1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
3
|
Saw EL, Fronius M, Katare R, Kakinuma Y. Mini Review: the non-neuronal cardiac cholinergic system in type-2 diabetes mellitus. Front Cardiovasc Med 2024; 11:1425534. [PMID: 39314774 PMCID: PMC11417620 DOI: 10.3389/fcvm.2024.1425534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic heart disease remains the leading cause of death in individuals with type-2 diabetes mellitus (T2DM). Both insulin resistance and metabolic derangement, hallmark features of T2DM, develop early and progressively impair cardiovascular function. These factors result in altered cardiac metabolism and energetics, as well as coronary vascular dysfunction, among other consequences. Therefore, gaining a deeper understanding of the mechanisms underlying the pathophysiology of diabetic heart disease is crucial for developing novel therapies for T2DM-associated cardiovascular disease. Cardiomyocytes are equipped with the cholinergic machinery, known as the non-neuronal cardiac cholinergic system (NNCCS), for synthesizing and secreting acetylcholine (ACh) as well as possessing muscarinic ACh receptor for ACh binding and initiating signaling cascade. ACh from cardiomyocytes regulates glucose metabolism and energetics, endothelial function, and among others, in an auto/paracrine manner. Presently, there is only one preclinical animal model - diabetic db/db mice with cardiac-specific overexpression of choline transferase (Chat) gene - to study the effect of activated NNCCS in the diabetic heart. In this mini-review, we discuss the physiological role of NNCCS, the connection between NNCCS activation and cardiovascular function in T2DM and summarize the current knowledge of S-Nitroso-NPivaloyl-D-Penicillamine (SNPiP), a novel inducer of NNCCS, as a potential therapeutic strategy to modulate NNCCS activity for diabetic heart disease.
Collapse
Affiliation(s)
- Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Martin Fronius
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Saw EL, Kakinuma Y, Fronius M, Katare R. The non-neuronal cholinergic system in the heart: A comprehensive review. J Mol Cell Cardiol 2018; 125:129-139. [PMID: 30343172 DOI: 10.1016/j.yjmcc.2018.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
The autonomic influences on the heart have a ying-yang nature, albeit oversimplified, the interplay between the sympathetic and parasympathetic system (known as the cholinergic system) is often complex and remain poorly understood. Recently, the heart has been recognized to consist of neuronal and non-neuronal cholinergic system (NNCS). The existence of cardiac NNCS has been confirmed by the presence of cholinergic markers in the cardiomyocytes, which are crucial for synthesis (choline acetyltransferase, ChAT), storage (vesicular acetylcholine transporter, VAChT), reuptake of choline for synthesis (high-affinity choline transporter, CHT1) and degradation (acetylcholinesterase, AChE) of acetylcholine (ACh). The non-neuronal ACh released from cardiomyocytes is believed to locally regulate some of the key physiological functions of the heart, such as regulation of heart rate, offsetting hypertrophic signals, maintenance of action potential propagation as well as modulation of cardiac energy metabolism via the muscarinic ACh receptor in an auto/paracrine manner. Apart from this, several studies have also provided evidence for the beneficial role of ACh released from cardiomyocytes against cardiovascular diseases such as sympathetic hyperactivity-induced cardiac remodeling and dysfunction as well as myocardial infarction, confirming the important role of NNCS in disease prevention. In this review, we aim to provide a fundamental overview of cardiac NNCS, and information about its physiological role, regulatory factors as well as its cardioprotective effects. Finally, we propose the different approaches to target cardiac NNCS as an adjunctive treatment to specifically address the withdrawal of neuronal cholinergic system in cardiovascular disease such as heart failure.
Collapse
Affiliation(s)
- Eng Leng Saw
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand
| | - Yoshihiko Kakinuma
- Department of Physiology (Bioregulatory Science), Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Martin Fronius
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand.
