1
|
Nunes OBDS, Buranello TW, Farias FDA, Rosero J, Recchia K, Bressan FF. Can cell-cultured meat from stem cells pave the way for sustainable alternative protein? Curr Res Food Sci 2025; 10:100979. [PMID: 40040753 PMCID: PMC11878651 DOI: 10.1016/j.crfs.2025.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 03/06/2025] Open
Abstract
As the global population grows, the demand for food and animal-derived products rises significantly, posing a notable challenge to the progress of society in general. Alternative protein production may adequately address such a challenge, and cell-based meat production emerges as a promising solution. This review investigates methodologies for in vitro myogenesis and adipogenesis from stem cells (adult, embryonic, or induced pluripotent stem cells - iPSCs) across different animal species, as well as the remaining challenges for scalability, the possibility of genetic modification, along with safety concerns regarding the commercialization of cell-cultured meat. Regarding such complexities, interdisciplinary approaches will be vital for assessing the potential of cell-cultured meat as a sustainable protein source, mimicking the sensory and nutritional attributes of conventional livestock meat whilst meeting the demands of a growing global population while mitigating environmental impacts.
Collapse
Affiliation(s)
- Octavio Bignardi da Silva Nunes
- Department of Food Engineering, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
| | - Tiago Willian Buranello
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Fabiana de Andrade Farias
- Department of Food Engineering, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
| | - Jenyffer Rosero
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Kaiana Recchia
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| |
Collapse
|
2
|
Osiak-Wicha C, Kras K, Arciszewski MB. Comparative Analysis of Muscle Fibers in Selected Muscles of Working and Companion Dog Breeds. Animals (Basel) 2024; 14:3576. [PMID: 39765480 PMCID: PMC11672843 DOI: 10.3390/ani14243576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The structural and functional characteristics of skeletal muscle fibers play a crucial role in understanding the physical capabilities of dogs, particularly in relation to their breed-specific roles. This study aimed to compare the muscle fiber composition of working and companion dog breeds by analyzing the triceps brachii and biceps femoris muscles, focusing on fiber morphology, myosin heavy chain (MYH) isoform distribution, and nuclei per fiber. A total of 12 dogs, divided equally into working and companion breed groups, were used in this study. Muscle samples were collected post-mortem and prepared for histological analysis using cryosectioning. Immunohistochemical staining was employed to identify the expression of MYH isoforms, including MYH2, MYH4, and MYH7, which correspond to type IIa, IIb, and type I fibers, respectively. The results demonstrated significant differences between the two breed groups. Working dogs exhibited larger muscle fibers, a higher proportion of type IIa (MYH2) and type I (MYH7) fibers, and a greater number of nuclei per fiber, suggesting adaptations for endurance and strength. In contrast, companion dogs showed a higher proportion of type IIb (MYH4) fibers, indicative of their capacity for short bursts of activity rather than sustained exertion. Companion breeds also displayed a higher fiber density but fewer nuclei per fiber, which may contribute to slower muscle regeneration. These findings may provide insights into the muscle adaptations of dogs based on their breed-specific functional demands and highlight the importance of considering these differences in veterinary care and rehabilitation. The study underscores the influence of selective breeding on muscle structure and function in dogs and suggests further research into breed-specific muscle recovery mechanisms.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (K.K.); (M.B.A.)
| | | | | |
Collapse
|
3
|
Kohn TA, Knobel S, Donaldson B, van Boom KM, Blackhurst DM, Peart JM, Jensen J, Tordiffe ASW. Does sex matter in the cheetah? Insights into the skeletal muscle of the fastest land animal. J Exp Biol 2024; 227:jeb247284. [PMID: 39023116 PMCID: PMC11418166 DOI: 10.1242/jeb.247284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The cheetah is considered the fastest land animal, but studies on their skeletal muscle properties are scarce. Vastus lateralis biopsies, obtained from male and female cheetahs as well as humans, were analysed and compared for fibre type and size, and metabolism. Overall, cheetah muscle had predominantly type IIX fibres, which was confirmed by the myosin heavy chain isoform content (mean±s.d. type I: 17±8%, type IIA: 21±6%, type IIX: 62±12%), whereas human muscle contained predominantly type I and IIA fibres (type I: 49±14%, type IIA: 43±8%, type IIX: 7±7%). Cheetahs had smaller fibres than humans, with larger fibres in the males compared with their female counterparts. Citrate synthase (16±6 versus 28±7 µmol min-1 g-1 protein, P<0.05) and 3-hydroxyacyl co-enzyme A dehydrogenase (30±11 versus 47±15 µmol min-1 g-1 protein, P<0.05) activities were lower in cheetahs than in humans, whereas lactate dehydrogenase activity was 6 times higher in cheetahs (2159±827 versus 382±161 µmol min-1 g-1 protein, P<0.001). The activities of creatine kinase (4765±1828 versus 6485±1298, P<0.05 µmol min-1 g-1 protein) and phosphorylase (111±29 versus 216±92 µmol min-1 g-1 protein) were higher in humans, irrespective of the higher type IIX fibres in cheetahs. Superoxide dismutase and catalase, markers of antioxidant capacity, were higher in humans, but overall antioxidant capacity was higher in cheetahs. To conclude, fibre type, fibre size and metabolism differ between cheetahs and humans, with limited differences between the sexes.
Collapse
Affiliation(s)
- Tertius A. Kohn
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, 7530, South Africa
- Department of Human Biology, University of Cape Town, Cape Town, 7925, South Africa
- Centre for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| | - Samantha Knobel
- Department of Human Biology, University of Cape Town, Cape Town, 7925, South Africa
| | - Byron Donaldson
- Department of Human Biology, University of Cape Town, Cape Town, 7925, South Africa
| | - Kathryn M. van Boom
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, 7530, South Africa
- Centre for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| | - Dee M. Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - James M. Peart
- Department of Human Biology, University of Cape Town, Cape Town, 7925, South Africa
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, 0863 Oslo, Norway
| | - Adrian S. W. Tordiffe
- Centre for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| |
Collapse
|
4
|
van Boom KM, Schoeman JP, Steyl JCA, Kohn TA. Fiber type and metabolic characteristics of skeletal muscle in 16 breeds of domestic dogs. Anat Rec (Hoboken) 2023; 306:2572-2586. [PMID: 36932662 DOI: 10.1002/ar.25207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
The domestic dog (Canis lupus familiaris) species comprises hundreds of breeds, each differing in physical characteristics, behavior, strength, and running capability. Very little is known about the skeletal muscle composition and metabolism between the different breeds, which may explain disease susceptibility. Muscle samples from the triceps brachii (TB) and vastus lateralis (VL) were collected post mortem from 35 adult dogs, encompassing 16 breeds of varying ages and sex. Samples were analyzed for fiber type composition, fiber size, oxidative, and glycolytic metabolic capacity (citrate synthase [CS], 3-hydroxyacetyl-coA dehydrogenase [3HAD], creatine kinase [CK], and lactate dehydrogenase [LDH] enzyme activities). There was no significant difference between the TB and VL in any of the measurements. However, there were large intra species variation, with some variables confirming the physical attributes of a specific breed. Collectively, type IIA was the predominant fiber type followed by type I and type IIX. The cross-sectional areas (CSA) of the fibers were all smaller when compared to humans and similar to other wild animals. There was no difference in the CSA between the fiber types and muscle groups. Metabolically, the muscle of the dog displayed high oxidative capacity with high activities for CS and 3HAD. Lower CK and higher LDH activities than humans indicate a lower and higher flux through the high energy phosphate and glycolytic pathways, respectively. The high variability found across the different breeds may be attributed to genetics, function or lifestyle which have largely been driven through human intervention. This data may provide a foundation for future research into the role of these parameters in disease susceptibility, such as insulin resistance and diabetes, across breeds.
Collapse
Affiliation(s)
- Kathryn M van Boom
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Johan C A Steyl
- Department of Paraclinical Sciences and Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Paraclinical Sciences and Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Lubbe C, Meyer LCR, Kohn TA, Harvey BH, Wolmarans DW. The pathophysiology of rhabdomyolysis in ungulates and rats: towards the development of a rodent model of capture myopathy. Vet Res Commun 2023; 47:361-371. [PMID: 36334218 DOI: 10.1007/s11259-022-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Capture myopathy (CM), which is associated with the capture and translocation of wildlife, is a life-threatening condition that causes noteworthy morbidity and mortality in captured animals. Such wildlife deaths have a significant impact on nature conservation efforts and the socio-economic wellbeing of communities reliant on ecotourism. Several strategies are used to minimise the adverse consequences associated with wildlife capture, especially in ungulates, but no successful preventative or curative measures have yet been developed. The primary cause of death in wild animals diagnosed with CM stems from kidney or multiple organ failure as secondary complications to capture-induced rhabdomyolysis. Ergo, the development of accurate and robust model frameworks is vital to improve our understanding of CM. Still, since CM-related complications are borne from biological and behavioural factors that may be unique to wildlife, e.g. skeletal muscle architecture or flighty nature, certain differences between the physiology and stress responses of wildlife and rodents need consideration in such endeavours. Therefore, the purpose of this review is to summarise some of the major etiological and pathological mechanisms of the condition as it is observed in wildlife and what is currently known of CM-like syndromes, i.e. rhabdomyolysis, in laboratory rats. Additionally, we will highlight some key aspects for consideration in the development and application of potential future rodent models.
