1
|
Meinhardt A, Sutovsky P. A century of andrology in Cell & Tissue Research: looking back while moving forward. Cell Tissue Res 2025; 400:111-119. [PMID: 39292239 DOI: 10.1007/s00441-024-03916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
This article commemorates the 100th anniversary of the first issue of Cell & Tissue Research (CTR), the longest-running active journal dedicated to cell biology. Reflecting the significant contributions of spermatology and embryology to the early days of cell biology, the majority of articles in CTR's inaugural issue centered on plant and animal sperm cells. A brief synopsis of these articles provides a launching point for revisiting 100 years of research on the male germ cells and fertility in humans and animals and offers a perspective on the current state and future directions of the andrology field. Early technological advances in light and electron microscopy enabled descriptive studies that ushered in the era of mechanistic, biochemistry-based inquiry focused on the understanding of physiological sperm processes such as sperm capacitation, acrosomal exocytosis, and sperm-egg interactions. In the last 20 years, progress in flow cytometry, cell imaging, and omics revealed new information on sperm proteome, transcriptome, metabolome, and overall phenome of fertile and infertile spermatozoa. Going back to the journal's roots, recent advances in male germ cell isolation, transplantation, modification, and cryopreservation have been discussed on the pages of CTR. Newest trends such as gene editing and artificial intelligence/machine learning are now making inroads into andrological inquiry and assisted reproductive therapy of male infertility.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Sutovsky
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 920 East Campus Drive, Columbia, MO, S141 ASRC65211-5300, USA.
| |
Collapse
|
2
|
Sanghvi G, Roopashree R, Kashyap A, Sabarivani A, Ray S, Bhakuni PN. KIFC1 in cancer: Understanding its expression, regulation, and therapeutic potential. Exp Cell Res 2025; 447:114510. [PMID: 40058447 DOI: 10.1016/j.yexcr.2025.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Kinesins are a family of motor proteins essential for intracellular transport and cellular dynamics, with kinesin family member C1 (KIFC1) emerging as a key regulator of cancer progression. Recent studies highlight KIFC1's crucial role in mitotic spindle assembly, chromosome segregation, and cell migration-processes frequently dysregulated in cancer. Its involvement in promoting malignant cell proliferation and metastasis underscores its significance in tumor biology. In various cancer types, aberrant KIFC1 expression correlates with poor prognosis and aggressive phenotypes, suggesting its potential as a biomarker for disease severity. Mechanistically, KIFC1 influences signaling pathways linked to cell cycle regulation and programmed cell death, reinforcing its role in oncogenesis. Given its pivotal function in cancer cell dynamics, KIFC1 represents a promising therapeutic target. Strategies aimed at modulating its activity, including small molecules or RNA interference, could disrupt cancer cell viability and proliferation. The current review article highlights KIFC1's importance in cancer biology, advocating for further investigation into its mechanisms and the development of KIFC1-targeted therapies to enhance treatment efficacy and improve patient outcomes across various malignancies.
Collapse
Affiliation(s)
- Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand, 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
| |
Collapse
|
3
|
Wei YL, Fan XJ, Lin XC, Zhang HT, Huang YL, Wang XR. Expression pattern and functional analysis of kinesin-14 KIFC1 in spermatogenesis of Macaca mulatta. Gene 2025; 933:148949. [PMID: 39278374 DOI: 10.1016/j.gene.2024.148949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
C-terminal kinesin motor KIFC1 is increasingly concerned with an essential role in germ cell development. During the spermatogenesis of mice, rats, and crustaceans, KIFC1 functions in regulating meiotic chromosome separation, acrosome vesicle transportation, and nuclear morphology maintenance. The expression pattern of KIFC1 is conservatively concentrated at the acrosome and nucleus of haploid sperm cells. However, whether KIFC1 has similar functions in non-human primates remains unknown. In this study, we constructed the testis-specific cDNA library and cloned different transcripts of KIFC1 based on the genomic sequence. New variants of KIFC1 were identified, and showed different functional domains from the predicted isoforms. The spatio-temporal expression of KIFC1 proteins in seminiferous tubules of rhesus monkeys showed an obvious nuclear localization, specifically expressed in the spermatocytes and early haploid spermatids. The transcripts of KIFC1 also exhibited considerable expression in the nucleus of rhesus LLC-MK2 cells. Besides, we demonstrated that KIFC1 located at the acrosome and microtubule flagella of the mature sperm, and KIFC1 inhibition resulted in sperm tail deformation as well as increased the instability of head-to-tail connection. In summary, this study filled a gap in the reproductive research of the KIFC1 gene in non-human primates.
Collapse
Affiliation(s)
- Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xiao-Jing Fan
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yi-Lan Huang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| | - Xin-Rui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
4
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Li C, Yu R, Liu H, Qiao J, Zhang F, Mu S, Guo M, Zhang H, Li Y, Kang X. Sperm acrosomal released proteome reveals MDH and VDAC3 from mitochondria are involved in acrosome formation during spermatogenesis in Eriocheir sinensis. Gene 2023; 887:147784. [PMID: 37689223 DOI: 10.1016/j.gene.2023.147784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Acrosome is inextricably related to membranous organelles. The origin of acrosome is still controversial, one reason is that limited articles were reported about the proteomic analysis of the acrosome. Mitochondrial proteins were found exist in the acrosome, nevertheless, only limited attention has been paid to the function of mitochondrial proteins in the acrosome formation. Eriocheir sinensis sperm has a large acrosome, which makes it an ideal model to study acrosome formation. Here, we firstly compared the rate of acrosome reaction induced by the calcium ionophore A23187 and ionomycin. The rate of acrosome reaction induced by ionomycin is higher (95.8%) than A23187 (58.7%). Morphological changes were observed using light, confocal and transmission electron microscopy. Further more, proteins released during the acrosome reaction as induced by ionomycin were collected for LC-MS/MS analysis. A total of 945 proteins, including malate dehydrogenase (MDH) and voltage-dependent anion channel 3 (VDAC3), were identified in the acrosomal released proteome. The number of proteins from mitochondria (17.57%) was higher compared with endoplasmic reituculum (1.59%) and lysosomes (1.8%). To investigate the functions of target mitochondrial proteins during spermatogenesis, poly-antibodies of MDH in E. sinensis were prepared. The characteristics, further analyzed using immunofluorescence, of two mitochondrial proteins during acrosome formation showed that MDH and VDAC3 were independently involved in the formation of acrosomal membrane. These findings illustrate the acrosomal released proteome and provide important data resource for understanding the relationship between mitochondria and the acrosome in Decapoda crustacean.
Collapse
Affiliation(s)
- Chao Li
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Ruifang Yu
- College of Life Science in Hebei University, Baoding, China
| | - Huan Liu
- College of Life Science in Hebei University, Baoding, China
| | - Jiashan Qiao
- College of Life Science in Hebei University, Baoding, China
| | - Fenghao Zhang
- College of Life Science in Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Mingshen Guo
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Yanqin Li
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Province Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071000, China.
