triggers, which cannot be provided by genes. The genes present in an individual are present in every cell, hence at all locations in the individual's body and at all times during the individual's life. The necessary location- and time-specific triggers are provided internally by developmental events and conditions, or externally by environmental events and conditions, i.e. non-genetically. Socially-learned traits, having no special connection with genes, may nevertheless influence evolution, as for any trait. Like organic traits generally, socially-learned traits can be positively or negatively selected, for they similarly influence survival and reproduction. Like learned traits generally, they can play an important role in evolution by providing repeated selective pressure. The resulting evolutionary change typically affects an associated trait (e.g. adult ability to digest the sugar contained in milk), not the socially-learned trait itself (e.g. dairying), which continues under the influence of cultural processes of change.
Collapse
Affiliation(s)
- David A Wells
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park, NSW, 2109, Australia.
| |
Collapse
|
25
|
Hollfelder N, Babiker H, Granehäll L, Schlebusch CM, Jakobsson M. The genetic variation of lactase persistence alleles in Sudan and South Sudan. Genome Biol Evol 2021; 13:6184864. [PMID: 33760047 PMCID: PMC8175049 DOI: 10.1093/gbe/evab065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Lactase persistence (LP) is a well-studied example of a Mendelian trait under selection in some human groups due to gene-culture coevolution. We investigated the frequencies of genetic variants linked to LP in Sudanese and South Sudanese populations. These populations have diverse subsistence patterns, and some are dependent on milk to various extents, not only from cows but also from other livestock such as camels and goats. We sequenced a 316-bp region involved in regulating the expression of the LCT gene on chromosome 2, which encompasses five polymorphisms that have been associated with LP. Pastoralist populations showed a higher frequency of LP-associated alleles compared with nonpastoralist groups, hinting at positive selection also among northeast African pastoralists. Among the LP variants, the -14009:G variant occurs at the highest frequency among the investigated populations, followed by the -13915:G variant, which is likely of Middle Eastern origin, consistent with Middle Eastern gene flow to the Sudanese populations. There was no incidence of the “East African” LP allele (-14010:C) in the Sudanese and South Sudanese groups, and only one heterozygous individual for the “European” LP allele (-13910:T), suggesting limited recent admixture from these geographic regions. The Beja population of the Beni Amer show three different LP variants at substantial and similar levels, resulting in one of the greatest aggregation of LP variants among all populations across the world.
Collapse
Affiliation(s)
- Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hiba Babiker
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Lena Granehäll
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
26
|
Generation of Lactose- and Protease-Positive Probiotic Lacticaseibacillus rhamnosus GG by Conjugation with Lactococcus lactis NCDO 712. Appl Environ Microbiol 2021; 87:AEM.02957-20. [PMID: 33419737 DOI: 10.1128/aem.02957-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is the most studied probiotic bacterium in the world. It is used as a probiotic supplement in many foods, including various dairy products. However, LGG grows poorly in milk, as it neither metabolizes the main milk carbohydrate lactose nor degrades the major milk protein casein effectively. In this study, we made L. rhamnosus GG lactose and protease positive by conjugation with the dairy Lactococcus lactis strain NCDO 712 carrying the lactose-protease plasmid pLP712. A lactose-hydrolyzing transconjugant colony was obtained on agar containing lactose as the sole source of carbohydrates. By microscopic analysis and PCR with LGG- and pLP712-specific primers, the transconjugant was confirmed to have originated from LGG and to carry the plasmid pLP712. The transconjugant was named L. rhamnosus LAB49. The isolation of plasmids revealed that not only pLP712 but also other plasmids had been transferred from L. lactis into LGG during conjugation. With plasmid-specific PCR primers, four additional lactococcal plasmids were detected in LAB49. Proteolytic activity assay and SDS-PAGE analysis verified that L. rhamnosus LAB49 effectively degraded β-casein. In contrast to its parental strain, LGG, the ability of LAB49 to metabolize lactose and degrade casein enabled strong and fast growth in milk. As strains with new properties made by conjugation are not regarded as genetically modified organisms (GMOs), L. rhamnosus LAB49 could be beneficial in dairy fermentations as a probiotic starter culture.IMPORTANCE Probiotic strain Lacticaseibacillus rhamnosus GG (LGG) is widely sold on the market as a probiotic or added as a supplement in dairy foods because of its benefits in human health. However, due to the deficiency of lactose and casein utilization, LGG does not grow well in milk. On the other hand, lactose intolerance and cow's milk protein allergy are the two major problems related to milk consumption. One option to help with these two conditions is the use of probiotic or lactose- and casein-hydrolyzing bacteria in dairy products. The purpose of this study was to equip LGG with lactose/casein-hydrolyzing ability by bacterial conjugation. As a result, we generated a non-GMO LGG derivative with improved properties and better growth in milk.