Collapse
Affiliation(s)
- Crystal Lubbe
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Leith C R Meyer
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Tertius A Kohn
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Western Cape, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
- South African Medical Research Council Unit On Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Western Cape, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
6
|
Sahd L, Doubell N, Bennett NC, Kotzé SH. Muscle architecture and muscle fibre type composition in the forelimb of two African mole-rat species, Bathyergus suillus and Heterocephalus glaber. J Morphol 2023; 284:e21557. [PMID: 36630620 DOI: 10.1002/jmor.21557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The scratch-digging Cape dune mole-rat (Bathyergus suillus), and the chisel-toothed digging naked mole-rat (Heterocephalus glaber) are African mole-rats that differ in their digging strategy. The aim of this study was to determine if these behavioural differences are reflected in the muscle architecture and fibre-type composition of the forelimb muscles. Muscle architecture parameters of 39 forelimb muscles in both species were compared. Furthermore, muscle fibre type composition of 21 forelimb muscles were analysed using multiple staining protocols. In B. suillus, muscles involved with the power stroke of digging (limb retractors and scapula elevators), showed higher muscle mass percentage, force output and shortening capacity compared to those in H. glaber. Additionally, significantly higher percentages of glycolytic fibres were observed in the scapular elevators and digital flexors of B. suillus compared to H. glaber, suggesting that the forelimb muscles involved in digging in B. suillus provide fast, powerful motions for effective burrowing. In contrast, the m. sternohyoideus a head and neck flexor, had significantly more oxidative fibres in H. glaber compared to B. suillus. In addition, significantly greater physiological cross-sectional area and fascicle length values were seen in the neck flexor, m. sternocleidomastoideus, in H. glaber compared to B. suillus, which indicates a possible adaptation for chisel-tooth digging. While functional demands may play a significant role in muscle morphology, the phylogenetic differences between the two species may play an additional role which needs further study.
Collapse
Affiliation(s)
- Lauren Sahd
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Narusa Doubell
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sanet H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Anatomy, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
7
|
Allen PD, Barclay JK. The Mechanical Properties of in Situ Canine Skeletal Muscle. Front Physiol 2022; 13:862189. [PMID: 35733992 PMCID: PMC9207469 DOI: 10.3389/fphys.2022.862189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to determine if fiber arrangement was responsible for differences in the whole muscle mechanical properties. Experiments were carried out in situ in blood perfused dog skeletal muscles at approximately normal body temperature between 36° and 38°C. The following mechanical relationships were studied using a pneumatic muscle lever to measure Tension (P), length (L) and dP/dt: and dL/dt with a high frequency oscillograph (500–1000 Hz): 1.) Length:Tension; 2.) Force:Velocity; and 3.) Stress:Strain of Series Elastic. Electron microscopy and fiber typing were done as adjunctive studies. Muscles were stimulated by direct nerve stimulation with 0.1msec stimuli at a rate of 1 impulse per second for twitch contractions, or in 200 msec bursts of 100 Hz 0.1 msec stimuli for brief tetanic contractions. The pennate short fibered gastrocnemius plantaris developed 1.0 kg/g of tension during brief tetanic stimulation, at optimal length (Lo) with full stimulus voltage, while the parallel long fibered semitendinosus developed 0.5 kg/g under the same conditions. The Length:Tension relationship for these two muscles was qualitatively similar but quantitatively different. The Force:Velocity relationship (ΔL/L0 vs. P/P0) for both muscles were also qualitatively similar and could be described by the previously proposed rectangular hyperbola but a better predicted fit to the observed data could be produced by adding a descending exponential function to the rectangular hyperbola. Unlike previous studies, the Stress:Strain properties of the series elastic component measured by quick release (ΔL/Li vs. ΔP/Po) were linear and gastrocnemius was 25 per cent higher than the semitendinosus. Overall, both muscles were found to have mechanical properties that differed little from the previously reported literature for amphibian, cardiac and small mammalian muscles studied by others in vitro. The major differences that we found were in the shapes of the force:velocity curve of the contractile component, and the Stress:Strain curve of series elastic component. Equations and explanations for these differences are devised and presented.
Collapse
|
8
|
Tôrres CL, Biourge VC, Backus RC. Plasma and Whole Blood Taurine Concentrations in Dogs May Not Be Sensitive Indicators of Taurine Deficiency When Dietary Sulfur Amino Acid Content Is Reduced. Front Vet Sci 2022; 9:873460. [PMID: 35615252 PMCID: PMC9125078 DOI: 10.3389/fvets.2022.873460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Taurine status is impacted by dietary supply of methionine and cysteine (SAA) and possibly intestinal microbial activity, where plasma and whole blood taurine concentrations are currently used to evaluate taurine status. Objective We determined effects of dietary SAA restriction on rate and extent of taurine depletion of blood and skeletal muscle in dogs of two body sizes, and whether oral antibiotic administration affected the taurine depletion and fecal bile acid excretion of the dogs. Methods Adult, male, Beagles (n = 6; 10.1–13.1 kg) and larger mixed-breed dogs (n = 6; 28.5–41.1 kg) were given four dry-expanded diets, whereby each successive diet contained lower protein and/or SAA concentration. After receiving the final diet for 44 weeks, all dogs were orally administered a mixture of ampicillin, neomycin sulfate, and metronidazole for 12 weeks. Taurine concentrations were determined every 2–4 weeks in venous blood and voided urine and every 4 to 16 weeks in biopsied semimembranosus muscle. Fecal bile acid excretion before and after antibiotics administration were quantified. Results When given for 36 weeks the lowest SAA diet, 3.4% methionine and 2.9% cystine, taurine concentrations in whole blood were not different between groups, while taurine in plasma declined (P < 0.05) in large but not in small dogs, and taurine in biopsied muscle decreased (P < 0.05) by 50% in large and by 37% in small dogs. Concentrations of taurine in muscle were lower (P < 0.01) and fecal bile acids greater (P = 0.001) in large than small dogs. Antibiotic administration restored plasma and muscle taurine to initial concentrations and halved fecal bile acid excretion by dogs of both groups. Conclusions Blood taurine concentration may not be a sensitive indictor of taurine depletion caused by low intake of bioavailable SAA in dogs, especially in large dogs. Taurine status and dietary SAA requirements of dogs may substantively depend on taurine loss mediated by intestinal microbiota.
Collapse
Affiliation(s)
- Cristina L. Tôrres
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | | | - Robert C. Backus
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Robert C. Backus
| |
Collapse
|
9
|
van Boom KM, Breed D, Hughes A, Blackhurst D, Kohn TA. A novel description of the Vastus lateralis morphology of the Temminck's Ground Pangolin (Manis temminckii). Anat Rec (Hoboken) 2022; 305:3463-3471. [PMID: 35357087 DOI: 10.1002/ar.24924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
The pangolin (Manidae family) is the world's most trafficked animal, yet very little is known about its physiology and metabolism primarily due to its inconspicuous and solitary nature. Skeletal muscle samples from the Vastus lateralis were collected postmortem from a single female Temminck's ground pangolin (Manis temminckii). Samples were analyzed for fiber type composition, fiber size and myosin heavy chain isoform content. The oxidative and glycolytic metabolic capacity was determined through citrate synthase, 3-hydroxyacetyl co A dehydrogenase, creatine kinase, lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase enzyme activities. Lastly, antioxidant capacity was determined through superoxide dismutase and catalase enzyme activities, and the total antioxidant capacity. The pangolin metabolic profile was then compared to other endurance and non-endurance mammals, in which data was standardized relative to human endurance athletes in order to provide context. Slow twitch type I fibers, rich in mitochondria were the predominant fiber type within the pangolin indicating a reliance on oxidative derived energy from fats and carbohydrates. This suggests that the pangolin has a high endurance capability when compared to other wild animals and human endurance athletes. This is the first study to investigate the skeletal muscle physiology and metabolism of any pangolin species, in an attempt to further understand this endangered animal and aid with conservation efforts.