| |
Collapse
|
7
|
Lin C, Tang D, Gao X, Jiang H, Du C, Zhu J. Molecular characterization, dynamic transcription, and potential function of KIF3A/KIF3B during spermiogenesis in Opsariichthys bidens. Gene 2021; 798:145795. [PMID: 34175396 DOI: 10.1016/j.gene.2021.145795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Spermiogenesis is the final phase of spermatogenesis, wherein the spermatids differentiate into mature spermatozoa via complex morphological transformation. In this process, kinesin plays an important role. Here, we observed the morphological transformation of spermatids and analyzed the characterization, dynamic transcription, and potential function of kinesin KIF3A/KIF3B during spermiogenesis in Chinese hook snout carp (Opsariichthys bidens). We found that the full-length cDNAs of O. bidens kif3a and kif3b were 2544 and 2806 bp in length comprising 119 bp and 259 bp 5' untranslated region (UTR), 313 bp and 222 bp 3' UTR, and 2112 bp and 2325 bp open reading frame encoding 703 and 774 amino acids, respectively. Ob-KIF3A/KIF3B proteins have three domains, namely N-terminal head, coiled-coil stalk, and C-terminal tail, and exhibit high similarity with homologous proteins in vertebrates and invertebrates. Ob-kif3a/kif3b mRNAs were ubiquitously expressed in all tissues examined, with the highest expression in the brain and stage-IV testis. Immunofluorescence results showed that Ob-KIF3A was co-localized with tubulin and the mitochondria. Particularly, in early spermatids, Ob-KIF3A, tubulin, and the mitochondrial signals were evenly distributed in the cytoplasm, whereas in middle spermatids, they were distributed around the nucleus. In the late stage, the signals were concentrated on one side of the nucleus, where the tail is formed, whereas in mature sperms, they were detected in the midpiece and flagellum. These results indicate that Ob-KIF3A/KIF3B may participate in nuclear reshaping, flagellum formation, and mitochondrial aggregation in the midpiece during spermiogenesis.
Collapse
Affiliation(s)
- Chenwen Lin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Huayu Jiang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
8
|
Liu WS, Lu C, Mistry BV. Subcellular localization of the mouse PRAMEL1 and PRAMEX1 reveals multifaceted roles in the nucleus and cytoplasm of germ cells during spermatogenesis. Cell Biosci 2021; 11:102. [PMID: 34074333 PMCID: PMC8170798 DOI: 10.1186/s13578-021-00612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal gametogenic tissues and a variety of tumors. Members of the PRAME gene family encode leucine-rich repeat (LRR) proteins that provide a versatile structural framework for the formation of protein-protein interactions. As a nuclear receptor transcriptional regulator, PRAME has been extensively studied in cancer biology and is believed to play a role in cancer cell proliferation by suppressing retinoic acid (RA) signaling. The role of the PRAME gene family in germline development and spermatogenesis has been recently confirmed by a gene knockout approach. To further understand how PRAME proteins are involved in germ cell development at a subcellular level, we have conducted a systematic immunogold electron microscopy (IEM) analysis on testis sections of adult mice with gene-specific antibodies from two members of the mouse Prame gene family: Pramel1 and Pramex1. Pramel1 is autosomal, while Pramex1 is X-linked, both genes are exclusively expressed in the testis. RESULTS Our IEM data revealed that both PRAMEL1 and PRAMEX1 proteins were localized in various cell organelles in different development stages of spermatogenic cells, including the nucleus, rER, Golgi, mitochondria, germ granules [intermitochondrial cement (IMC) and chromatoid body (CB)], centrioles, manchette, and flagellum. Unlike other germ cell-specific makers, such as DDX4, whose proteins are evenly distributed in the expressed-organelle(s), both PRAMEL1 and PRAMEX1 proteins tend to aggregate together to form clusters of protein complexes. These complexes were highly enriched in the nucleus and cytoplasm (especially in germ granules) of spermatocytes and spermatids. Furthermore, dynamic distribution of the PRAMEL1 protein complexes were observed in the microtubule-based organelles, such as acroplaxome, manchette, and flagellum, as well as in the nuclear envelope and nuclear pore. Dual staining with PRAMEL1 and KIF17B antibodies further revealed that the PRAMEL1 and KIF17B proteins were co-localized in germ granules. CONCLUSION Our IEM data suggest that the PRAMEL1 and PRAMEX1 proteins are not only involved in transcriptional regulation in the nucleus, but may also participate in nucleocytoplasmic transport, and in the formation and function of germ cell-specific organelles during spermatogenesis.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
| | - Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Fudan University, Shanghai, People’s Republic of China
| | - Bhavesh V. Mistry
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Zheng X, Gao X, Wang J, Du C, Hou C, Xie Q, Lou B, Liu F, Zhu J. KIFC1 functions in nuclear reshaping and midpiece formation during the spermatogenesis of small yellow croaker Larimichthys polyactis. Anim Reprod Sci 2021; 226:106702. [PMID: 33581918 DOI: 10.1016/j.anireprosci.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
The C-terminal kinesin motor protein (KIFC1) has essential functions in spermatogenesis. To evaluate molecular mechanisms of KIFC1 during teleost fish spermatogenesis, there was cloning and sequencing the kifc1 cDNA in the testis of Larimichthys polyactis. Quantitative PCR results indicated there were Lp-kifc1 mRNA transcripts in the testes. Results from conducting fluorescence in situ hybridization and immunofluorescence procedures indicated there were trends in relative abundance changes in Lp-kifc1 mRNA transcripts that were associated with abundance of Lp-KIFC1 protein during spermatogenesis. The Lp-KIFC1 protein was detected at all stages of spermatogenesis. There was minimal Lp-KIFC1 in the cytoplasm of spermatogonia, with content being greater and concentrated in the perinuclear region in spermatocytes and during early/mid-stages of development of spermatids. There were large abundances of Lp-KIFC1 in spermatids at the mid-developmental stage. In late-developing spermatids, Lp-KIFC1 content was less and concentrated in the bottom of the nucleus, where the midpiece formed. There was a small Lp-KIFC1 in the midpiece of mature sperm. These findings indicate Lp-KIFC1 may have functions in L. polyactis spermatogenesis. Results from conducting immunofluorescence procedures indicated Lp-KIFC1 was co-localized microtubules and mitochondria throughout spermatogenesis. There were large abundances of Lp-KIFC1 and tubulin in spermatids during the mid-developmental stage, when there is a decrease in size and reshaping of the nucleus. During midpiece formation, there was co-localization of the Lp-KIFC1 and mitochondria in the spermatid perinuclear region to the midpiece. These findings indicate Lp-KIFC1 is involved in nuclear reshaping and midpiece formation during spermatogenesis in L. polyactis.
Collapse
Affiliation(s)
- Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Feng Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
10
|
Large-scale lysine crotonylation analysis reveals its potential role in spermiogenesis in the Chinese mitten crab Eriocheir sinensis. J Proteomics 2020; 226:103891. [PMID: 32629196 DOI: 10.1016/j.jprot.2020.103891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Lysine crotonylation (Kcr) is a recently-discovered type of post-translational modification. Although Kcr has been reported in many species, little is known about this process in crustaceans. In this study, pan anti-lysine crotonylation antibody enrichment and high-resolution liquid chromatogram-mass spectrometry analysis were employed to characterize Kcr in testis of the Chinese mitten crab Eriocheir sinensis testis. Overall, 2799 Kcr sites were identified on 908 proteins with 14 conserved motifs. Bioinformatics analysis showed that Kcr was predominant on proteins found in cytoplasm, mitochondria and nucleus, and those involved in ribosome, proteasome, carbon metabolism and protein processing in endoplasmic reticulum. In total, 83 up-regulated and 12 down-regulated non-histone crotonylated sites were identified during spermiogenesis. These differentially expressed proteins were enriched in protein processing in endoplasmic reticulum pathway during formation of acrosome. In contrast, histone Kcr associated with mammalian spermatogenesis. These results provide foundational knowledge on the role of non-histone Kcr in spermiogenesis of E. sinensis. SIGNIFICANCE: Lysine crotonylation (Kcr) is a recently-identified post-translational modification, and histone Kcr was found to associate with mammalian spermatogenesis. However, crotonylation of non-histone proteins has not been reported in spermatogenesis regulation. Further, there is no information on crotonylation in crustaceans. This study was the first large-scale Kcr proteome characterization in crustaceans. A total of 2799 Kcr sites on 908 proteins with 14 conserved motifs were identified from Eriocheir sinensis testis. Of which, 83 up-regulated and 12 down-regulated non-histone crotonylated sites were identified during spermiogenesis. Our results provide the basic information for further functional validation of Kcr proteins and revealed new roles of Kcr in spermiogenesis of E. sinensis.
