1
|
Nishioka K, Nakagawa M, Tanino Y, Nakaya T. Neisseria perflava isolated from a clinical sample reduces influenza virus replication in respiratory cells. J Oral Biosci 2025; 67:100665. [PMID: 40280275 DOI: 10.1016/j.job.2025.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on Neisseria species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses. METHODS Six Neisseria species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed. RESULTS Culture supernatants of two Neisseria species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of N. perflava was further investigated. This activity was observed in the 10-30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed. CONCLUSION Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.
Collapse
Affiliation(s)
- Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Maki Nakagawa
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Clinical Investigation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Lozhkov A, Dobrovolskaya O, Romanovskaya-Romanko E, Shishlyannikov S, Elpaeva E, Garshinina A, Zabrodskaya Y, Shaldzhyan A, Egorov V, Vasin A. Exploring the protective role of recombinant type iii interferons in respiratory infections: Insights from an Mx1-deficient mouse model. Int J Antimicrob Agents 2025; 66:107491. [PMID: 40081775 DOI: 10.1016/j.ijantimicag.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Type III interferons (IFNs) are regarded as safe and effective preventive agents for viral infections of the respiratory tract. The effectiveness of the preventive use of type III IFNs in patients with polymorphisms in critical antiviral ISGs is particularly relevant. We utilized Balb/c mice deficient in the Mx1 gene as model organisms. METHODS Recombinant IFNs were administered intranasally one day before infection with the mouse-adapted pandemic strain of influenza A virus (IAV), A/California/07/09 (H1N1pdm09). In the model of mixed infection (sequential infection with IAV at a sublethal dose and Staphylococcus aureus), a bacterial suspension was administered intranasally a day after IAV infection. Influenza nucleoprotein level and bacterial load were assessed in the lungs on the third day post-infection. RESULTS Type III IFNs demonstrated a protective effect against infection with IAV. A single intranasal administration of IFN-λ protected mice from weight loss, reduced the level of viral nucleoprotein in lung homogenates, and significant differences in survival curves were also observed. In the case of mixed infection, a single intranasal administration of IFN-λ was associated with a decrease in bacterial load in the lungs, and minimal weight loss was observed in the mice. CONCLUSION The study demonstrated that IFN-λ can have a protective effect in Mx1-deficient Balb/c mice. These data support the universality of type III IFN use, suggesting that these preventive agents can be effective even in patients with a suboptimal genetic background.
Collapse
Affiliation(s)
- A Lozhkov
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia.
| | - O Dobrovolskaya
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - E Romanovskaya-Romanko
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - S Shishlyannikov
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
| | - E Elpaeva
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - A Garshinina
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - Y Zabrodskaya
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
| | - A Shaldzhyan
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - V Egorov
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia; Department of Molecular Genetics, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia; Biological Faculty, Saint-Petersburg State University, St. Petersburg, Russia
| | - A Vasin
- Russian Ministry of Health, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
3
|
Miron VD, Pleșca DA, Bilașco A, Filimon C, Covaci S, Drăgănescu AC. The Role of Physical Examination and Clinical Scores in Distinguishing Streptococcal Colonization from Pharyngitis in Pediatric Patients: Insights from a Common Clinical Scenario. Microorganisms 2025; 13:529. [PMID: 40142420 PMCID: PMC11944544 DOI: 10.3390/microorganisms13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The accurate differentiation between asymptomatic carriage with group A streptococcus (GAS) and active streptococcal pharyngitis is a complex task with important clinical and public health implications. This work aims to highlight the key strategies necessary for optimizing the diagnostic and therapeutic management of pediatric pharyngitis. Clinical scores are essential tools for improving diagnostic accuracy. When combined with laboratory tests such as throat cultures and rapid antigen detection tests, these systems enable effective risk stratification of patients, supporting more precise treatment decisions. In addition to diagnostic strategies, the article underscores the importance of patient-centered communication, particularly with the families of pediatric patients. Clear, empathetic discussions about the condition, diagnostic rationale, and treatment plan help foster trust, enhance adherence to medical recommendations, and reduce anxiety related to potential complications. A critical outcome of these combined strategies is the reduction of unnecessary antibiotic use, which plays a pivotal role in preventing both overdiagnosis and overprescription. This, in turn, mitigates the growing threat of antimicrobial resistance, one of the most significant global health challenges. By integrating clinical expertise, standardized protocols, and effective communication, healthcare providers can promote judicious and effective management of streptococcal pharyngitis or asymptomatic carriage, contributing to improved individual and population health outcomes.