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand.
| |
Collapse
|
5
|
Hu J, Wang X, Tang YH, Shan YG, Zou Q, Wang ZQ, Huang CX. Activin A inhibition attenuates sympathetic neural remodeling following myocardial infarction in rats. Mol Med Rep 2018; 17:5074-5080. [PMID: 29393433 PMCID: PMC5865969 DOI: 10.3892/mmr.2018.8496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
Inflammation serves a critical role in driving sympathetic neural remodeling following myocardial infarction (MI), and activin A has been implicated as an important mediator of the inflammatory response post-MI. However, whether activin A impacts sympathetic neural remodeling post-MI remains unclear. In the present study, the authors assessed the effects of activin A on sympathetic neural remodeling in a rat model of MI. Rats were randomly divided into sham, MI, and MI + follistatin-300 (FS, activin A inhibitor) groups. Cardiac tissues from the peri-infarct zone were assessed for expression of sympathetic neural remodeling and inflammatory factors in rats 4 weeks post-MI by western blotting and immunohistochemical methods. Heart function was assessed by echocardiography. It is demonstrated that FS administration significantly reduced post-MI upregulation of activin A, nerve growth factor protein lever, and the density of nerve fibers with positive and protein expression of sympathetic neural remodeling markers in nerve fibers, which included growth associated protein 43 and tyrosine hydroxylase. In addition, inhibition of activin A reduced cardiac inflammation post-MI based on the reduction of i) interleukin-1 and tumor necrosis factor-α protein expression, ii) numbers and/or proportional area of infiltrating macrophages and myofibroblasts and iii) phosphorylated levels of p65 and IκBα. Furthermore, activin A inhibition lessened heart dysfunction post-MI. These results suggested that activin A inhibition reduced sympathetic neural remodeling post-MI in part through inhibition of the inflammatory response. The current study implicates activin A as a potential therapeutic target to circumvent sympathetic neural remodeling post-MI.
Collapse
Affiliation(s)
- Juan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying-Guang Shan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Qiang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
6
|
Brown TC, Bond CE, Hoover DB. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChAT BAC-eGFP transgenic mice. Auton Neurosci 2017; 210:44-54. [PMID: 29288022 DOI: 10.1016/j.autneu.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022]
Abstract
Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency.
Collapse
Affiliation(s)
- T Christopher Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cherie E Bond
- School of Natural Sciences and Mathematics, Ferrum College, Ferrum, VA 24088, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
7
|
Hanna P, Rajendran PS, Ajijola OA, Vaseghi M, Andrew Armour J, Ardell JL, Shivkumar K. Cardiac neuroanatomy - Imaging nerves to define functional control. Auton Neurosci 2017; 207:48-58. [PMID: 28802636 DOI: 10.1016/j.autneu.2017.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The autonomic nervous system regulates normal cardiovascular function and plays a critical role in the pathophysiology of cardiovascular disease. Further understanding of the interplay between the autonomic nervous system and cardiovascular system holds promise for the development of neuroscience-based cardiovascular therapeutics. To this end, techniques to image myocardial innervation will help provide a basis for understanding the fundamental underpinnings of cardiac neural control. In this review, we detail the evolution of gross and microscopic anatomical studies for functional mapping of cardiac neuroanatomy.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pradeep S Rajendran
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marmar Vaseghi
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - J Andrew Armour
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jefrrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
9
|
Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130. J Neurosci 2016; 36:479-88. [PMID: 26758839 DOI: 10.1523/jneurosci.3556-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
Collapse
|
10
|