Collapse
|
27
|
Bleasdale M, Richter KK, Janzen A, Brown S, Scott A, Zech J, Wilkin S, Wang K, Schiffels S, Desideri J, Besse M, Reinold J, Saad M, Babiker H, Power RC, Ndiema E, Ogola C, Manthi FK, Zahir M, Petraglia M, Trachsel C, Nanni P, Grossmann J, Hendy J, Crowther A, Roberts P, Goldstein ST, Boivin N. Ancient proteins provide evidence of dairy consumption in eastern Africa. Nat Commun 2021; 12:632. [PMID: 33504791 PMCID: PMC7841170 DOI: 10.1038/s41467-020-20682-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Consuming the milk of other species is a unique adaptation of Homo sapiens, with implications for health, birth spacing and evolution. Key questions nonetheless remain regarding the origins of dairying and its relationship to the genetically-determined ability to drink milk into adulthood through lactase persistence (LP). As a major centre of LP diversity, Africa is of significant interest to the evolution of dairying. Here we report proteomic evidence for milk consumption in ancient Africa. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) we identify dairy proteins in human dental calculus from northeastern Africa, directly demonstrating milk consumption at least six millennia ago. Our findings indicate that pastoralist groups were drinking milk as soon as herding spread into eastern Africa, at a time when the genetic adaptation for milk digestion was absent or rare. Our study links LP status in specific ancient individuals with direct evidence for their consumption of dairy products.
Collapse
Affiliation(s)
- Madeleine Bleasdale
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.
- Department of Archaeology, University of York, King's Manor, Exhibition Square, York, YO1 7EP, UK.
| | - Kristine K Richter
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Anneke Janzen
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Samantha Brown
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ashley Scott
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jana Zech
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Shevan Wilkin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jocelyne Desideri
- Laboratory of Prehistoric Archaeology and Anthropology, Department F.-A. Forel for Environmental and Aquatic Sciences, Université de Genève, Geneva, Switzerland
| | - Marie Besse
- Laboratory of Prehistoric Archaeology and Anthropology, Department F.-A. Forel for Environmental and Aquatic Sciences, Université de Genève, Geneva, Switzerland
| | - Jacques Reinold
- Section française de la Direction des antiquités du Soudan, Khartoum, Sudan
| | - Mohamed Saad
- National Corporation for Antiquities and Museums of Sudan, M.Bolheim Bioarchaeology Laboratory, Khartoum, Sudan
| | - Hiba Babiker
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Robert C Power
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Pre-and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Emmanuel Ndiema
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Christine Ogola
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Fredrick K Manthi
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Muhammad Zahir
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Archaeology, Hazara University, Mansehra, Pakistan
| | - Michael Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DA, USA
| | - Christian Trachsel
- Functional Genomics Center, University of Zurich/ETH, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center, University of Zurich/ETH, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center, University of Zurich/ETH, Zurich, Switzerland
| | - Jessica Hendy
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alison Crowther
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
| | - Steven T Goldstein
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia.
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DA, USA.
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Low Prevalence of Lactase Persistence in Bronze Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years. Curr Biol 2020; 30:4307-4315.e13. [DOI: 10.1016/j.cub.2020.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022]
|
29
|
Hardy K. Paleomedicine and the Evolutionary Context of Medicinal Plant Use. ACTA ACUST UNITED AC 2020; 31:1-15. [PMID: 33071384 PMCID: PMC7546135 DOI: 10.1007/s43450-020-00107-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Modern human need for medicines is so extensive that it is thought to be a deep evolutionary behavior. There is abundant evidence from our Paleolithic and later prehistoric past, of survival after periodontal disease, traumas, and invasive medical treatments including trepanations and amputations, suggesting a detailed, applied knowledge of medicinal plant secondary compounds. Direct archeological evidence for use of plants in the Paleolithic is rare, but evidence is growing. An evolutionary context for early human use of medicinal plants is provided by the broad evidence for animal self-medication, in particular, of non-human primates. During the later Paleolithic, there is evidence for the use of poisonous and psychotropic plants, suggesting that Paleolithic humans built on and expanded their knowledge and use of plant secondary compounds.