Collapse
Affiliation(s)
- Victor Daniel Miron
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Doina Anca Pleșca
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- Children’s Clinical Hospital Dr. Victor Gomoiu, 022102 Bucharest, Romania
| | - Anuța Bilașco
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Claudiu Filimon
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Sigrid Covaci
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
| | - Anca Cristina Drăgănescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| |
Collapse
|
4
|
Liu X, Li B, Lin Y, Ma X, Liu Y, Ma L, Ma X, Wang X, Li N, Liu X, Chen X. Exploring the shared gene signatures and mechanism among three autoimmune diseases by bulk RNA sequencing integrated with single-cell RNA sequencing analysis. Front Mol Biosci 2025; 11:1520050. [PMID: 39840076 PMCID: PMC11746102 DOI: 10.3389/fmolb.2024.1520050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Background Emerging evidence underscores the comorbidity mechanisms among autoimmune diseases (AIDs), with innovative technologies such as single-cell RNA sequencing (scRNA-seq) significantly advancing the explorations in this field. This study aimed to investigate the shared genes among three AIDs-Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA) using bioinformatics databases, and to identify potential biomarkers for early diagnosis. Methods We retrieved transcriptomic data of MS, SLE, and RA patients from public databases. Weighted Gene Co-Expression Network Analysis (WGCNA) was employed to construct gene co-expression networks and identify disease-associated modules. Functional enrichment analyses and Protein-Protein Interaction (PPI) network was constructed. We used machine learning algorithms to select candidate biomarkers and evaluate their diagnostic value. The Cibersort algorithm was and scRNA-seq analysis was performed to identify key gene expression patterns and assess the infiltration of immune cells in MS patients. Finally, the biomarkers' expression was validated in human and mice experiments. Results Several shared genes among MS, SLE, and RA were identified, which play crucial roles in immune responses and inflammation regulation. PPI network analysis highlighted key hub genes, some of which were selected as candidate biomarkers through machine learning algorithms. Receiver Operating Characteristic (ROC) curve analysis indicated that some genes had high diagnostic value (Area Under the Curve, AUC >0.7). Immune cell infiltration pattern analysis showed significant differences in the expression of various immune cells in MS patients. scRNA-seq analysis revealed clusters of genes that were significantly upregulated in the single cells of cerebrospinal fluid in MS patients. The expression of shared genes was validated in the EAE mose model. Validation using clinical samples confirmed the expression of potential diagnostic biomarkers. Conclusion This study identified shared genes among MS, SLE, and RA and proposed potential early diagnostic biomarkers. These genes are pivotal in regulating immune responses, providing new targets and theoretical basis for the early diagnosis and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxi Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xia Wang
- Department of Neurology, The Sixth People’s Hospital of Huizhou City, Huizhou, China
| | - Nanjing Li
- Department of Neurology, The Sixth People’s Hospital of Huizhou City, Huizhou, China
| | - Xiaoyun Liu
- Department of General Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Tian M, Tang M, Chen C, Lin Y, Chen H, Xu Y. Macrophage Infiltration Correlated with IFI16, EGR1 and MX1 Expression in Renal Tubular Epithelial Cells Within Lupus Nephritis-Associated Tubulointerstitial Injury via Bioinformatics Analysis. J Inflamm Res 2024; 17:11469-11483. [PMID: 39735896 PMCID: PMC11681807 DOI: 10.2147/jir.s489087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Objective A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells. Methods The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT. Finally, Western blotting, quantitative real-time polymerase chain reaction, and multiple immunofluorescence methods were used to confirm the significance of these feature genes in MRL/lpr mice and patients with LN. Results Seventeen DEGs were identified, of which 11 were considerably upregulated and six were markedly downregulated. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment in pertussis, complement and coagulation cascades, systemic lupus erythematosus, and other pathways. Based on the machine learning results, we identified IFI16, EGR1 and MX1 were key diagnostic genes for tubulointerstitial injury associated with LN. Immune cell infiltration analysis revealed that IFI16, EGR1 and MX1 were associated with M1 macrophages. Finally, the association between IFI16, EGR1, MX1 and macrophages in MRL/lpr mice and patients with LN were verified. Conclusion This study suggests that IFI16, EGR1 and MX1 which are highly expressed in renal tubular epithelial cells in LN and are associated with macrophage infiltration, may be a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ming Tian
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Min Tang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yufang Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| |
Collapse
|
6
|
Rosenheim J, Gupta RK, Thakker C, Mann T, Bell LCK, Broderick CM, Madon K, Papargyris L, Dayananda P, Kwok AJ, Greenan-Barrett J, Wagstaffe HR, Conibear E, Fenn J, Hakki S, Lindeboom RGH, Dratva LM, Lemetais B, Weight CM, Venturini C, Kaforou M, Levin M, Kalinova M, Mann AJ, Catchpole A, Knight JC, Nikolić MZ, Teichmann SA, Killingley B, Barclay W, Chain BM, Lalvani A, Heyderman RS, Chiu C, Noursadeghi M. SARS-CoV-2 human challenge reveals biomarkers that discriminate early and late phases of respiratory viral infections. Nat Commun 2024; 15:10434. [PMID: 39616162 PMCID: PMC11608262 DOI: 10.1038/s41467-024-54764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/19/2024] [Indexed: 02/27/2025] Open
Abstract
Blood transcriptional biomarkers of acute viral infections typically reflect type 1 interferon (IFN) signalling, but it is not known whether there are biological differences in their regulation that can be leveraged for distinct translational applications. We use high frequency sampling in the SARS-CoV-2 human challenge model to show induction of IFN-stimulated gene (ISG) expression with different temporal and cellular profiles. MX1 gene expression correlates with a rapid and transient wave of ISG expression across all cell types, which may precede PCR detection of replicative infection. Another ISG, IFI27, shows a delayed but sustained response restricted to myeloid cells, attributable to gene and cell-specific epigenetic regulation. These findings are reproducible in experimental and naturally acquired infections with influenza, respiratory syncytial virus and rhinovirus. Blood MX1 expression is superior to IFI27 expression for diagnosis of early infection, as a correlate of viral load and for discrimination of virus culture positivity. Therefore, MX1 expression offers potential to stratify patients for antiviral therapy or infection control interventions. Blood IFI27 expression is superior to MX1 expression for diagnostic accuracy across the time course of symptomatic infection and thereby, offers higher diagnostic yield for respiratory virus infections that incur a delay between transmission and testing.