Collapse
Affiliation(s)
- Kathryn Merle van Boom
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Dorothy Breed
- Biodiversity Management Branch, Environmental Management Department, City of Cape Town, 53 Berkley Road, Maitland, South Africa
| | - Alix Hughes
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Dee Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tertius Abraham Kohn
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
10
|
Cieri RL, Dick TJM, Morris JS, Clemente CJ. Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size. J Exp Biol 2022; 225:274383. [PMID: 35258618 DOI: 10.1242/jeb.243380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor J M Dick
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jeremy S Morris
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
Hakim CH, Yang HT, Burke MJ, Teixeira J, Jenkins GJ, Yang NN, Yao G, Duan D. Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber type switch in Duchenne muscular dystrophy dogs. Dis Model Mech 2021; 14:273743. [PMID: 34704592 PMCID: PMC8688408 DOI: 10.1242/dmm.049006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Aged dystrophin-null canines are excellent models for studying experimental therapies for Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. To establish the baseline, we studied the extensor carpi ulnaris (ECU) muscle in 15 terminal age (3-year-old) male affected dogs and 15 age/sex-matched normal dogs. Affected dogs showed histological and anatomical hallmarks of dystrophy, including muscle inflammation and fibrosis, myofiber size variation and centralized myonuclei, as well as a significant reduction of muscle weight, muscle-to-body weight ratio and muscle cross-sectional area. To rigorously characterize the contractile properties of the ECU muscle, we developed a novel in situ assay. Twitch and tetanic force, contraction and relaxation rate, and resistance to eccentric contraction-induced force loss were significantly decreased in affected dogs. Intriguingly, the time-to-peak tension and half-relaxation time were significantly shortened in affected dogs. Contractile kinetics predicted an unforeseen slow-to-fast myofiber-type switch, which we confirmed at the protein and transcript level. Our study establishes a foundation for studying long-term and late-stage therapeutic interventions in dystrophic canines. The unexpected myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals. This article has an associated First Person interview with the first author of the paper. Summary: A slow-to-fast fiber-type switch in dystrophic canine ECU muscle is revealed by contraction kinetics and myosin protein and transcript expression. This highlights the complexity of muscle remodeling in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Gregory J Jenkins
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - N N Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
de Meeûs d'Argenteuil C, Boshuizen B, Vidal Moreno de Vega C, Leybaert L, de Maré L, Goethals K, De Spiegelaere W, Oosterlinck M, Delesalle C. Comparison of Shifts in Skeletal Muscle Plasticity Parameters in Horses in Three Different Muscles, in Answer to 8 Weeks of Harness Training. Front Vet Sci 2021; 8:718866. [PMID: 34733900 PMCID: PMC8558477 DOI: 10.3389/fvets.2021.718866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Training-induced follow-up of multiple muscle plasticity parameters in postural stability vs. locomotion muscles provides an integrative physiological view on shifts in the muscular metabolic machinery. It can be expected that not all muscle plasticity parameters show the same expression time profile across muscles. This knowledge is important to underpin results of metabolomic studies. Twelve non-competing Standardbred mares were subjected to standardized harness training. Muscle biopsies were taken on a non-training day before and after 8 weeks. Shifts in muscle fiber type composition and muscle fiber cross-sectional area (CSA) were compared in the m. pectoralis, the m. vastus lateralis, and the m. semitendinosus. In the m. vastus lateralis, which showed most pronounced training-induced plasticity, two additional muscle plasticity parameters (capillarization and mitochondrial density) were assessed. In the m. semitendinosus, additionally the mean minimum Feret's diameter was assessed. There was a significant difference in baseline profiles. The m. semitendinosus contained less type I and more type IIX fibers compatible with the most pronounced anaerobic profile. Though no baseline fiber type-specific and overall mean CSA differences could be detected, there was a clear post-training decrease in fiber type specific CSA, most pronounced for the m. vastus lateralis, and this was accompanied by a clear increase in capillary supply. No shifts in mitochondrial density were detected. The m. semitendinosus showed a decrease in fiber type specific CSA of type IIAX fibers and a decrease of type I fiber Feret's diameter as well as mean minimum Feret's diameter. The training-induced increased capillary supply in conjunction with a significant decrease in muscle fiber CSA suggests that the muscular machinery models itself toward an optimal smaller individual muscle fiber structure to receive and process fuels that can be swiftly delivered by the circulatory system. These results are interesting in view of the recently identified important fuel candidates such as branched-chain amino acids, aromatic amino acids, and gut microbiome-related xenobiotics, which need a rapid gut-muscle gateway to reach these fibers and are less challenging for the mitochondrial system. More research is needed with that respect. Results also show important differences between muscle groups with respect to baseline and training-specific modulation.
Collapse
Affiliation(s)
- Constance de Meeûs d'Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Klara Goethals
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Research Group Biometrics, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Sahd L, Doubell N, Bennett NC, Kotzé SH. Hind foot drumming: Myosin heavy chain muscle fiber distribution in the hind limb muscles of three African mole-rat species (Bathyergidae). Anat Rec (Hoboken) 2021; 305:170-183. [PMID: 34240567 DOI: 10.1002/ar.24712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022]
Abstract
Hind foot drumming as a form of seismic signaling plays a pivotal role in the communication of various mammalian species including Bathyergidae (African mole-rats). The aim of the present study was to histologically determine if the action of hind foot drumming would influence the number of type II fibers present in the hind limb muscles of two drumming (Georychus capensis and Bathyergus suillus) and one non-drumming (Cryptomys hottentotus natalensis) bathyergid species. Twenty-one frozen muscles of each species were selected for the purpose of mid-belly cryostat sections. These sections were immunohistochemically labeled for myosin heavy chain slow muscle fibers (MHCs). In addition, oxidative capacity was determined by means of histochemical staining. A high percentage of fast type II muscle fibers was found in all the functional muscle groups, although there were no statistical differences between the drumming and non-drumming species. Bathyergus suillus had significantly fewer type II fibers in mm. semitendinosus, gluteofemoralis, tibialis cranialis, plantaris, and the medial head of m. gastrocnemius compared to the other two species. In all three species, the majority of the muscle fibers in all functional muscle groups demonstrated low oxidative capacity which correlated with the expression of type II muscle fibers. It therefore seems likely that the number of type II muscle fibers in the hind limb muscles of the Bathyergidae species studied here is more influenced by either body size or digging strategy rather than being an adaptation for hind foot drumming.
Collapse
Affiliation(s)
- Lauren Sahd
- Faculty of Medicine and Health Sciences, Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Narusa Doubell
- Faculty of Medicine and Health Sciences, Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sanet H Kotzé
- Faculty of Medicine and Health Sciences, Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Luo P, Luo L, Zhao W, Wang L, Sun L, Wu H, Li Y, Zhang R, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Wang L, Jiang Q. Dietary thymol supplementation promotes skeletal muscle fibre type switch in longissimus dorsi of finishing pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:570-578. [PMID: 31975464 DOI: 10.1111/jpn.13269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023]
Abstract
As one of the key points related to meat quality, skeletal muscle fibre type is determined by energy metabolism and genetic factors, but its transformation could be also greatly influenced by many factors. Thymol, the primary effective ingredients of thyme, is well known for its anti-oxidation and anti-inflammatory, while little is known about its effect on skeletal muscle oxidative metabolism and fibre type switch. Therefore, in order to investigate its effects and possibility to be applied in livestock production, 36 150-day-old fattening Pigs were fed with different diet for six-week experiment. As a result, the drip loss ratio of longissimus dorsi (LD) was significantly reduced (p < .05). Oxidative metabolism-related enzyme activity, the mRNA levels and protein expression of COX5B and PGC1α, mRNA level of myosin heavy chain I (MyHC I) and protein level of MyHC IIa were significantly upregulated (p < .05). While compared with control group, the protein expression of MyHC IIb was significantly decreased (p < .05). The result revealed that thymol could promote the oxidative metabolism in the muscle of pigs and improve the meat quality to a certain extent.
Collapse
Affiliation(s)
- Pei Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lv Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Leshan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lijuan Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hanyu Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ruixue Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Song S, Ahn CH, Kim GD. Muscle Fiber Typing in Bovine and Porcine Skeletal Muscles Using Immunofluorescence with Monoclonal Antibodies Specific to Myosin Heavy Chain Isoforms. Food Sci Anim Resour 2020; 40:132-144. [PMID: 31970337 PMCID: PMC6957451 DOI: 10.5851/kosfa.2019.e97] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/11/2022] Open
Abstract
The aim of this study was to optimize staining procedures for muscle fiber typing
efficiently and rapidly in bovine and porcine skeletal muscles, such as
longissimus thoracis, psoas major,
semimembranosus, and semitendinosus
muscles. The commercially available monoclonal anti-myosin heavy chain (MHC)
antibodies and fluorescent dye-conjugated secondary antibodies were applied to
immunofluorescence histology. Two different procedures, such as cocktail and
serial staining, were adopted to immunofluo-rescence analysis. In bovine
muscles, three pure types (I, IIA, and IIX) and one hybrid type, IIA+IIX,
were identified by the cocktail procedure with a combination of BA-F8, SC-71,
BF-35, and 6H1 anti-MHC antibodies. Porcine muscle fibers were typed into four
pure types (I, IIA, IIX, and IIB) and two hybrid types (IIA+IIX and
IIX+IIB) by a serial procedure with a combination of BA-F8, SC-71, BF-35,
and BF-F3. Unlike for bovine muscle, the cocktail procedure was not recommended
in porcine muscle fiber typing because of the abnormal reactivity of SC-71
antibody under cocktail procedure. Within the four antibodies, combinations of
two or more anti-MHC antibodies allowed us to distinguish pure fiber types or
all fiber types including hybrid types. Application of other secondary
antibodies conjugated with different fluorescent dyes allowed us to get improved
image resolution that clearly distinguished hybrid fibers. Muscle fiber
characteristics differed depending on species and muscle types.
Collapse
Affiliation(s)
- Sumin Song
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Chi-Hoon Ahn
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
16
|
Hohl R, Blackhurst DM, Donaldson B, van Boom KM, Kohn TA. Wild antelope skeletal muscle antioxidant enzyme activities do not correlate with muscle fibre type or oxidative metabolism. Comp Biochem Physiol A Mol Integr Physiol 2019; 242:110638. [PMID: 31862242 DOI: 10.1016/j.cbpa.2019.110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Wild antelope are some of the fastest land animals in the world, presenting with high oxidative and glycolytic skeletal muscle metabolism. However, no study has investigated their muscle antioxidant capacity, and may assist in understanding their physical ability and certain pathophysiological manifestations, such as capture myopathy. Therefore, the primary aim of this study was to determine the antioxidant activities superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), as well as five key regulatory enzymes that serve as markers of glycolysis (phosphofructokinase (PFK) and lactate dehydrogenase (LDH)), the tricarboxylic acid cycle (citrate synthase (CS)), β-oxidation (3-hydroxyacetyl CoA dehydrogenase (3HAD)) and the phosphagen pathway (creatine kinase (CK)), in the Vastus lateralis muscle of six southern African wild antelope species (mountain reedbuck, springbok, blesbok, fallow deer, black wildebeest and kudu). Four different muscle groups from laboratory rats served as reference values for the enzyme activities. SOD, CS and LDH activities were the highest in the wild antelope, whereas CK appeared highest in rat fast twitch muscles. Between the wild antelope species, differences exist for SOD, CAT, PFK, CK and LDH, but not for CS, 3HAD and GR. CAT and GR correlated positively only with type I fibres. No correlations could be found between muscle fibre type and the oxidative enzymes, CS and 3HAD, from the wild animals, concurring with previous studies on porcine and rats. However, wild antelope and rat muscle CK and SOD strongly correlated, hinting towards an antioxidant role for CK.