Collapse
Affiliation(s)
- Karen Hardy
- Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia Spain.,Departament de Prehistòria, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia Spain
| |
Collapse
|
30
|
Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020; 12:nu12092689. [PMID: 32899182 PMCID: PMC7551416 DOI: 10.3390/nu12092689] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023] Open
Abstract
In humans the ability to digest milk lactose is conferred by a β-galactosidase enzyme called lactase-phlorizin hydrolase (LPH). While in some humans (approximately two-thirds of humankind) the levels of this enzyme decline drastically after the weaning phase (a trait known as lactase non-persistence (LNP)), some other individuals are capable of maintaining high levels of LPH lifelong (lactase persistence (LP)), thus being able to digest milk during adulthood. Both lactase phenotypes in humans present a complex genetic basis and have been widely investigated during the last decades. The distribution of lactase phenotypes and their associated single nucleotide polymorphisms (SNPs) across human populations has also been extensively studied, though not recently reviewed. All available information has always been presented in the form of static world maps or large dimension tables, so that it would benefit from the newly available visualization tools, such as interactive world maps. Taking all this into consideration, the aims of the present review were: (1) to gather and summarize all available information on LNP and LP genetic mechanisms and evolutionary adaptation theories, and (2) to create online interactive world maps, including all LP phenotype and genotype frequency data reported to date. As a result, we have created two online interactive resources, which constitute an upgrade over previously published static world maps, and allow users a personalized data exploration, while at the same time accessing complete reports by population or ethnicity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-958241000 (ext. 20307)
| |
Collapse
|
31
|
Horscroft C, Ennis S, Pengelly RJ, Sluckin TJ, Collins A. Sequencing era methods for identifying signatures of selection in the genome. Brief Bioinform 2020; 20:1997-2008. [PMID: 30053138 DOI: 10.1093/bib/bby064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Insights into genetic loci which are under selection and their functional roles contribute to increased understanding of the patterns of phenotypic variation we observe today. The availability of whole-genome sequence data, for humans and other species, provides opportunities to investigate adaptation and evolution at unprecedented resolution. Many analytical methods have been developed to interrogate these large data sets and characterize signatures of selection in the genome. We review here recently developed methods and consider the impact of increased computing power and data availability on the detection of selection signatures. Consideration of demography, recombination and other confounding factors is important, and use of a range of methods in combination is a powerful route to resolving different forms of selection in genome sequence data. Overall, a substantial improvement in methods for application to whole-genome sequencing is evident, although further work is required to develop robust and computationally efficient approaches which may increase reproducibility across studies.
Collapse
Affiliation(s)
- Clare Horscroft
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Sarah Ennis
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Reuben J Pengelly
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Timothy J Sluckin
- Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK.,Mathematical Sciences, University of Southampton, Highfield, Southampton, UK
| | - Andrew Collins
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| |
Collapse
|
32
|
Simionescu G, Ilie OD, Ciobica A, Doroftei B, Maftei R, Grab D, McKenna J, Dhunna N, Mavroudis I, Anton E. Mini-Review on the Possible Interconnections between the Gut-Brain Axis and the Infertility-Related Neuropsychiatric Comorbidities. Brain Sci 2020; 10:brainsci10060384. [PMID: 32560488 PMCID: PMC7349587 DOI: 10.3390/brainsci10060384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Both the gut-brain axis (GBA) and the hypothalamic–pituitary–adrenal (HPA) axis remain an intriguing yet obscure network with a strong influence over other systems of organs. Recent reports have sought to describe the multitude of harmful stressors that may impact the HPA axis along with the interconnections between these. This has improved our knowledge of how the underlying mechanisms working to establish homeostasis are affected. A disruption to the HPA axis can amplify the chances of gastrointestinal deficiencies, whilst also increasing the risk of a wide spectrum of neuropsychiatric disorders. Thus, the influence of microorganisms found throughout the digestive tract possess the ability to affect both physiology and behaviour by triggering responses, which may be unfavourable. This is sometimes the case in of infertility. Numerous supplements have been formulated with the intention of rebalancing the gut microflora. Accordingly, the gut flora may alter the pharmacokinetics of drugs used as part of fertility treatments, potentially exacerbating the predisposition for various neurological disorders, regardless of the age and gender.
Collapse
Affiliation(s)
- Gabriela Simionescu
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania; (G.S.); (D.G.); (E.A.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 11, 700505 Iasi, Romania; (O.-D.I.); (A.C.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 11, 700505 Iasi, Romania; (O.-D.I.); (A.C.)
| | - Bogdan Doroftei
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania; (G.S.); (D.G.); (E.A.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No 3C, 700032 Iasi, Romania
- Correspondence:
| | - Radu Maftei
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No 3C, 700032 Iasi, Romania
- Department of Morphostructural Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Grigore. T. Popa” Iasi, University Street, No 16, 700115 Iasi, Romania
| | - Delia Grab
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania; (G.S.); (D.G.); (E.A.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No 34, 700038 Iasi, Romania;
| | - Jack McKenna
- York Hospital, Wigginton Road Clifton, York YO31 8HE, UK;
| | - Nitasha Dhunna
- Mid Yorkshrie Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Emil Anton
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania; (G.S.); (D.G.); (E.A.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No 34, 700038 Iasi, Romania;
| |
Collapse
|
33
|
Segurel L, Guarino-Vignon P, Marchi N, Lafosse S, Laurent R, Bon C, Fabre A, Hegay T, Heyer E. Why and when was lactase persistence selected for? Insights from Central Asian herders and ancient DNA. PLoS Biol 2020; 18:e3000742. [PMID: 32511234 PMCID: PMC7302802 DOI: 10.1371/journal.pbio.3000742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
The genetic adaptation of humans to the consumption of milk from dairying animals is one of the most emblematic cases of recent human evolution. While the phenotypic change under selection, lactase persistence (LP), is known, the evolutionary advantage conferred to persistent individuals remains obscure. One informative but underappreciated observation is that not all populations whose ancestors had access to milk genetically adapted to become lactase persistent. Indeed, Central Asian herders are mostly lactase nonpersistent, despite their significant dietary reliance on dairy products. Investigating the temporal dynamic of the -13.910:C>T Eurasian mutation associated with LP, we found that, after its emergence in Ukraine 5,960 before present (BP), the T allele spread between 4,000 BP and 3,500 BP throughout Eurasia, from Spain to Kazakhstan. The timing and geographical progression of the mutation coincides well with the migration of steppe populations across and outside of Europe. After 3,000 BP, the mutation strongly increased in frequency in Europe, but not in Asia. We propose that Central Asian herders have adapted to milk consumption culturally, by fermentation, and/or by colonic adaptation, rather than genetically. Given the possibility of a nongenetic adaptation to avoid intestinal symptoms when consuming dairy products, the puzzle then becomes this: why has LP been selected for at all?