Collapse
Affiliation(s)
- Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Rishi K Gupta
- Institute of Health Informatics, University College London, London, UK
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Clare Thakker
- Division of Infection and Immunity, University College London, London, UK
| | - Tiffeney Mann
- Division of Infection and Immunity, University College London, London, UK
| | - Lucy C K Bell
- Division of Infection and Immunity, University College London, London, UK
| | | | - Kieran Madon
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Pete Dayananda
- Department of Infectious Disease, Imperial College London, London, UK
| | - Andrew J Kwok
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Helen R Wagstaffe
- Department of Infectious Disease, Imperial College London, London, UK
| | - Emily Conibear
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Joe Fenn
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Lisa M Dratva
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Briac Lemetais
- Division of Infection and Immunity, University College London, London, UK
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, UK
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | | | - Julian C Knight
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Department of Respiratory Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital NHS Foundation Trust, London, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Benjamin M Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
7
|
Ming J, Zhou R, Wu X, Gao Y, Yin Y, Fan W, Tan J, Song X. Characterization of Myxovirus resistance (Mx) gene from Chinese seabass Lateolabrax maculatus: Insights into the evolution and function of Mx genes. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109749. [PMID: 39002557 DOI: 10.1016/j.fsi.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Chinese seabass (Lateolabrax maculatus) stands out as one of the most sought-after and economically significant species in aquaculture within China. Diseases of L. maculatus occur frequently due to the degradation of the germplasm, the aggravation of environmental pollution of water, and the reproduction of pathogenic microorganisms, inflicting considerable economic losses on the Chinese seabass industry. The Myxovirus resistance (Mx) gene plays pivotal roles in the antiviral immune response ranging from mammals to fish. However, the function of the Mx gene in L. maculatus is still unknown. Firstly, the origin and evolutionary history of Mx proteins was elucidated in this study. Subsequently, an Mx gene from L. maculatus (designed as LmMxA gene) was identified, and its functions in combating antiviral and antibacterial threats were investigated. Remarkably, our findings suggested that while Mx group genes were present in chordates, DYN group genes were present in everything from single-celled animals to humans. Furthermore, our investigation revealed that the LmMxA mRNA level increased in the kidney, spleen and liver subsequent to Vibrio anguillarum and poly(I:C) challenged. Immunofluorescence analysis indicated that LmMxA is predominantly localization in the nucleus and the cytoplasm. Notably, the expression of MAVS, IFN1 and Mx1 increased when LmMxA was overexpression within the EPC cells. Moreover, through assessment via cytopathic effect (CPE), virus titer, and antibacterial activity, it becomes evident that LmMxA exerts a dual role in bolstering both antiviral and antibacterial immune responses. These compelling findings laid the foundation for further exploring the mechanism of LmMxA in response to innate immunity of L. maculatus.
Collapse
Affiliation(s)
- Jiagen Ming
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rong Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xiangyang Wu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanlun Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanze Yin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenyu Fan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiabo Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Mo J, Segovia K, Chrzastek K, Briggs K, Kapczynski DR. Morphologic characterization and cytokine response of chicken bone-marrow derived dendritic cells to infection with high and low pathogenic avian influenza virus. Front Immunol 2024; 15:1374838. [PMID: 39281683 PMCID: PMC11401072 DOI: 10.3389/fimmu.2024.1374838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are key components of the immune system and involved in early immune responses. DCs are specialized in capturing, processing, and presenting antigens to facilitate immune interactions. Chickens infected with avian influenza virus (AIV) demonstrate a wide range of clinical symptoms, based on pathogenicity of the virus. Low pathogenic avian influenza (LPAI) viruses typically induce mild clinical signs, whereas high pathogenic avian influenza (HPAI) induce more severe disease, which can lead to death. For this study, chicken bone marrow-derived DC (ckBM-DC)s were produced and infected with high and low pathogenic avian influenza viruses of H5N2 or H7N3 subtypes to characterize innate immune responses, study effect on cell morphologies, and evaluate virus replication. A strong proinflammatory response was observed at 8 hours post infection, via upregulation of chicken interleukin-1β and stimulation of the interferon response pathway. Microscopically, the DCs underwent morphological changes from classic elongated dendrites to a more general rounded shape that eventually led to cell death with the presence of scattered cellular debris. Differences in onset of morphologic changes were observed between H5 and H7 subtypes. Increases in viral titers demonstrated that both HPAI and LPAI are capable of infecting and replicating in DCs. The increase in activation of infected DCs may be indicative of a dysregulated immune response typically seen with HPAI infections.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | | | - Klaudia Chrzastek
- Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Kelsey Briggs
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| |
Collapse
|
9
|
Schwab LSU, Do THT, Pilapitiya D, Koutsakos M. Dissemination of influenza B virus to the lower respiratory tract of mice is restricted by the interferon response. J Virol 2024; 98:e0160423. [PMID: 38780249 PMCID: PMC11237704 DOI: 10.1128/jvi.01604-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The global burden of disease caused by influenza B virus (IBV) is substantial; however, IBVs remain overlooked. Understanding host-pathogen interactions and establishing physiologically relevant models of infection are important for the development and assessment of therapeutics and vaccines against IBV. In this study, we assessed an upper respiratory tract (URT)-restricted model of mouse IBV infection, comparing it to the conventional administration of the virus to the total respiratory tract (TRT). We found that URT infections caused by different strains of IBV disseminate to the trachea but resulted in limited dissemination of IBV to the lungs. Infection of the URT did not result in weight loss or systemic inflammation even at high inoculum doses and despite robust viral replication in the nose. Dissemination of IBV to the lungs was enhanced in mice lacking functional type I IFN receptor (IFNAR2), but not IFNγ. Conversely, in mice expressing the IFN-inducible gene Mx1, we found reduced IBV replication in the lungs and reduced dissemination of IBV from the URT to the lungs. Inoculation of IBV in both the URT and TRT resulted in seroconversion against IBV. However, priming at the TRT conferred superior protection from a heterologous lethal IBV challenge compared to URT priming, as determined by improved survival rates and reduced viral replication throughout the respiratory tract. Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role of IFNs in limiting dissemination of IBV to the lungs, and also demonstrates that the lack of viral replication in the lungs may impact protection from subsequent infections. IMPORTANCE Our study investigated how influenza B virus (IBV) spreads from the nose to the lungs of mice and the impact this has on disease and protection from re-infection. We found that when applied to the nose only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon response. Priming immunity at the nose only resulted in less protection from re-infection than priming immunity at both the nose and lungs. These insights can guide the development of potential therapies targeting the interferon response as well as of intranasal vaccines against IBV.
Collapse
Affiliation(s)
- Lara S. U. Schwab
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. T. Do
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Devaki Pilapitiya
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Farrukee R, Schwab LSU, Barnes JB, Brooks AG, Londrigan SL, Hartmann G, Zillinger T, Reading PC. Induction and antiviral activity of ferret myxovirus resistance (Mx) protein 1 against influenza A viruses. Sci Rep 2024; 14:13524. [PMID: 38866913 PMCID: PMC11169552 DOI: 10.1038/s41598-024-63314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - James B Barnes
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Patrick C Reading
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia.
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia.
| |
Collapse
|
11
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
12
|
Chernyshova AI, Zhirnov OP. Two Phylogenetic Cohorts of the Nucleocapsid Protein NP and Their Correlation with the Host Range of Influenza A Viruses. DOKL BIOCHEM BIOPHYS 2024; 516:93-97. [PMID: 38539009 DOI: 10.1134/s1607672924700789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 05/26/2024]
Abstract
Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian-swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.