Collapse
|
11
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
12
|
Liu L, Chen A, Chen S, Song W, Yao Q, Wang P, Zhou S. CCNB2, NUSAP1 and TK1 are associated with the prognosis and progression of hepatocellular carcinoma, as revealed by co-expression analysis. Exp Ther Med 2020; 19:2679-2689. [PMID: 32256749 PMCID: PMC7086186 DOI: 10.3892/etm.2020.8522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
The mortality rate associated with hepatocellular carcinoma (HCC) is the third highest among all digestive system tumors. However, the causes of HCC development and the underlying mechanisms have remained to be fully elucidated. In the present bioinformatics study, genetic markers were identified and their association with HCC was determined. The mRNA expression datasets GSE87630, GSE74656 and GSE76427 were downloaded from the Gene Expression Omnibus (GEO) database. A total of 96 differentially expressed genes (DEGs) were screened from the 3 GEO datasets, including 25 upregulated and 71 downregulated genes. DEGs were uploaded to the database for Annotation, Visualization and Integrated Discovery to screen for enriched Gene Ontology terms in various categories and the Search Tool for the Retrieval of Interacting Genes/Proteins was used to identify the interactions and functions of the DEGs. A total of 3 genetic markers were identified in a stepwise pathway and functional analysis in a previous study. The association of the genetic markers with prognosis was analysed using the UALCAN online analysis tool. Regression analysis was also performed to identify the relationship between HCC grade and disease recurrence and the expression of genetic markers using The Cancer Genome Atlas HCC dataset. In addition, the expression of the 3 genetic markers in HCC tissues was determined using reverse transcription-quantitative PCR, the Oncomine database and the Human Protein Atlas database. The expression levels of the 3 genetic markers cyclin B2 (CCNB2), nucleolar and spindle-associated protein 1 (NUSAP1) and thymidine kinase 1 (TK1) were significantly correlated with each other and high mRNA expression of CCNB2 was significantly associated with poor overall survival of patients with HCC. Receiver operating characteristic curve analysis indicated that NUSAP1 and TK1 were capable of distinguishing between recurrent and non-recurrent HCC. Furthermore, CCNB2, NUSAP1 and TK1 were highly correlated with the HCC grade. It was also indicated that the mRNA expression of CCNB2, NUSAPA and TK1 was increased in primary HCC tissues when compared with that in adjacent tissues. The present study identified that the CCNB2, NUSAP1 and TK1 genes may serve as prognostic markers for HCC, and may be of value from the perspectives of basic research and clinical treatment of HCC.
Collapse
Affiliation(s)
- Linglong Liu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Anning Chen
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Siyu Chen
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingmei Yao
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Pengfei Wang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
13
|
Hao SL, Yang WX. KIFC1 is essential for normal spermatogenesis and its depletion results in early germ cell apoptosis in the Kuruma shrimp, Penaeus (Marsupenaeus) japonicus. Aging (Albany NY) 2019; 11:12773-12792. [PMID: 31895691 PMCID: PMC6949060 DOI: 10.18632/aging.102601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
In order to explore the dynamic mechanisms during spermatogenesis of the penaeid prawns, the full length of kifc1 was cloned from testis cDNA of Penaeus japonicus through RACE. Both semi-quantitative RT-PCR and Western blot results indicated that KIFC1 was extensive expressed in different tissue of P. japonicus. Compared with other tissue, the highest expression of KIFC1 occurred in the testis. According to the immunofluorescence results, the KIFC1 protein was detected at each stage of whole process of spermatogenesis. In the spermatogonial phase, KIFC1 mainly dispersed in cytoplasm and co-localized with microtubules, while abundant KIFC1 signal was detected in the nucleus of spermatocytes. At the early stage of spermatids, KIFC1 was transported from the nucleus into the cytoplasm, and it assisted microtubule assembly onto one side of the nucleus. Finally, in mature sperm, it was weakly expressed in the acrosome. This implies that KIFC1 may participate in the mitosis of spermatogonia, meiosis of spermatocyte, and acrosome formation during spermiogenesis; it may also play functions in acrosome maintaining in mature sperm. In addition, the results of KIFC1 knockdown by dsRNA injection in vivo reveal that decreased KIFC1 expression may induce aberrant microtubule assembly, and it leads to spermatogonia and spermatocyte apoptosis.
Collapse
Affiliation(s)
- Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Zeng J, Peng S, Zhong S, Zhang H. The Spermatozoal Ultrastructure of the Chinese Mitten Crab ( Eriocheir sinensis). J Microsc Ultrastruct 2019; 7:181-184. [PMID: 31803572 PMCID: PMC6880317 DOI: 10.4103/jmau.jmau_48_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background: The Chinese mitten crab (Eriocheir sinensis) is an economically important aquatic species in China. The artificial breeding crabs are also increasing in number day by day. However, knowledge about spermatozoal organization of the crab is still very limited. Aims and Objectives: In the present study, the spermatozoal ultrastructure of the E. sinensis is illustrated for improving artificial breeding technique. Materials and Methods: The spermatozoa are observed by light microscopy and transmission electron microscopy. Results: Spermatozoa are located in the lumen of seminiferous tubules. The spermatocytes and spermatids are observed in the wall of seminiferous tubules. The spermatophores are both present in the lumen of vas deferens and seminal vesicles. A mature spermatozoon consists of a central electron dense acrosome and a peripheral electron lucent nucleus within structures-organelles complex. The acrosome is divided into three zones, including inner acrosome zone, outer acrosome zone and zonal texture. The centre of acrosome is the perforatorium within parallel arranged perforatorial tubules along vertical axis. The highest electron dense operculum surrounds the head side of perforatorium. Conclusion: The ultrastructure of spermatozoa of E. sinensis is illustrated. In particular, the outermost part of the acrosome appears as concentric circles and is described as zonal texture.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Veterinary Medicine, College of Life Science and Engineering, Foshan University, Foshan, China.,Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shasha Peng
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shengwei Zhong
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Zhang
- Department of Veterinary Medicine, College of Life Science and Engineering, Foshan University, Foshan, China.,Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Wei YL, Yang T, Kovacs T, Yang WX. C-terminal kinesin motor es-KIFC1 regulates nuclear formation during spermiogenesis in Chinese mitten crab Eriocheir sinensis. Gene 2019; 719:144074. [DOI: 10.1016/j.gene.2019.144074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
|
16
|
Xiao KH, Teng K, Ye YL, Tan L, Chen MK, Liang HT, Feng ZH, Duan JL, Deng MH, Wei WS, Luo JH, Qin ZK, Xie D. Kinesin family member C1 accelerates bladder cancer cell proliferation and induces epithelial-mesenchymal transition via Akt/GSK3β signaling. Cancer Sci 2019; 110:2822-2833. [PMID: 31278883 PMCID: PMC6726677 DOI: 10.1111/cas.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Kinesin family member C1 (KIFC1) is implicated in the clustering of multiple centrosomes to maintain tumor survival and is thought to be an oncogene in several kinds of cancers. In our experiments, we first performed bioinformatics analysis to investigate the expression levels of KIFC1 in bladder cancer (BC) specimens and normal bladder epitheliums and then, using our samples, verified findings by quantitative real‐time PCR and western blotting assays. All data showed that KIFC1 was significantly upregulated in BC specimens at both the mRNA and protein levels. Immunohistochemical studies in a cohort of 152 paraffin‐embedded BC tissues displayed that upregulated expression of KIFC1 clearly correlated with pT status (P = .014) and recurrent status (P = .002). Kaplan‐Meier survival analysis and log‐rank test indicated that patients with BC with high KIFC1 expression had both shorter cancer‐specific survival (P < .001) and recurrence‐free survival time (P < .001) than those with low KIFC1 expression. Furthermore, ectopic downregulation of KIFC1 weakened BC cell proliferation and migration both in vitro and in vivo, whereas upregulation of KIFC1 enhanced this in vitro. Overexpression of KIFC1 phosphorylated GSK3β and promoted Snail through activating AKT (protein kinase B0) to induce proliferation and epithelial–mesenchymal transition (EMT) and, therefore, substantially promoted BC migration and metastasis. Our study revealed an oncogenic role for KIFC1 to promote BC cell proliferation and EMT via Akt/GSK3β signaling; KIFC1 might be a promising prognostic biomarker as well as a therapeutic target for BC.