Hoover JL, Bond CE, Hoover DB, Defoe DM. Effect of neurturin deficiency on cholinergic and catecholaminergic innervation of the murine eye. Exp Eye Res 2014; 122:32-9. [PMID: 24657391 DOI: 10.1016/j.exer.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Neurturin (NRTN) is a neurotrophic factor required for the development of many parasympathetic neurons and normal cholinergic innervation of the heart, lacrimal glands and numerous other tissues. Previous studies with transgenic mouse models showed that NRTN is also essential for normal development and function of the retina (J. Neurosci. 28:4123-4135, 2008). NRTN knockout (KO) mice exhibit a marked thinning of the outer plexiform layer (OPL) of the retina, with reduced abundance of horizontal cell dendrites and axons, and aberrant projections of horizontal cells and bipolar cells into the outer nuclear layer. The effects of NRTN deletion on specific neurotransmitter systems in the retina and on cholinergic innervation of the iris are unknown. To begin addressing this deficiency, we used immunohistochemical methods to study cholinergic and noradrenergic innervation of the iris and the presence and localization of cholinergic and dopaminergic neurons and nerve fibers in eyes from adult male wild-type (WT) and NRTN KO mice (age 4-6 months). Mice were euthanized, and eyes were removed and fixed in cold neutral buffered formalin or 4% paraformaldehyde. Formalin-fixed eyes were embedded in paraffin, and 5 μm cross-sections were collected. Representative sections were stained with hematoxylin and eosin or processed for fluorescence immunohistochemistry after treatment for antigen retrieval. Whole mount preparations were dissected from paraformaldehyde fixed eyes and used for immunohistochemistry. Cholinergic and catecholaminergic nerve fibers were labeled with primary antibodies to the vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH), respectively. Cholinergic and dopaminergic cell bodies were labeled with antibodies to choline acetyltransferase (ChAT) and TH, respectively. Cholinergic innervation of the mouse iris was restricted to the sphincter region, and noradrenergic fibers occurred throughout the iris and in the ciliary processes. This pattern was unaffected by deletion of NRTN. Furthermore, functional experiments demonstrated that cholinergic regulation of the pupil diameter was retained in NRTN KO mice. Hematoxylin and eosin stains of the retina confirmed a marked thinning of the OPL in KO mice. VAChT and ChAT staining of the retina revealed two bands of cholinergic processes in the inner plexiform layer, and these were unaffected by NRTN deletion. Likewise, NRTN deletion did not affect the abundance of ChAT-positive ganglion and amacrine cells. In marked contrast, staining for TH showed an increased abundance of dopaminergic processes in the OPL of retina from KO mice. Staining of retinal whole mounts for TH showed no difference in the abundance of dopaminergic amacrine cells between WT and KO mice. These findings demonstrate that the neurotrophic factor NRTN is not required for the development or maintenance of cholinergic innervation of the iris, cholinergic control of pupil diameter, or for development of cholinergic and dopaminergic amacrine cells of the retina. However, NRTN deficiency causes a marked reduction in the size of the OPL and aberrant growth of dopaminergic processes into this region.
Collapse
Affiliation(s)
- Jeffrey L Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Cherie E Bond
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Dennis M Defoe
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA.
| |
Collapse
|
11
|
Can the Nerve Growth Factor promote the reinnervation of the transplanted heart? Med Hypotheses 2013; 82:229-30. [PMID: 24389107 DOI: 10.1016/j.mehy.2013.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/10/2013] [Indexed: 01/14/2023]
Abstract
The activity of the heart is widely regulated by the autonomous nervous system. This important mechanism of control may be impaired in chronic diseases such as heart failure or lost in those patients who undergo heart transplantation, owing to the surgical interruption of cardiac nerves in the transplanted heart. It has been demonstrated that spontaneous reinnervation can occur in transplanted hearts and is associated with an improvement in cardiac function. However, this process may require many years and the restoration of a proper cardiac innervation and functioning during exercise is never complete. In this perspective, the Nerve Growth Factor (NGF) and other neurotrophic hormones might ameliorate cardiac innervation in the transplanted heart and should be tried in animal models. Endothelial cells engineered with a viral vector to overexpress the NGF might be engrafted in the heart and integrate into cardiac small vessels, thus providing a source of neurotrophic factors which might promote and direct regrowth and axonal sprouting of cardiac nerves.
Collapse
|
12
|
The role of α7 nicotinic acetylcholine receptor in modulation of heart rate dynamics in endotoxemic rats. PLoS One 2013; 8:e82251. [PMID: 24340009 PMCID: PMC3858293 DOI: 10.1371/journal.pone.0082251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
Abstract
Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in modulation of heart rate dynamics during systemic inflammation.
Collapse
|
13
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
14
|
Fregoso SP, Hoover DB. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart. Neuroscience 2012; 221:28-36. [PMID: 22766236 DOI: 10.1016/j.neuroscience.2012.06.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/21/2023]
Abstract
Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart.