Collapse
Affiliation(s)
- A I Chernyshova
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O P Zhirnov
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Russian-German Academy of Medico-Social and Biotechnological Sciences, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|
13
|
Ciacci Zanella G, Snyder CA, Arruda BL, Whitworth K, Green E, Poonooru RR, Telugu BP, Baker AL. Pigs lacking TMPRSS2 displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus. Front Genome Ed 2024; 5:1320180. [PMID: 38883409 PMCID: PMC11176495 DOI: 10.3389/fgeed.2023.1320180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 06/18/2024] Open
Abstract
Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.
Collapse
Affiliation(s)
- Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Celeste A Snyder
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Bailey L Arruda
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Erin Green
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Ravikanth Reddy Poonooru
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Bhanu P Telugu
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Amy L Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
14
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
15
|
Meliopoulos V, Honce R, Livingston B, Hargest V, Freiden P, Lazure L, Brigleb PH, Karlsson E, Sheppard H, Allen EK, Boyd D, Thomas PG, Schultz-Cherry S. Diet-induced obesity affects influenza disease severity and transmission dynamics in ferrets. SCIENCE ADVANCES 2024; 10:eadk9137. [PMID: 38728395 PMCID: PMC11086619 DOI: 10.1126/sciadv.adk9137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.
Collapse
Affiliation(s)
- Victoria Meliopoulos
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rebekah Honce
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandi Livingston
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Virginia Hargest
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela Freiden
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lauren Lazure
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela H. Brigleb
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Erik Karlsson
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - E. Kaity Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David Boyd
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Zhirnov OP, Lvov DK. Avian flu: «for whom the bell tolls»? Vopr Virusol 2024; 69:101-118. [PMID: 38843017 DOI: 10.36233/10.36233/0507-4088-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/14/2024]
Abstract
The family Orthomyxoviridae consists of 9 genera, including Alphainfluenzavirus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus». The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.
Collapse
Affiliation(s)
- O P Zhirnov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
- The Russian-German Academy of Medical-Social and Biotechnological Sciences, Skolkovo Innovation Center
| | - D K Lvov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
| |
Collapse
|
17
|
Radke J, Meinhardt J, Aschman T, Chua RL, Farztdinov V, Lukassen S, Ten FW, Friebel E, Ishaque N, Franz J, Huhle VH, Mothes R, Peters K, Thomas C, Schneeberger S, Schumann E, Kawelke L, Jünger J, Horst V, Streit S, von Manitius R, Körtvélyessy P, Vielhaber S, Reinhold D, Hauser AE, Osterloh A, Enghard P, Ihlow J, Elezkurtaj S, Horst D, Kurth F, Müller MA, Gassen NC, Melchert J, Jechow K, Timmermann B, Fernandez-Zapata C, Böttcher C, Stenzel W, Krüger E, Landthaler M, Wyler E, Corman V, Stadelmann C, Ralser M, Eils R, Heppner FL, Mülleder M, Conrad C, Radbruch H. Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat Neurosci 2024; 27:409-420. [PMID: 38366144 DOI: 10.1038/s41593-024-01573-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.
Collapse
Affiliation(s)
- Josefine Radke
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Lorenz Chua
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Foo Wei Ten
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Naveed Ishaque
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Valerie Helena Huhle
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ronja Mothes
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Peters
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carolina Thomas
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Schumann
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leona Kawelke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Jünger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Regina von Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anja Osterloh
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ihlow
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julia Melchert
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Camila Fernandez-Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institut für Biologie, Humboldt Universität, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victor Corman
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner, Berlin, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
20
|
Chang M, Min YQ, Xu Z, Deng F, Wang H, Ning YJ. Host factor MxA restricts Dabie bandavirus infection by targeting the viral NP protein to inhibit NP-RdRp interaction and ribonucleoprotein activity. J Virol 2024; 98:e0156823. [PMID: 38054738 PMCID: PMC10805036 DOI: 10.1128/jvi.01568-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.
Collapse
Affiliation(s)
- Meng Chang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
21
|
Nanamiya T, Takane K, Yamaguchi K, Okawara Y, Arakawa M, Saku A, Ikenoue T, Fujiyuki T, Yoneda M, Kai C, Furukawa Y. Expression of PVRL4, a molecular target for cancer treatment, is transcriptionally regulated by FOS. Oncol Rep 2024; 51:17. [PMID: 38063270 PMCID: PMC10739986 DOI: 10.3892/or.2023.8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
PVRL4 (or nectin‑4) is a promising therapeutic target since its upregulated expression is found in a wide range of human cancer types. Enfortumab vedotin, an antibody‑drug conjugate targeting PVRL4, is clinically used for the treatment of urothelial bladder cancer. In addition, rMV‑SLAMblind, a genetically engineered oncolytic measles virus, can infect cancer cells and induce apoptosis through interaction with PVRL4. Although PVRL4 transcript levels are elevated in breast, lung and ovarian cancer, the mechanisms of its upregulation have not yet been uncovered. To clarify the regulatory mechanisms of elevated PVRL4 expression in breast cancer cells, Assay for Transposase‑Accessible Chromatin‑sequencing and chromatin immunoprecipitation‑sequencing (ChIP‑seq) data were used to search for its regulatory regions. Using breast cancer cells, an enhancer region was ultimately identified. Additional analyses, including ChIP and reporter assays, demonstrated that FOS interacted with the PVRL4 enhancer region, and that alterations of the FOS‑binding motifs in the enhancer region decreased reporter activity. Consistent with these data, exogenous expression of FOS enhanced the reporter activity and PVRL4 expression in breast cancer cells. Furthermore, RNA‑seq analysis using breast cancer cells treated with PVRL4 small interfering RNA revealed its possible involvement in the cytokine response and immune system. These data suggested that FOS was involved, at least partly, in the regulation of PVRL4 expression in breast cancer cells, and that elevated PVRL4 expression may regulate the response of cancer cells to cytokines and the immune system.