Collapse
Affiliation(s)
- Laure Segurel
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
- * E-mail:
| | - Perle Guarino-Vignon
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| | - Nina Marchi
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| | - Sophie Lafosse
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| | - Romain Laurent
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| | - Céline Bon
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| | - Alexandre Fabre
- Aix Marseille University, INSERM, MMG, Marseille, France
- APHM, Hôpital de la Timone Enfant, Service de Pédiatrie Multidisciplinaire, Marseille, France
| | - Tatyana Hegay
- Institute of Immunology and Human Genomics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Evelyne Heyer
- Eco-anthropologie, Muséum national d’Histoire naturelle, CNRS, Université de Paris, Paris, France
| |
Collapse
|
34
|
Charati H, Jabbari Ori R, Aghajanpour-Mir M, Esmailizadeh A, Zhang YP. The lactase persistence allele –22018 G/A associated with body mass index in an Asian population. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Leis R, de Castro MJ, de Lamas C, Picáns R, Couce ML. Effects of Prebiotic and Probiotic Supplementation on Lactase Deficiency and Lactose Intolerance: A Systematic Review of Controlled Trials. Nutrients 2020; 12:E1487. [PMID: 32443748 PMCID: PMC7284493 DOI: 10.3390/nu12051487] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Lactose intolerance (LI) is characterized by the presence of primarily gastrointestinal clinical signs resulting from colonic fermentation of lactose, the absorption of which is impaired due to a deficiency in the lactase enzyme. These clinical signs can be modified by several factors, including lactose dose, residual lactase expression, concurrent ingestion of other dietary components, gut-transit time, and enteric microbiome composition. In many of individuals with lactose malabsorption, clinical signs may be absent after consumption of normal amounts of milk or, in particular, dairy products (yogurt and cheese), which contain lactose partially digested by live bacteria. The intestinal microbiota can be modulated by biotic supplementation, which may alleviate the signs and symptoms of LI. This systematic review summarizes the available evidence on the influence of prebiotics and probiotics on lactase deficiency and LI. The literature search was conducted using the MEDLINE (via PUBMED) and SCOPUS databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and included randomized controlled trials. For each study selected, the risk of bias was assessed following the Cochrane Collaboration methodology. Our findings showed varying degrees of efficacy but an overall positive relationship between probiotics and LI in relation to specific strains and concentrations. Limitations regarding the wide heterogeneity between the studies included in this review should be taken into account. Only one study examined the benefits of prebiotic supplementation and LI. So further clinical trials are needed in order to gather more evidence.
Collapse
Affiliation(s)
- Rosaura Leis
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15704 Santiago de Compostela, Spain; (M.-J.d.C.); (R.P.); (M.L.C.)
- IDIS-Health Research Institute of Santiago de Compostela, 15704 Santiago de Compostela, Spain
- CIBEROBN, Instituto Salud Carlos III, 28029 Madrid, Spain
- Facultad de Medicina, Departamento de Pediatría, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain;
| | - María-José de Castro
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15704 Santiago de Compostela, Spain; (M.-J.d.C.); (R.P.); (M.L.C.)
- IDIS-Health Research Institute of Santiago de Compostela, 15704 Santiago de Compostela, Spain
- CIBERER, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Carmela de Lamas
- Facultad de Medicina, Departamento de Pediatría, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain;
| | - Rosaura Picáns
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15704 Santiago de Compostela, Spain; (M.-J.d.C.); (R.P.); (M.L.C.)
| | - María L. Couce
- Department of Pediatrics, University Clinical Hospital of Santiago de Compostela, 15704 Santiago de Compostela, Spain; (M.-J.d.C.); (R.P.); (M.L.C.)
- IDIS-Health Research Institute of Santiago de Compostela, 15704 Santiago de Compostela, Spain
- Facultad de Medicina, Departamento de Pediatría, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain;
- CIBERER, Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
36
|
Eaaswarkhanth M, dos Santos ALC, Gokcumen O, Al-Mulla F, Thanaraj TA. Genome-Wide Selection Scan in an Arabian Peninsula Population Identifies a TNKS Haplotype Linked to Metabolic Traits and Hypertension. Genome Biol Evol 2020; 12:77-87. [PMID: 32068798 PMCID: PMC7093833 DOI: 10.1093/gbe/evaa033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the extreme and varying environmental conditions prevalent in the Arabian Peninsula, it has experienced several waves of human migrations following the out-of-Africa diaspora. Eventually, the inhabitants of the peninsula region adapted to the hot and dry environment. The adaptation and natural selection that shaped the extant human populations of the Arabian Peninsula region have been scarcely studied. In an attempt to explore natural selection in the region, we analyzed 662,750 variants in 583 Kuwaiti individuals. We searched for regions in the genome that display signatures of positive selection in the Kuwaiti population using an integrative approach in a conservative manner. We highlight a haplotype overlapping TNKS that showed strong signals of positive selection based on the results of the multiple selection tests conducted (integrated Haplotype Score, Cross Population Extended Haplotype Homozygosity, Population Branch Statistics, and log-likelihood ratio scores). Notably, the TNKS haplotype under selection potentially conferred a fitness advantage to the Kuwaiti ancestors for surviving in the harsh environment while posing a major health risk to present-day Kuwaitis.