Collapse
Affiliation(s)
- S P Fregoso
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
15
|
Mabe AM, Hoover DB. Remodeling of cardiac cholinergic innervation and control of heart rate in mice with streptozotocin-induced diabetes. Auton Neurosci 2011; 162:24-31. [PMID: 21334985 DOI: 10.1016/j.autneu.2011.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 01/07/2023]
Abstract
Cardiac autonomic neuropathy is a frequent complication of diabetes and often presents as impaired cholinergic regulation of heart rate. Some have assumed that diabetics have degeneration of cardiac cholinergic nerves, but basic knowledge on this topic is lacking. Accordingly, our goal was to evaluate the structure and function of cardiac cholinergic neurons and nerves in C57BL/6 mice with streptozotocin-induced diabetes. Electrocardiograms were obtained weekly from conscious control and diabetic mice for 16 weeks. Resting heart rate decreased in diabetic mice, but intrinsic heart rate was unchanged. Power spectral analysis of electrocardiograms revealed decreased high frequency and increased low frequency power in diabetic mice, suggesting a relative reduction of parasympathetic tone. Negative chronotropic responses to right vagal nerve stimulation were blunted in 16-week diabetic mice, but postjunctional sensitivity of isolated atria to muscarinic agonists was unchanged. Immunohistochemical analysis of hearts from diabetic and control mice showed no difference in abundance of cholinergic neurons, but cholinergic nerve density was increased at the sinoatrial node of diabetic mice (16 weeks: 14.9±1.2% area for diabetics versus 8.9±0.8% area for control, P<0.01). We conclude that disruption of cholinergic function in diabetic mice cannot be attributed to a loss of cardiac cholinergic neurons and nerve fibers or altered cholinergic sensitivity of the atria. Instead, decreased responses to vagal stimulation might be caused by a defect of preganglionic cholinergic neurons and/or ganglionic neurotransmission. The increased density of cholinergic nerves observed at the sinoatrial node of diabetic mice might be a compensatory response.
Collapse
Affiliation(s)
- Abigail M Mabe
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
16
|
Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm 2011; 8:731-8. [PMID: 21232628 DOI: 10.1016/j.hrthm.2011.01.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND The intrinsic neural plexus of the mouse heart has not been adequately investigated despite the extensive use of this species in experimental cardiology. OBJECTIVE The purpose of this study was to determine the distribution of cholinergic, adrenergic, and sensory neural components in whole-mount mouse heart preparations using double immunohistochemical labeling. METHODS/RESULTS Intrinsic neurons were concentrated within 19 ± 3 ganglia (n = 20 mice) of varying size, scattered on the medial side of the inferior caval (caudal) vein on the right atrium and close to the pulmonary veins on the left atrium. Of a total of 1,082 ± 160 neurons, most somata (83%) were choline acetyltransferase (ChAT) immunoreactive, whereas 4% were tyrosine hydroxylase (TH) immunoreactive; 14% of ganglionic cells were biphenotypic for ChAT and TH. The most intense ChAT staining was observed in axonal varicosities. ChAT was evident in nerve fibers interconnecting intrinsic ganglia. Both ChAT and TH immunoreactivity were abundant within the nerves accessing the heart. However, epicardial TH-immunoreactive nerve fibers were predominant on the dorsal and ventral left atrium, whereas most ChAT-positive axons proceeded on the heart base toward the large intrinsic ganglia and on the epicardium of the root of the right cranial vein. Substance P-positive and calcitonin gene-related peptide-immunoreactive nerve fibers were abundant on the epicardium and within ganglia adjacent to the heart hilum. Small intensely fluorescent cells were grouped into clusters of 3 to 8 and were dispersed within large ganglia or separately on the atrial and ventricular walls. CONCLUSION Although some nerves and neuronal bundles of the mouse epicardial plexus are mixed, most express either adrenergic or cholinergic markers. Therefore, selective stimulation and/or ablation of the functionally distinct intrinsic neural pathways should allow the study of specific effects on cardiac function.
Collapse
Affiliation(s)
- Kristina Rysevaite
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
17
|
Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur J Pharmacol 2010; 649:293-300. [PMID: 20869962 DOI: 10.1016/j.ejphar.2010.09.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/12/2010] [Accepted: 09/14/2010] [Indexed: 12/29/2022]
Abstract
Oxidative stress and inflammatory response induced by myocardial infarction play important roles in the development of sympathetic neural remodeling. The present study was designed to investigate whether resveratrol can improve sympathetic neural remodeling and hence cause less arrhythmias via its anti-oxidant and anti-inflammatory effects. Male Sprague Dawley rats were randomly assigned to either vehicle or resveratrol (1 mg/kg) treatment for 4 weeks post myocardial infarction. Another group of sham operated rats served as controls. Cardiac electrophysiology examination was performed to evaluate the severity of ventricular arrhythmias. Sympathetic neural remodeling characterized by heterogeneous nerve sprouting and sympathetic hyperinnervation was assessed by immunohistochemistry study. Western blotting and ELISA were used to evaluate inflammatory responses and oxidative stress was also quantified. Resveratrol treatment resulted in less episodes of inducible ventricular arrhythmias which was closely associated with attenuated sympathetic neural remodeling (P<0.001, respectively). Decreased nerve growth factor (NGF) expression was also observed in resveratrol treated rats in the peri-infarct area at 4 weeks after myocardial infarction (P<0.001). Interestingly, beneficial effects of resveratrol were also associated with less inflammatory responses and oxidative stress. Our data indicated that resveratrol can suppress sympathetic neural remodeling process after myocardial infarction via attenuated inflammatory responses and oxidative stress, which in turn leads to less inducibility of ventricular arrhythmias.