Collapse
Affiliation(s)
- Tomoyuki Nanamiya
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuya Okawara
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mariko Arakawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akari Saku
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoko Fujiyuki
- Division of Virus Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Misako Yoneda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Chieko Kai
- Division of Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
22
|
Cappelletti G, Colombrita C, Limanaqi F, Invernizzi S, Garziano M, Vanetti C, Moscheni C, Santangelo S, Zecchini S, Trabattoni D, Silani V, Clerici M, Ratti A, Biasin M. Human motor neurons derived from induced pluripotent stem cells are susceptible to SARS-CoV-2 infection. Front Cell Neurosci 2023; 17:1285836. [PMID: 38116398 PMCID: PMC10728732 DOI: 10.3389/fncel.2023.1285836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction COVID-19 typically causes Q7 respiratory disorders, but a high proportion of patients also reports neurological and neuromuscular symptoms during and after SARSCoV-2 infection. Despite a number of studies documenting SARS-CoV-2 infection of various neuronal cell populations, the impact of SARS-CoV-2 exposure on motor neuronal cells specifically has not been investigated so far. Methods Thus, by using human iPSC-derived motor neurons (iPSC-MNs) we assessed: (i) the expression of SARS-CoV-2 main receptors; (ii) iPSC-MN infectability by SARS-CoV-2; and (iii) the effect of SARS-CoV-2 exposure on iPSC-MN transcriptome. Results Gene expression profiling and immunofluorescence (IF) analysis of the main host cell receptors recognized by SARS-CoV-2 revealed that all of them are expressed in iPSC-MNs, with CD147 and NRP1 being the most represented ones. By analyzing SARS-CoV-2 N1 and N2 gene expression over time, we observed that human iPSC-MNs were productively infected by SARS-CoV-2 in the absence of cytopathic effect. Supernatants collected from SARS-CoV-2-infected iPSC-MNs were able to re-infect VeroE6 cells. Image analyses of SARS-CoV-2 nucleocapsid proteins by IF confirmed iPSC-MN infectability. Furthermore, SARS-CoV-2 infection in iPSCMNs significantly altered the expression of genes (IL-6, ANG, S1PR1, BCL2, BAX, Casp8, HLA-A, ERAP1, CD147, MX1) associated with cell survival and metabolism, as well as antiviral and inflammatory response. Discussion These results suggest for the very first time that SARS-CoV-2 can productively infect human iPSC-derived MNs probably by binding CD147 and NRP1 receptors. Such information will be important to unveil the biological bases of neuromuscular disorders characterizing SARS-CoV-2 infection and the so called long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Claudia Colombrita
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Fiona Limanaqi
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sabrina Invernizzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Micaela Garziano
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Vanetti
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Claudia Moscheni
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Serena Santangelo
- Department of Medical Biotechnology and Translational Medicine, Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Silvia Zecchini
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, University of Milan, Milan, Italy
| | - Mario Clerici
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Mara Biasin
- Laboratory of Immune-Biology, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Meliopoulos V, Honce R, Livingston B, Hargest V, Freiden P, Lazure L, Brigleb PH, Karlsson E, Tillman H, Allen EK, Boyd D, Thomas PG, Schultz-Cherry S. Diet-induced obesity impacts influenza disease severity and transmission dynamics in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558609. [PMID: 37808835 PMCID: PMC10557597 DOI: 10.1101/2023.09.26.558609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a novel diet-induced obese ferret model and new tools to demonstrate that like humans, obesity resulted in significant changes to the lung microenvironment leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for longer making them more likely to transmit to contacts. These data suggest the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission, and a key tool for therapeutic and intervention development for this high-risk population. Teaser A new ferret model and tools to explore obesity's impact on respiratory virus infection, susceptibility, and community transmission.
Collapse
|
24
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
25
|
Petric PP, Schwemmle M, Graf L. Anti-influenza A virus restriction factors that shape the human species barrier and virus evolution. PLoS Pathog 2023; 19:e1011450. [PMID: 37410755 DOI: 10.1371/journal.ppat.1011450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Affiliation(s)
- Philipp Peter Petric
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Malarmathi M, Murali N, Selvaraju M, Sivakumar K, Gowthaman V, Raghavendran VB, Raja A, Peters SO, Thiruvenkadan AK. In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. BIOLOGY 2023; 12:919. [PMID: 37508350 PMCID: PMC10376314 DOI: 10.3390/biology12070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Newcastle disease (ND) is highly contagious and usually causes severe illness that affects Aves all over the world, including domestic poultry. Depending on the virus's virulence, it can impact the nervous, respiratory, and digestive systems and cause up to 100% mortality. The chIFITM genes are activated in response to viral infection. The current study was conducted to quantify the mRNA of chIFITM genes in vitro in response to ND viral infection. It also examined its ability to inhibit ND virus replication in chicken embryo fibroblast (CEF) cells of the Aseel and Kadaknath breeds. Results from the study showed that the expression of all chIFITM genes was significantly upregulated throughout the period in the infected CEF cells of both breeds compared to uninfected CEF cells. In CEF cells of the Kadaknath breed, elevated levels of expression of the chIFITM3 gene dramatically reduced ND viral growth, and the viral load was 60% lower than in CEF cells of the Aseel breed. The expression level of the chIFITMs in Kadaknath ranged from 2.39 to 11.68 log2 folds higher than that of control CEFs and was consistently (p < 0.01) higher than Aseel CEFs. Similar to this, theIFN-γ gene expresses strongly quickly and peaks at 13.9 log2 fold at 48 hpi. Based on these cellular experiments, the Kadaknath breed exhibits the potential for greater disease tolerance than Aseel. However, to gain a comprehensive understanding of disease resistance mechanisms in chickens, further research involving in vivo investigations is crucial.