Collapse
Affiliation(s)
- Kang-Hua Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Teng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yun-Lin Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Tan
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hai-Tao Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Hao Feng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Su Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi-Ke Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance. Cell Death Dis 2019; 10:402. [PMID: 31127080 PMCID: PMC6534603 DOI: 10.1038/s41419-019-1619-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
The nuclear localization signal (NLS) in kinesin-14 KIFC1 is associated with nuclear importins and Ran gradient, but detailed mechanism remains unknown. In this study, we found that KIFC1 proteins have specific transport characteristics during cell cycle. In the absence of KIFC1, cell cycle kinetics decrease significantly with a prolonged S phase. After KIFC1 overexpression, the duration of S phase becomes shorten. KIFC1 may transport the recombinant/replicate-related proteins into the nucleus, meanwhile avoiding excessive KIFC1 in the cytoplasm, which results in aberrant microtubule bundling. Interestingly, the deletion of kifc1 in human cells results in a higher ratio of aberrant nuclear membrane, and the degradation of lamin B and lamin A/C. We also found that kifc1 deletion leads to defects in metaphase mitotic spindle assembly, and then results in chromosome structural abnormality. The kifc1-/- cells finally form micronuclei in daughter cells, and results in aneuploidy and chromosome loss in cell cycle. In this study, we demonstrate that kinesin-14 KIFC1 proteins involve in regulating DNA synthesis in S phase, and chromatin maintenance in mitosis, and maintain cell growth in a nuclear transport-independent way.
Collapse
|
18
|
Gao XM, Mu DL, Hou CC, Zhu JQ, Jin S, Wang CL. Expression and putative functions of KIFC1 for nuclear reshaping and midpiece formation during spermiogenesis of Phascolosoma esculenta. Gene 2019; 683:169-183. [DOI: 10.1016/j.gene.2018.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
19
|
Transcriptome Dynamics During Turbot Spermatogenesis Predicting the Potential Key Genes Regulating Male Germ Cell Proliferation and Maturation. Sci Rep 2018; 8:15825. [PMID: 30361543 PMCID: PMC6202422 DOI: 10.1038/s41598-018-34149-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/23/2018] [Indexed: 01/19/2023] Open
Abstract
Spermatogenesis is a dynamic developmental process in which spermatogonial stem cells proliferate, differentiate and mature into functional spermatozoa. These processes require an accurate gene regulation network. Here, we investigated the dynamic changes that occur during spermatogenesis through a combination of histological and transcriptome analyses of different developmental stages of the testis. We constructed 18 testis transcriptome libraries, and the average length, N50, and GC content of the unigenes were 1,795 bp; 3,240 bp and 49.25%, respectively. Differentially expressed genes (DEGs) that were related to germ cell proliferation and maturation, such as NANOS3, RARs, KIFs, steroid hormone synthesis-related genes and receptor genes, were identified between pairs of testis at different developmental stages. Gene ontology annotation and pathway analyses were conducted on DEGs with specific expression patterns involved in the regulation of spermatogenesis. Nine important pathways such as steroid hormone biosynthesis related to spermatogenesis were identified. A total of 21 modules that ranged from 49 to 7,448 genes were designed by a weighted gene co-expression network analysis. Furthermore, a total of 83 candidate miRNA were identified by computational methods. Our study provides the first transcriptomic evidence for differences in gene expression between different developmental stages of spermatogenesis in turbot (Scophthalmus maximus).
Collapse
|
20
|
Han J, Wang F, Lan Y, Wang J, Nie C, Liang Y, Song R, Zheng T, Pan S, Pei T, Xie C, Yang G, Liu X, Zhu M, Wang Y, Liu Y, Meng F, Cui Y, Zhang B, Liu Y, Meng X, Zhang J, Liu L. KIFC1 regulated by miR-532-3p promotes epithelial-to-mesenchymal transition and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling. Oncogene 2018; 38:406-420. [PMID: 30115976 PMCID: PMC6336682 DOI: 10.1038/s41388-018-0440-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/14/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. The poor survival may be due to a high proportions of tumor recurrence and metastasis. Kinesin family member C1 (KIFC1) is highly expressed in a variety of neoplasms and is a potential marker for non-small cell lung cancer or ovarian adenocarcinoma metastasis. Nevertheless, the role of KIFC1 in HCC metastasis remains obscure. We investigated this in the present study using HCC cell lines and clinical specimens. Our results indicated that increased levels of KIFC1 were associated with poor prognosis and metastasis in HCC. In addition, KIFC1 induced epithelial-to-mesenchymal transition (EMT) and HCC metastasis both in vitro and in vivo. This tumorigenic effect depended on gankyrin; inhibiting gankyrin activity reversed EMT via activation of protein kinase B (AKT)/Twist family BHLH transcription factor 1 (AKT/TWIST1). We also found that KIFC1 was directly regulated by the microRNA miR-532-3p, whose downregulation was associated with metastatic progression in HCC. These results denote that a decrease in miR-532-3p levels results in increased KIFC1 expression in HCC, leading to metastasis via activation of the gankyrin/AKT/TWIST1 signaling pathway.
Collapse
Affiliation(s)
- Jihua Han
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengyue Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaliang Lan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunlei Nie
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changming Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangchao Yang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xirui Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingxi Zhu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifeng Cui
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufeng Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianzhi Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiewu Zhang
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
21
|
Wei YL, Yang WX. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018; 660:28-40. [DOI: 10.1016/j.gene.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
22
|
Zhao YQ, Mu DL, Wang D, Han YL, Hou CC, Zhu JQ. Analysis of the function of KIF3A and KIF3B in the spermatogenesis in Boleophthalmus pectinirostris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:769-788. [PMID: 29511984 DOI: 10.1007/s10695-017-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
Spermatogenesis represents one of the most complicated morphological transformation procedures. During this process, the assembly and maintenance of the flagella and intracellular transport of membrane-bound organelles required KIF3A and KIF3B. Our main goal was to test KIF3A and KIF3B location during spermatogenesis of Boleophthalmus pectinirostris. We cloned complete cDNA of KIF3A/3B from the testis of B. pectinirostris by PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of B. pectinirostris KIF3A/3B contained three domains: (a) the head region, (b) the stalk region, and (c) the tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNA were presented in all the tissues examined, with the highest expression seen in the testis. In situ hybridization (ISH) showed that KIF3A and KIF3B were distributed in the periphery of the nuclear in the spermatocyte and the early spermatid. In the late spermatid and mature sperm, the KIF3A and KIF3B mRNA were gradually gathered to one side where the flagella formed. Immunofluorescence (IF) showed that KIF3A, tubulin, and mitochondria were co-localized in different stages during spermiogenesis in B. pectinirostris. The temporal and spatial expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B might be involved in flagellar assembly and maintenance at the mRNA and protein levels. Moreover, these proteins may transport the mitochondria resulting in flagellum formation in B. pectinirostris.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Dan-Li Mu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Di Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
23
|
KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster Procambarus clarkii. Oncotarget 2018; 8:36082-36098. [PMID: 28415605 PMCID: PMC5482640 DOI: 10.18632/oncotarget.16429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023] Open
Abstract
In order to study the function of kinesin-14 motor protein KIFC1 during spermatogenesis of Procambarus clarkii, the full length of kifc1 was cloned from testes cDNA using Rapid-Amplification of cDNA Ends (RACE). The deduced KIFC1 protein sequence showed the highest similarity between Procambarus clarkii and Eriocheir senensis (similarity rate as 64%). According to the results of in situ hybridization (ISH), the kifc1 mRNA was gathered in the acrosome location above nucleus in the mid- and late-stage spermatids. Immunofluorescence results were partly consistent with the ISH in middle spermatids, while in the late spermatids the KIFC1 was distributed around the nucleus which had large deformation and formed four to six nuclear arms. In the mature sperm, KIFC1 and microtubules were distributed around the sperm, playing a role in maintaining the sperm morphology and normal function. Overexpression of P. clarkii kifc1 in GC1 cells for 24 hours resulted in disorganization of microtubules which changed the cell morphology from circular and spherical into fusiform. In addition, the overexpression also resulted in triple centrosomes during mitosis which eventually led to cell apoptosis. RNAi experiments showed that decreased KIFC1 protein levels resulted in total inhibition of spermatogenesis, with only mature sperm found in the RNAi-testis, implying an indispensable role of KIFC1 during P. clarkii spermiogenesis.