Collapse
Affiliation(s)
- Rodrigo Hohl
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil; Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Dee M Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Byron Donaldson
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Kathryn M van Boom
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, South Africa.
| |
Collapse
|
17
|
Larson L, Lioy J, Johnson J, Medler S. Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development. J Histochem Cytochem 2019; 67:891-900. [PMID: 31510854 PMCID: PMC6882066 DOI: 10.1369/0022155419876421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles comprise hundreds of individual muscle fibers, with each possessing specialized contractile properties. Skeletal muscles are recognized as being highly plastic, meaning that the physiological properties of single muscle fibers can change with appropriate use. During fiber type transitions, one myosin heavy chain isoform is exchanged for another and over time the fundamental nature of the fiber adapts to become a different fiber type. Within the rat triceps surae complex, the soleus muscle starts out as a muscle comprised of a mixture type IIA and type I fibers. As neonatal rats grow and mature, the soleus undergoes a near complete transition into a muscle with close to 100% type I fibers at maturity. We used immunohistochemistry and single fiber SDS-PAGE to track the transformation of type IIA into type I fibers. We found that transitioning fibers progressively incorporate new myofibrils containing type I myosin into existing type IIA fibers. During this exchange, distinct type I-containing myofibrils are segregated among IIA myofibrils. The individual myofibrils within existing muscle fibers thus appear to represent the functional unit that is exchanged during fiber type transitions that occur as part of normal muscle development.
Collapse
Affiliation(s)
- Lauren Larson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jessica Lioy
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jordan Johnson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| |
Collapse
|
18
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
19
|
Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging. PLoS One 2019; 14:e0214805. [PMID: 30947237 PMCID: PMC6449066 DOI: 10.1371/journal.pone.0214805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background Skeletal muscles include fast and slow muscle fibers. The tibialis anterior muscle (TA) is mainly composed of fast muscle fibers, whereas the soleus muscle (SOL) is mainly composed of slow muscle fibers. However, a noninvasive approach for appropriately investigating the characteristics of muscles is not available. Monitoring of skeletal muscle characteristics can help in the evaluation of the effects of strength training and diseases on skeletal muscles. Purpose The present study aimed to determine whether q-space imaging can distinguish between TA and SOL in in vivo mice. Methods In vivo magnetic resonance imaging of the right calves of mice (n = 8) was performed using a 7-Tesla magnetic resonance imaging system with a cryogenic probe. TA and SOL were assessed. q-space imaging was performed with a field of view of 10 mm × 10 mm, matrix of 48 × 48, and section thickness of 1000 μm. There were ten b-values ranging from 0 to 4244 s/mm2, and each b-value had diffusion encoding in three directions. Magnetic resonance imaging findings were compared with immunohistological findings. Results Full width at half maximum and Kurtosis maps of q-space imaging showed signal intensities consistent with immunohistological findings for both fast (myosin heavy chain II) and slow (myosin heavy chain I) muscle fibers. With regard to quantification, both full width at half maximum and Kurtosis could represent the immunohistological findings that the cell diameter of TA was larger than that of SOL (P < 0.01). Conclusion q-space imaging could clearly differentiate TA from SOL using differences in cell diameters. This technique is a promising method to noninvasively estimate the fiber type ratio in skeletal muscles, and it can be further developed as an indicator of muscle characteristics.
Collapse
|
20
|
Restan AZ, Zacche E, da Silva SB, Cerqueira JA, Carfiofi AC, Queiroz-Neto A, Camacho AA, Ferraz GC. Lactate and glucose thresholds and heart rate deflection points for Beagles during intense exercise. Am J Vet Res 2019; 80:284-293. [PMID: 30801212 DOI: 10.2460/ajvr.80.3.284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether the lactate threshold of dogs could be determined by a visual method and to assess the extent of agreement and bias among treadmill velocities for the lactate threshold as determined by visual (LTv) and polynomial (LTp) methods, glucose threshold as determined by visual (GTv) and polynomial (GTp) methods, and heart rate deflection point (HRdp) as a method for estimating the aerobic capacity of dogs. ANIMALS 18 healthy adult Beagles. PROCEDURES Each dog underwent a standardized incremental treadmill exercise test once. The test ended when the dog began to show signs of fatigue. Plasma lactate and glucose concentrations and heart rate (HR) were plotted against exercise intensity (treadmill velocity) for the duration of the test, and the LTv, GTv, and HRdp were determined visually. The LTp and GTp were determined by means of a second-order polynomial function. One-way ANOVA, Pearson correlation, Bland-Altman analyses, and ordinary least products regression were used to assess the extent of agreement and bias among the various threshold velocities. RESULTS Mean velocity did not differ significantly among the thresholds evaluated. There was a strong positive correlation between the LTv velocity and the velocity for GTv (r = 0.91), LTp (r = 0.96), GTp (r = 0.94), and HRdp (r = 0.95). CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that LTv could be determined for dogs undergoing intense exercise on a treadmill, and the treadmill velocity corresponding to the LTv was associated with the velocity for the other hallmarks of endurance. Thus, that method may be useful for prescription and evaluation of conditioning programs for dogs.
Collapse
|
21
|
Rivero JLL. Locomotor muscle fibre heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale ( Balaenoptera physalus). ACTA ACUST UNITED AC 2018; 221:jeb.177758. [PMID: 29691309 DOI: 10.1242/jeb.177758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022]
Abstract
From a terrestrial ancestry, the fin whale (Balaenoptera physalus) is one of the largest animals on Earth with a sprinter anti-predator strategy, and a characteristic feeding mode, lunge feeding, which involves bouts of high-intensity muscle activity demanding high metabolic output. We investigated the locomotor muscle morphology and metabolism of this cetacean to determine whether its muscle profile (1) explains this unique swimming performance and feeding behaviour, (2) is or is not homogeneous within the muscle, and (3) predicts allometric variations inherent to an extreme body size. A predominantly fast-glycolytic phenotype characterized the fin whale locomotor muscle, composed of abundant fast-twitch (type IIA) fibres with high glycolytic potential, low oxidative capacity, relatively small size, and reduced number of capillaries. Compared with superficial areas, deep regions of this muscle exhibited a slower and more oxidative profile, suggesting a division of labour between muscle strata. As expected, the fin whale locomotor muscle only expressed the two slowest myosin heavy chain isoforms (I and IIA). However, it displayed anaerobic (glycolytic) and aerobic (lipid-based metabolism) capabilities higher than would be predicted from the allometric perspective of its extreme body size. Relationships between muscle metabolism and body mass were fibre-type specific. The 'sprinter' profile of the fin whale swimming muscle, particularly of its superficial compartment, supports physiological demands during both high-speed swimming and the lunge, when energy expenditure reaches maximal or supramaximal levels. Comparatively, the slower and more oxidative profile of the deep compartment of this muscle seems to be well designed for sustained, low-intensity muscle activity during routine swimming.
Collapse
Affiliation(s)
- José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Campus Universitario de Rabanales, 14014 Cordoba, Spain
| |
Collapse
|
22
|
Shiga T, Uchida K, Chambers JK, Nakayama H. Immunohistochemical analysis of canine and feline muscle disorders using formalin-fixed, paraffin-embedded tissues. J Vet Diagn Invest 2017; 29:805-813. [PMID: 28599613 DOI: 10.1177/1040638717715287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histochemical techniques used in examination of muscle biopsies typically require frozen sections. Given that most of the specimens submitted to a veterinary laboratory for diagnosis are formalin-fixed, the choice of staining methods is limited. We aimed to further advance the diagnostic capabilities of pathologists presented with formalin-fixed muscle samples and to describe the differences in immunohistopathologic findings between neurogenic and myogenic muscle disorders. Based on hematoxylin and eosin staining, we defined in dogs the histologic lesions in 4 neurogenic disorders (degenerative myelopathy and polyneuropathy) and 2 myogenic disorders (dystrophin-deficient muscular dystrophy). In cats, we defined the lesions in 2 neurogenic disorders (lymphoma of nerve roots and spinal cords) and 1 myogenic disorder (laminin α2-deficient muscular dystrophy). Immunohistochemistry for slow and fast myosins revealed angular and group atrophy of type 1 and type 2 fibers in dogs and cats, and fiber type grouping in dogs. These immunohistopathologic findings were specific to neurogenic muscle disorders. Immunohistochemistry for nestin and myogenin revealed nestin-positive fibers and myogenin-positive nuclei in dogs and cats. They were not specific, but these fibers in myogenic disorders can be interpreted as regenerating fibers. The immunohistochemical method described herein appears to be useful for discriminating neurogenic and myogenic disorders in formalin-fixed, paraffin-embedded muscle tissue of dogs and cats.