Collapse
|
18
|
Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci 2010; 156:27-35. [DOI: 10.1016/j.autneu.2010.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
|
19
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
20
|
Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol 2010; 30:1746-56. [PMID: 20123977 DOI: 10.1128/mcb.00996-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.
Collapse
|
21
|
Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 2009; 164:1170-9. [PMID: 19747529 DOI: 10.1016/j.neuroscience.2009.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.
Collapse
Affiliation(s)
- D B Hoover
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat 2009; 22:36-46. [PMID: 18846544 DOI: 10.1002/ca.20695] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of homeostatic circulation in mammals and birds is reliant upon autonomic innervation of the heart. Neural branches of mixed cellular origin and function innervate the heart at the arterial and venous poles as it matures, eventually coupling autonomic output to the cardiac components, including the conduction system. The development of neural identity is controlled by specific networks of genes and growth factors, whereas functional properties are governed by the use of different neurotransmitters. In this review, we summarize briefly the anatomic arrangement of the vertebrate autonomic nervous system and describe, in detail, the innervation of the heart. We discuss the timing of cardiac innervation in the chick and mouse, emphasizing the relationship of the cardiac neural networks to the anatomical structures within the heart. We also discuss the variable contribution of the neural crest to vagal cardiac nerves, and summarize the main neurotransmitters secreted by the developing sympathetic and parasympathetic autonomic divisions. We provide an overview of the main growth factor and gene families involved in neural development, discussing how these factors may impact upon the development of cardiac abnormalities in congenital syndromes associated with autonomic dysfunction.
Collapse
Affiliation(s)
- Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
23
|
Mabe AM, Hoover DB. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovasc Res 2009; 82:93-9. [DOI: 10.1093/cvr/cvp029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Callahan T, Young HM, Anderson RB, Enomoto H, Anderson CR. Development of satellite glia in mouse sympathetic ganglia: GDNF and GFR alpha 1 are not essential. Glia 2009; 56:1428-37. [PMID: 18551627 DOI: 10.1002/glia.20709] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phenotypic development of satellite cells in mouse sympathetic ganglia was examined by localizing the transcription factors, Sox10 and Phox2b, the neuronal marker, tyrosine hydroxylase (TH), and brain-derived fatty acid binding protein (B-FABP), which identifies glial precursors and mature glia. In E10.5 mice, most cells in the sympathetic chain expressed both Sox10 and Phox2b, with a minority of cells expressing Sox10 only or Phox2b only. In E11.5 mice, the majority of cells expressed Sox10 only or Phox2b only. B-FABP was colocalized with Sox10 in satellite glial precursors, which were located on the periphery of the ganglion. There was no overlap between B-FABP and Phox2b or B-FABP and TH. During subsequent development, the number of B-FABP+ cells increased and they became more common deep within the ganglion. In E12.5 and E18.5 mice, there was no overlap between Sox10 and Phox2b, and 98% of Sox10 cells were also B-FABP+. Satellite glial precursors in E11.5-E15.5 mice also expressed the GDNF-binding molecule, GFRalpha1. B-FABP immunoreactive cells did not express Ret or NCAM, two potential signaling molecules for GDNF/GFRalpha1. In E12.5 and E18.5 mice lacking GFRalpha1 or GDNF, the development of B-FABP immunoreactive satellite cells was normal, and hence neither GDNF or GFRalpha1 are essential for the development of satellite glia in sympathetic ganglia.
Collapse
Affiliation(s)
- Thomas Callahan
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
25
|
Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 2008; 156:129-42. [PMID: 18674600 DOI: 10.1016/j.neuroscience.2008.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/05/2008] [Accepted: 06/28/2008] [Indexed: 11/20/2022]
Abstract
Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs), like those of humans, have a complex neurochemical phenotype that goes beyond the classical view of cardiac parasympathetic neurons. They also suggest that neurotrophins and local NE synthesis might have important effects on neurons of the mouse ICG.