Collapse
|
24
|
Lee SH, Joo K, Jung EJ, Hong H, Seo J, Kim J. Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1. FASEB J 2018; 32:957-968. [PMID: 29042452 DOI: 10.1096/fj.201700563r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microtubule-based motors contribute to the efficiency and selectivity of Golgi exit and post-Golgi transport of membrane proteins that are targeted to distinct compartments. Cytoplasmic dynein moves post-Golgi vesicles that carry rhodopsin toward the base of the connecting cilium in photoreceptor cells; however, the identity of the motors that are involved in the vesicular trafficking of ciliary membrane proteins in nonphotoreceptor cells remains unclear. Here, we demonstrate that the minus end-directed kinesin KIFC1 (kinesin family member C1) is required for both ciliary membrane protein transport and serum starvation-induced ciliogenesis in retinal pigmented epithelial 1 cells. Although KIFC1 is known as a mitotic motor that is sequestered in the nucleus during interphase, KIFC1 immunoreactivity appeared in the Golgi region after serum starvation. Knockdown of KIFC1 inhibited the export of ciliary receptors from the Golgi complex. KIFC1 overexpression affected the Golgi localization of GMAP210 (Golgi microtubule-associated protein 210) and IFT20 (intraflagellar transport 20), which are involved in membrane protein transport to cilia. Moreover, KIFC1 physically interacted with ASAP1 (ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain 1), which regulates the budding of rhodopsin transport carriers from the Golgi complex, and KIFC1 depletion caused Golgi accumulation of ASAP1. A decrease in the centrosomal levels of IFT20 and TTBK2 (τ-tubulin kinase 2) was associated with ciliogenesis defects in KIFC1-depleted cells. Our results suggest that KIFC1 plays roles in the Golgi exit of ciliary receptors and in the recruitment of ciliogenesis regulators.-Lee, S.-H., Joo, K., Jung, E. J., Hong, H., Seo, J., Kim, J. Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangsic Joo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Ji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jimyung Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
25
|
Zhang DD, Gao XM, Zhao YQ, Hou CC, Zhu JQ. The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1351-1371. [PMID: 28534180 DOI: 10.1007/s10695-017-0377-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Spermatogenesis is a highly ordered process in the differentiation of male germ cells. Nuclear morphogenesis is one of the most fundamental cellular transformations to take place during spermatogenesis. These striking transformations from spermatogonia to spermatozoa are a result of phase-specific adaption of the cytoskeleton and its association with molecular motor proteins. KIFC1 is a C-terminal kinesin motor protein that plays an essential role in acrosome formation and nuclear reshaping during spermiogenesis in mammals. To explore its functions during the same process in Larimichthys crocea, we cloned and characterized the cDNA of a mammalian KIFC1 homolog (termed lc-KIFC1) from the total RNA of the testis. The 2481 bp complete lc-KIFC1 cDNA contained a 53 bp 5' untranslated region, a 535 bp 3' untranslated region, and a 1893 bp open reading frame that encoded a special protein of 630 amino acids. The predicted lc-KIFC1 protein possesses a divergent tail region, stalk region, and conserved carboxyl motor region. Protein alignment demonstrated that lc-KIFC1 had 73.2, 49.8, 49.3, 54.6, 56.5, 53.1, and 52.1% identity with its homologs in Danio rerio, Eriocheir sinensis, Octopus tankahkeei, Gallus gallus, Xenopus laevis, Mus musculus, and Homo sapiens, respectively. Tissue expression analysis revealed that lc-kifc1 mRNA was mainly expressed in the testis. The trend of lc-kifc1 mRNA expression at different growth stages of the testis showed that the expression increased first and then decreased, in the stage IV of testis, its expression quantity achieved the highest level. In situ hybridization and immunofluorescence results showed that KIFC1 was localized around the nucleus in early spermatids. As spermatid development progressed, the signals increased substantially. These signals peaked and were concentrated at one end of the nucleus when the spermatids began to undergo dramatic changes. In the mature sperm, the signal for KIFC1 gradually became weak and was mainly localized in the tail. In summary, evaluation of the expression pattern for lc-KIFC1 at specific stages of spermiogenesis has shed light on the potential functions of this motor protein in major cytological transformations. In addition, this study may provide a model for researching the molecular mechanisms involved in spermatogenesis in other teleost species, which will lead to a better understanding of the teleost fertilization process.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin-Ming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
26
|
Hypo-hydroxymethylation of rRNA genes in the precocious Eriocheir sinensis testes revealed using hMeDIP-seq. Sci Rep 2017; 7:11237. [PMID: 28894189 PMCID: PMC5593943 DOI: 10.1038/s41598-017-11517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
Precocious puberty is a common phenomenon in crab breeding that seriously reduces the economic benefits for crab farmers. To address this problem, this study aimed to explore the potential functions of both methylation and hydroxymethylation of testis rRNA genes with respect to precocious puberty in Eriocheir sinensis. The results showed that the rRNA genes in normally developing testes of E. sinensis had low levels of methylation and high levels of hydroxymethylation; however, although methylation levels were similar, the level of hydroxymethylation in precocious testes was lower than normal. Highly significant differences (P < 0.01) in the hydroxymethylation of the 18S and 28S rRNA genes were found between precocious and normal testes. Our results suggested that both the 18S and 28S rRNA genes, which are normally downregulated by hypo-hydroxymethylation, might be involved in the process of precocious puberty. Our results also implied that hydroxymethylation of the 18S and 28S rRNA genes might be used as an important epigenetic molecular marker to evaluate economically significant potential for growth and breeding in this species.