Collapse
Affiliation(s)
| | - Andre Luiz Campelo dos Santos
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo
- Department of Archeology, Federal University of Pernambuco, Recife, Brazil
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
37
|
Kuchay RAH. New insights into the molecular basis of lactase non-persistence/persistence: a brief review. Drug Discov Ther 2020; 14:1-7. [PMID: 32101819 DOI: 10.5582/ddt.2019.01079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactose, a disaccharide and main carbohydrate in milk, requires hydrolysis in the intestinal tract to release its monosaccharides galactose and glucose for use as energy source by enterocytes. This hydrolysis is catalyzed by the enzyme lactase, a β-galactosidase located in the brush border membrane of small intestinal enterocytes. In most mammals, lactase activity declines after the weaning, a condition known as lactase non-persistence (LNP). Lactase persistence (LP) is an autosomal dominant trait enabling the continued production of the enzyme lactase throughout adult life. Non-persistence or persistence of lactase expression into adult life being a polymorphic trait has been attributed to various single nucleotide polymorphisms in the enhancer region surrounding lactase gene (LCT). However, latest research has pointed to 'genetic-epigenetic interactions' as key to regulation of lactase expression. LNP and LP DNA haplotypes have demonstrated markedly different epigenetic aging as genetic factors contribute to gradual accumulation of epigenetic changes with age to affect lactase expression. This review will attempt to present an overview of latest insights into molecular basis of LNP/LP including the crucial role of 'genetic-epigenetic interactions' in regulating lactase expression.
Collapse
|
38
|
Affiliation(s)
- Andrea S Wiley
- Department of Anthropology, Indiana University, 130 Student Building, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
The Eurasian lactase persistence variant LCT-13910 C/T is associated with vitamin D levels in individuals living at high latitude, more so than exposure to sunlight. J Nutr Sci 2020; 9:e1. [PMID: 32042409 PMCID: PMC6984125 DOI: 10.1017/jns.2019.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid selection of a genetic variant that confers continuous life-long lactase production in Europeans (LCT-13910 C/T) has been attributed to the advantages of acquiring nutrients from consuming milk without the disadvantages of lactose malabsorption. Individuals with this genetic lactase persistence (LP) variant generally consume more milk and have been shown to have higher levels of serum vitamin D. Vitamin D is the principal regulator of Ca absorption and its synthesis in skin is dependent on UVB exposure. The primary aim of the present study was to compare serum vitamin D concentrations with LP variant and to control for UVB exposure. Data from over 100 000 individuals living in Norway, a country with low UVB exposure, was retrospectively retrieved for comparison of genetic LP variant, serum 25-hydroxyvitamin D (25(OH)D) concentration and the time of year when serum samples were taken. For comparison, a similar analysis was performed with a natural dairy micronutrient, namely vitamin B12. It was found that individuals with the genetic LP variant had considerably higher levels of serum 25(OH)D (P < 2 × 10-16, Cohen's d = 0·73) but lower levels of vitamin B12 (P < 2 × 10-16, Cohen's d = 0·11), compared with genetic lactase non-persistent individuals, even when controlled for seasonality, age and sex. The difference in serum 25(OH)D levels did not diminish in summer months, showing the role of vitamin D in LP variant selection in areas of low UVB irradiation. LP variant selection advantage through acquiring another dairy micronutrient, vitamin B12, was not observed.