Collapse
Affiliation(s)
- Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Acevedo LM, Raya AI, Ríos R, Aguilera-Tejero E, Rivero JLL. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. J Appl Physiol (1985) 2017; 123:249-259. [PMID: 28522764 DOI: 10.1152/japplphysiol.00282.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
A clear picture of skeletal muscle adaptations to obesity and related comorbidities remains elusive. This study describes fiber-type characteristics (size, proportions, and oxidative enzyme activity) in two typical hindlimb muscles with opposite structure and function in an animal model of genetic obesity. Lesser fiber diameter, fiber-type composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of muscle fiber types were assessed in slow (soleus)- and fast (tibialis cranialis)-twitch muscles of obese Zucker rats and compared with age (16 wk)- and sex (females)-matched lean Zucker rats (n = 16/group). Muscle mass and lesser fiber diameter were lower in both muscle types of obese compared with lean animals even though body weights were increased in the obese cohort. A faster fiber-type phenotype also occurred in slow- and fast-twitch muscles of obese rats compared with lean rats. These adaptations were accompanied by a significant increment in histochemical succinic dehydrogenase activity of slow-twitch fibers in the soleus muscle and fast-twitch fiber types in the tibialis cranialis muscle. Obesity significantly increased plasma levels of proinflammatory cytokines but did not significantly affect protein levels of peroxisome proliferator-activated receptors PPARγ or PGC1α in either muscle. These data demonstrate that, in female Zucker rats, obesity induces a reduction of muscle mass in which skeletal muscles show a diminished fiber size and a faster and more oxidative phenotype. It was noteworthy that this discrepancy in muscle's contractile and metabolic features was of comparable nature and extent in muscles with different fiber-type composition and antagonist functions.NEW & NOTEWORTHY This study demonstrates a discrepancy between morphological (reduced muscle mass), contractile (shift toward a faster phenotype), and metabolic (increased mitochondrial oxidative enzyme activity) characteristics in skeletal muscles of female Zucker fatty rats. It is noteworthy that this inconsistency was comparable (in nature and extent) in muscles with different structure and function.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Departamento de Ciencias Biomédicas, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ana I Raya
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Rafael Ríos
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Escolástico Aguilera-Tejero
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain;
| |
Collapse
|
24
|
Acevedo LM, Raya AI, Martínez-Moreno JM, Aguilera–Tejero E, Rivero JLL. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats. PLoS One 2017; 12:e0173028. [PMID: 28253314 PMCID: PMC5333851 DOI: 10.1371/journal.pone.0173028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.
Collapse
Affiliation(s)
- Luz M. Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, University of Cordoba, Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - Julio M. Martínez-Moreno
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - Escolástico Aguilera–Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - José-Luis L. Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, University of Cordoba, Cordoba, Spain
| |
Collapse
|
25
|
Identification and quantification of myosin heavy chain isoforms in bovine and porcine longissimus muscles by LC-MS/MS analysis. Meat Sci 2017; 125:143-151. [DOI: 10.1016/j.meatsci.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
|
26
|
Kim GD, Yang HS, Jeong JY. Comparison of Characteristics of Myosin Heavy Chain-based Fiber and Meat Quality among Four Bovine Skeletal Muscles. Korean J Food Sci Anim Resour 2016; 36:819-828. [PMID: 28115894 PMCID: PMC5243967 DOI: 10.5851/kosfa.2016.36.6.819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
Abstract
Muscle fiber characteristics account for meat quality and muscle fibers are mainly classified into three or more types according to their contractile and metabolic properties. However, the majority of previous studies on bovine skeletal muscle are based on myosin ATPase activity. In the present study, the differences in the characteristics of muscle fibers classified by the expression of myosin heavy chain (MHC) among four bovine skeletal muscles such as longissimus thoracis (LT), psoas major (PM), semimembranosus (SM) and semitendinosus (ST) and their relationships to beef quality were investigated. MHCs 2x, 2a and slow were identified by LC-MS/MS and IIX, IIA and I fiber types were classified. PM, which had the smallest size and highest density of fibers regardless of type, showed the highest myoglobin content, CIE L*, a*, b* and sarcomere length (p<0.05), whereas ST with the highest composition of IIX, showed high shear force and low sarcomere length (p<0.05). The correlation coefficients between muscle fiber characteristics and meat quality showed that type IIX is closely related to poor beef quality and that a high density of small-sized fibers is related to redness and tenderness. Therefore, the differences in meat quality between muscles can be explained by the differences in muscle fiber characteristics, and especially, the muscles with good quality are composed of more small-sized fibers regardless of fiber type.
Collapse
Affiliation(s)
- Gap-Don Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Han-Sul Yang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea
| | - Jin-Yeon Jeong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; Division of Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
27
|
de A Braga S, G F Padilha F, M R Ferreira A. Evaluation of Muscle Fiber Types in German Shepherd Dogs of Different Ages. Anat Rec (Hoboken) 2016; 299:1540-1547. [PMID: 27533067 DOI: 10.1002/ar.23464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022]
Abstract
The objective of this study was to determine and confirm the percentage of type I and type II muscle fibers that comprise the Gluteus Medius muscle in male and female canines of the German Shepherd breed, with standardized care, in different age groups, using the enzyme histochemical method. Muscle samples were collected from the Gluteus Medius muscles of forty clinically healthy dogs of the German Shepherd breed using the technique of percutaneous needle muscle biopsy. The samples were evaluated using histological and enzyme histochemical methods. The percentages of type I and II fibers and the ratio between the quantity of type I fibers/quantity of type II fibers were evaluated using the parameters of weight, age group, correlation between sex and age group, and between the sexes. It was found that there was no significant difference in relation to the types of fibers for the parameters of weight, age group, and age of the females. The correlation between the ages of the males suggested an increase in the percentage of type I fibers, a decrease in the percentage of type II fibers, or an increase in the ratio during the aging process. It was concluded that there was a decrease in the percentage of type II fibers with advancing age in male dogs, but without significant difference in the percentage of type I and type II fibers in relation to the weight. Anat Rec, 299:1540-1547, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sérgio de A Braga
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Felipe G F Padilha
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana M R Ferreira
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
28
|
Acevedo LM, López I, Peralta-Ramírez A, Pineda C, Chamizo VE, Rodríguez M, Aguilera-Tejero E, Rivero JLL. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats. J Appl Physiol (1985) 2016; 120:1059-69. [PMID: 26869708 DOI: 10.1152/japplphysiol.00957.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022] Open
Abstract
Although disorders of mineral metabolism and skeletal muscle are common in chronic kidney disease (CKD), their potential relationship remains unexplored. Elevations in plasma phosphate, parathyroid hormone, and fibroblastic growth factor 23 together with decreased calcitriol levels are common features of CKD. High-phosphate intake is a major contributor to progression of CKD. This study was primarily aimed to determine the influence of high-phosphate intake on muscle and to investigate whether calcitriol supplementation counteracts negative skeletal muscle changes associated with long-term uremia. Proportions and metabolic and morphological features of myosin-based muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of uremic rats (5/6 nephrectomy, Nx) and compared with sham-operated (So) controls. Three groups of Nx rats received either a standard diet (0.6% phosphorus, Nx-Sd), or a high-phosphorus diet (0.9% phosphorus, Nx-Pho), or a high-phosphorus diet plus calcitriol (10 ng/kg 3 day/wk ip, Nx-Pho + Cal) for 12 wk. Two groups of So rats received either a standard diet or a high-phosphorus diet (So-Pho) over the same period. A multivariate analysis encompassing all fiber-type characteristics indicated that Nx-Pho + Cal rats displayed skeletal muscle phenotypes intermediate between Nx-Pho and So-Pho rats and that uremia-induced skeletal muscle changes were of greater magnitude in Nx-Pho than in Nx-Sd rats. In uremic rats, treatment with calcitriol preserved fiber-type composition, cross-sectional size, myonuclear domain size, oxidative capacity, and capillarity of muscle fibers. These data demonstrate that a high-phosphorus diet potentiates and low-dose calcitriol attenuates adverse skeletal muscle changes in long-term uremic rats.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain; Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela; and
| | - Ignacio López
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Alan Peralta-Ramírez
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain; Escuela de Medicina Veterinaria, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Carmen Pineda
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Verónica E Chamizo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain
| | - Mariano Rodríguez
- Unidad de Investigación y Servicio de Nefrología (Ren in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | | | - José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain;
| |
Collapse
|
29
|
Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity. Sci Rep 2015; 5:14533. [PMID: 26416158 PMCID: PMC4586513 DOI: 10.1038/srep14533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.