Collapse
|
27
|
Tiseo GR, Mantelatto FL, Zara FJ. Ultrastructure of spermatophores and spermatozoa of intertidal crabs Pachygrapsus transversus, Pachygrapsus gracilis and Geograpsus lividus (Decapoda: Grapsidae). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Ma DD, Pan MY, Hou CC, Tan FQ, Yang WX. KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2638-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Liu WS, Zhao Y, Lu C, Ning G, Ma Y, Diaz F, O'Connor M. A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 2017; 153:847-863. [PMID: 28356500 DOI: 10.1530/rep-17-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 11/08/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is predominantly expressed in normal testicular tissues and a variety of tumors. The function of the PRAME family in spermatogenesis remains unknown. This study was designed to characterize the Y-linked PRAME (PRAMEY) protein during spermatogenesis in cattle. We found that PRAMEY is a novel male germ cell-specific, and a germinal granule-associated protein that is expressed in spermatogenic cells during spermatogenesis. The intact PRAMEY protein (58 kDa) was detected in different ages of testes but not in epididymal spermatozoa. A PRAMEY isoform (30 kDa) was highly expressed only in testes after puberty and in epididymal spermatozoa. This isoform interacts with PP1γ2 and is likely the mature protein present in the testes and sperm. Immunofluorescent staining demonstrated that PRAMEY was located predominantly in the acrosome granule of spermatids, and in acrosome and flagellum of spermatozoa. Immunogold electron microscopy further localized the PRAMEY protein complex to the nucleus and several cytoplasmic organelles, including the rough endoplasmic reticulum, some small vesicles, the intermitochondrial cement, the chromatoid body and the centrioles, in spermatogonia, spermatocytes, spermatids and/or spermatozoa. PRAMEY was highly enriched in and structurally associated with the matrix of the acrosomal granule (AG) in round spermatids, and migrated with the expansion of the AG during acrosomal biogenesis. While the function of PRAMEY remains unclear during spermatogenesis, our results suggest that PRAMEY may play an essential role in acrosome biogenesis and spermatogenesis.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC1.FreeSpanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC2.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Yaqi Zhao
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Chen Lu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Gang Ning
- Microscopy and Cytometry FacilityThe Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yun Ma
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences.,College of Life ScienceXinyang Normal University, Xinyang, Henan, China
| | - Francisco Diaz
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Michael O'Connor
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| |
Collapse
|
30
|
Ma DD, Wang DH, Yang WX. Kinesins in spermatogenesis†. Biol Reprod 2017; 96:267-276. [DOI: 10.1095/biolreprod.116.144113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 11/01/2022] Open
|
31
|
Li GL, Xu YJ, Huang XM, Xiao J, Nong S, Li CG. MeDIP-seq reveals the features of mitochondrial genomic methylation in immature testis of Chinese mitten crab Eriocheir sinensis. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:335-339. [PMID: 28129733 DOI: 10.1080/24701394.2016.1278537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, the methylation of mitochondrial genome in the immature testis of Chinese mitten crab Eriocheir sinensis of the Yangtze River system was determined for the first time using MeDIP-seq. Our methylated DNA fragments covered more than 99% of the mitochondrial genome in E. sinensis loaded from GenBank. There were 8 mutated bases and 42 SNPs in the crab mitochondrial genome. The methylation presented in all genes as well as in an A + T region, but less in intergenic regions in the mitochondrial genome. However, the level of methylation of most genes coding proteins and the A + T region were high. But, the majority of genes encoding tRNAs were hypomethylated, and both the rRNA genes also showed methylation of low or median frequency. Especially, the level of methylation of the intergenic regions is the lowest. Those features indicated that the methylation of DNA may play an important role in gene expressing regulation in the mitochondrial genome of immature testis in E. sinensis.
Collapse
Affiliation(s)
- Gen-Liang Li
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Yi-Jiao Xu
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Xiao-Min Huang
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Juan Xiao
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Song Nong
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| | - Chao-Gan Li
- a Department of Biochemistry , Youjiang Medical University for Nationalities , Baise , Guangxi , China
| |
Collapse
|
32
|
Li G, Kang X, Mu S, Guo M, Huang S, Chen Q, Nong S, Huang X, Hu H, Sun K. H3K9ac involved in the decondensation of spermatozoal nuclei during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Cytotechnology 2016; 69:75-87. [PMID: 27896558 DOI: 10.1007/s10616-016-0038-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/28/2016] [Indexed: 01/24/2023] Open
Abstract
As a well-known crustacean model species, the Chinese mitten crab Eriocheir sinensis presents spermatozoa with decondensed DNA. Our aim was to analyze structural distribution of the histone H3 and its acetylated lysine 9 (H3K9ac) during spermatogenesis for the mechanistic understanding of the nuclear decondensation of the spermatozoa in E. sinensis. Using specific antibodies, we followed the structural distribution and acetylated lysine 9 of the histone H3 during spermatogenesis, especially spermiogenesis, of E. sinensis. Various spermary samples at different developmental stages were used for histological immunofluorescence and ultrastructural immunocytochemistry. Our results demonstrate a wide distribution of the histone H3 and H3K9ac during spermatogenesis, including spermatogonia, spermatocytes, spermatids, and immature and mature spermatozoa except for absence of H3K9ac in the secondary spermatocytes. Especially during the initial stage of nuclear decondensation, histone H3 lysine 9 was acetylated and then an amount of H3K9ac was removed from within to outside of the nuclei of late spermatids. The portion of remaining H3K9ac was gradually transferred from the nuclei during the stages of spermatozoa maturation. Our findings suggest both the acetylation of histone H3 lysine 9 and the remain of H3K9ac to contribute to the nuclear decondensation in spermatozoa of E. sinensis.
Collapse
Affiliation(s)
- Genliang Li
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Mingshen Guo
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Shiwen Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Qinna Chen
- College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Song Nong
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Xiaomin Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Hongliu Hu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Ke Sun
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| |
Collapse
|
33
|
Li YR, Yang WX. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors. Gene 2015; 576:195-207. [PMID: 26478466 DOI: 10.1016/j.gene.2015.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Zhu M, Sun WJ, Wang YL, Li Q, Yang HD, Duan ZL, He L, Wang Q. P38 participates in spermatogenesis and acrosome reaction prior to fertilization in Chinese mitten crab Eriocheir sinensis. Gene 2015; 559:103-11. [DOI: 10.1016/j.gene.2014.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/29/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
|
35
|
Morphological alterations of all stages of spermatogenesis and acrosome reaction in Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 2015; 360:401-12. [DOI: 10.1007/s00441-014-2092-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
|
36
|
Hu JR, Liu M, Hou CC, She ZY, Wang DH, Hao SL, Zhang YP, Yang WX. Gene expression pattern of KIFC3 during spermatogenesis of the skink Eumeces chinensis. Gene 2014; 556:206-12. [PMID: 25434495 DOI: 10.1016/j.gene.2014.11.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022]
Abstract
Kinesin superfamily is a class of microtubule-dependent motors that play crucial roles in acrosome biogenesis, nuclear reshaping and flagellum formation during spermiogenesis. We have cloned kinesin-like gene kifc3 (termed ec-kifc3) from the total RNA of the testis of the skink Eumeces chinensis. The cDNA sequence of ec-kifc3 had a full-length of 3033bp, including a 260bp 5'-untranslated region (5'UTR), a 445bp 3'-untranslated region (3'UTR) and an open reading frame that encoded a 775-amino-acid protein. Additionally, the calculated molecular weight of the putative ec-KIFC3 was 87kDa and its estimated isoelectric point was 6.18. Structurally, the putative ec-KIFC3 had three domains: head domain, neck domain and tail domain. Protein alignment demonstrated that ec-KIFC3 had 47.2%, 67.8%, 68.8%, 69.3% and 76.8% identity with its homologues in Xenopus laevis, Mus musculus, Cricetulus griseus, Homo sapiens, and Gallus gallus. The phylogenetic analysis showed that ec-KIFC3 was more related to KIFC3 in vertebrates than invertebrates. Tissue expression results showed the presence of ec-KIFC3 in various tissues with its highest expression in the testis. In situ hybridization demonstrated that ec-KIFC3 mRNA was distributed around the nucleus in early and middle stage spermatids and expressed in the nucleus in the elongating spermatids during spermiogenesis. Besides, the ec-KIFC3 mRNA was expressed in the acrosome of the developmental spermatids. From the results of in situ hybridization and previous researches, we speculated that ec-KIFC3 may play a role in nuclear morphogenesis and acrosome formation during spermiogenesis of E. chinensis.