Collapse
|
40
|
Vicente M, Priehodová E, Diallo I, Podgorná E, Poloni ES, Černý V, Schlebusch CM. Population history and genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence trait. BMC Genomics 2019; 20:915. [PMID: 31791255 PMCID: PMC6888939 DOI: 10.1186/s12864-019-6296-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Human population history in the Holocene was profoundly impacted by changes in lifestyle following the invention and adoption of food-production practices. These changes triggered significant increases in population sizes and expansions over large distances. Here we investigate the population history of the Fulani, a pastoral population extending throughout the African Sahel/Savannah belt. Results Based on genome-wide analyses we propose that ancestors of the Fulani population experienced admixture between a West African group and a group carrying both European and North African ancestries. This admixture was likely coupled with newly adopted herding practices, as it resulted in signatures of genetic adaptation in contemporary Fulani genomes, including the control element of the LCT gene enabling carriers to digest lactose throughout their lives. The lactase persistence (LP) trait in the Fulani is conferred by the presence of the allele T-13910, which is also present at high frequencies in Europe. We establish that the T-13910 LP allele in Fulani individuals analysed in this study lies on a European haplotype background thus excluding parallel convergent evolution. We furthermore directly link the T-13910 haplotype with the Lactase Persistence phenotype through a Genome Wide Association study (GWAS) and identify another genomic region in the vicinity of the SPRY2 gene associated with glycaemic measurements after lactose intake. Conclusions Our findings suggest that Eurasian admixture and the European LP allele was introduced into the Fulani through contact with a North African population/s. We furthermore confirm the link between the lactose digestion phenotype in the Fulani to the MCM6/LCT locus by reporting the first GWAS of the lactase persistence trait. We also explored other signals of recent adaptation in the Fulani and identified additional candidates for selection to adapt to herding life-styles.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Issa Diallo
- Département de Linguistique et Langues Nationales, Institut des Sciences des Sociétés, CNRST, Ouagadougou, Burkina Faso
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Estella S Poloni
- Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,SciLifeLab Uppsala, Uppsala, Sweden.
| |
Collapse
|
41
|
Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr 2019; 110:273-279. [PMID: 31175813 PMCID: PMC6669050 DOI: 10.1093/ajcn/nqz104] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
Globally, ∼70% of adults are deficient in intestinal lactase, the enzyme required for the digestion of lactose. In these individuals, the consumption of lactose-containing milk and dairy products can lead to the development of various gastrointestinal (GI) symptoms. The primary solution to lactose intolerance is withdrawing lactose from the diet either by eliminating dairy products altogether or substituting lactose-free alternatives. However, studies have shown that certain individuals erroneously attribute their GI symptoms to lactose and thus prefer to consume lactose-free products. This has raised the question whether consuming lactose-free products reduces an individual's ability to absorb dietary lactose and if lactose-absorbers should thus avoid these products. This review summarizes the current knowledge regarding the acclimatization of lactose processing in humans. Human studies that have attempted to induce intestinal lactase expression with different lactose feeding protocols have consistently shown lack of enzyme induction. Similarly, withdrawing lactose from the diet does not reduce intestinal lactase expression. Evidence from cross-sectional studies shows that milk or dairy consumption is a poor indicator of lactase status, corroborating the results of intervention studies. However, in lactase-deficient individuals, lactose feeding supports the growth of lactose-digesting bacteria in the colon, which enhances colonic lactose processing and possibly results in the reduction of intolerance symptoms. This process is referred to as colonic adaptation. In conclusion, endogenous lactase expression does not depend on the presence of dietary lactose, but in susceptible individuals, dietary lactose might improve intolerance symptoms via colonic adaptation. For these individuals, lactose withdrawal results in the loss of colonic adaptation, which might lower the threshold for intolerance symptoms if lactose is reintroduced into the diet.
Collapse
Affiliation(s)
- Richard A Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden,Address correspondence to RAF (e-mail: )
| |
Collapse
|
42
|
Vergara-Lope A, Ennis S, Vorechovsky I, Pengelly RJ, Collins A. Heterogeneity in the extent of linkage disequilibrium among exonic, intronic, non-coding RNA and intergenic chromosome regions. Eur J Hum Genet 2019; 27:1436-1444. [PMID: 31053778 DOI: 10.1038/s41431-019-0419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 11/09/2022] Open
Abstract
Whole-genome sequence data enable construction of high-resolution linkage disequilibrium (LD) maps revealing the LD structure of functional elements within genic and subgenic sequences. The Malecot-Morton model defines LD map distances in linkage disequilibrium units (LDUs), analogous to the centimorgan scale of linkage maps. For whole-genome sequence-derived LD maps, we introduce the ratio of corresponding map lengths kilobases/LDU to describe the extent of LD within genome components. The extent of LD is highly variable across the genome ranging from ~38 kb for intergenic sequences to ~858 kb for centromeric regions. LD is ~16% more extensive in genic, compared with intergenic sequences, reflecting relatively increased selection and/or reduced recombination in genes. The LD profile across 18,268 autosomal genes reveals reduced extent of LD, consistent with elevated recombination, in exonic regions near the 5' end of genes but more extensive LD, compared with intronic sequences, across more centrally located exons. Genes classified as essential and genes linked to Mendelian phenotypes show more extensive LD compared with genes associated with complex traits, perhaps reflecting differences in selective pressure. Significant differences between exonic, intronic and intergenic components demonstrate that fine-scale LD structure provides important insights into genome function, which cannot be revealed by LD analysis of much lower resolution array-based genotyping and conventional linkage maps.