Collapse
Affiliation(s)
- J L Hoard
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hoard JL, Hoover DB, Wondergem R. Phenotypic properties of adult mouse intrinsic cardiac neurons maintained in culture. Am J Physiol Cell Physiol 2007; 293:C1875-83. [PMID: 17913847 DOI: 10.1152/ajpcell.00113.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsic cardiac neurons are core elements of a complex neural network that serves as an important integrative center for regulation of cardiac function. Although mouse models are used frequently in cardiovascular research, very little is known about mouse intrinsic cardiac neurons. Accordingly, we have dissociated neurons from adult mouse heart, maintained these cells in culture, and defined their basic phenotypic properties. Neurons in culture were primarily unipolar, and 89% had prominent neurite outgrowth after 3 days (longest neurite length of 258 ± 20 μm, n = 140). Many neurites formed close appositions with other neurons and nonneuronal cells. Neurite outgrowth was drastically reduced when neurons were kept in culture with a majority of nonneural cells eliminated. This finding suggests that nonneuronal cells release molecules that support neurite outgrowth. All neurons in coculture showed immunoreactivity for a full complement of cholinergic markers, but about 21% also stained for tyrosine hydroxylase, as observed previously in sections of intrinsic cardiac ganglia from mice and humans. Whole cell patch-clamp recordings demonstrated that these neurons have voltage-activated sodium current that is blocked by tetrodotoxin and that neurons exhibit phasic or accommodating patterns of action potential firing during a depolarizing current pulse. Several neurons exhibited a fast inward current mediated by nicotinic ACh receptors. Collectively, this work shows that neurons from adult mouse heart can be maintained in culture and exhibit appropriate phenotypic properties. Accordingly, these cultures provide a viable model for evaluating the physiology, pharmacology, and trophic factor sensitivity of adult mouse cardiac parasympathetic neurons.
Collapse
Affiliation(s)
- Jennifer L Hoard
- Department of Physiology, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | |
Collapse
|
27
|
Kimura K, Ieda M, Kanazawa H, Yagi T, Tsunoda M, Ninomiya SI, Kurosawa H, Yoshimi K, Mochizuki H, Yamazaki K, Ogawa S, Fukuda K. Cardiac Sympathetic Rejuvenation. Circ Res 2007; 100:1755-64. [PMID: 17495227 DOI: 10.1161/01.res.0000269828.62250.ab] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuronal function and innervation density is regulated by target organ-derived neurotrophic factors. Although cardiac hypertrophy drastically alternates the expression of various growth factors such as endothelin-1, angiotensin II, and leukemia inhibitory factor, little is known about nerve growth factor expression and its effect on the cardiac sympathetic nerves. This study investigated the impact of pressure overload-induced cardiac hypertrophy on the innervation density and cellular function of cardiac sympathetic nerves, including kinetics of norepinephrine synthesis and reuptake, and neuronal gene expression. Right ventricular hypertrophy was induced by monocrotaline treatment in Wistar rats. Newly developed cardiac sympathetic nerves expressing beta(3)-tubulin (axonal marker), GAP43 (growth-associated cone marker), and tyrosine hydroxylase were markedly increased only in the right ventricle, in parallel with nerve growth factor upregulation. However, norepinephrine and dopamine content was paradoxically attenuated, and the protein and kinase activity of tyrosine hydroxylase were markedly downregulated in the right ventricle. The reuptake of [(125)I]-metaiodobenzylguanidine and [(3)H]-norepinephrine were also significantly diminished in the right ventricle, indicating functional downregulation in cardiac sympathetic nerves. Interestingly, we found cardiac sympathetic nerves in hypertrophic right ventricles strongly expressed highly polysialylated neural cell adhesion molecule (PSA-NCAM) (an immature neuron marker) as well as neonatal heart. Taken together, pressure overload induced anatomical sympathetic hyperinnervation but simultaneously caused deterioration of neuronal cellular function. This phenomenon was explained by the rejuvenation of cardiac sympathetic nerves as well as the hypertrophic cardiomyocytes, which also showed the fetal form gene expression.
Collapse
Affiliation(s)
- Kensuke Kimura
- Department of Regenerative Medicine and Advanced Cardiac Therapeutics, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yasuhara O, Matsuo A, Bellier JP, Aimi Y. Demonstration of Choline Acetyltransferase of a Peripheral Type in the Rat Heart. J Histochem Cytochem 2006; 55:287-99. [PMID: 17142806 DOI: 10.1369/jhc.6a7092.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.
Collapse
Affiliation(s)
- Osamu Yasuhara
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | | | | | | |
Collapse
|