Collapse
Affiliation(s)
- Muthusamy Malarmathi
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Nagarajan Murali
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Mani Selvaraju
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Karuppusamy Sivakumar
- Faculty of Food and Agriculture, The University of the West Indies, St Augustine 999183, Trinidad and Tobago
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | | | - Angamuthu Raja
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | | |
Collapse
|
27
|
Tassia MG, Hallowell HA, Waits DS, Range RC, Lowe CJ, Graze RM, Schwartz EH, Halanych KM. Induced Immune Reaction in the Acorn Worm, Saccoglossus kowalevskii, Informs the Evolution of Antiviral Immunity. Mol Biol Evol 2023; 40:msad097. [PMID: 37116212 PMCID: PMC10210618 DOI: 10.1093/molbev/msad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Evolutionary perspectives on the deployment of immune factors following infection have been shaped by studies on a limited number of biomedical model systems with a heavy emphasis on vertebrate species. Although their contributions to contemporary immunology cannot be understated, a broader phylogenetic perspective is needed to understand the evolution of immune systems across Metazoa. In our study, we leverage differential gene expression analyses to identify genes implicated in the antiviral immune response of the acorn worm hemichordate, Saccoglossus kowalevskii, and place them in the context of immunity evolution within deuterostomes-the animal clade composed of chordates, hemichordates, and echinoderms. Following acute exposure to the synthetic viral double-stranded RNA analog, poly(I:C), we show that S. kowalevskii responds by regulating the transcription of genes associated with canonical innate immunity signaling pathways (e.g., nuclear factor κB and interferon regulatory factor signaling) and metabolic processes (e.g., lipid metabolism), as well as many genes without clear evidence of orthology with those of model species. Aggregated across all experimental time point contrasts, we identify 423 genes that are differentially expressed in response to poly(I:C). We also identify 147 genes with altered temporal patterns of expression in response to immune challenge. By characterizing the molecular toolkit involved in hemichordate antiviral immunity, our findings provide vital evolutionary context for understanding the origins of immune systems within Deuterostomia.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Haley A Hallowell
- Department of Biological Sciences, Auburn University, Auburn, AL
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Damien S Waits
- Department of Biological Sciences, Auburn University, Auburn, AL
- Center for Marine Science, University of North Carolina Wilmington, Wlimington, NC
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL
| | | | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL
| | | | - Kenneth M Halanych
- Department of Biological Sciences, Auburn University, Auburn, AL
- Center for Marine Science, University of North Carolina Wilmington, Wlimington, NC
| |
Collapse
|
28
|
Dong X, Li Z, Zhao S, Liu J, Luo S, Zhang Y, Xu Q, Chen G, Zhang Y. Molecular cloning and expression analysis of Myxovirus resistance gene in Yangzhou goose ( Anser cygnoides domesticus). Br Poult Sci 2023:1-9. [PMID: 36637331 DOI: 10.1080/00071668.2022.2163617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Myxovirus resistance (Mx) is a protein produced by the interferon-induced natural immune response with broad spectrum antiviral function. However, the role and expression characteristics of the Mx gene in immune defence against viral infection in goose have not yet been reported.2. This study found a 2576 bp genomic sequence and a 2112 bp mRNA sequence for Mx, encoding 703 amino acids. Multiple sequence alignments of the amino acid sequences showed that the Yangzhou goose Mx (goMx) had 86.99% similarity to the mallard duck (Anas platyrhynchos).3. Tissue-specific expression profiling revealed that the expression of goMx was highest in the lung and spleen. Both poly (I:C) and GPV were found to elevate the expression of goMx. The upregulated expression of goMx was associated with interferon pathway-related genes IRF7, JAK1, STAT1, and STAT2. Furthermore, overexpression of goMx significantly activated the transcription of poly (I:C) induced TNF-α, IL-1β, IL-6, and IL-18.4. The findings of this study suggest that the goMx modulation of the antiviral response is mediated by the interferon pathway.
Collapse
Affiliation(s)
- X Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Z Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Q Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
29
|
Du M, Zhu H, Yin X, Ke T, Gu Y, Li S, Li Y, Zheng G. Exploration of influenza incidence prediction model based on meteorological factors in Lanzhou, China, 2014-2017. PLoS One 2022; 17:e0277045. [PMID: 36520836 PMCID: PMC9754291 DOI: 10.1371/journal.pone.0277045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Humans are susceptible to influenza. The influenza virus spreads quickly and behave seasonally. The seasonality and spread of influenza are often associated with meteorological factors and have spatio-temporal differences. Based on the influenza cases and daily average meteorological factors in Lanzhou from 2014 to 2017, this study firstly aimed to analyze the characteristics of influenza incidence in Lanzhou and the impact of meteorological factors on influenza activities. Then, SARIMA(X) models for the prediction were established. The influenza cases in Lanzhou from 2014 to 2017 was more male than female, and the younger the age, the higher the susceptibility; the epidemic characteristics showed that there is a peak in winter, a secondary peak in spring, and a trough in summer and autumn. The influenza cases in Lanzhou increased with increasing daily pressure, decreasing precipitation, average relative humidity, hours of sunshine, average daily temperature and average daily wind speed. Low temperature was a significant driving factor for the increase of transmission intensity of seasonal influenza. The SARIMAX (1,0,0)(1,0,1)[12] multivariable model with average temperature has better prediction performance than the university model. This model is helpful to establish an early warning system, and provide important evidence for the development of influenza control policies and public health interventions.