Collapse
Affiliation(s)
- Alejandra Vergara-Lope
- Human Genetics, Faculty of Medicine, University of Southampton, Duthie Building (808), Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics, Faculty of Medicine, University of Southampton, Duthie Building (808), Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Igor Vorechovsky
- Human Genetics, Faculty of Medicine, University of Southampton, Duthie Building (808), Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Reuben J Pengelly
- Human Genetics, Faculty of Medicine, University of Southampton, Duthie Building (808), Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew Collins
- Human Genetics, Faculty of Medicine, University of Southampton, Duthie Building (808), Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
43
|
Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa P, De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2019; 11:886. [PMID: 31010241 PMCID: PMC6520754 DOI: 10.3390/nu11040886] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Functional gastrointestinal symptoms are frequent, and may be driven by several pathogenic mechanisms. Symptoms may persist in lactose intolerant (LI) patients (i.e., subjects with intestinal lactase deficiency, lactose malabsorption producing symptoms), after a lactose-free diet. Our hypothesis was that probiotic and vitamin B6 treatment may be useful to alleviate symptoms in LI patients through a positive modulation of gut microbial composition and relative metabolism. We aimed to test the efficacy of a novel formulation of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 plus vitamin B6 (ZR) in 23 LI subjects with persistent symptoms during a lactose-free diet. Symptoms, microbiome, and metabolome were measured at baseline and after 30 days in a crossover, randomized, double-blind study of ZR versus placebo (PL). Compared with PL, the administration of probiotics and vitamin B6 significantly decreased bloating (p = 0.028) and ameliorated constipation (p = 0.045). Fecal microbiome differed between ZR and PL. ZR drove the enrichment of several genera involved in lactose digestion including Bifidobacerium. Moreover, the relative abundance of acetic acid, 2-methyl-propanoic acid, nonenal, and indolizine 3-methyl increased, while phenol decreased. Our findings highlight the importance of selected probiotics and vitamin B6 to alleviate symptoms and gut dysbiosis in lactose intolerant patients with persistent functional gastrointestinal symptoms.
Collapse
Affiliation(s)
- Paola Vitellio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, piazza Università, 5, 39100 Bolzano, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
44
|
Di Costanzo M, Berni Canani R. Lactose Intolerance: Common Misunderstandings. ANNALS OF NUTRITION AND METABOLISM 2019; 73 Suppl 4:30-37. [DOI: 10.1159/000493669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lactose intolerance primarily refers to a syndrome having different symptoms upon the consumption of foods containing lactose. It is one of the most common form of food intolerance and occurs when lactase activity is reduced in the brush border of the small bowel mucosa. Individuals may be lactose intolerant to varying degrees, depending on the severity of these symptoms. When lactose is not digested, it can be fermented by gut microbiota leading to symptoms of lactose intolerance that include abdominal pain, bloating, flatulence, and diarrhea with a considerable intraindividual and interindividual variability in the severity of clinical manifestations. These gastrointestinal symptoms could be similar to cow’s milk allergy and could be wrongly labeled as symptoms of “milk allergy.” There are important differences between lactose intolerance and cow’s milk allergy; therefore, a better knowledge of these differences could limit misunderstandings in the diagnostic approach and in the management of these conditions.
Collapse
|
45
|
The evolutionary genetics of lactase persistence in seven ethnic groups across the Iranian plateau. Hum Genomics 2019; 13:7. [PMID: 30744699 PMCID: PMC6371433 DOI: 10.1186/s40246-019-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background The ability to digest dietary lactose is associated with lactase persistence (LP) in the intestinal lumen in human. The genetic basis of LP has been investigated in many populations in the world. Iran has a long history of pastoralism and the daily consumption of dairy products; thus, we aim to assess how LP has evolved in the Iranian population. We recruited 400 adult individuals from seven Iranian ethnic groups, from whom we investigated their lactose tolerance and screened the genetic variants in their lactase gene locus. Results The LP frequency distribution ranged from 0 to 29.9% in the seven Iranian ethnic groups with an average value of 9.8%. The variants, − 13910*T and − 22018*A, were significantly associated with LP phenotype in Iranians. We found no evidence of hard selective sweep for − 13910*T and − 22018*A in Persians, the largest ethnic group of Iran. The extremely low frequency of − 13915*G in the Iranian population challenged the view that LP distribution in Iran resulted from the demic diffusion, especially mediated by the spread of Islam, from the Arabian Peninsula. Conclusions Our results indicate the distribution of LP in seven ethnic groups across the Iranian plateau. Soft selective sweep rather than hard selective sweep played a substantial role in the evolution of LP in Iranian populations. Electronic supplementary material The online version of this article (10.1186/s40246-019-0195-5) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Montalva N, Adhikari K, Liebert A, Mendoza-Revilla J, Flores SV, Mace R, Swallow DM. Adaptation to milking agropastoralism in Chilean goat herders and nutritional benefit of lactase persistence. Ann Hum Genet 2019; 83:11-22. [PMID: 30264486 PMCID: PMC6393766 DOI: 10.1111/ahg.12277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
The genetic trait of lactase persistence (LP) evolved as an adaptation to milking pastoralism in the Old World and is a well-known example of positive natural selection in humans. However, the specific mechanisms conferring this selective advantage are unknown. To understand the relationship between milk drinking, LP, growth, reproduction, and survival, communities of the Coquimbo Region in Chile, with recent adoption of milking agropastoralism, were used as a model population. DNA samples and data on stature, reproduction, and diet were collected from 451 participants. Lactose tolerance tests were done on 41 of them. The European -13,910*T (rs4988235) was the only LP causative variant found, showing strong association (99.6%) with LP phenotype. Models of associations of inferred LP status and milk consumption, with fertility, mortality, height, and weight were adjusted with measures of ancestry and relatedness to control for population structure. Although we found no statistically significant effect of LP on fertility, a significant effect (P = 0.002) was observed of LP on body mass index (BMI) in males and of BMI on fertility (P = 0.003). These results fail to support a causal relationship between LP and fertility yet suggest the idea of a nutritional advantage of LP. Furthermore, the proportion of European ancestry around the genetic region of -13,910*T is significantly higher (P = 0.008) than the proportion of European ancestry genome-wide, providing evidence of recent positive selection since European-Amerindian admixture. This signature was absent in nonpastoralist Latin American populations, supporting the hypothesis of specific adaptation to milking agropastoralism in the Coquimbo communities.