Collapse
Affiliation(s)
- Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Mei Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China; The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Da-Hui Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuang-Li Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
37
|
Functional Analysis of KIF3A and KIF3B during Spermiogenesis of Chinese Mitten Crab Eriocheir sinensis. PLoS One 2014; 9:e97645. [PMID: 24870586 PMCID: PMC4037190 DOI: 10.1371/journal.pone.0097645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spermatogenesis represents the transformation process at the level of cellular development. KIF3A and KIF3B are believed to play some roles in the assembly and maintenance of flagella, intracellular transport of materials including organelles and proteins, and other unknown functions during this process. During spermatogenesis in Eriocheir sinensis, if the sperm shaping machinery is dependent on KIF3A and KIF3B remains unknown. METHODOLOGY/PRINCIPAL FINDINGS The cDNA of KIF3A and KIF3B were obtained by designing degenerate primers, 3'RACE, and 5'RACE. We detected the genetic presence of kif3a and kif3b in the heart, muscle, liver, gill, and testis of E. sinensis through RT-PCR. By western blot analysis, the protein presence of KIF3A and KIF3B in heart, muscle, gill, and testis reflected the content in protein level. Using in situ hybridization and immunofluorescence, we could track the dynamic location of KIF3A and KIF3B during different developmental phases of sperm. KIF3A and KIF3B were found surrounding the nucleus in early spermatids. In intermediate spermatids, these proteins expressed at high levels around the nucleus and extended to the final phase. During the nuclear shaping period, KIF3A and KIF3B reached their maximum in the late spermatids and were located around the nucleus and concentrated in the acrosome to some extent. CONCLUSIONS/SIGNIFICANCE Our results revealed that KIF3A and KIF3B were involved in the nuclear and cellular morphogenesis at the levels of mRNA and protein. These proteins can potentially facilitate the intracellular transport of organelles, proteins, and other cargoes. The results represent the functions of KIF3A and KIF3B in the spermatogenesis of Crustacea and clarify phylogenetic relationships among the Decapoda.
Collapse
|
38
|
Hou CC, Yang WX. Acroframosome-dependent KIFC1 facilitates acrosome formation during spermatogenesis in the caridean shrimp Exopalaemon modestus. PLoS One 2013; 8:e76065. [PMID: 24098763 PMCID: PMC3786892 DOI: 10.1371/journal.pone.0076065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
Background Acrosome formation and nuclear shaping are the main events in spermatogenesis. During spermiogenesis in Exopalaemon modestus, a unique microtubular structure called the acroframosome (AFS) forms in spermatids. The AFS links to a temporary organelle called the lamellar complex (LCx) leading to the formation of an everted umbrella-shaped acrosome and a dish-shaped nucleus in the mature sperm. These morphological changes require complex cell motility in which the C-terminal kinesin motor protein called KIFC1 is involved. In this study, we demonstrate that KIFC1 moves along the AFS and plays an important role in acrosome formation and nuclear shaping during spermatogenesis in E. modestus. Methodology/Principal Findings We cloned a 3125 bp complete cDNA of kifc1 from the testis of E. modestus by PCR. The predicted secondary and tertiary structures of E. modestus KIFC1 contain three domains: a) the C-terminus, b) the stalk region, and the c) N-terminusl. Semi-quantitative RT-PCR detected the expression of kifc1 mRNA in different tissues of E. modestus. In situ hybridization demonstrated the temporal and spatial expression profile of kifc1 during spermiogenesis. Western blot identified the expression of KIFC1 in different tissues of E. modestus, including the testis. Immunofluorescence localized KIFC1, tubulin, GM130, and mitochondria in order to elucidate their role during spermiogenesis in E. modestus. Conclusion/Significance Our results indicate that KIFC1 transports the Golgi complex, mitochondria, and other cellular components that results in acrosome formation and nuclear shaping in E. modestus. The KIFC1 transport function depends upon the microtubular structure called the acroframosome (AFS). This study describes some of the molecular mechanisms involved in the acrosome formation and nuclear shaping in E. modestus. In addition, this study may provide a model for studying the molecular mechanisms involved in spermatogenesis in other crustacean species and lead to a better understanding of the fertilization process in crustaceans.
Collapse
Affiliation(s)
- Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
39
|
Hu JR, Liu M, Wang DH, Hu YJ, Tan FQ, Yang WX. Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep 2013; 40:6645-6655. [PMID: 24078165 DOI: 10.1007/s11033-013-2779-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
Abstract
The member of the kinesin-14 subfamily, KIFC1, is a carboxyl-terminal motor protein that plays an important role in the elongation of nucleus and acrosome biogenesis during the spermiogenesis of mammals. Here, we had cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed ec-KIFC1) from the total RNA of the testis of the reptile Eumeces chinensis. The full-length sequence was 2,339 bp that contained a 216 bp 5'-untranslated region (5'UTR), a 194 bp 3'-untranslated region (3'UTR) and a 1,929 bp open reading frame that encoded a special protein of 643 amino acids (aa). The calculated molecular weight of the putative ec-KIFC1 was 71 kDa and its estimated isoelectric point was 9.47. The putative ec-KIFC1 protein owns a tail domain from 1 to 116 aa, a stalk domain from 117 to 291 aa and a conserved carboxyl motor domain from 292 to 642 aa. Protein alignment demonstrated that ec-KIFC1 had 45.6, 42.8, 44.6, 36.9, 43.7, 46.4, 45.1, 55.6 and 49.8 % identity with its homologues in Mus musculus, Salmo salar, Danio rerio, Eriocheir sinensis, Rattus norvegicus, Homo sapiens, Bos taurus, Gallus gallus and Xenopus laevis, respectively. Tissue expression analysis showed the presence of ovary, heart, liver, intestine, oviduct, testis and muscle. The phylogenetic tree revealed that ec-KIFC1 was more closely related to vertebrate KIFC1 than to invertebrate KIFC1. In situ hybridization showed that the ec-KIFC1 mRNA was localized in the periphery of the nuclear membrane and the center of the nucleus in early spermatids. In mid spermatids, the ec-KIFC1 had abundant expression in the center of nucleus, and was expressed in the tail and the anterior part of spermatids. In the late spermatid, the nucleus gradually became elongated, and the ec-KIFC1 mRNA signal was still centralized in the nucleus. In mature spermatids, the signal of the ec-KIFC1 gradually became weak, and was mainly located at the tail of spermatids. Therefore, the ec-KIFC1 probably plays a critical role in the spermatogenesis of E. chinensis.
Collapse
Affiliation(s)
- Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni. Gene 2013; 532:53-62. [PMID: 24035901 DOI: 10.1016/j.gene.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/07/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structures, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, the testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the nucleus or influence the shaping process through indirect regulation.
Collapse
|
41
|
Gene expression pattern of myosin Va during spermatogenesis of Chinese mitten crab, Eriocheir sinensis. Gene 2012; 508:78-84. [DOI: 10.1016/j.gene.2012.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022]
|
42
|
He L, Wang Q, Jin X, Wang Y, Chen L, Liu L, Wang Y. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS One 2012; 7:e33735. [PMID: 22442720 PMCID: PMC3307765 DOI: 10.1371/journal.pone.0033735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation.