Collapse
Affiliation(s)
- Meixia Du
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
- Gansu Provincial Cancer Hospital, Gansu Lanzhou, China
| | - Hai Zhu
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
| | - Xiaochun Yin
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
- The Collaborative Innovation Center for Prevention and Control by Chinese Medicine on Disease Related Northwestern Environment and Nutrition, Gansu Lanzhou, China
- * E-mail: (XY); (SL)
| | - Ting Ke
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
| | - Yonge Gu
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
- The Collaborative Innovation Center for Prevention and Control by Chinese Medicine on Disease Related Northwestern Environment and Nutrition, Gansu Lanzhou, China
| | - Sheng Li
- First People’s Hospital of Lanzhou City, Gansu Lanzhou, China
- * E-mail: (XY); (SL)
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Gansu Lanzhou, China
| | - Guisen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Gansu Lanzhou, China
- The Collaborative Innovation Center for Prevention and Control by Chinese Medicine on Disease Related Northwestern Environment and Nutrition, Gansu Lanzhou, China
| |
Collapse
|
30
|
Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, Hör J, Garb J, Bechon N, Brandis A, Lopatina A, Ofir G, Hochhauser D, Stokar-Avihail A, Tal N, Sharir S, Voichek M, Erez Z, Ferrer JLM, Dar D, Kacen A, Amitai G, Sorek R. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30:1556-1569.e5. [DOI: 10.1016/j.chom.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023]
|
31
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
32
|
Song H, Liu X, Gao X, Li J, Shang Y, Gao W, Li Y, Zhang Z. Transcriptome analysis of pre-immune state induced by interferon gamma inhibiting the replication of H 9N 2 avian influenza viruses in chicken embryo fibroblasts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105332. [PMID: 35811034 DOI: 10.1016/j.meegid.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Interferon (IFN), a critical antiviral cytokine produced by pathogens-induced cells, plays an important role in host innate immune system. In this study, to investigate the inhibition effect of IFN on avian influenza virus (AIV), Chicken Embryo Fibroblasts (CEFs) was infected by H9N2 AIV. The pre-immune state and transcriptome analysis have been observed and performed. The result showed chicken interferon gamma (chIFN-γ) have the most inhibitory effect on H9N2 virus among three types of chicken interferons (chIFNs). Inhibition of chIFN-γ on H9N2 virus was verified by indirect immunofluorescence, RT-qPCR and western blot. The possible signaling pathways induced by chIFN-γ with or without virus were analyzed by transcriptome. The transcriptome data were compared among H9N2-infected, chIFN-γ-treated, chIFN-γ + H9N2-treated, and Control groups. In summary, RNA-sequencing (RNA-seq) data suggested that H9N2 virus infection resulted in corresponding response of certain defensive, inflammatory and metabolism pathways to the virus replication in CEFs. Furthermore, while CEFs were treated with chIFN-γ, many immune-related signaling pathways in cells are affected and altered. Antiviral genes involved in these immune pathways such as interferon regulatory factors, chemokines, interferon-stimulated genes (ISGs) and transcription factors were significantly up-regulated, and showed significant antiviral responses. Compared with virus infected CEFs alone, pretreatment with IFN induced the expression of antiviral genes and activated related antiviral pathways, inhibited the viral replication as result. Our study provided functional annotations for antiviral genes and the basis for studying the mechanism of chIFN-γ mediated response against H9N2 AIV.
Collapse
Affiliation(s)
- Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
33
|
Bamford CGG, Aranday-Cortes E, Sanchez-Velazquez R, Mullan C, Kohl A, Patel AH, Wilson SJ, McLauchlan J. A Human and Rhesus Macaque Interferon-Stimulated Gene Screen Shows That Over-Expression of ARHGEF3/XPLN Inhibits Replication of Hepatitis C Virus and Other Flavivirids. Viruses 2022; 14:v14081655. [PMID: 36016278 PMCID: PMC9414520 DOI: 10.3390/v14081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the ‘Rho Guanine Nucleotide Exchange Factor 3’ gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.
Collapse
Affiliation(s)
- Connor G. G. Bamford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Ricardo Sanchez-Velazquez
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- BioNTech SE, 55131 Mainz, Germany
| | - Catrina Mullan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Correspondence:
| |
Collapse
|
34
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
35
|
From high-throughput to therapeutic: host-directed interventions against influenza viruses. Curr Opin Virol 2022; 53:101198. [PMID: 35030353 PMCID: PMC9086133 DOI: 10.1016/j.coviro.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Influenza viruses are simultaneously supported and antagonized by factors within the host cell. This close relationship is the theoretical basis for future antivirals that target the host rather than the virus itself, a concept termed host-directed therapeutics. Genetic screening has led to the identification of host factors capable of modulating influenza virus infections, and these factors represent candidate targets for host-directed antiviral strategies. Despite advances in understanding host targets, however, there are currently no host-directed interventions for influenza viruses in clinical use. In this brief review, we discuss some host factors identified in knockout/knockdown and overexpression screens that could potentially be targeted as host-directed influenza intervention strategies. We further comment on the feasibility of changing gene expression in the respiratory tract with RNA delivery vectors and transient CRISPR-mediated gene targeting.
Collapse
|
36
|
Layton DS, Mara K, Dai M, Malaver-Ortega LF, Gough TJ, Bruce K, Jenkins KA, Bean AGD. Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells. Microorganisms 2022; 10:133. [PMID: 35056582 PMCID: PMC8781551 DOI: 10.3390/microorganisms10010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar-/- cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.
Collapse
Affiliation(s)
- Daniel S. Layton
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kostlend Mara
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Meiling Dai
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Luis Fernando Malaver-Ortega
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton Campus, Monash University, Clayton, VIC 3800, Australia;
| | - Tamara J. Gough
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kerri Bruce
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kristie A. Jenkins
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| |
Collapse
|
37
|
Amat JAR, Patton V, Chauché C, Goldfarb D, Crispell J, Gu Q, Coburn AM, Gonzalez G, Mair D, Tong L, Martinez-Sobrido L, Marshall JF, Marchesi F, Murcia PR. Long-term adaptation following influenza A virus host shifts results in increased within-host viral fitness due to higher replication rates, broader dissemination within the respiratory epithelium and reduced tissue damage. PLoS Pathog 2021; 17:e1010174. [PMID: 34919598 PMCID: PMC8735595 DOI: 10.1371/journal.ppat.1010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness. As viruses are obligate intracellular pathogens, their ability to replicate and spread within their hosts is key for survival, even if it leads to severe disease or death of the host. Understanding the consequences of long-term virus adaptation after viral emergence is key for pandemic preparedness. H3N8 equine influenza virus (EIV) originated in birds and has circulated in horses since 1963, thus providing unique opportunities to study virus adaptation. We compared the replication kinetics of two EIVs of the same lineage but with different evolutionary histories: the earliest virus (EIV/63, isolated in 1963), and EIV/2003, which was isolated after 40 years of continuous circulation in horses. Experimental infections of cell lines (MDCK and E.Derm cells) and equine respiratory explants show that EIV evolved towards enhanced replication and cell-to-cell spread; but reduced tissue damage, confirming that viral fitness is adaptive and does not necessarily result in higher virulence.