Collapse
Affiliation(s)
- Nicolás Montalva
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
- Department of Anthropology, Human Evolutionary Ecology Group, University College London, 14 Taviton St, London, WC1H 0BW, United Kingdom
- Departamento de Antropología, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, 384 Calle Cardenal Caro, Arica, Chile
| | - Kaustubh Adhikari
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
- Department of Cell & Developmental Biology, University College London, Anatomy Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anke Liebert
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Javier Mendoza-Revilla
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 430 Honorario Delgado, Lima 31, Perú
| | - Sergio V Flores
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, 1045 Av. Capitan Ignacio Carrera Pinto, Nunoa, 7800284, Chile
| | - Ruth Mace
- Department of Anthropology, Human Evolutionary Ecology Group, University College London, 14 Taviton St, London, WC1H 0BW, United Kingdom
| | - Dallas M Swallow
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
47
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
48
|
Wiley AS. The Evolution of Lactase Persistence: Milk Consumption, Insulin-Like Growth Factor I, and Human Life-History Parameters. QUARTERLY REVIEW OF BIOLOGY 2018. [DOI: 10.1086/700768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Chumpitazi BP. Update on Dietary Management of Childhood Functional Abdominal Pain Disorders. Gastroenterol Clin North Am 2018; 47:715-726. [PMID: 30337028 PMCID: PMC6476188 DOI: 10.1016/j.gtc.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diet plays a significant role for children with functional abdominal pain disorders. A large majority of these children identify at least 1 food that exacerbates their symptoms. Malabsorbed carbohydrates may have both direct and microbiome-mediated physiologic effects. There are several factors associated with carbohydrate symptom generation, including (1) the amount ingested, (2) ingestion with a meal, (3) small intestinal enzymatic activity, (4) consuming the carbohydrate with microorganisms capable of breaking down the carbohydrate, (5) the gut microbiome, and (6) host factors. Therapies include carbohydrate (single and/or comprehensive) restriction, selective prebiotic and/or enzyme supplementation. Fiber supplementation may also be beneficial.
Collapse
Affiliation(s)
- Bruno P Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, 6701 Fannin Street, MWT 1010.03, Houston, TX, USA.
| |
Collapse
|
50
|
Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc Natl Acad Sci U S A 2018; 115:E11248-E11255. [PMID: 30397125 PMCID: PMC6275519 DOI: 10.1073/pnas.1813608115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since the Bronze Age, pastoralism has been a dominant subsistence mode on the Western steppe, but the origins of this tradition on the Eastern steppe are poorly understood. Here we investigate a putative early pastoralist population in northern Mongolia and find that dairy production was established on the Eastern steppe by 1300 BCE. Milk proteins preserved in dental calculus indicate an early focus on Western domesticated ruminants rather than local species, but genetic ancestry analysis indicates minimal admixture with Western steppe herders, suggesting that dairy pastoralism was introduced through adoption by local hunter-gatherers rather than population replacement. Recent paleogenomic studies have shown that migrations of Western steppe herders (WSH) beginning in the Eneolithic (ca. 3300–2700 BCE) profoundly transformed the genes and cultures of Europe and central Asia. Compared with Europe, however, the eastern extent of this WSH expansion is not well defined. Here we present genomic and proteomic data from 22 directly dated Late Bronze Age burials putatively associated with early pastoralism in northern Mongolia (ca. 1380–975 BCE). Genome-wide analysis reveals that they are largely descended from a population represented by Early Bronze Age hunter-gatherers in the Baikal region, with only a limited contribution (∼7%) of WSH ancestry. At the same time, however, mass spectrometry analysis of dental calculus provides direct protein evidence of bovine, sheep, and goat milk consumption in seven of nine individuals. No individuals showed molecular evidence of lactase persistence, and only one individual exhibited evidence of >10% WSH ancestry, despite the presence of WSH populations in the nearby Altai-Sayan region for more than a millennium. Unlike the spread of Neolithic farming in Europe and the expansion of Bronze Age pastoralism on the Western steppe, our results indicate that ruminant dairy pastoralism was adopted on the Eastern steppe by local hunter-gatherers through a process of cultural transmission and minimal genetic exchange with outside groups.
Collapse
|