Collapse
|
30
|
Acevedo LM, Peralta-Ramírez A, López I, Chamizo VE, Pineda C, Rodríguez-Ortiz ME, Rodríguez M, Aguilera-Tejero E, Rivero JLL. Slow- and fast-twitch hindlimb skeletal muscle phenotypes 12 wk after ⅚ nephrectomy in Wistar rats of both sexes. Am J Physiol Renal Physiol 2015; 309:F638-47. [PMID: 26246512 DOI: 10.1152/ajprenal.00195.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022] Open
Abstract
This study describes fiber-type adaptations in hindlimb muscles, the interaction of sex, and the role of hypoxia on this response in 12-wk ⅚ nephrectomized rats (Nx). Contractile, metabolic, and morphological features of muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of Nx rats, and compared with sham-operated controls. Rats of both sexes were considered in both groups. A slow-to-fast fiber-type transformation occurred in the tibialis cranialis of Nx rats, particularly in males. This adaptation was accomplished by impaired oxidative capacity and capillarity, increased glycolytic capacity, and no changes in size and nuclear density of muscle fiber types. An oxidative-to-glycolytic metabolic transformation was also found in the soleus muscle of Nx rats. However, a modest fast-to-slow fiber-type transformation, fiber hypertrophy, and nuclear proliferation were observed in soleus muscle fibers of male, but not of female, Nx rats. Serum testosterone levels decreased by 50% in male but not in female Nx rats. Hypoxia-inducible factor-1α protein level decreased by 42% in the tibialis cranialis muscle of male Nx rats. These data demonstrate that 12 wk of Nx induces a muscle-specific adaptive response in which myofibers do not change (or enlarge minimally) in size and nuclear density, but acquire markedly different contractile and metabolic characteristics, which are accompanied by capillary rarefaction. Muscle function and sex play relevant roles in these adaptations.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain; Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Alan Peralta-Ramírez
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain; Escuela de Medicina Veterinaria, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua; and
| | - Ignacio López
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain
| | - Verónica E Chamizo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain
| | | | - Mariano Rodríguez
- Unidad de Investigación y Servicio de Nefrología (Red in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | | | - José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain;
| |
Collapse
|
31
|
Tirmenstein M, Horvath J, Graziano M, Mangipudy R, Dorr T, Colman K, Zinker B, Kirby M, Cheng PTW, Patrone L, Kozlosky J, Reilly TP, Wang V, Janovitz E. Utilization of the Zucker Diabetic Fatty (ZDF) Rat Model for Investigating Hypoglycemia-related Toxicities. Toxicol Pathol 2015; 43:825-37. [PMID: 26085543 DOI: 10.1177/0192623315581020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucokinase (GK) catalyzes the initial step in glycolysis and is a key regulator of glucose homeostasis. Therefore, glucokinase activators (GKa) have potential benefit in treating type 2 diabetes. Administration of a Bristol-Myers Squibb GKa (BMS-820132) to healthy euglycemic Sprague-Dawley (SD) rats and beagle dogs in 1 mo toxicology studies resulted in marked and extended hypoglycemia with associated clinical signs of toxicity and degenerative histopathological changes in the stomach, sciatic nerve, myocardium, and skeletal muscles at exposures comparable to those expected at therapeutic clinical exposures. To investigate whether these adverse effects were secondary to exaggerated pharmacology (prolonged hypoglycemia), BMS-820132 was administered daily to male Zucker diabetic fatty (ZDF) rats for 1 mo. ZDF rats are markedly hyperglycemic and insulin resistant. BMS-820132 did not induce hypoglycemia, clinical signs of hypoglycemia, or any of the histopathologic adverse effects observed in the 1 mo toxicology studies at exposures that exceeded those observed in SD rats and dogs. This indicates that the toxicity observed in euglycemic animals was secondary to the exaggerated pharmacology of potent GK activation. This study indicates that ZDF rats, with conventional toxicity studies, are a useful disease model for testing antidiabetic agents and determining toxicities that are independent of prolonged hypoglycemia.
Collapse
Affiliation(s)
- Mark Tirmenstein
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Joseph Horvath
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Michael Graziano
- Bristol-Myers Squibb, Drug Safety Evaluation, Princeton, New Jersey, USA
| | - Raja Mangipudy
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Thomas Dorr
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Karyn Colman
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA Present affiliation: Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Bradley Zinker
- Bristol-Myers Squibb, Discovery Biology, Pennington, New Jersey, USA
| | - Mark Kirby
- Bristol-Myers Squibb, Discovery Biology, Pennington, New Jersey, USA Present affiliation: Lilly China Research and Development Center, Shanghai, China
| | - Peter T W Cheng
- Bristol-Myers Squibb, Discovery Chemistry, Pennington, New Jersey, USA
| | - Laura Patrone
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - John Kozlosky
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Timothy P Reilly
- Bristol-Myers Squibb, Exploratory Clinical and Translational Research, Princeton, New Jersey, USA
| | - Victor Wang
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, New Jersey, USA
| | - Evan Janovitz
- Bristol-Myers Squibb, Discovery Toxicology, Pennington, New Jersey, USA
| |
Collapse
|
32
|
Kim GD. Analysis of Myosin Heavy Chain Isoforms from Longissimus Thoracis Muscle of Hanwoo Steer by Electrophoresis and LC-MS/MS. Korean J Food Sci Anim Resour 2014; 34:656-64. [PMID: 26761500 PMCID: PMC4662228 DOI: 10.5851/kosfa.2014.34.5.656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/27/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to analyze myosin heavy chain (MHC) isoforms in bovine longissimus thoracis (LT) muscle by liquid chromatography (LC) and mass spectrometry (MS). LT muscles taken from Hanwoo (Korean native cattle) steer (n=3) used to separate myosin bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide queries were obtained from the myosin bands by LC-MS/MS analysis following in-gel digestion with trypsin. A total of 33 and 43 queries were identified as common and unique peptides, respectively, of MHC isoforms (individual ions scores >43 indicate identity or extensive homology, p<0.05). MHC-1 (IIx), -2 (IIa), -4 (IIb), and -7 (slow/I) were identified based on the Mowse score (5118, 3951, 2526, and 2541 for MHC-1, -2, -4, and -7, respectively). However, more analysis is needed to confirm the expression of MHC-4 in bovine LT muscle because any query identified as a unique peptide of MHC-4 was not found. The queries that were identified as unique peptides could be used as peptide markers to confirm MHC-1 (14 queries), -2 (8 queries), and -7 (21 queries) in bovine LT muscle; no query identified as a unique peptide of MHC-4 was found. LC-MS/MS analysis is a useful approach to study MHC isoforms at the protein level.
Collapse
Affiliation(s)
- Gap-Don Kim
- Department of Food Science & Biotechnology, Kyungnam University, Changwon 631-701, Korea
| |
Collapse
|
33
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
34
|
Kim GD, Ryu YC, Jo C, Lee JG, Yang HS, Jeong JY, Joo ST. The characteristics of myosin heavy chain-based fiber types in porcine longissimus dorsi muscle. Meat Sci 2014; 96:712-8. [DOI: 10.1016/j.meatsci.2013.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
35
|
Kim GD, Ryu YC, Jeong JY, Yang HS, Joo ST. Relationship between pork quality and characteristics of muscle fibers classified by the distribution of myosin heavy chain isoforms1. J Anim Sci 2013; 91:5525-34. [DOI: 10.2527/jas.2013-6614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gap-Don Kim
- Division of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-701, Republic of Korea
| | - Youn-Chul Ryu
- Division of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-701, Republic of Korea
| | - Jin-Yeon Jeong
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Han-Sul Yang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Seon-Tea Joo
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
36
|
Sánchez-Collado C, Vázquez JM, Rivero MA, Martínez F, Ramírez G, Gil F. Distribution Pattern of Muscle Fibre Types In Soft Palate of the Dog (Canis familiaris,L.). Anat Histol Embryol 2013; 43:56-63. [DOI: 10.1111/ahe.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- C. Sánchez-Collado
- Department of Anatomy and Compared Pathological Anatomy; Faculty of Veterinary; Universidad de Murcia; 30100 Murcia Spain
| | - J. M. Vázquez
- Department of Anatomy and Compared Pathological Anatomy; Faculty of Veterinary; Universidad de Murcia; 30100 Murcia Spain
| | - M. A. Rivero
- Department of Morphology; Faculty of Veterinary; Universidad de Las Palmas de Gran Canaria; 35413 Las Palmas de G.C Spain
| | - F. Martínez
- Department of Anatomy and Compared Pathological Anatomy; Faculty of Veterinary; Universidad de Murcia; 30100 Murcia Spain
| | - G. Ramírez
- Department of Anatomy and Compared Pathological Anatomy; Faculty of Veterinary; Universidad de Murcia; 30100 Murcia Spain
| | - F. Gil
- Department of Anatomy and Compared Pathological Anatomy; Faculty of Veterinary; Universidad de Murcia; 30100 Murcia Spain
| |
Collapse
|
37
|
Brummer H, Zhang MY, Piddoubny M, Medler S. Hybrid Fibers Transform into Distinct Fiber Types in Maturing Mouse Muscles. Cells Tissues Organs 2013; 198:227-36. [DOI: 10.1159/000355280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
|
38
|
Curry JW, Hohl R, Noakes TD, Kohn TA. High oxidative capacity and type IIx fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance to fatigue. ACTA ACUST UNITED AC 2012; 215:3997-4005. [PMID: 22899533 DOI: 10.1242/jeb.073684] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some wild antelopes are fast sprinters and more resistant to fatigue than others. This study therefore investigated two wild antelope species to better understand their reported performance capability. Muscle samples collected post mortem from the vastus lateralis and longissimus lumborum of fallow deer (Dama dama) and springbok (Antidorcas marsupialis) were analysed for myosin heavy chain isoform content, citrate synthase, 3-hydroxyacyl CoA dehydrogenase, phosphofructokinase, lactate dehydrogenase and creatine kinase activities. Cross-sectional areas, fibre type and oxidative capacities of each fibre type were determined in the vastus lateralis only. The predominant fibre type in both muscle groups and species were type IIX (>50%), with springbok having more type IIX fibres than fallow deer (P<0.05). Overall cross-sectional area was not different between the two species. The metabolic pathway analyses showed high glycolytic and oxidative capacities for both species, but springbok had significantly higher CS activities than fallow deer. Large variation and overlap in oxidative capacities existed within and between the fibre types. Some type IIX fibres presented with oxidative capacities similar to those from type I and IIA fibres. The data suggest that springbok and fallow deer are able sprint at >90 and 46 km h(-1), respectively, partly from having large type IIX fibre contents and high glycolytic capacities. The high oxidative capacities also suggest that these animals may be able to withstand fatigue for long periods of time.