Collapse
Affiliation(s)
- Julien A. R. Amat
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Veronica Patton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Crispell
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alice M. Coburn
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gaelle Gonzalez
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - John F. Marshall
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Ouyang T, Yang Z, Wan J, Zhang Y, Wang X, Kong L, Wang T, Li Y. Transcriptome analysis of host response to porcine epidemic diarrhea virus nsp15 in IPEC-J2 cells. Microb Pathog 2021; 162:105195. [PMID: 34571150 DOI: 10.1016/j.micpath.2021.105195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is an enveloped positive-sense ssRNA virus which is highly lethal to piglets, causing enormous economic losses to swine industry worldwide. Nsp15 protein is an endoribonuclease of PEDV and plays an indispensable role in the viral proliferation. We reported the transcription files of nsp15 transfected IPEC-J2 cells for the first time to broaden our understanding of PEDV pathogenesis. METHODS RNA-seq was performed to compare gene expression profiles between pCAGGS-HA-nsp15 transfected IPEC-J2 cells and pCAGGS-HA (empty vector) transfected IPEC-J2 cells. Immune-related genes and pathways were identified and analyzed to deepen our understanding of nsp15 for PEDV pathogenicity. IPEC-J2 cells transfected with pCAGGS-HA-CCL5/CXCL8/CXCL10 were infected with CV777 and the virus load of PEDV was detected by qRT-PCR. RESULTS A total of 21,654 genes were obtained by RNA-Seq and 415 differential expressed genes (DEGs) were identified, including 136 up-regulated and 279 down-regulated genes. A number of effect genes involved in immune responses and inflammation were differentially expressed. GO and KEGG enrichment analysis showed that 32 GO terms were significantly enriched and the DEGs were mainly enriched in immune-related pathways such as TNF signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. qRT-PCR results indicated the overexpression of selected chemokines, CCL5/CXCL8/CXCL10, can inhibit PEDV proliferation in IPEC-J2 cells. CONCLUSIONS Our transcriptome profile illustrated a number of genes involving in immune responses and inflammation were inhibited by nsp15, such as CCL5, CXCL8, CXCL10, OAS, MXs, STAT1 and IRF9. The results suggested that nsp15 can antagonize IFNs and block chemokine system to provide an adequate intracellular environment for viral proliferation.
Collapse
Affiliation(s)
- Tao Ouyang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiawu Wan
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yihan Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
39
|
Dee K, Goldfarb DM, Haney J, Amat JAR, Herder V, Stewart M, Szemiel AM, Baguelin M, Murcia PR. Human Rhinovirus Infection Blocks Severe Acute Respiratory Syndrome Coronavirus 2 Replication Within the Respiratory Epithelium: Implications for COVID-19 Epidemiology. J Infect Dis 2021; 224:31-38. [PMID: 33754149 PMCID: PMC8083659 DOI: 10.1093/infdis/jiab147] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.
Collapse
Affiliation(s)
- Kieran Dee
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel M Goldfarb
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Haney
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julien A R Amat
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vanessa Herder
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Meredith Stewart
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Agnieszka M Szemiel
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Pablo R Murcia
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Wang Z, Chai K, Liu Q, Yi DR, Pan Q, Huang Y, Tan J, Qiao W, Guo F, Cen S, Liang C. HIV-1 resists MxB inhibition of viral Rev protein. Emerg Microbes Infect 2021; 9:2030-2045. [PMID: 32873191 PMCID: PMC7534208 DOI: 10.1080/22221751.2020.1818633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interferon-inducible myxovirus resistance B (MxB) protein has been reported to inhibit HIV-1 and herpesviruses by blocking the nuclear import of viral DNA. Here, we report a new antiviral mechanism in which MxB restricts the nuclear import of HIV-1 regulatory protein Rev, and as a result, diminishes Rev-dependent expression of HIV-1 Gag protein. Specifically, MxB disrupts the interaction of Rev with the nuclear transport receptor, transportin 1 (TNPO1). Supporting this, the TNPO1-independent Rev variants become less restricted by MxB. In addition, HIV-1 can overcome this inhibition by MxB through increasing the expression of multiply spliced viral RNA and hence Rev protein. Therefore, MxB exerts its anti-HIV-1 function through interfering with the nuclear import of both viral DNA and viral Rev protein.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Canada
| | - Keli Chai
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada.,College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Dong-Rong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Yu Huang
- Institute of Pathogen Biology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Juan Tan
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wentao Qiao
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
41
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
42
|
Forbester JL, Humphreys IR. Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunol 2021; 14:14-25. [PMID: 33184476 PMCID: PMC7658619 DOI: 10.1038/s41385-020-00355-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.
Collapse
Affiliation(s)
- Jessica L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DS, UK.
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
43
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
44
|
Casanova JL, Abel L. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity? Hum Genet 2020; 139:681-694. [PMID: 32462426 PMCID: PMC7251220 DOI: 10.1007/s00439-020-02184-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multicellular eukaryotes emerged late in evolution from an ocean of viruses, bacteria, archaea, and unicellular eukaryotes. These macroorganisms are exposed to and infected by a tremendous diversity of microorganisms. Those that are large enough can even be infected by multicellular fungi and parasites. Each interaction is unique, if only because it operates between two unique living organisms, in an infinite diversity of circumstances. This is neatly illustrated by the extraordinarily high level of interindividual clinical variability in human infections, even for a given pathogen, ranging from a total absence of clinical manifestations to death. We discuss here the idea that the determinism of human life-threatening infectious diseases can be governed by single-gene inborn errors of immunity, which are rarely Mendelian and frequently display incomplete penetrance. We briefly review the evidence in support of this notion obtained over the last two decades, referring to a number of focused and thorough reviews published by eminent colleagues in this issue of Human Genetics. It seems that almost any life-threatening infectious disease can be driven by at least one, and, perhaps, a great many diverse monogenic inborn errors, which may nonetheless be immunologically related. While the proportions of monogenic cases remain unknown, a picture in which genetic heterogeneity is combined with physiological homogeneity is emerging from these studies. A preliminary sketch of the human genetic architecture of severe infectious diseases is perhaps in sight.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris University, Imagine Institute, Paris, France.
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris University, Imagine Institute, Paris, France
| |
Collapse
|