Collapse
Affiliation(s)
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| | | | | | | | | | | |
Collapse
|
43
|
Wang YT, Mao H, Hou CC, Sun X, Wang DH, Zhou H, Yang WX. Characterization and expression pattern of KIFC1-like kinesin gene in the testis of the Macrobrachium nipponense with discussion of its relationship with structure lamellar complex (LCx) and acroframosome (AFS). Mol Biol Rep 2012; 39:7591-8. [PMID: 22327780 DOI: 10.1007/s11033-012-1593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
Abstract
Spermiogenesis is a developmental process undergoing continuous differentiation to drive a diploid spermatogonium towards a haploid sperm cell. This striking transformation from spermatogonium to spermatozoa is made possible by the stage-specific adaption of cytoskeleton and associated molecular motor proteins. KIFC1 is a C-terminal kinesin motor found to boast essential roles in acrosome biogenesis and nuclear reshaping during spermiogenesis in rat. To explore its functions during the same process in Macrobrachium nipponense, we have cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed mn-KIFC1) from the total RNA of the testis. The 2,296 bp mn-KIFC1 cDNA contained a 87 bp 5' untranslated region, a 211 bp 3' untranslated region and a 1,998 bp open reading frame. Protein alignment demonstrated that mn-KIFC1 had 37.7, 58.7, 38.4, 37.2, 38.9 and 37.8% identity with its homologues in Salmo salar, Eriocheir sinensis, Homo sapiens, Mus musculus, Danio rerio and Xenopus laevis respectively. The phylogenetic tree revealed that mn-KIFC1 is most related to E. Sinensis KIFC1 among the examined species. Tissue expression analysis showed the presence of mn-KIFC1 in the testis, hepatopancreas, gill, muscle and heart. In situ hybridization showed that the mn-KIFC1 mRNA was localized at the periphery of the nuclear membrane and in the proacrosomal vesicle in early and middle spermatids. In late spermatids and spermatozoa, mn-KIFC1 was expressed in the acrosome and in the spike. In situ hybridization also indicated that KIFC1 works together with lamellar complex (LCx) and acroframosome (AFS) to drive acrosome formation and cellular transformation. LCx and AFS have both been previously proved to have essential roles during spermiogenesis in M. nipponense. In conclusion, the expression of mn-kifc1 at specific stages of spermiogenesis suggests a role in cellular transformations in M. nipponense.
Collapse
Affiliation(s)
- Yan-Ting Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058 Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Mao H, Wang DH, Zhou H, Yang WX. Characterization and expression analysis of prohibitin in the testis of Chinese mitten crab Eriocheir sinensis. Mol Biol Rep 2012; 39:7031-9. [DOI: 10.1007/s11033-012-1534-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
45
|
Dang R, Zhu JQ, Tan FQ, Wang W, Zhou H, Yang WX. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Mol Biol Rep 2011; 39:5589-98. [PMID: 22183304 DOI: 10.1007/s11033-011-1363-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 12/12/2011] [Indexed: 01/03/2023]
Abstract
KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.
Collapse
Affiliation(s)
- Ran Dang
- Faculty of Life Science and Bioengineering, Ningbo University, 315211, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis. Mol Biol Rep 2011; 39:4207-14. [PMID: 21773941 DOI: 10.1007/s11033-011-1206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
Abstract
KIF3A, the subunit within the kinesin-2 superfamily, is a typically N-terminal motor protein, which is involved in membranous organelle and intraflagellar transport. During spermatogenesis, KIF3A plays a critical role in the formation of flagella and cilia. KIF3A is also related to the left-right asymmetry, the signal pathway, DNA damage and tumorigenesis. We used RT-PCR and in situ hybridization to clone the kif3a gene, and we identified its function in the testis of the Chinese fire-bellied newt Cynops orientalis (termed as co-kif3a). The full-length sequence of co-kif3a was 2193 bp, containing a 56 bp 5'UTR, 2073 bp ORF encoding a protein of 691 amino acids and a 64 bp 3'UTR. The secondary structure analysis showed that co-KIF3A had three motor domains, representing the N-terminal motor domain (1-400 aa), α-helix domain (400-600 aa) and C-terminal tail domain (600-691 aa). The amino acid sequence of co-KIF3A shared an identity of 55.9%, 90.9%, 89.9%, 91.3% and 85.7% with its counterparts in Aedes aegypti, Mus musculus, Xenopus tropicalis, Homo sapiens and Danio rerio, respectively. The calculated molecular weight of the putative co-KIF3A was 79 kDa and its estimated isoelectric point was 6.8. RT-PCR result showed that co-kif3a was expressed in several examined tissues, with a high level in the testis and low levels in liver, muscle and ovum. Kif3a was weakly expressed in the heart and spleen, and barely detected in the intestine. In situ hybridization analysis demonstrated that in early spermatid co-kif3a was expressed around the nuclear membrane. When the tail began to emerge in the middle spermatid, mRNA transcript was abundantly concentrated in the flagellum. The mRNA signal was still very strong along all the flagellum in late spermatid. In mature spermatid, the message was weak. Therefore, co-KIF3A probably plays a functional role in the spermiogenesis of C. orientalis.
Collapse
|
47
|
Wang W, Zhu JQ, Yu HM, Tan FQ, Yang WX. KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei. PLoS One 2010; 5:e15616. [PMID: 21187923 PMCID: PMC3004946 DOI: 10.1371/journal.pone.0015616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery. Methodology/Principal Findings We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level. Conclusions/Significance The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod.
Collapse
Affiliation(s)
- Wei Wang
- Faculty of Life Science and Bioengineering, Ningbo University, Ningbo, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Quan Zhu
- Faculty of Life Science and Bioengineering, Ningbo University, Ningbo, China
| | - He-Ming Yu
- Faculty of Life Science and Bioengineering, Ningbo University, Ningbo, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
48
|
LI ZHE, PAN CHENYI, ZHENG BEIHONG, XIANG LIANG, YANG WANXI. Immunocytochemical studies on the acroframosome during spermiogenesis of the caridean shrimpMacrobrachium nipponense(Crustacea, Natantia). INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:123-31. [DOI: 10.1016/j.cbpa.2010.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/23/2022]
|
50
|
Sun X, He Y, Hou L, Yang WX. Myosin Va participates in acrosomal formation and nuclear morphogenesis during spermatogenesis of Chinese mitten crab Eriocheir sinensis. PLoS One 2010; 5:e12738. [PMID: 20856877 PMCID: PMC2939076 DOI: 10.1371/journal.pone.0012738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/23/2010] [Indexed: 12/23/2022] Open
Abstract
Background The Chinese mitten crab Eriocheir sinensis belongs to the Class Crustacea, Decapoda, Brachyura. The spermatozoon of this species is of aflagellated type, it has a spherical acrosome surrounded by the cup-shaped nucleus, which are unique to brachyurans. For the past several decades, studies on the spermatogenesis of the mitten crab mainly focus on the morphology. Compared with the extensive study of molecular mechanism of spermatogenesis in mammals, relatively less information is available in crustacean species. Myosin Va, a member of Class V myosin, has been implicated in acrosome biogenesis and vesicle transport during spermatogenesis in mammals. In the present study we demonstrate the expression and cellular localization of myosin Va during spermatogenesis in E. sinensis. Methodology/Principal Findings Western blot demonstrated that myosin Va is expressed during spermatogenesis. Immunocytochemical and ultrastructural analyses showed that myosin Va mainly localizes in the cytoplasm in spermatocytes. At the early stage of spermiogenesis, myosin Va binds to the endoplasmic reticulum vesicle (EV) and proacrosomal granule (PG). Subsequently, myosin Va localizes within the proacrosomal vesicle (PV) formed by PG and EV fusion and locates in the membrane complex (MC) at the mid spermatid stage. At the late spermatid stage, myosin Va is associated with the shaping nucleus and mitochondria. In mature spermatozoon, myosin Va predominates in acrosomal tubule (AT) and nucleus. Conclusions/Significance Our study demonstrates that myosin Va may be involved in acrosome biogenesis and nuclear morphogenesis during spermatogenesis in E. sinensis. Considering the distribution and molecular characteristics of myosin Va, we also propose a hypothesis of AT formation in this species. It is the first time to uncover the role of myosin Va in crustacean spermatogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying He
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences, Liaoning Normal University, Dalian, China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|