Collapse
Affiliation(s)
- Jennifer Wendy Curry
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, PO Box 115, Newlands, 7725, South Africa
| | | | | | | |
Collapse
|
39
|
Tomlinson L, Tirmenstein MA, Janovitz EB, Aranibar N, Ott KH, Kozlosky JC, Patrone LM, Achanzar WE, Augustine KA, Brannen KC, Carlson KE, Charlap JH, Dubrow KM, Kang L, Rosini LT, Panzica-Kelly JM, Flint OP, Moulin FJ, Megill JR, Zhang H, Bennett MJ, Horvath JJ. Cannabinoid receptor antagonist-induced striated muscle toxicity and ethylmalonic-adipic aciduria in beagle dogs. Toxicol Sci 2012; 129:268-79. [PMID: 22821849 DOI: 10.1093/toxsci/kfs217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ibipinabant (IBI), a potent cannabinoid-1 receptor (CB1R) antagonist, previously in development for the treatment of obesity, causes skeletal and cardiac myopathy in beagle dogs. This toxicity was characterized by increases in muscle-derived enzyme activity in serum and microscopic striated muscle degeneration and accumulation of lipid droplets in myofibers. Additional changes in serum chemistry included decreases in glucose and increases in non-esterified fatty acids and cholesterol, and metabolic acidosis, consistent with disturbances in lipid and carbohydrate metabolism. No evidence of CB1R expression was detected in dog striated muscle as assessed by polymerase chain reaction, immunohistochemistry, Western blot analysis, and competitive radioligand binding. Investigative studies utilized metabonomic technology and demonstrated changes in several intermediates and metabolites of fatty acid metabolism including plasma acylcarnitines and urinary ethylmalonate, methylsuccinate, adipate, suberate, hexanoylglycine, sarcosine, dimethylglycine, isovalerylglycine, and 2-hydroxyglutarate. These results indicated that the toxic effect of IBI on striated muscle in beagle dogs is consistent with an inhibition of the mitochondrial flavin-containing enzymes including dimethyl glycine, sarcosine, isovaleryl-CoA, 2-hydroxyglutarate, and multiple acyl-CoA (short, medium, long, and very long chain) dehydrogenases. All of these enzymes converge at the level of electron transfer flavoprotein (ETF) and ETF oxidoreductase. Urinary ethylmalonate was shown to be a biomarker of IBI-induced striated muscle toxicity in dogs and could provide the ability to monitor potential IBI-induced toxic myopathy in humans. We propose that IBI-induced toxic myopathy in beagle dogs is not caused by direct antagonism of CB1R and could represent a model of ethylmalonic-adipic aciduria in humans.
Collapse
Affiliation(s)
- Lindsay Tomlinson
- Drug Safety Evaluation and Pharmaceutical Candidate Optimization, Research Division, Bristol-Myers Squibb Co., Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Graziotti GH, Chamizo VE, Ríos C, Acevedo LM, Rodríguez-Menéndez JM, Victorica C, Rivero JLL. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama. J Anat 2012; 221:151-63. [PMID: 22625659 DOI: 10.1111/j.1469-7580.2012.01520.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Like other camelids, llamas (Lama glama) have the natural ability to pace (moving ipsilateral limbs in near synchronicity). But unlike the Old World camelids (bactrian and dromedary camels), they are well adapted for pacing at slower or moderate speeds in high-altitude habitats, having been described as good climbers and used as pack animals for centuries. In order to gain insight into skeletal muscle design and to ascertain its relationship with the llama's characteristic locomotor behaviour, this study examined the correspondence between architecture and fibre types in two agonist muscles involved in shoulder flexion (M. teres major - TM and M. deltoideus, pars scapularis - DS and pars acromialis - DA). Architectural properties were found to be correlated with fibre-type characteristics both in DS (long fibres, low pinnation angle, fast-glycolytic fibre phenotype with abundant IIB fibres, small fibre size, reduced number of capillaries per fibre and low oxidative capacity) and in DA (short fibres, high pinnation angle, slow-oxidative fibre phenotype with numerous type I fibres, very sparse IIB fibres, and larger fibre size, abundant capillaries and high oxidative capacity). This correlation suggests a clear division of labour within the M. deltoideus of the llama, DS being involved in rapid flexion of the shoulder joint during the swing phase of the gait, and DA in joint stabilisation during the stance phase. However, the architectural design of the TM muscle (longer fibres and lower fibre pinnation angle) was not strictly matched with its fibre-type characteristics (very similar to those of the postural DA muscle). This unusual design suggests a dual function of the TM muscle both in active flexion of the shoulder and in passive support of the limb during the stance phase, pulling the forelimb to the trunk. This functional specialisation seems to be well suited to a quadruped species that needs to increase ipsilateral stability of the limb during the support phase of the pacing gait. Compared with other species, llama skeletal muscles are well suited for greater force generation combined with higher fatigue resistance during exercise. These characteristics are interpreted as being of high adaptive value, given the llama's habitat and its use as a pack animal.
Collapse
Affiliation(s)
- Guillermo H Graziotti
- Departament of Veterinary Anatomy, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
41
|
Kohn TA, Curry JW, Noakes TD. Black wildebeest skeletal muscle exhibits high oxidative capacity and a high proportion of type IIx fibres. ACTA ACUST UNITED AC 2012; 214:4041-7. [PMID: 22071196 DOI: 10.1242/jeb.061572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the study was to investigate the skeletal muscle characteristics of black wildebeest (Connochaetes gnou) in terms of fibre type and metabolism. Samples were obtained post mortem from the vastus lateralis and longissimus lumborum muscles and analysed for myosin heavy chain (MHC) content. Citrate synthase (CS), 3-hydroxyacyl co A dehydrogenase (3HAD), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured spectrophotometrically to represent the major metabolic pathways in these muscles. Both muscles had less than 20% MHC I, whereas MHC IIa and MHC IIx were expressed in excess of 50% in the vastus lateralis and longissimus lumborum muscles, respectively. Overall fibre size was 2675±1034 μm(2), which is small compared with other species. Oxidative capacity (CS and 3HAD) in both muscles was high and did not differ from one another, but the longissimus lumborum had significantly (P<0.05) higher PFK, LDH and CK activities. No relationships were observed between fibre type and the oxidative and oxygen-independent metabolic capacity as measured by specific enzyme activities. This study confirms the presence of both fast-twitch fibres and high oxidative capacity in black wildebeest, indicating an animal that can run very fast but is also fatigue resistant.
Collapse
Affiliation(s)
- Tertius Abraham Kohn
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Newlands, South Africa.
| | | | | |
Collapse
|
42
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Kohn TA, Burroughs R, Hartman MJ, Noakes TD. Fiber type and metabolic characteristics of lion (Panthera leo), caracal (Caracal caracal) and human skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:125-33. [PMID: 21320626 DOI: 10.1016/j.cbpa.2011.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 11/19/2022]
Abstract
Lion (Panthera leo) and caracal (Caracal caracal) skeletal muscle samples from Vastus lateralis, Longissimus dorsi and Gluteus medius were analyzed for fiber type and citrate synthase (CS; EC 2.3.3.1), 3-hydroxyacyl Co A dehydrogenase (3HAD; EC 1.1.1.35), phosphofructokinase-1 (PFK; EC 2.7.1.11), creatine kinase (CK; EC 2.7.3.2), phosphorylase (PHOS; EC 2.4.1.1) and lactate dehydrogenase (LDH; EC 1.1.1.27) activities and compared to human runners, the latter also serving as validation of methodology. Both felids had predominantly type IIx fibers (range 50-80%), whereas human muscle had more types I and IIa. Oxidative capacity of both felids (CS: 5-9 μmol/min/g ww and 3HAD: 1.4-2.6 μmol/min/g ww) was lower than humans, whereas the glycolytic capacity was elevated. LDH activity of caracal (346 ± 81) was higher than lion (227 ± 62 μmol/min/g ww), with human being the lowest (55 ± 17). CK and PHOS activities were also higher in caracal and lion compared to human, but PFK was lower in both felid species. The current data and past research are illustrated graphically showing a strong relationship between type II fibers and sprinting ability in various species. These data on caracal and lion muscles confirm their sprinting behavior.
Collapse
Affiliation(s)
- Tertius Abraham Kohn
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, PO Box 115, Newlands 7725, South Africa.
| | | | | | | |
Collapse
|
44
|
Zhang MY, Zhang WJ, Medler S. The continuum of hybrid IIX/IIB fibers in normal mouse muscles: MHC isoform proportions and spatial distribution within single fibers. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1582-91. [PMID: 20861278 DOI: 10.1152/ajpregu.00402.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although skeletal muscle fiber types are often defined as belonging to discrete categories, many muscles possess fibers with intermediate phenotypes. These hybrid fiber types can be identified by their expression of two or more myosin heavy chain (MHC) isoforms within the same single fiber. In mouse muscles, the most common hybrid fibers are those coexpressing the IIX and IIB MHC isoforms. In the present study, we focused on these IIX/IIB fibers from normal mouse muscles to determine the relative proportions of MHC isoforms at both the protein and mRNA levels and to examine the longitudinal distribution of isoforms within single fibers. We found that IIX/IIB hybrids represent ∼25 and 50% of the fibers in the mouse tibialis anterior and brachioradialis, respectively. The relative proportion of the IIX and IIB isoforms in these fibers spans a continuum, from predominantly IIB-like hybrids to IIX-like hybrids. Quantitative assessment of mRNA levels using real-time PCR from single fibers indicated that IIB expression dominated over IIX expression in most fibers and that a general correlation existed between mRNA isoform levels and MHC protein content. However, the match between mRNA levels and protein content was not precise. Finally, we measured MHC isoform proportions in adjacent fiber segments and discovered that ∼30% of hybrids possessed significant differences in isoform content along their length. In some instances, the muscle fiber type as defined by MHC content changed completely along the length of a fiber. This pattern of asymmetrical MHC isoform content along the length of single fibers suggests that the multiple myonuclei of a muscle fiber may express distinct myofibrillar isoforms in an uncoordinated fashion.
Collapse
Affiliation(s)
- Min Yi Zhang
- Dept. of Biological Sciences, Univ. at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
45
|
Moreno-Sánchez N, Rueda J, Carabaño MJ, Reverter A, McWilliam S, González C, Díaz C. Skeletal muscle specific genes networks in cattle. Funct Integr Genomics 2010; 10:609-18. [PMID: 20524025 PMCID: PMC2990504 DOI: 10.1007/s10142-010-0175-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 11/29/2022]
Abstract
While physiological differences across skeletal muscles have been described, the differential gene expression underlying them and the discovery of how they interact to perform specific biological processes are largely to be elucidated. The purpose of the present study was, firstly, to profile by cDNA microarrays the differential gene expression between two skeletal muscle types, Psoas major (PM) and Flexor digitorum (FD), in beef cattle and then to interpret the results in the context of a bovine gene coexpression network, detecting possible changes in connectivity across the skeletal muscle system. Eighty four genes were differentially expressed (DE) between muscles. Approximately 54% encoded metabolic enzymes and structural-contractile proteins. DE genes were involved in similar processes and functions, but the proportion of genes in each category varied within each muscle. A correlation matrix was obtained for 61 out of the 84 DE genes from a gene coexpression network. Different groups of coexpression were observed, the largest one having 28 metabolic and contractile genes, up-regulated in PM, and mainly encoding fast-glycolytic fibre structural components and glycolytic enzymes. In FD, genes related to cell support seemed to constitute its identity feature and did not positively correlate to the rest of DE genes in FD. Moreover, changes in connectivity for some DE genes were observed in the different gene ontologies. Our results confirm the existence of a muscle dependent transcription and coexpression pattern and suggest the necessity of integrating different muscle types to perform comprehensive networks for the transcriptional landscape of bovine skeletal muscle.
Collapse
Affiliation(s)
- Natalia Moreno-Sánchez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de A Coruña km 7.5, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lefaucheur L. A second look into fibre typing – Relation to meat quality. Meat Sci 2010; 84:257-70. [DOI: 10.1016/j.meatsci.2009.05.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
47
|
Abstract
SUMMARY
In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated the moments acting on the trunk and the pelvis in dogs trotting on a treadmill. Confirming results of previous studies, both muscles exhibited a biphasic and bilateral activity. The higher burst was associated with the second half of ipsilateral hindlimb stance phase, the smaller burst occurred during the second half of ipsilateral hindlimb swing phase. The asymmetry was noticeably larger in the m. longissimus thoracis et lumborum than in the m. multifidus lumborum. Although our manipulations of the inertia of the trunk produced results that are consistent with previous studies indicating that the epaxial muscles stabilize the trunk against accelerations in the sagittal plane, the responses of the epaxial muscles to manipulations of trunk inertia were small compared with their responses when moments produced by the extrinsic muscles of the hindlimb were manipulated. Our results indicate that the multifidus and longissimus muscles primarily stabilize the pelvis against(1) vertical components of hindlimb retractor muscles and (2) horizontal components of the hindlimb protractor and retractor muscles. Consistent with this, stronger effects of the manipulations were observed in the posterior sampling sites.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology,Friedrich-Schiller-University, Erbertstrasse 1, 07743 Jena, Germany
| | - David R. Carrier
- Department of Biology, 201 South Biology Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
48
|
Moreno-Sánchez N, Díaz C, Carabaño MJ, Rueda J, Rivero JLL. A comprehensive characterisation of the fibre composition and properties of a limb (flexor digitorum superficialis, membri thoraci) and a trunk (psoas major) muscle in cattle. BMC Cell Biol 2008; 9:67. [PMID: 19077313 PMCID: PMC2630315 DOI: 10.1186/1471-2121-9-67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 12/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fibre type attributes and the relationships among their properties play an important role in the differences in muscle capabilities and features. Comprehensive characterisation of the skeletal muscles should study the degree of association between them and their involvement in muscle functionality. The purposes of the present study were to characterise the fibre type composition of a trunk (Psoas major, PM) and a limb (Flexor digitorum, membri thoraci, FD) muscle in the bovine species and to study the degree of coordination among contractile, metabolic and histological properties of fibre types. Immunohistochemical, histochemical and histological techniques were used. RESULTS The fibre type composition was delineated immunohistochemically in calf muscle samples, identifying three pure (I, IIA, and IIX) and two hybrid type fibres (I+IIA, and IIAX). Most of the fibres in FD were types I and IIA, while pure IIX were absent. All fibre types were found in PM, the IIX type being the most frequent. Compared to other species, small populations of hybrid fibres were detected. The five fibre types, previously identified, were ascribed to three different acid and alkaline mATPase activity patterns. Type I fibres had the highest oxidative capacity and the lowest glycolytic capacity. The reverse was true for the IIX fibres, whereas the type IIA fibres showed intermediate properties. Regarding the histological properties, type I fibres tended to be more capillarised than the II types. Correlations among contractile, metabolic and histological features on individual fibres were significantly different from zero (r values varied between -0.31 and 0.78). Hybrid fibre values were positioned between their corresponding pure types, and their positions were different regarding their metabolic and contractile properties. CONCLUSION Coordination among the contractile, metabolic and histological properties of fibres has been observed. However, the magnitude of the correlation among them is always below 0.8, suggesting that the properties of muscles are not fully explained by the fibre composition. These results support the concept that, to some extent, muscle plasticity can be explained by the fibre type composition, and by the properties derived from their metabolic and histological profiles.
Collapse
Affiliation(s)
- Natalia Moreno-Sánchez
- Departamento de Mejora Genética Animal, INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Ctra. A Coruña km 7.2, 28040 Madrid, Spain
| | - Clara Díaz
- Departamento de Mejora Genética Animal, INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Ctra. A Coruña km 7.2, 28040 Madrid, Spain
| | - María J Carabaño
- Departamento de Mejora Genética Animal, INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Ctra. A Coruña km 7.2, 28040 Madrid, Spain
| | - Julia Rueda
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain
| |
Collapse
|
49
|
Kohn TA, Hoffman LC, Myburgh KH. Identification of myosin heavy chain isoforms in skeletal muscle of four Southern African wild ruminants. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:399-407. [PMID: 17631404 DOI: 10.1016/j.cbpa.2007.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 05/26/2007] [Accepted: 05/29/2007] [Indexed: 11/28/2022]
Abstract
The aim was to separate and characterize the myosin heavy chain (MHC) isoforms of four southern African wild ruminants, namely Blesbuck (Damaliscus dorcas phillipsi), Kudu (Tragelaphus strepsiceros), Black Wildebeest (Connochaetes gnou) and Blue Wildebeest (Connochaetes taurinus). Longissimus dorsi muscle samples were subjected to SDS-PAGE and Western blot analyses using antibodies raised against MHC isoforms. The specificity of these antibodies was assessed using immunohistochemistry combined with ATPase histochemistry, Three MHC isoforms were separated and the bands were identified from fastest to slowest migrating as MHC I, MHC IIx and MHC IIa. The mobility of the MHC isoforms was similar for all four species, including that of bovine, but differed from human muscle. Kudu muscle exhibited the lowest proportion of MHC I and the highest proportion of MHC IIx, whereas Blesbuck muscle had the least MHC IIx. The two Wildebeest species were intermediate in isoform content. In conclusion, when new species are studied, existing electrophoretic protocols may need to be modified to achieve quantifiable separation and isoform migration pattern must be verified in order to reach correct interpretations. Furthermore, antibody specificity may differ between techniques as well as species and needs confirmation.
Collapse
Affiliation(s)
- Tertius A Kohn
- Department of Physiological Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | | | | |
Collapse
|
50
|
Toniolo L, Maccatrozzo L, Patruno M, Pavan E, Caliaro F, Rossi R, Rinaldi C, Canepari M, Reggiani C, Mascarello F. Fiber types in canine muscles: myosin isoform expression and functional characterization. Am J Physiol Cell Physiol 2007; 292:C1915-26. [PMID: 17251320 DOI: 10.1152/ajpcell.00601.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was aimed to achieve a definitive and unambiguous identification of fiber types in canine skeletal muscles and of myosin isoforms that are expressed therein. Correspondence of canine myosin isoforms with orthologs in other species as assessed by base sequence comparison was the basis for primer preparation and for expression analysis with RT-PCR. Expression was confirmed at protein level with histochemistry, immunohistochemistry, and SDS-PAGE combined together and showed that limb and trunk muscles of the dog express myosin heavy chain (MHC) type 1, 2A, and 2X isoforms and the so-called “type 2dog” fibers express the MHC-2X isoform. MHC-2A was found to be the most abundant isoform in the trunk and limb muscle. MHC-2X was expressed in most but not all muscles and more frequently in hybrid 2A-2X fibers than in pure 2X fibers. MHC-2B was restricted to specialized extraocular and laryngeal muscles, although 2B mRNA, but not 2B protein, was occasionally detected in the semimembranosus muscle. Isometric tension (Po) and maximum shortening velocity ( Vo) were measured in single fibers classified on the basis of their MHC isoform composition. Purified myosin isoforms were extracted from single muscle fibers and characterized by the speed ( Vf) of actin filament sliding on myosin in an in vitro motility assay. A close proportionality between Vo and Vf indicated that the diversity in Vo was due to the different myosin isoform composition. Vo increased progressively in the order 1/slow < 2A < 2X < 2B, thus confirming the identification of the myosin isoforms and providing their first functional characterization of canine muscle fibers.
Collapse
Affiliation(s)
- Luana Toniolo
- Department of Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|